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Pseudo-Zernike Moments Based Sparse Representa-
tions for SAR Image Classification

We propose radar image classification via pseudo-Zernike mo-
ments based sparse representations. We exploit invariance properties
of pseudo-Zernike moments to augment redundancy in the sparsity
representative dictionary by introducing auxiliary atoms. We employ
complex radar signatures. We prove the validity of our proposed meth-
ods on the publicly available moving and stationary target acquisition
and recognition dataset.

I. INTRODUCTION

Synthetic aperture radar (SAR) can provide all-weather
imagery with a very high resolution [1]. This has natu-
rally led to using SAR for the purpose of automatic target
recognition or classification. The initial usage was military
related. However, SAR imaging with the aim of classifica-
tion is making very quick strides for the automotive usage
as well [2]. Traditionally, a number of techniques are used
for SAR image classification. A state-of-the-art review on
different approaches used for automatic target recognition
in SAR imagery can be found in [3]. Here, we briefly men-
tion a couple of them. Template-based classification [4]
requires generation of a large number of templates for each
target and then matching the test image with those tem-
plates in an exhaustive search manner. It is an effective
linear approach. However, it is computationally quite ex-
pensive. Among the nonlinear approaches, support vector
machine classifier (SVC) has been quite popular [5]. It is
a large margin classifier and can outperform the template-
based classifier. However, this approach is dependent upon
the accurate estimation of the pose angle, which involves
an extra preprocessing stage.

Recent trends in classification are based on sparse rep-
resentations, also known as sparse coding [6], [7]. Initially,
efforts were made to find or use a unified dictionary for all
the classes, see, e.g., [8], [9], and the references therein. In-
stead of using a single dictionary for all the classes, Wright
et al. [10] proposed to use unit-normalized measurements
of the objects as the columns of an overcomplete dictionary.
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Coding is done through an �1-norm minimization problem
and the classification is based on a least-squares metric
w.r.t. the group of columns specific to a particular class ob-
ject. This is known as sparse representation based classifier
(SRC). The ease of formulating a dictionary by using the
measurements of the class objects directly made SRC a fa-
vorable choice for classification in a wide range of fields.
In SAR image classification, SRC was used in [11] from
the perspective of class manifolds [12]. A class manifold
is defined over the set of measurements for a particular
class object, and the SAR image is claimed to lie in that
manifold by using the fact that linear representation can
be provided to a nonlinear manifold if a local region of
the manifold is considered [13]. This local region of the
manifold gives the basis for sparse representation of a test
image over that manifold. Therefore, it obviates the need
for a rigorous preprocessing as well as pose-angle estima-
tion. Dimensionality reduction can be achieved via random
projections. However, it can result in a performance loss.

It was shown in [10] and [11] that SRC can outper-
form linear SVC (LSVC), i.e., when a linear kernel is used.
However, SRC is primarily based upon sparse reconstruc-
tion or coding, and it does not involve the classification
aspect during the coding process. A number of papers have
been written to incorporate this aspect in sparse representa-
tions. Some discriminative dictionary learning techniques
have been proposed in [14] and [15]. Similarly, joint dictio-
nary learning and encoding has been proposed in [16] (see,
e.g., [17] and [18] for such recent attempts). Although these
methods provide good performance but dictionary learning,
whether discriminative or not, is a computationally inten-
sive process.

Moments based image representations have been
successfully used over many decades [19], [20]. The basic
idea is to derive image features, which are scale-, shift-,
and rotation-invariant by using nonlinear combinations
of the regular moments (also called geometric moments).
However, the gains have been limited, primarily due to
the nonorthogonality of regular moments. Orthogonal
moments, e.g., Legendre moments, Zernike moments,
and pseudo-Zernike (PZ) moments [21], [22] have been
a popular substitute in pattern recognition. Among these,
PZ moments stand apart both in terms of generating the
maximum number of invariant moments and in terms of
performance regarding noise rejection. PZ moments have
been used for radar automatic target recognition in [23] with
a nearest neighbor classifier. Similarly, in [24], PZ moments
have been used for radar classification based on its micro-
Doppler signatures, with an SVC. However, in both these
cases, the emphasis has been on feature extraction w.r.t.
PZ moments and not on the choice of an optimal classifier.

Contributions: In this paper, we propose using PZ mo-
ments in combination with the SRC framework (PZ-SRC),
in order to gain from both optimal feature extraction and
optimal classification. By using a finite number of PZ mo-
ments, we reduce the dimensionality of the problem. This
has a direct impact on reducing the computational com-
plexity of the proposed method, as shown in subsequent

sections. Due to invariance properties of the PZ moments,
we obtain good performance, albeit in the low-dimensional
setting. We also introduce auxiliary atoms in the dictionary
to increase the redundancy of information, which further ex-
ploits the invariance properties of the PZ moments. Thus,
information is better localized in individual class manifolds.
This results in a further improvement in classification per-
formance. Note, this also forms a unique contribution to
the SRC framework, in general, as well. In order to uti-
lize both the magnitude and the phase information of the
complex radar signatures, we fuse the two parameters by
a simple averaging mechanism (see [25] for details on the
fusion mechanisms). This results in even more informative
radar signatures with direct positive impact over the clas-
sification performance. Note, a similar approach has been
used in [26]. However, the feature extraction there is based
on regular moments and the authors do not use auxiliary
atoms. Now, in order to encode the test image in our pro-
posed framework of PZ-SRC, we use the state-of-the-art
technique of iterative hard thresholding (IHT) algorithm
[27]. IHT provides very fast convergence as well accuracy
(in comparison with the approach in [10]), both of which are
crucial in real-time radar image classification applications.
We test our proposed methods on the publicly available
moving and stationary target acquisition and recognition
(MSTAR) dataset [28].

Organization: Section II gives the basics of PZ mo-
ments, Section III briefly describes the SRC method,
Section IV details our proposed method of PZ-SRC,
Section V provides experimental results, and conclusions
are given in Section VI.

Notations: Matrices are in upper case bold whereas col-
umn vectors are in lower case bold, (·)T denotes trans-
pose, [x]i is the ith element of x, x̂ is the estimate of
x,

�= defines an entity, and the �p-norm is denoted as
||x||p = (

∑N−1
i=0 |[x]i |p)1/p.

II. PZ MOMENTS

Let a piecewise continuous function s(x, y) (with
bounded support) be the intensity function of a two-
dimensional real image in Cartesian coordinates. The reg-
ular moments of s(x, y) can be defined as

μp,q =
∫

x

∫

y

xpyqs(x, y) dx dy (1)

where {p, q} ∈ Z+ and p + q is the degree of the moments.
Note, (1) represents the projection of s(x, y) on monomial
xpyq . Since {xpyq} is not an orthogonal set, μp,q are not
independent moments. In contrast, the PZ moments are
generated from a set of orthogonal polynomials. We refer to
these polynomials as PZ polynomials. The PZ polynomials
are a set of complex polynomials described as

zm
n (r, θ) = ρm

n (r) exp (jmθ) (2)

where r
�=

√
x2 + y2 and θ

�= tan−1(y/x) are the length
and angle of the position vector of a point (x, y) w.r.t. the
center of the image, respectively, n ∈ Z+ is the degree of
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the polynomial with frequency m, i.e., m ∈ [−n, +n], and

ρm
n (r)

�=
n−|m|∑

κ=0

(−1)κ (2n + 1 − κ)! rn−κ

κ! (n + |m| + 1 − κ)! (n − |m| − κ)!
(3)

is the radial polynomial. When defined over a unite circle,
i.e., r ≤ 1, the PZ polynomials exhibit orthogonality, i.e.,
∫ 2π

0

∫ 1

0
[zm

n (r, θ)]∗zm′
n′ (r, θ) r dr dθ = π

n + 1
δnn′δmm′ (4)

where δii ′ is the Kronecker delta function. Note, it can be
seen via simple enumeration that cardinality of the set of
PZ polynomials with degree ≤ n is P = (n + 1)2. Now, the
PZ moments can be obtained by projecting the image onto
the PZ polynomials as1

am
n = n + 1

π

∫ 2π

0

∫ 1

0
[zm

n (r, θ)]∗s(r, θ) r dr dθ (5)

where s(r, θ) = s(x, y)|x=r cos θ,y=r sin θ . Due to (4), it can be
shown that (5) generates a set of independent moments.

The invariance properties of the PZ moments can
be established via mathematical manipulations. For scale
and translation invariance, one way is to use the regu-
lar moments of the image. The transformed image can be
written as

g(x, y) = s
(x

υ
+ mx,

y

υ
+ my

)
(6)

where mx
�= μ1,0/μ0,0 and my

�= μ0,1/μ0,0 are the cen-
troid adjustment parameters of the image s(x, y), and
υ

�= √
ξ/μ0,0 is the scale adjustment parameter of the im-

age s(x, y) with a predetermined value ξ . Now, the scale-
and translation-invariant PZ moments can be generated
by replacing s(r, θ) with g(r, θ) in (5), where g(r, θ) =
g(x, y)|x=r cos θ,y=r sin θ . Since PZ polynomials are a set of
complex polynomials, the PZ moments generated via (5)
are also complex. The rotation invariance of the PZ mo-
ments refers to the magnitude part only, i.e., |am

n | and not
the phase.

III. SPARSE REPRESENTATION BASED CLASSIFIER

Let a generic
√

N × √
N image with intensity function

g(x, y) or g(r, θ) is represented as an N × 1 vector g via
a lexicographic ordering (column or row ordered). Let gk

j

be the j th image measurement of the kth object class, for
j = 1, . . . , Jk and k = 1, . . . , K . Now, given a set of train-
ing image measurements {gk

j }, with ‖gk
j‖2

2 = 1, the SRC
method defines the dictionary as

G �= [G1, G2, . . . , GK ] (7)

where G is an N × J matrix with J = ∑K
k=1 Jk and

Gk �= [gk
1, gk

2, . . . , gk
Jk

] is an N × Jk matrix acting as a sub-
dictionary for class k, for k = 1, . . . , K . Any test image

1Note, in case of a digital image, the integrals in the projection operations
are replaced by summations.

measurement, represented as an N × 1 vector ỹ can then be
decomposed or encoded according to the linear model

ỹ = Gx̃ + ñ (8)

where x̃ is a J × 1 vector of coefficients defined as, x̃ �=
[x̃1 T , x̃2 T , . . . , x̃K T ]T , where x̃k are the coefficients w.r.t.
the submatrix Gk , and the N × 1 vector ñ accounts for
model errors with a bounded energy, i.e., ‖ñ‖2 < ε̃. It is
clear from (8) that given ỹ belongs to the kth class, x̃ would
be a sparse vector. Now, an estimate of x̃ can be obtained by
solving the following �1-norm optimization problem (OP):

ˆ̃x = arg min
x̃

‖ỹ − Gx̃‖2
2 + λ ‖x̃‖1

1 (9)

where λ > 0. The classification result is then obtained
by finding k for which ‖ỹ − Gk ˆ̃xk‖2

2 is minimum, for
k = 1, . . . , K . In case of the feature based representation,
the SRC model takes the form

Rỹ = RGx̃ + Rñ (10)

where R is an R × N linear transformation matrix. When
R < N , it can reduce the computational complexity of the
SRC approach. However, it may reduce the classification
performance as well. If the elements of R are drawn from
a normal/Gaussian distribution, i.e., N (0, 1), (10) is known
as SRC with random projections (Rω-SRC) [11], where
R = N/ω and ω ≥ 1.

IV. PZ MOMENTS BASED SPARSE REPRESENTATIONS

In this paper, we consider feature based sparse represen-
tations. In our case, PZ moments form the feature set of the
radar image. Since PZ moments are generated by project-
ing the image onto PZ polynomials, we can easily generate
the features by converting the PZ polynomials into a basis
matrix and then projecting the image vector onto this basis
matrix.

Let a P × 1 vector zi of PZ polynomials, with degree ≤
n, w.r.t. image point (ri, θi), where (ri, θi) are the polar co-
ordinates equivalent of the image point (xi, yi) in Cartesian
coordinates, for i = 1, . . . , N , be defined as

zi
�= [γ0z

0
0(ri, θi), γ1z

−1
1 (ri, θi), γ1z

0
1(ri, θi), γ1z

+1
1 (ri, θi)

. . . , γnz
−n
n (ri, θi), γnz

−n+1
n (ri, θi), . . . , γnz

+n
n (ri, θi)]

T

(11)

where γn
�= (n + 1)/(πN) accounts for subsequent con-

stants as well as integration to summation approximations
in (5). Note, we assume that ri ≤ 1 ∀i ∈ [1, N], which
ensures that all image points are within the unit circle. The
PZ polynomials based basis matrix can then be defined as
a P × N matrix Z, i.e.,

Z �= [z1, z2, . . . , zN ] (12)

which is still a matrix of complex polynomials. Now, given a
set of training image measurements {gk

j }, for j = 1, . . . , Jk

and k = 1, . . . , K , the dictionary based on PZ moments
features, with the property of rotational invariance, can be
defined as a column normalized (i.e., normalized to unity)
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P × J matrix A, i.e.,

A �= abs (ZG) = [
A1, A2, . . . , AK

]
(13)

where abs(·) is a function that generates elementwise abso-
lute values, and Ak �= abs (ZGk) is a P × Jk matrix of PZ
moments w.r.t. Gk , for k = 1, . . . , K . In order to capitalize
on the invariance structure provided by PZ moments, we in-
troduce auxiliary atoms in the dictionary (see Section IV-B).
Thus, the dictionary can be defined as

�
�= [[

A1, f
(
A1

)]
,
[
A2, f

(
A2

)]
, . . . ,

[
AK, f

(
AK

)]]

= [
�1, �2, . . . , �K

]
(14)

where f (Ak) is a P × Lk auxiliary matrix (with columns
normalized to unity) and it is a function of the columns of
Ak , �k �= [Ak, f (Ak)] is a P × Qk matrix with Qk = Jk +
Lk , for k = 1, . . . , K , and the overcomplete dictionary � is
a P × Q matrix with Q = ∑K

k=1 Qk . Now, the test image
ỹ can be encoded according to the following linear model:

y = �x + n (15)

where y �= abs(Zỹ) is the P × 1 vector of PZ moments of
the test image, x is the Q × 1 encoded vector defined as,
x �= [x1 T , x2 T , . . . , xK T ]T , where xk is the Qk × 1 encod-
ing vector w.r.t. �k , for k = 1, . . . , K , and n is the P × 1
model error vector with bounded energy, i.e., ‖n‖2 < ε. It
is clear from (15), given that the test image belongs to a
particular class, x would be a sparse vector with nonzero
elements ideally corresponding to the subdictionary of only
a particular class.

A. Sparse Reconstruction and Classification

Since P � Q, (15) is an underdetermined system of
linear equations. In order to recover x in (15), we use IHT
as the sparse recovery algorithm. An estimate of x can be
obtained by processing the following iterations:

x̂[t+1] = H�

(
x̂[t] + �T

(
y − �x̂[t]

))
(16)

where t is the iteration index (starting with t = 0) and H�

is the hard thresholding operator defined as

H�(q)
�= qI{i | [q]i≥[Ascend(q)]�,∀i} (17)

where I{·} is an indicator operatorthat discards those ele-
ments of vector q that are not in the indicator set (the set
given in its subscript), and Ascend(q) is a sorting function
that sorts the elements of q in an ascending order. Essen-
tially, H�(q) preserves only the � largest element magni-
tudes of q in each iteration t . Thus, (16) approximates the
�0-norm estimate of x, i.e.,

x̂ = arg min
x

‖y − �x‖2
2 subject to ‖x‖0

0 ≤ � (18)

where � is the order of sparsity. Note, the stopping crite-
rion of iterations in (16) can either be the maximum number
of allowable iterations or the minimum residual error, i.e.,
‖y − �x̂[t]‖2

2/‖y‖2
2. After sparse encoding of y, the clas-

sification of the target image can be done by solving the

following OP:

k̂ = arg min
k

∥
∥y − �k x̂k

∥
∥2

2 , for k = 1, . . . , K (19)

where x̂k is the estimate obtained in the PZ-SRC framework,
when the stopping criterion for (18) has been achieved.

Note, the computational complexity of IHT for PZ-SRC
is O(PQ) per iteration, where O(·) denotes the order of
complexity. Since P � N , the computational complexity
of PZ-SRC is much lower than that of the SRC.

B. Auxiliary Atoms

The auxiliary atoms can have a substantial impact on the
performance of the classification. Ideally, variations in the
image measurements w.r.t. different aspect angles should
not produce any variations in their respective PZ moments.
However, radar reflectivities at different aspect angles might
not be uniform. Therefore, an image at one aspect angle
might be absolutely different from the image obtained at
another aspect angle. Also, noise in the form of clutter or
other artifacts can play a disruptive role. Auxiliary atoms try
to recover the information lost due to these irregularities. In
this section, we present a number of techniques to generate
the auxiliary atoms. Note, here our focus is primarily on
rotational invariance of the moments.

1) Fixed Auxiliary Atoms (AuxFix): In case the mea-
surements are obtained at random aspect angles, we propose
to constitute the auxiliary atoms as an overall average of
the PZ-moments based measurements of each class, i.e.,

f (Ak) =
Jk∑

j=1

ak
j (20)

where ak
j

�= abs(Zgk
j ), for k = 1, . . . , K . AuxFix causes the

effect of irregular reflectivities to be averaged out. Here,
Lk = 1, for k = 1, . . . , K .

2) Moving-Average Based Auxiliary Atoms (AuxMov):
In case the measurements are arranged in the order of in-
creasing aspect angles around the object, a moving average
of atoms over each class can constitute the auxiliary atoms,
i.e.,

fj (Ak) =
+Wk/2∑

w=−Wk/2

ak
w+j (21)

where Wk is the window size for the kth class, for k =
1, . . . , K , and j = 1, . . . , Jk . We can see that the window is
centered over the j th column of Ak . Note, in case (w + j ) <

1 or (w + j ) > Jk , ak
w+j can be considered as zero vectors.

Here, Lk = Jk . The auxiliary matrix can be formed as

f (Ak) = [
f1(Ak), f2(Ak), . . . , fJk

(Ak)
]
. (22)

3) Correlation Based Auxiliary Atoms (AuxCorr): An
optimal method is to find correlated atoms w.r.t. every train-
ing measurement for each class, i.e., the columns of Ak . The
auxiliary atoms can then be generated based on a minimum
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correlation value, i.e.,

fj (ak) =
Jk∑

l=1
ak T
j

ak
l

> ϒ

ak
l (23)

where ak T
j ak

l performs the inner product, ϒ is the corre-
lation threshold, and j = 1, . . . , Jk . Here, Lk = Jk . The
auxiliary matrix can be formed according to (22). This
procedure ensures that all informative measurements, i.e.,
measurements with high mutual correlation, are accounted
for.

C. Complex Signatures

We can see from the previous sections that most of the
classification strategies use only the intensities or magni-
tudes of the images. However, a radar signature contains
information both in the magnitude and the phase. One way
to benefit from both sources of information is to create
an image of the target scene from each of these sources
and then use an image fusion technique to optimally com-
bine them into a single fused image. This resulting image
will have more information of the target scene than the
magnitude-only and the phase-only images. To this end, we
combine the magnitude and the phase of the radar signa-
tures via an averaging fusion mechanism, and use the fused
image to create the PZ moments. Thus, the fused image has
the generalized form, α[log(abs({gk

j }))] + β[phase({gk
j })],

where phase(·) is an elementwise phase-generating func-
tion, and, 0 < α ≤ 1 and 0 < β ≤ 1 denote the magnitude
and phase fractions, respectively. Note, we use an averaging
fusion mechanism due to the ease of its implementation and
the generality of its applicability across all classes of the
target objects. However, other image fusion techniques, op-
timal for each target class (based on different performance
metrics), can also be used to further enhance the classifi-
cation performance. See [25] for more details on different
image fusion techniques.

V. EXPERIMENTAL RESULTS

In this section, we present experimental results of our
proposed methods. We use the publicly available MSTAR
dataset. The MSTAR data were collected by Sandia Na-
tional Laboratory by using an X-band SAR (in spotlight
mode) with 1-ft resolution. We consider three targets from
this dataset, i.e., 2S1 tank, D-7 land clearing vehicle, and
T62 tank (so K = 3). Fig. 1 shows the optical and SAR
(magnitude only) images for one aspect angle of these tar-
gets.

For the purpose of training, a total of Jk = 299 measure-
ments are considered, for each target, at a radar elevation
angle of 17◦. The measurements have been taken at se-
quentially increasing aspect angles of approximately 1.2◦,
i.e., covering the complete angular range of 360◦. Note,
the measurements are in the form of 96 × 96 SAR images.
These images are vectorized for the sake of processing.
Thus, N = 9216. For the purpose of testing, a total of 273
image measurements (for each class) are considered, which

Fig. 1. MSTAR targets. (a) 2S1. (b) D-7. (c) T62.

TABLE I
Performance Comparison of Different Classifiers

have been taken at different aspect angles over the complete
angular range of 360◦, with a radar elevation angle of 15◦.
Aspect angles of the testing measurements are different
from the training measurements. Thus, pose-angle estima-
tion is a valid issue. We define the classification/recognition
accuracy/performance for the kth class as

�k
�= 100

(
TPk

273

)

(24)

where TPk are the true positives of the target class k, for
k = 1, . . . , K , and the overall performance is defined as

�
�= 1

K

K∑

k=1

�k. (25)

Note, both � and �k quantify performance in percentages.
For PZ moments, we consider n = 10 as the degree of
the polynomials, which generates P = 121 PZ moments.
In comparison to N , this is a dimensionality reduction by
a factor of over 70. Note, the value of n can impact the
performance of classification. Generally, higher values of n

can represent an image better. However, very large values
can cause numerical instabilities. Therefore, we select a
moderate value of n. Few tests on the training data can
also give a good idea over the choice of n. For sparse
reconstruction, we use IHT for PZ-SRC (as well as for
SRC and Rω-SRC, for a fair comparison) and consider the
order of sparsity � = 5. Note, the parameter � is a tuning
parameter and can be selected based on different cross-
validation approaches.

In terms of experimental results, we first consider the
magnitude-only radar signatures. Table I shows the classi-
fication performance results of different classifiers. Note,
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we also consider PZ moments based LSVC (PZ-LSVC)
for the sake of comparison. We can see that SRC outper-
forms LSVC for all target classes. PZ-LSVC is slightly
better than SRC in the overall performance, which shows
that the usage of PZ moments improves the performance
of a classifier, in general. We also provide the performance
results of random projections based SRC, i.e., Rω-SRC for
ω = 05, 15, and 35. As mentioned in Section III, the in-
creasing value of ω causes a reduction in the computational
complexity of the SRC. However, we can see from Table I
that it also causes a proportional reduction in the classifi-
cation performance. In comparison, PZ-SRC shows better
classification performance than that of all the classifiers,
in every category. Note, despite showing improved perfor-
mance, the computational complexity of PZ-SRC is much
less than that of other methods. In the current setting, the
computational complexity of PZ-SRC is less than that of
R70-SRC, whereas its performance is significantly higher
than that of R35-SRC. Thus, we can say that in comparison
with other methods, PZ-SRC provides significantly higher
classification performance at a significantly lower com-
putational complexity. We also compare the performance
of PZ-SRC with reconstruction approaches different from
(18). In (18), we use an �0-norm penalty to obtain a sparse
solution. Since solving an �0-norm problem is NP-hard, we
have used the IHT algorithm, which is a greedy algorithm,
to approximate its solution. Another popular way to solve
an �0-norm problem is to relax it by an �1-norm, which is
also known as basis pursuit [7] or least absolute shrinkage
and selection operator [29]. We denote PZ-SRC with �1-
norm-based solver as PZ-SRC (�1). From Table I, we can
see that the difference in performance between PZ-SRC
and PZ-SRC (�1) is not significant. However, in our ex-
periments, we observed that the former converged by an
order of magnitude is faster than the latter. Apart from an
�1-norm based reconstruction, we also compare the per-
formance of PZ-SRC with �2-norm based reconstruction
approach. This is known as Tikhonov regularization. We
denote it by PZ-C (�2). As explained in Section IV, our OP
is an underdetermined problem. In principle, an �2-norm
based approach can solve such an OP. However, our OP
also requires a sparse solution that cannot be achieved by
an �2-norm based approach. Therefore, we can see from
Table I that PZ-SRC outperforms PZ-C (�2).

Now, in the light of Section IV-C, we evaluate the per-
formance of complex radar signatures for varying values
of α (magnitude fraction) and β (phase fraction). Fig. 2
presents these performance results. We can see, in com-
parison to 97.43% of the magnitude-only signatures in Ta-
ble I, that using complex signatures can enhance the perfor-
mance of PZ-SRC to 99.14%, for α, β = 0.1. In this paper,
for the sake of simplicity, we keep α, β = 0.5 for which
� = 98.41%. For the rest of the experiments, we use fused
complex signatures. We first obtain classification results by
considering AuxFix discussed in Section IV-B1 as auxiliary
atoms. Table II shows the confusion matrix in this regard.
The performance improvement has been encouraging, with
� = 98.53%. Next, we simulate the classification prob-

Fig. 2. �(%) for PZ-SRC (complex).

TABLE II
Confusion Matrix for PZ-SRC (AuxFix)

lem by considering AuxMov discussed in Section IV-B2
as auxiliary atoms. Table III shows the performance of PZ-
SRC for varying sizes of Wk (same ∀k). We can see that
the classification performance is affected by changing size
of Wk . The best performance is achieved when Wk/Jk is a
multiple of 0.5. If all the test measurements are divided into
four quadrants, with each quadrant corresponding to a range
of aspect angles of approximately 90◦, then Wk/Jk = 0.5
essentially corresponds to the numerical size of one quad-
rant, when the best performance is achieved. This can be
explained as follows. Due to the rotational invariance prop-
erties of the PZ moments, measurements at consecutive
aspect angles are correlated with each other, in general,
with some variations mostly because of radar reflectivity
irregularities. However, measurements at the boundary of
two quadrants correspond to the fine corners of the consid-
ered rectangular-shaped targets, and these measurements
are highly uncorrelated with all the measurements in the
preceding or the succeeding quadrant. This phenomenon
can be seen in Fig. 3, which shows the correlations of a
few training measurements (PZ moments) with the rest of
the measurements in a kth target class. We can see that
mutual correlations are minimum at quadrants, i.e., when
Wk/2 = 75, 150, and 225. Thus, it is better to exploit only
the correlated measurements for generating auxiliary atoms
and that happens when the size of Wk is such that it con-
tains most of the correlated measurements of a quadrant or
its multiple. Since, correlation is an important parameter
for generating auxiliary atoms, we next assess the clas-
sification performance by considering AuxCorr discussed
in Section IV-B3. Table IV shows the classification perfor-
mance with varying ϒ . We can see that the best performance
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TABLE III
Performance With Varying Wk in (21)

Fig. 3. Correlations among PZ-moments based measurements.

TABLE IV
Performance With Varying ϒ in (23)

TABLE V
Confusion Matrix for PZ-SRC (AuxMov)

is achieved for ϒ = 0.94. This is quite understandable. A
higher value of ϒ does not collect enough number of in-
formative measurements and a lower value of ϒ involves
noisy or noninformative measurements. This can be seen in
Fig. 3 as well. We also provide a confusion matrix regarding
the performance of PZ-SRC with fused complex signatures
and using Wk/Jk = 0.5, in Table V. An overall performance
of 98.90% is achieved. Note, the overall performance can
reach over 99.50% for α, β = 0.1 (see Section IV-C). This
enhanced classification performance has been achieved at a
very low computational cost. In our case, the computational
complexity of PZ-SRC with a maximum number of J aux-
iliary atoms is less than R35-SRC, whereas its classification
performance is over 5% higher than R35-SRC (see Table I).
A comparison of computation time, using a Macbook Pro
(2.2-GHz Intel Core i7, 16-GB 1600 MHz DDR3), is given
in Table VI. We also compare the performance of PZ-C (�2)
with our proposed methods of PZ-SRC. Table VII shows
this comparison for magnitude-only measurements, com-
plex measurements and when using auxiliary atoms from
AuxCorr discussed in Section IV-B3. We can see that the
holistic approach of PZ-C (�2) is not able to cope with the

TABLE VI
Comparison of Computation Time

TABLE VII
PZ-SRC Versus PZ-C (�2)

Fig. 4. Correlations among test measurements.

proposed modifications. However, the sparsity-preserving
approach of PZ-SRC exhibits substantial gains and can per-
form more than 4% higher than PZ-C (�2), for a similar
setting.

Note, in order to better appreciate the invariance prop-
erties of the PZ moments, we also plot the correlations
among original test measurements, i.e., without PZ mo-
ments, in Fig. 4. We can see that the correlation structure
is quite inconsistent in comparison to the PZ moments, as
shown in Fig. 3.

VI. CONCLUSION

In this paper, we presented sparse representations for
radar image classification by using PZ moments. We ob-
tained a reduction in the dimensionality of the problem
without compromising the performance. We exploited the
invariance properties of the PZ moments to generate auxil-
iary atoms to complement the dictionary, which resulted in
an enhanced classification performance. We used a fusion
strategy to gain both from the magnitude and the phase of
the radar signatures. We proved the validity of our proposed
methods via numerical experiments on the MSTAR dataset.
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