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Abstract—Many digital signature schemes rely on random
numbers that are unique and non-predictable per signature.
Failures of random number generators may have catastrophic
effects such as compromising private signature keys. In recent
years, many widely-used cryptographic technologies adopted
deterministic signature schemes because they are presumed to
be safer to implement.

In this paper, we analyze the security of deterministic
ECDSA and EdDSA signature schemes and show that the
elimination of random number generators in these schemes
enables new kinds of fault attacks. We formalize these attacks
and introduce practical attack scenarios against EdDSA using
the Rowhammer fault attack. EdDSA is used in many widely
used protocols such as TLS, SSH, and IPSec, and we show
that these protocols are not vulnerable to our attack. We
formalize the necessary requirements of protocols using these
deterministic signature schemes to be vulnerable, and discuss
mitigation strategies and their effect on fault attacks against
deterministic signature schemes.

1. Introduction

The Digital Signature Standard (DSS) describes a family
of cryptographic methods such as the Digital Signature
Algorithm (DSA) for digitally signing content. The Elliptic
Curve Digital Signature Algorithm (ECDSA) is a variant
of DSA using elliptic curve cryptography. Both depend on
a cryptographic random value r, which must never repeat
under different messages. This value is also known as a dig-
ital signature’s ephemeral key, session key, or secret nonce,
underlying the fact that r also needs to be confidential.
We call it nonce throughout the paper, despite the different
standards having different names for it. This is because in
this paper we focus on the “number used once” property
of r and study the security consequences of nonce reuse in
deterministic signature schemes.

RNG Failures. Using a given nonce only for one message
is crucial; if a nonce is reused for two different messages, an
attacker can trivially calculate the private key for generating
signatures. This is due to the underlying primitive – an inter-

active zero-knowledge proof [1] – requiring distinct nonces
in order to be secure. Thus, the developers of cryptographic
implementations have to ensure that nonces are never reused.
A common way to achieve this is by using a high entropy
RNG to generate fresh nonces for each signature. A promi-
nent example where the reuse of nonces led to a compromise
of signature keys was the Sony Playstation 3 [2], where the
hacker group fail0verflow showed that Sony was reusing the
same nonce for every digitally signed game. The members
then calculated the private key and create valid signatures for
arbitrary files including pirated games or Linux applications.
Another security breach that resulted out of insufficient
entropy with the nonce of ECDSA signatures happened in a
Bitcoin Android app [3]. As a result, attackers stole Bitcoins
worth several thousand dollars.

Deterministic signature schemes. To cope with this well-
known pitfall in implementing DSA and ECDSA, a nonce
may be calculated deterministically, as initially proposed
by Barwoord1 and Wigley.2 The idea is to calculate the
nonce from the to-be-signed message M and the private
signing key. The advantage here is that there is no need for
generating fresh random numbers for each signature. Ed-
wards curve Digital Signature Algorithm (EdDSA) follows
a similar approach and uses the hash of the private key and
the message M as a nonce. Thus, any change of M results
in a new nonce. A deterministic variant of DSA and ECDSA
was described by Pornin [4].

Fault attacks and the case of Rowhammer. Fault attacks
are a well-known technique in cryptanalysis that induces er-
rors during cryptographic computations. Traditionally, fault
attacks require physical access to the hardware to induce
faults, for example, by using electrical glitching with power
disturbances, thermal fluctuations or emitting radiation to
the memory chips. Rowhammer is a recently found attack
technique that allows inducing bit-flips in DRAM memory
chips on commodity computers without physical access to

1. https://groups.google.com/forum/#!msg/sci.crypt/SalLSLBBTe4/
xtYNGDe6irIJ

2. https://groups.google.com/forum/#!msg/sci.crypt/3g8DnnEkv5A/
a26mLrwfjiMJ
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the device. The idea is to very quickly and repeatedly read
DRAM rows to increase internal cell leakage. When a cell
leakage is raised to a level such that a cell is unable to main-
tain a charge for a specific time frame, it will lose its data.
Because read access is sufficient and nearby memory regions
are affected, Rowhammer enables an attacker to flip bits in
memory areas where they should not have access to. This
allows bypassing typical memory protection mechanisms.

Fault attacks on deterministic signatures. In this paper,
we analyze the effects of fault attacks on deterministic cryp-
tographic signature schemes. We analyze signature schemes
under the assumption that an attacker can induce semi-
targeted bit flips in different intermediate signature values.
Our main observation is as follows: Deterministic signatures
produce the nonce from a private key and the message
M . Thus, the signing application needs to read M twice:
once for producing the nonce and again for calculating
the digital signature. If an attacker is able to change M
to M� just after the nonce was calculated but before the
actual signing, then M� is signed with a nonce for M .
We show that it is possible to achieve such a situation by
using bit-flips, induced by double-sided as well as single-
sided Rowhammer attacks. The evaluation results show that
this presents a new attack against EdDSA that allows the
attacker to retrieve the private signature key. This stands in
contrast to the current state of the art where EdDSA was
found to be resilient to fault attacks [5]. Our work shows
the importance of considering fault attacks on deterministic
signature algorithms in general and specifically on EdDSA.
This is underlined by a large number of recent cryptographic
protocols implementing these signature algorithms [6], [7],
[8], [9], [10].

Contributions. We make the following contributions:

• We describe a new fault attack against deterministic
signature schemes that allows the attacker to retrieve
the private signature key.

• We formally analyze the properties of cryptographic
primitives, which are the reason for the vulnerability.
We conclude that our attack is generally applicable to
a well-known class of deterministic signatures derived
via the Fiat-Shamir transform [11].

• We investigate real-world protocols and find one po-
tentially vulnerable to our attacks: Online Certificate
Status Protocol (OCSP).

• We evaluate the practicality of our attack and imple-
ment a realistic attack against EdDSA, utilizing double-
sided and single-sided Rowhammer.

• We propose and discuss possible countermeasures and
extensions to EdDSA in order to counter our attack.

2. Cryptographic Background

In this section, we briefly introduce Elliptic Curve
Cryptography (ECC) and outline two signature algorithms,
ECDSA (both the non-deterministic and the deterministic
variant) and EdDSA.

Throughout this paper, we use the following notation: M
is a plaintext message. H denotes a hash function. G denotes
the base point of an elliptic curve E which is constructed
over the finite field Fp. f is a function that returns the x-
coordinate of a point. [d]P denotes a point multiplication
of point P with a scalar d. If a hash over a value is
computed, we assume a correct encoding as described in the
relevant standard or literature [12]. || denotes concatenation
of bytes. Random sampling from a set or the return value

of a probabilistic algorithm is denoted by
$←−.

2.1. Elliptic Curve Cryptography

We are mainly interested in elliptic curves E over finite
prime fields Fp with p > 3. Such curves can be described
in the short Weierstrass form

E : y2 = x3 +AWx+BW .

Other representations of elliptic curves exist and are
widely used in implementations; one being the Edwards
form of elliptic curves.

The set of points on an elliptic curve carries a natural
abelian group law which we will write additively. By [d]P
we denote the sum P + · · ·+ P (d times).

We fix a base point G of prime order q in E(Fp).
Typically, cryptographic algorithms based on elliptic curves
compute [d]P for a secret scalar d and P ∈ 〈G〉. The secu-
rity of the ECC algorithm relies on the presumed difficulty
of the Elliptic Curve Discrete Logarithm Problem (ECDLP)
in 〈G〉. The best-known algorithms to tackle the ECDLP
have a complexity of O(

√
q). Therefore q (and thus p)

should be at least 256 bit primes.
In standard applications of ECC, the point multiplication

described above is implemented in a randomized way to
counter side-channel attacks. For example, one computes
[d + λq]P = [d]P such that an attacker cannot recover d
(e.g., by using an electromagnetic trace). This countermea-
sure is also called blinding.

2.2. ECDSA

The Elliptic Curve Digital Signature Algorithm
(ECDSA) is a signature standard building upon elliptic
curve cryptography.

Parameters. ECDSA’s domain parameters are given by
(H,Fp, E, q,G) with H being a hash function, E being an
elliptic curve over the finite field Fp, and G being a point
in E(Fp) with prime order q. The public/private key pair is

given by (A, a) with the private key a
$←− Fp and the public

key A = [a]G.

Signing. To sign a message M the signer generates a

random number r
$←− {1, . . . , q − 1} and computes:

R = f([r]G) mod q (1)

s = (H(M) + aR)/r mod q (2)
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The pair (R, s) is a signature for M , if both R and s are
non-zero.

Verification. (R, s) is accepted as signature for M if

R = f([H(M)/s]G+ [R/s]A). (3)

Note that there are many sophisticated attacks on ran-
domized signatures. An overview of attacks and counter-
measures is given in [13].

2.3. Deterministic Signature Schemes

Securely implementing elliptic curve algorithms is often
difficult due to many pitfalls and can result in critical
security flaws [14], [15], [16]. Some of these pitfalls emerge
from the used curve (i.e., incorrect point addition or missed
point membership checks) and some due to difficulties in a
signature scheme (i.e., lack of entropy in nonce generation).
The fragility of ECDSA allows an attacker to learn the
ECDSA private key if two different messages M,M ′ are
signed using the same nonce r. Deterministic signature
schemes were developed to avoid this pitfall by eliminating
the need for random numbers during signature generation.

2.3.1. Deterministic ECDSA. Deterministic ECDSA [4]
uses the same parameters and procedures as described in the
previous section. The only difference is that instead of gen-
erating the nonce r at random, r is derived deterministically
from the message M by using a nested HMAC construction
with fixed key values (HMAC DRBG). The full description
of the algorithm is not needed to state the results of this
paper and can be found in sec. 3.2 of [4].

The parameters and algorithms for generation of the pair
(R, s) are the same as described in the previous section. For
our paper, it is important to note that the signature generation
results in equal signature outputs if the same message and
private key are used.

Note that Pornin explicitly mentions that side-channel
attacks are not taken into account, nor are fault attacks
mentioned [4].

2.3.2. EdDSA. The Edwards Digital Signature Algorithm
(EdDSA) is a digital signature scheme with a focus on simple
implementation and high-performance [17]. The specifics of
EdDSA include the choice of an Edwards curve [18] (which
facilitates curve arithmetic), a deterministic nonce genera-
tion (to avoid forgery due to implementation flaws and elimi-
nate the need for a reliable source of entropy), and avoidance
of secret branch-conditions or lookup-indices (to prohibit
side-channel attacks like cache- or timing-attacks) [17]. The
name Ed25519 is used to describe an instance of EdDSA
with a specific set of parameters, specifically with a twisted
Edwards curve birationally equivalent to Curve25519 [17].

Parameters. EdDSA, as initially proposed in [17], has the
following parameters: b ∈ N with b ≥ 10, a hash function
H with 2b-bit output, a prime power p ≡ 1 (mod 4), an
encoding of elements of the finite field Fp with b− 1 bits,
a non-square element d ∈ Fp, a prime q with 2b−4 ≤ q ≤

2b−3, and an element G 
= (0, 1) such that [q]G = (0, 1)
[17]. The elliptic curve E is given as

E =
{
(x, y) ∈ Fp × Fp : −x2 + y2 = 1 + dx2y2

}
(4)

with the complete addition law being

(x1, y1) + (x2, y2) = (
x1y2 + x2y1

1 + dx1x2y1y2
,

y1y2 + x1x2

1− dx1x2y1y2
)

(5)

An EdDSA secret key is a randomly generated string
k with b bits. From the secret key obtain the hash
(h0, h1, . . . , h2b−1) = H(k) and calculate

a = 2b−2 +
∑

3≤i<b−2

2ihi (6)

The public key is A = [a]G.

Signing. The signature of a message M is a pair (R, s)
with:

r = H(hb, . . . , h2b−1,M) (7)

R = [r]G (8)

s = (r +H(R,A,M) a) mod q (9)

Please note that for the simplicity we omit elliptic curve
point encoding in our description.

Verification. Given the signature (R, s), the message M ,
and the public key A, check if

[s]G = R+ [H(R,A,M)]A (10)

holds. The signature is valid if the equation holds and no
errors occurred during encoding/parsing of the values.

PureEdDSA and HashedEdDSA. One of the parameters
of EdDSA is the pre-hash function PH that is applied to
M before signing and whose output is then signed. If PH
is the identity function (i.e., PH(M) = M ), the signature
algorithm signs the full M . This is called PureEdDSA. If
PH uses a collision resistant hashing function like SHA-
512, then the SHA-512 hash of M is signed instead of
M directly. This is called HashedEdDSA. Bernstein et al.
recommend PureEdDSA [19].

3. Fault Injection Background

The effects of faults on electronic systems have been
studied for over 40 years. Since then, various forms of
fault injections such as varying the voltage supply, casting
high temperatures on hardware, using x-rays, etc. have been
applied to real hardware [20]. Due to the need of physical
access to a device, fault injections were mainly a threat
to tamper-proof hardware like smart cards or hardware
security modules. This has changed with the appearance of
Rowhammer, a hardware fault affecting a computer’s main
memory [21]. In 2014 Kim et al. showed that malicious
software can utilize main memory hammering to induce bit
flips in nearby memory regions, bypassing the hardware’s
memory protection [21]. With Rowhammer, faults may be
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injected remotely and strictly using software, making it a
novel and very powerful form of fault injection.

While we focus in this paper on Rowhammer, we stress
that our findings will work with other “faulting primitives”.

3.1. Rowhammer

Main memory is composed of multiple memory Inte-
grated Circuits (ICs) packed on a Dual Inline Memory
Module (DIMM). Although the form factor may differ, the
memory technology used in each IC is Dynamic Random
Access Memory (DRAM). DRAM is used because each cell
(i.e., each bit) is made up of a relative simple circuitry
mainly containing a transistor and a capacitor (see Figure 1
(d)).

3.1.1. Accessing Data. DRAM cells are not directly acces-
sible and each access must be served through a bank’s row
buffer (Figure 1 (c)) [21]. Data is accessed in three steps:
(1) Opening a row, which transfers the current of the cells
in one row into the bank’s row buffer, (2) invoking read or
write operations on the row buffer and (3) closing the row
by transferring the row buffer’s current back into the cells
[21].

3.1.2. Refreshing Data. Due to internal current leakage,
DRAM cells have a very limited retention time [21], [22].
This means that each cell will slowly leak its current and
eventually lose its state when it is not periodically refreshed
– hence the term “dynamic memory”. DRAM memory
controllers thus guarantee that each cell is refreshed at
least once in a 64-millisecond time frame. This has two
implications: (1) the memory controller must constantly
refresh the current in each cell and (2) each cell must be
guaranteed to keep its state for at least 64 ms in order to
avoid data loss.

3.1.3. Disturbance Errors. As the proximity between each
cell increases, disturbance errors become more likely. As
a result, cells may leak their charge at an accelerated rate
when inferring with other electrical components. When the
cell leakage is raised to a level such that a cell can’t keep
its charge for 64 ms, it will lose its data [21]. This physical
effect is the cause of the Rowhammer bug and probably
known since 2012 [21], [23], [24], [25], [26], [27], [28],
[29].

3.2. Hammering

Kim et al. demonstrated how bit flips can be triggered
by using software. This is done by repeatedly activating
two or more rows in a single bank while bypassing the
CPU cache via cache-flush instructions [21]. There are two
possible variants of those activations, namely single- and
double-sided hammering. For both variants, an attacker must
trigger row activation commands to one particular DRAM
bank. For double sided hammering, the two selected rows
must additionally enclose one victim row to intensify the

IC IC IC IC IC IC IC IC
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b) Banks in a single IC. c) Rows in a single bank. d) Single cell.

a) One rank of DDR3 DIMM.

Figure 1. Simplified topology of DRAM organization.

leakage. Although, memory banks were reported to be vul-
nerable against both variants, double-sided hammering is
more effective and often reported as the only way to trigger
bit flips in reasonable time [30].

3.3. Memory Optimization Techniques

Rowhammer attackers face basically two challenges: (1)
bypassing the CPU cache and (2) finding appropriate rows
to hammer. The first challenge can be solved by utilizing
special CPU instructions, like clflush and non-temporal
instructions, or by crafting memory access patterns for fast
cache eviction [21], [31], [32]. However, based on the at-
tacker model, it is not immediately clear how the appropriate
rows can be found.

With “Flip Feng Shui”, Razavi et al. demonstrated how
certain memory optimizations can be exploited for precise
Rowhammer attacks [33]. A machine may deploy mem-
ory optimization strategies to reduce its memory footprint
and increase system performance. Two features facilitating
Rowhammer attacks are in particular memory deduplication
(discussed in form of Linux’ Kernel Samepage Merging) and
huge pages (discussed in form of Linux’ Transparent Huge
Pages). Both technologies combined allow for controlled bit
flips across virtual machine boundaries [33].

3.3.1. Kernel Samepage Merging. Kernel Samepage Merg-
ing (KSM) is a memory optimization technique designed to
reduce the overall memory consumption of a system. KSM
deduplicates memory by identifying and merging memory
pages with the same content, such that multiple processes
can transparently share the same physical memory. Since a
page may be writable a Copy-on-Write (CoW) mechanism
is introduced such that a page is unmerged prior to a write
operation [34].

The idea behind KSM exploitation is rather simple: if
an attacker knows the exact content of a memory page
she wants to corrupt, she allocates a page with the same
content and waits for the deduplication system to merge her
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and the victim’s page. This way, she is able to point her
virtual addresses to the physical page of the victim with
little effort. Obviously, a write operation will trigger the
CoW-mechanism, such that changes will not propagate to
a victim’s VM. However, Rowhammer is a physical fault.
Thus, the CoW mechanism is not triggered and the bit flip
affects each application having a page with the same content.

3.3.2. Transparent Huge Pages. Transparent Huge Pages
(THP) are a technology to automate the creation and man-
agement of huge pages. Typically, pages have a size of 4096
bytes and allocating a large amount of memory will take
multiple pages which must all be tracked by the system and
hardware. With huge pages – which are typically 2 MiB in
size – the mapping overhead can be reduced. The algorithm
does this in the background, identifying small pages and
merging them into huge pages when possible.

Relationship to Rowhammer. Most importantly, THP al-
lows for efficient hammering. A single DRAM row (as
defined in the DDR3 spec.) is 8KiB in size. Given that there
are, for example, 16 banks, 128 KiB of data fall into the
same row index (but different bank). With huge pages in
place, a single page spans across 512 “small pages” (2 MiB
/ 4 KiB) and hence covers 32 physical rows independently
from the DRAM bank, allowing double-sided Rowhammer-
ing to become possible. Using huge pages for double-sided
Rowhammering was first described by Gruss et al. [32].

Relationship to KSM. Currently, KSM works with 4 KiB
pages only but will split a huge page into small pages for
deduplication. It is noteworthy that the physical alignment
during the split may not be destroyed and thus first al-
locating a large amount of memory, waiting for THP to
merge the pages to huge pages, and then utilizing KSM is
possible [33].

3.4. Templating

An attacker can search and “collect” pages vulnerable to
bit flips, even with a particular offset. This was coined “tem-
plating” [33]. The idea is to search for bit flips in attacker-
controlled memory, adjust the content of a vulnerable page,
and wait for deduplication. This way, precise bit flips can
be induced. For more details refer to [33].

4. Fault-attacking Deterministic Signatures

In the following, we describe how fault attacks on de-
terministic signature schemes work in general. Furthermore,
we show concrete attacks against Deterministic ECDSA and
EdDSA to confirm that the generic attacks work against
real algorithms. We also discuss which steps and variables
in signature algorithms can be compromised through fault
attacks. Finally, we discuss possible countermeasures and
show that the type of fault injection heavily influences the
choice of effective countermeasures.

4.1. Nonce reuse in deterministic ECDSA

Fault attacks on deterministic signatures require only one
faulty signature (R, s�) over M and one correct signature
(R, s) over M to recover the secret key a. Note that the
attack described below only affects deterministic signature
schemes and does not apply to randomized signatures such
as ECDSA under correct usage randomness sources.

We assume a scenario, in which a signing process runs i
times and in which the attacker can read the respective sig-
nature (Ri, si). The computation of Ri := f([(K(a,M) +
λiq]G) mod q with K being a pseudorandom function
(PRF) is performed multiple times, using blinding values λi.
Blinding is a typical countermeasure against side-channel
attacks like power analysis and the result of this computation
is independent from λ. We assume a blinded implementation
in order to show that blinding does not prevent fault attacks
against deterministic signatures.

First the attacker gets a correct value

s0 = (aR0 +H(M))K(a,M)−1 mod q.

Introducing an arbitrary fault in the computation of R leads
to a faulty R�, from which s� is computed using the
identical nonce K(a,M). From the signatures (R0, s0) and
(R�, s�) we construct a system of two linear equations over
Fq:

K(a,M)s0 = aR0 +H(M)

K(a,M)s� = aR� +H(M)

This system of two equations for two unknowns (output
of PRF K and secret key a) can easily be solved. The
point here is that the nonces are identical. For deterministic
ECDSA, at least two types of faults are possible:

• The attacker modifies M after K(a,M) has been
computed; i.e. s� is computed using the correct nonce
K(a,M), the correct value R0, but an incorrect hash.
In this case, an internal validation of the signature
would be successful.

• The computation of R� := f([K(a,M)+λ1q]G) mod
q is attacked, i.e. R� is incorrect.

A similar attack for the classic (i.e. non-deterministic)
ECDSA is not possible, because the above equations would
end up with three unknowns, which has no unique solution.
Thus, the fault attack is only possible for deterministic
nonces but not for random nonces as in classic ECDSA.

4.2. Nonce reuse in EdDSA

In contrast to classic ECDSA, EdDSA uses deterministic
nonces by design. EdDSA calculates its nonces by hashing a
long-term secret concatenated with M (see Equation 7), so
that different messages will lead to different, hard-to-predict
values of r [17].

In order to demonstrate the effects of a repeating nonce,
we will assume for a moment that an attacker can produce
two messages M1 
= M2 that yield identical hash values
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in the computation with hb, ..., h2b−1, and thus result in an
identical nonce r:

H(hb, ..., h2b−1,M1) = r = H(hb, ..., h2b−1,M2). (11)

To produce the EdDSA signature for M1,M2, we continue
with

s = (r +H(R,A,M1) a) mod q (12)

s′ = (r +H(R,A,M2) a) mod q (13)

with s 
= s′. It follows that

H(R,A,M1) a− s = −r mod q (14)

H(R,A,M2) a− s′ = −r mod q (15)

and hence

=:̂H1︷ ︸︸ ︷
H(R,A,M1) a− s =

=:̂H2︷ ︸︸ ︷
H(R,A,M2) a− s′ (16)

⇔ (Ĥ1 − Ĥ2) a = s− s′ (17)

⇔ a =
s− s′

Ĥ1 − Ĥ2

(18)

which yields the private key a.3 Note that the values s, s′,
Ĥ1, and Ĥ2 are all known by an attacker. Contrary to [5],
hb, . . . , h2b−1 is not needed to create forged signatures for
different messages.

Of course, crafting two messages M1 
= M2 such that
Equation 11 holds is infeasible for secure cryptographic hash
functions such as SHA-512. Hence, the only realistic pos-
sibility to generate the same nonce twice is using the same
two messages M1 = M2. This, however, yields two identical
signature pairs – which reveals no further information.

We now observe that M is read twice during the signa-
ture process. First, to generate the nonce r and second, M is
read again to calculate s. If an attacker is able to change M
to M� just after the generation of r, then r was calculated
from M but is used to sign M� 
= M . Now assume that
the attacker can perform the signing process twice: once
with an unchanged M and once with the changed M�. If
both resulting signatures use the same r, then the attacker
has just forced the target to reuse a nonce for two different
messages.

This attack gets practical when taking fault-injections
into account, because M can be transformed into M� by
inducing bit flips in M . In other words, instead of crafting
two messages whose hashes collide, we sign the same
message M twice and induce a bit flip during one signing
just after r was calculated.

When looking closely at Equation 12, we see that not
only is M used to produce the hash to be signed, but also
R and A. If an attacker can change either R,A,M , the
above attack is possible, see Figure 2. However, note that
depending on the scenario, M can be much larger than R
or A and thus may be easiest for an attacker to inject faults
into M .

3. As per definition, the b-bit string k is considered the private key. But
a is the secret scalar for the public key A = [a]G and knowing a allows
for signature forgery as knowing k would do. Thus, the term secret key is
used for both k and a.

5. Attack Strategies on EdDSA via Rowham-
mer

Traditionally, fault injection attacks required physical
access to the targeted machine. With the publication of the
Rowhammer attack, it became feasible to perform fault in-
jections remotely, which is highly relevant for the attacks on
deterministic signature schemes. This section describes pre-
requisites on both the protocol and the machine under attack,
and introduces strategies for Rowhammering under different
constraints. We concentrate on the analysis of EdDSA since
this algorithm is considered for further standardization by
NIST and FIPS 186, and it is currently being standardized
in several well-used cryptographic protocols [6], [7], [8],
[9], [10]. As discussed in the previous section, we see three
obvious ways to provoke a nonce reuse in EdDSA: (1)
faulting the scalar multiplication, (2) flipping bits in the
public key A, and (3) flipping bits in the message M .

5.1. Attacker Scenario and Prerequisites

We consider a cloud scenario and an attacker whose
virtual machine is co-located to a victim’s virtual machine.
It was shown in the past that this is feasible [35]. The
victim is running a cryptographic application using EdDSA
signatures. The attacker can execute Rowhammer attacks
as described in section 3.4. The goal of our attacker is to
recover the victim’s private EdDSA key.

5.1.1. Cryptographic Protocol Prerequisites. The crypto-
graphic scheme must meet the following prerequisites:

• Signatures can be observed by an attacker, i.e. the
victim serves as a signature oracle.

• At least two EdDSA signature generations (Pure- or
HashedEdDSA) can be triggered.

• It must be feasible for an attacker to trigger independent
signature generations yielding the same result. In other
words: No uncontrollable randomness is incorporated
into the signature generation.

• The to-be-signed message M is known to an attacker,
but it is not necessary to choose its content.

5.1.2. Prerequisites for Rowhammer. The prerequisites for
executing a Rowhammer attack are as follows:

• Rowhammering must be feasible on the machine under
attack.

• For the weak attacker scenario, the system needs to
be vulnerable to single-sided Rowhammering and M
needs to be relatively large compared to the overall
available main memory.

• For the stronger cross-VM attack scenario, it is neces-
sary for the host system to support KSM and THP.

Note that THP is a default-on feature in many Linux
distributions [33] and thus most setups differ in the deploy-
ment of memory deduplication only, i.e. if a form of memory
deduplication is active or not.
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Faulty R Faulty A Faulty M

Step 1 r = H(hb, . . . , h2b−1,M) r = H(hb, . . . , h2b−1,M) r = H(hb, . . . , h2b−1,M)
Step 2 R = [r]G R = [r]G R = [r]G

Step 3 s�R = (r +H(R�, A,M) a) mod q s�A = (r +H(R,A�,M) a) mod q s�M = (r +H(R,A,M�) a) mod q

Figure 2. Three fault injections provoking nonce reuse in EdDSA. For each fault injection three computational steps revealing the secret key are shown.

5.2. Attack Strategies

The success probability of the different Rowhammer
attack strategies depends on the setup under attack and
the attacker’s choice of the faulted variable. For example,
random single-sided hammering is unlikely to flip bits in
small public keys A, but has a realistic success chance to flip
bits in large messages M . Additionally, with the Flip-Feng-
Shui [33] method using KSM and THP, it may even become
feasible to flip bits in assembly instructions or the base point
G to inject faults in the scalar multiplication – a scenario
typically found in side-channel analysis of smartcards and
tamper-proof hardware.

Example for weak attacker scenario. Consider the follow-
ing configuration of the weak attacker scenario deploying
single-sided hammering. The host is equipped with 4 GiB
of main memory, the attacker-VM allocates 2 GiB, M is
1 GiB in size. Assuming a uniform distribution of M over
the main memory, the probability that two randomly picked
addresses are in the same bank depends on the DRAM
configuration. We assume 16 banks in total, thus yielding
a probability of 1

16 for picking two rows in the same bank.
Each of those rows will typically have 2 adjacent rows
(corner cases excluded). The probability that at least one
of those 4 adjacent rows in total contains a slice of the
message is therefore 1 − (1 − 1

4 )
4. This yields roughly a

probability of 1
24 for randomly choosing an address pair

which can potentially inject bit flips in a page of M . The
probability is expected to be much lower in practice, because
not each row is vulnerable to hammering. However, many
hammering attempts are possible and the success rate highly
depends on the quality of the deployed DRAM.

Constraints. Single-sided hammering has various con-
straints on its own:

• Implementations may limit the message size and pro-
vide a fallback from PureEdDSA to HashedEdDSA for
bigger messages.

• The corrupted message M� is required to reconstruct
the private key and thus the exact bit flips in M must
be known. Otherwise, a large message with multiple bit
flips will become a combinatorial problem (i.e., with(

amount of bits
amount of bit flips

)
possible combinations). In fact, with

large messages, more than one bit flip would become
infeasible to test for. However, an attacker can observe
the first change and test under the assumption that ex-
actly one bit has flipped – which is often the case when
conducting less aggressive hammering. Furthermore,
optimizations can be applied, for example, when bit
flips are known to flip from 1 to 0 only.

• Many machines are assumed to exhibit bit flips only
via double-sided hammering in reasonable time [30].
However, we experienced bit flips in longer test periods
and concluded that single-sided hammering is feasible
on our testing setup. Typically, we were able to iden-
tify randomly induced bit flips within a few hours of
hammering. Similar results were also reported on the
Rowhammer mailinglist.4

5.2.1. Faulting R. This fault injection was previously dis-
cussed by Barenghi and Pelosi [5]. The authors state that
“since the value of k [r using our notation – ed. note]
depends on both msg and an unknown portion of the hash
[hb, . . . , h2b−1 using our notation – ed. note] of d [k using
our notation – ed. note], the attacker will not be able to
exploit it to successfully forge a signature for any message
different from msg” [5]. Their conclusion was motivated
by the fact that a forged signature can be proven not to be
generated by the legitimate owner since the determinism of r
will deduce the correct values for hb, . . . , h2b−1.5 However,
we find that a signature check will pass. This is because
an attacker in possession of the private key a can simply
choose another h′b, . . . , h

′
2b−1 instead of the original one and

generate a valid signature for any M .
We see two ways to induce faults in R via bit flips:

by corrupting the calculating code (i.e., by inducing bit
flips into the corresponding assembler instructions) or by
inducing faults into the base point G. The preferred way
depends on the outcome of the templating phase (see section
3.4). The base point is expected to have at least 32 bytes and
hence there are 32 exploitable offsets per page. The number
of exploitable bit flips in the assembler code depends on the
particular implementation.

5.2.2. Faulting A. Razavi et al. implemented a successful
attack against OpenSSH by inducing faults in RSA public
keys [33]. Their attack benefits from Linux’ page cache, a
consolidated cache used to accelerate file reads from disk.
When a file is read for the first time, it is stored in the
page cache, so that subsequent reads are served from main
memory instead of disk. The whole main memory of a
virtual machine is candidate for deduplication. Therefore,
an attacker can (1) trigger a signature generation to put
the public key file into page cache, (2) wait for KSM to
deduplicate the page, (3) induce a bit flip in A and (4) trigger
a second signature generation to obtain the required faulty
s�. If a protocol meets the requirements discussed earlier,

4. https://groups.google.com/forum/#!forum/rowhammer-discuss

5. We thank the authors of [5] for clarification.
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those four steps are sufficient to obtain the EdDSA private
key.

Secret keys are likely protected in a way such that bit
flips will cause key loading routines to fail. Public keys, on
the other hand, may experience less protection as OpenSSH
demonstrates: OpenSSH documentation recommends that
the authorized_keys file is not accessible by others,
but no integrity checks are used.

5.2.3. Faulting M . Compared to R and A, the message
M can be a particularly good attack target due to the fact
that M can be very large. When large messages are signed,
the probability to inject faults into the message increases.
Additionally – because whole pages can be filled with
known data – deduplication becomes easier to trigger.

Faulting the message is especially useful for applications
which read a message twice from the disk, as is the case
for PureEdDSA implementations. Due to the page cache,
the same properties as in the public key scenario may apply.
Additionally, since the message may fill whole pages, each
template becomes exploitable.

However, a fault must be induced in a specific time
frame, specifically after step 1 and before step 3 in Figure 2.
For small pages, the scalar multiplication is the most time-
consuming operation. For large messages, the computation
is dominated by the hash operations in the first and in the
last step of signing. The time window, in which bit flips
in M are exploitable, can thus be estimated as the time
between two reads at the same offset in the message. To
conclude, an approximate time window for hammering is
at least 50% of the hashing time, plus the time needed for
scalar multiplication.

It is noteworthy that bit flips may become persistent as
long as a file is kept in page cache. Thus, if the time frame
was missed by an attacker, subsequent messages will differ
from the original by exactly the bit flips induced in the
prior attempt. This leads to different messages but is not
problematic, because each bit flip is registered and can easily
be taken into account for future attempts. The exact behavior
is highly dependent on the application-under-attack (i.e., if
files are mmaped or read, etc).

6. Applicability of the Attack to Other Signa-
ture Schemes

In this section, we introduce the background and explain
the general applicability of our results regarding signatures
in a form similar to EdDSA. Therefore, we first give the
structural connection between interactive zero-knowledge
proofs and signatures of this form and thereby the origin
of such signatures. More precisely, we concentrate on Σ-
protocols as a special class of interactive zero-knowledge
proofs since they automatically provide an algorithm for the
extraction of the secret key if nonces collide. Subsequently,
we explain the impact of the issue caused by fault attacks
relating to the set of signatures originated from Σ-protocols.

Prover P Verifier V

Setup
(x,w)

$←− KGen()

Protocol
(R,St)

$←− P1(w)

h
$←− ChSet

s
$←− P2(w,R, h, St) b := Ver(x,R, h, s)

x

R

h

s

Figure 3. Generic Σ-protocol.

6.1. From Σ-Protocols to Signatures

Σ-protocols are a special form of interactive zero-
knowledge proofs [1] between a prover P and a verifier
V in which P proofs the knowledge of a witness w for
a public element x such that (x,w) ∈ R holds for the
binary relation R between a public element and its private
counterpart. P proves the knowledge towards V without
revealing any non-public knowledge to V . Consequently,
V is not able to perform a proof of this knowledge after
the execution of the protocol to another party. Σ-protocols
are defined as Σ = (KGen,P1,P2,ChSet,Ver) such that
KGen generates a pair (x,w) ∈ R where the possession of
the private parameter w is proven for the public parameter x.
P1 generates parameters for a session for which the proof
is computed with P2. The internal state St of the prover
is handed over from P1 to P2. The verifier’s challenge,
which is also input to the algorithm P2, is randomly chosen
from a challenge set ChSet. Finally, the Ver algorithm of
V outputs 1 if the proof is correct or 0 otherwise. Typically,
the proof setting is parameterized by (x,w) but in order to
show the connection between zero-knowledge proofs and
the respective signatures, we add the setup phase to the
description.

In the protocol description in Figure 3, P proves the
possession of the witness w for the public element x in the
session specified by R, where h is V ’s challenge. A zero-
knowledge protocol of this form must satisfy three main
conditions:

• Completeness if P possesses a witness w for x, then
V is satisfied by the proof,

• Soundness if P does not know a witness w for x,
then P is able to prove its possession to V only with
negligible probability and

• Zero-Knowledge by executing the protocol, V learns
nothing but the fact that P possesses a witness w for
x.

Soundness is formally shown by fulfilling Special
Soundness: for two correct transcripts (R, h, s),
(R, h′, s′), h 
= h′, there exists an algorithm
Ext(x,R, h, h′, s, s′) → w. Essentially, this property
implies that if a prover can correctly answer two different
challenges of V for one session started with R, then P
already knew w for x such that (x,w) ∈ R. Although this
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property is only mandatory for Σ-protocols, according to
Cramer et al. this restriction is non-serious because “all
known proofs of knowledge have this property” [36].

In this sense one can consider the three messages as: R is
a unique session identifier, h is the unforeseeable challenge
by the verifier, and s is the proof of knowledge in the session
R for the challenge h. Now h is the protection for V that
P cannot cheat and in the light of special soundness, R is
the protection for P that nobody can retrieve her secret.

Fiat and Shamir proposed a generic transformation [11]
to construct signature schemes (see Figure 4) from identi-
fication schemes, and thereby from zero-knowledge proofs
and Σ-protocols. In order to convert the interactive protocol
into a non-interactive proof, the unpredictable challenge
from V is replaced by the output of a collision resistant
hash function H. The resulting signature scheme Sig =
(Gen, Sign,Vfy) can be proved to be secure according to the
definition of existential unforgeability under chosen message
attacks (EUF-CMA) in the random oracle model (ROM).

The binary relation from the zero-knowledge proof is the
relation between secret keys and public keys in the signature
scheme.

In EdDSA, the computation of h also includes the
signer’s public key h = H(R,A,M). In contrast to the
Fiat Shamir transformation where R is computed proba-
bilistically, in EdDSA the algorithm P1 is deterministically
computed on the message and a secret value.

The proof of the transformation, however, assumes no
collisions of R. Particularly Fiat and Shamir require that “P
uses each Ri only once” during multiple executions of the
proof.6

Since EdDSA not only computes the challenge from the
verifier with a deterministic function but also the algorithm
P1, and the procedure P2 is deterministic, the whole signing
algorithm is deterministic. Therefore, collisions of R are an
intrinsic side effect of the EdDSA construction. This effect
is contrary to the original intent of R, which requires R to
be randomly chosen and free of collisions.

6.2. General Applicability on Deterministic Signa-
tures from Σ-Protocols

The issue presented in this paper applies to all signature
schemes that are based on a Fiat Shamir transformed Σ-
protocol (e.g. [11], [17], [37], [38], [39], [40]) and more
generally zero-knowledge proof that fulfill special sound-
ness (e.g. [41], [42], [43]). In fact, many post-quantum
secure signature schemes employ Σ-protocols (e.g., [38]).
However, as long as the computation of R is probabilistic,
the extraction algorithm Ext from the special soundness
condition cannot be used to derive the secret key. As soon as
R is computed deterministically and h can be manipulated
such that two tuples (h, s), (h′, s′), h 
= h′ are gathered for
one R, the secret key can be computed.

6. The R in Fiat and Shamir’s construction consists of multiple values
Ri and the proof originally is conducted between parties A and B.

Gen() (pk, sk)
$←− KGen()

Sign(sk, M ) (R,St)
$←− P1(sk)

h := H(R,M)

s
$←− P2(sk,R, h, St)

σ := (R, s)
Vfy(pk, M , σ) h := H(R,M)

b := Ver(pk,R, h, s)

Figure 4. Signature scheme derived from the Fiat Schamir transform.

Since h is not computable from the signature (R, s), the
fault attack has to be performed carefully (see section 5.2).
If a similar determinism would be applied to a scheme like
the Schnorr signature scheme [37] where h is part of the
signature (h, s), the attack could be much easier. Instead
of attacking only a few bits of the processed message, the
input of the second call of H can arbitrarily be manipulated
(i.e. any number of bits) in order to compute the secret key.

As a consequence, either the determinism of a scheme is
effectively preserved or randomness is inevitable to derive a
secure signature scheme from a zero-knowledge proof with
special soundness.

7. Application of the Attack to Real-world Pro-
tocols

We are not aware of any current cryptographic stan-
dards adapting the deterministic ECDSA scheme. On the
other hand, there exist several major cryptographic stan-
dards and implementations adapting EdDSA. EdDSA is
being implemented in TLS [6], SSH [7], IPsec [8], X.509
infrastructures [9], and DNSSEC [10]. In the following, we
analyze the major cryptographic standards using EdDSA
with respect to the prerequisites described in section 5.1.

7.1. On the Impossibility of Attacking TLS, SSH,
and IPSec

7.1.1. TLS. Version 1.3 of the Transport Layer Security
(TLS) protocol [6] specifies the usage of PureEdDSA for se-
curing the authenticity of server-generated (EC)DH param-
eters exchanged in the TLS handshake. A typical handshake
with server authentication in TLS 1.3 works as follows.
The client starts the handshake with the ClientHello
messages. The ClientHello contains a list of cipher
suites, client random and further cryptographic properties
of the TLS connection. In addition, it contains a fresh
(EC)DH key denoted as ClientKeyShare. The server
responds with a list of TLS messages. ServerHello
contains a fresh server random, ServerKeyShare, and
further cryptographic properties. Certificate contains
an X.509 certificate possibly with an EdDSA public key.
The server signature is constructed over all previous mes-
sages using the PureEdDSA algorithm. Finally, both peers
exchange Finished messages to confirm that they are
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in possession of the secret key established based on the
exchanged (EC)DH key shares.

Although TLS 1.3 uses PureEdDSA, from the perspec-
tive of our attacker, a practical attack on EdDSA is infea-
sible due to the EdDSA signature always being generated
over fresh server-generated inputs: the server nonce and the
server key share. Therefore, the attacker is not able to force
the server to sign the same message multiple times. Previous
TLS versions do not officially support EdDSA.

7.1.2. SSH. Recent implementations of the Secure Shell
(SSH) transport layer protocol [7] support Ed25519 (e.g.,
OpenSSH since version 6.7). However, the SSH protocol
exposes similar behavior as TLS 1.3 and makes the attack
infeasible. SSH specifies two key exchange mechanisms:
Diffie-Hellmann and RSA key exchange. In both cases, the
signature input is derived by incorporating the server’s ran-
dom cookie, which is sent at the beginning of the protocol
flow in the SSH_MSG_KEXINIT message.

7.1.3. IPsec. Internet Key Exchange Protocol Version 2
(IKEv2) [44], [45] standardizes the key exchange mech-
anisms for IPsec [46]. A recent Internet draft specifies
the usage of EdDSA for IKEv2 [8]. In IKEv2 the server
computes a signature over its initial message and the initiator
nonce (Ni). The server initial message contains Header data
(HDR), Security Association (SA), and two random values:
the server nonce (Nr) and the fresh DH key share (KEr).
Therefore, similarly to TLS and SSH, our Rowhammer
attacks are not applicable.

7.2. Potential Dangers in OCSP

Online Certificate Status Protocol (OCSP) allows a client
to query a certificate authority about the current status of a
certificate [47]. For this purpose, the client sends a certificate
identifier in its request. The server responds with a message
containing the current certificate status (good, revoked, or
unknown), the time when the response was generated, and
a signature computed across a hash of the response. Both
OCSP messages can contain extensions with client and
server nonces.

OCSP fulfills the protocol prerequisites described in sec-
tion 5.1.1 and establishes a valid scenario for our Rowham-
mer attack; an attacker may be able to force the OCSP
responder to generate signatures over equal messages within
a short time period without uncontrollable randomness. This
is due to the existence of a client nonce extension which is
reflected in the OCSP response. Since any nonce can be sent
to the server, it is unlikely that equal nonces are cached. Fur-
thermore, nonces are defined as OCTET STRINGS [47] and
not restricted in size. Although we are not aware of EdDSA
actively being used in OCSP, given the fast deployment of
this signature algorithm in other standards, we can assume
its future deployment as well. In that case, we recommend
to use server nonce extensions in OCSP responses and refer
to section 9.

8. Attacking Minisign

In this section, we analyze the feasibility of our attack
in a realistic setting using Minisign7 – a tool similar to
OpenBSD’s signify – and demonstrate two variants how
EdDSA can be faulted in a cross-VM scenario. Minisign
utilizes libsodium8 (a fork of NaCl) for its cryptographic
primitives. NaCl itself utilizes the “ref10” reference C-
implementation of Ed25519. Minisign supports both variants
of EdDSA, Pure and HashedEdDSA. HashedEdDSA is not
used by default, but mandatory for messages above 1 GiB
in size. However, if a message smaller than 1 GiB is chosen,
Minisign defaults to PureEdDSA.

8.1. Hardware and Software Setup

Our test device (Arch Linux 4.12.6 x86 64) was
equipped with 8 GiB of DRAM known to be vulnerable
against Rowhammer and deployed two virtual machines
(Ubuntu 16.04 LTS) via KVM/QEMU called the attacker-
and the victim-VM. On this machine, we typically observed
bit flips induced by single-sided hammering (using the
probabilistic version of rowhammer-test9) within some
hours of testing. With double-sided hammering, we typically
observed bit flips within a few seconds of testing.

Attacker-VM. The attacker machine ran a hammering pro-
gram which could be configured for random (single-sided)
and deduplication-based (double-sided) hammering. In order
to induce precise bit flips in memory pages, we reproduced
the findings of [33] and implemented the templating phase
to find vulnerable pages.

Victim-VM. The victim machine repeatedly signs a file and
was able to listen for incoming signature requests. Each
signature request was passed to Minisign and the resulting
signature was sent to the attacker-VM. That is, so the victim-
VM becomes a signature oracle.

8.2. Proof of Concept with Memory Deduplication

When memory deduplication is active, a similar attack
to [33] can be executed. As stated earlier, a single bit flip
in the public key can result in the private key becoming
compromised; however, in Minisign, the public key is pro-
tected by a checksum.10 Due to this checksum, we opted to
fault the message, despite it not being an optimal target, as
Minisign does not mmap the message, but rather creates an
internal copy via malloc/fread. This means that KSM
must deduplicate the internally created copy. Furthermore,
since the message is likely to stay in the page cache, bit
flips induced over time will accumulate. Being aware of
this pitfall, we designed the hammering program to collect
each observed bit flip for later analysis and eventually tested
for each permutation. Our hammering program allocated

7. https://github.com/jedisct1/minisign

8. https://download.libsodium.org/doc/

9. https://github.com/google/rowhammer-test

10. See Secret key format at https://jedisct1.github.io/minisign/
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memory pages (e.g., based on file input) and created a
backup for each page. The backup pages were “blinded” by
XORing with a constant value (or using a random 8 byte
page prefix) so that KSM did not merge the to-be-hammered
pages with the backup pages.

The attack was conducted as follows:

1) Directly after bootup allocate a large message in the
attacker-VM that is co-located to the victim-VM.

2) Wait for THP in the victim-VM and for THP in
the host-OS to merge 4 KiB pages into huge pages.
The intuition here is that both merge operations will
roughly result in physically continuous huge pages in
the DRAM [33].

3) Allocate the same message a second time in the
attacker-VM and wait for KSM to deduplicate both
memory pages, in oder for them to be added to KSM’s
stable tree.

4) Trigger a signature generation with the message in the
victim-VM. The obtained signature will be used as a
reference.

5) Trigger further signature generations while hammering
the deduplicated addresses.

6) If a signature deviates from the reference signature,
a bit flip was triggered in the page cache or during
signature generation. If it does not, go to step 5.

7) Try to extract the private key as discussed in section
4.2. If this is not successful, for example, if R differs
from the reference signature, go to step 5.

8.3. Proof of Concept Without Memory Deduplica-
tion

Executing precise Rowhammer attacks in
cloud-scenarios is difficult due to indirections in
the memory system. Typically, an attacker with
control over the virtual machine is able to access
/proc/<pid>/pagemap which allows for virtual-
to-physical address translation. However, the physical
addresses obtained in a virtual machine are so called
“guest-physical” addresses and its relationship to real
physical addresses (i.e. “host-physical” addresses) is
typically unknown to an attacker.

Nonetheless, one can opt for random (single-sided) ham-
mering. By using random hammering, no information on
virtual-to-physical mapping of addresses (how the operating
system maps virtual pages to physical frames) or physical-
to-DRAM mapping (how physical addresses are mapped to
rank, bank, row, etc.) is needed. Furthermore, no “memory
massaging” primitives as used by Razavi et al. [33] are
needed.

We estimate the feasibility of an attack based on random
hammering with two variables: the interleave of attacker-
and victim-pages and the amount of vulnerable cells in main
memory. We examined the memory of our test machine
(via a patched version of KVM to translate guest-physical
addresses to host-physical addresses) and evaluated how
many attacker-VM rows are adjacent to victim-VM rows.

We call these rows “neighboring rows”. We measured the
interleave of two 1 GiB messages allocated in the attacker-
and victim-VM over 20 reboots of the host machine.

We measured up to 18.83% max neighboring rows on
reboot and up to 18.55% max after idling for five minutes.

Analysis. In order to extract the private key, we developed
an analysis program which takes a list of signatures and
encountered bit flips (if available) as input. First, a hash
map with R as a key and a list of s’ is created. The reason
is that we reconstruct the secret key only if two signatures
with R1 = R2 and s1 
= s2 were found. Afterwards, each
bit flip is tested against candidate signature pairs. The test
succeeds if the private key is found. This can be verified by
calculating A′ = [a′]G and checking if A = A′.

8.4. Analysis of Single-sided Hammering

We explored our test scenario and found that we can
successfully inject cross-VM bit flips only by random ham-
mering. During our tests, we were able to conduct the full
attack in under four hours of random hammering and a 700
MiB large message. It is important to note, that these tests
are highly specific to the hardware of the machine-under-
attack and that the attack outcome may vastly differ among
hardware.11 To our knowledge, there are no public studies
investigating the vulnerability of off-the-shelf hardware to
single-sided hammering and we did no further evaluation
of the outcome of the attack (i.e., the likelihood of a key
becoming compromised within a specific time frame).

Nonetheless, our test hardware was vulnerable to random
hammering, which shows that weaker attackers with no
access to double-sided hammering primitives may be able
to perform the presented attack. Furthermore, we expect
that optimizations as discussed by the authors of [30], [32],
[48] may be applied to make single-sided hammering more
efficient.

9. Countermeasures

In the following we present several countermeasures and
discuss why some of these countermeasures do not work.

9.1. Signature Validation

Our Rowhammer attack on EdDSA leads to the com-
putation of invalid signatures. A typical countermeasure
against such fault attacks is signature verification. This coun-
termeasure can be successfully applied in the RSA signature
generation process with the Chinese Remainder Theorem
(CRT) as showed by Lenstra [49], [50]. Lenstra’s attack
exploits a random fault injected in a CRT multiplication step
during signature generation. Since the signature verification
does not include CRT multiplication, a simple signature
verification step can detect a fault attack.

11. See the rowhammer-discuss mailinglist (https://groups.google.com/
forum/#!forum/rowhammer-discuss) for reportedly failing and surviving
machines.
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However, this countermeasure does not help to prevent
our attack on EdDSA. Imagine the attacker managed to
induce a bit flip in the message M , which is located in
the memory and used as an input to the signing function
(see also Figure 2):

s� = (r +H(R,A,M�)a) mod l

In that case, the signature verification process would lead to
a correct result, because the modified message M� is used
for the verification:

[s�]G = R+ [H(R,A,M�)]A

This interesting property of fault attacks on EdDSA has also
been independently discussed by Tony Arcieri.12

9.2. Signature Generation

A potential countermeasure against our Rowhammer at-
tack on EdDSA would be to generate the signature twice and
compare the outputs of both signature generation functions.
However, a more precise Rowhammer attacker might be
able to introduce a bit flip on the same position in two or
even more messages. Given the recent development in the
Rowhammer attacks, this threat should not be overlooked.

Another important point that needs to be considered is
the performance penalty that is introduced by generating
signatures. Even though this penalty is not as high as for
RSA signatures. Especially for large messages over 1 MiB,
the signature generation process is slower than signature
verification. See also Table 1.

9.3. Usage of HashedEdDSA

EdDSA can be used in two variations: PureEdDSA and
HashedEdDSA. PureEdDSA uses message M directly as
an input. HashedEdDSA hashes M with a hash function
H before executing further operations. From a Rowhammer
attacker perspective, the PureEdDSA algorithm offers more
flexibility by executing the attack since she needs to flip a
single bit in a message of arbitrary length. On the contrary,
HashedEdDSA forces the attacker to induce a bit flip in the
output of a few bytes (depending on the hash algorithm and
the internal representation of the hash result). Therefore,
HashedEdDSA would be a better choice to counter the
Rowhammer attacks.

PureEdDSA is recommended because of possible hash
collisions [19]. Although the attack on HashedEdDSA is
more complicated than on PureEdDSA, we need to consider
a more skilled Rowhammer attacker who can also induce
precise bit flips in the hashed message input.

9.4. Checksum Over Input Values

Another countermeasure for EdDSA would be to intro-
duce checksum computation over input values R, A and M ,

12. https://github.com/jedisct1/libsodium/issues/170

TABLE 1. DURATION OF SIGNING AND VERIFICATION OPERATIONS

DEPENDING ON THE MESSAGE SIZE PERFORMED WITH THE LIBSODIUM

LIBRARY (METHODS CRYPTO_SIGN_ED25519_VERIFY_DETACHED
AND CRYPTO_SIGN_ED25519_DETACHED). THE MEASUREMENT

RESULTS ARE PROVIDED IN CLOCK CYCLES OBTAINED BY RDTSC .

Message (bytes) Signing (cycles) Verification (cycles)

10 232 155 550 380
100 207 795 461 272

1 000 230 442 415 431
10 000 682 785 546 288

100 000 3 022 662 1 718 436
1 000 000 28 205 265 14 153 310

before and after signature generation. If the checksums are
equal, no bit has been flipped. Otherwise, a fault attack can
be assumed and the signature generation process must be
interrupted.

Minisign implements this countermeasure on public
keys. The checksums over public keys are verified during
the signature generation. This made our Rowhammer attack
with public keys infeasible.

9.5. Additional Randomness

The main argument for deterministic signatures is the
need for strong randomness (e.g., following [51], [52]). One
could instead combine a somewhat weaker random num-
ber generator with the deterministic procedure to generate
“ephemeral” keys. This construction would have the same
security properties as EdDSA, but the signatures over equal
messages would always be different.

XEdDSA [53] implements this kind of countermeasure
and appends 64 bytes of secure random data Z to the
message M while computing r = H(hb, . . . , h2b−1,M,Z).
This makes our fault attacks infeasible.

10. Related Work

10.1. Attacks on Cryptographic Algorithms

RNG failures. Invalid functionality of RNGs lead to sev-
eral remarkable attacks on cryptographic implementations.
In 2010, the hacker group fail0overflow retrieved Sony’s
ECDSA key that could allow them to sign any application
for the Play Station 3 [2]. The reason was a reused ECDSA
nonce. A vulnerability in a Java RNG lead to a further failure
by the usage of ECDSA. Reuse of nonces allowed attackers
to retrieve private keys from Bitcoin Android apps [3].

Vulnerabilities in RNGs do not only influence the secu-
rity of ECDSA cryptosystems. For example, if the same
nonce is used during the AES-GCM encryption process,
the attacker can learn the authentication key and create
arbitrary valid ciphertexts [54]. This attack is also called
the Forbidden attack. Therefore, several cryptographers re-
cently described AES-GCM as “fragile” [55], [56]. In 2016
Böck et al. showed that about 70 000 servers are potentially
vulnerable to this attack [57].
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Attacks on elliptic curves. In 2000 Biehl et al. presented
an invalid curve attack that allows to extract EC private keys
from applications that do not check whether the incoming
ECDH share lies on a correct curve [58]. Practical applica-
tion of this attack to TLS implementations was shown by
Brumley et al. [59] and Jager et al. [16].

ECDSA implementations can enable further side-
channels. For example, Brumley et al. showed that ECDSA
key extraction from TLS servers is possible remotely by
measuring timing differences [60], [61]. Genkin et al.
showed that the ECDSA key extraction is possible even with
magnetic side-channels [62].

Attacks on EdDSA. Very recently two publications pointed
out problems in deterministic signature schemes. Romailler
and Pelissier presented a practical fault attack on Ed-
DSA [63]. They developed an attack scenario based on the
original implementation by Bernstein [64] which was run on
Arduino Nano. Samwel et al. presented a differential power
analysis (DPA) attack on EdDSA which was able to leak
private keys from about 4 000 traces. In particular, the attack
targeted the nonce with the SHA-512 hash function [65]
(see the computation of r in Equation 7). Our paper is a
concurrent work and was created independently of these two
results.

10.2. Rowhammer Attacks

Local attacks. Kim et al. assumed that they can “develop
[...] a disturbance attack that [...] perhaps even hijacks
control of the system” [21]. Their assumption was proven
right by Seaborn et al. as they demonstrated the first kernel
privilege escalation under GNU/Linux based on Rowham-
mer [30]. Govindavajhala et al. presented a similar approach,
by utilizing a classic fault attack by overheating the mem-
ory with a light bulb [66]. One of the first cryptographic
Rowhammer-based attacks was presented by Bhattacharya
et al. [67]. The authors showed how to flip bits in an RSA
secret exponent and eventually how to reconstruct it. With
Windows 8.1 and Windows 10, memory deduplication is used
by default. Bosman et al. demonstrated a JavaScript-based
exploit targeted to hijack Microsoft’s Edge browser [68].
The attack involves a memory deduplication side-channel
to disclose valuable data (i.e., high entropy byte-by-byte
disclosure) and utilizes Rowhammer to gain arbitrary read
and write capabilities in Microsoft’s Edge browser.

Cross-VM attacks. Xiao et al. introduced a method to gain
arbitrary access to a paravirtualized Xen host via Rowham-
mer [69]. Paravirtualization, in contrast to full virtualization
solutions, is not transparent for the virtualized operating
system and must be adapted to cooperate with the hyper-
visor through a specific Hypercall-API. They presented a
page table replacement attack to replace page tables via
Rowhammer bit flips. Razavi et al. introduced the first cross-
VM Rowhammer attack [33]. They were able to precisely
induce bit flips in deduplicated pages, break OpenSSH’s
public key authentication, and compromise Ubuntu’s update
mechanism.

Remote Attacks. Seaborn et al. were able to escape from
Google’s Native Client by utilizing the clflush instruc-
tion [30]. Google’s Native Client validated the code prior to
executing it, such that it conforms to a specific subset of x86.
The authors were able to execute a bit flip in a previously
validated code and escape the sandbox. After that, the
first JavaScript-based Rowhammer attack was presented by
Gruss et al. [32]. In order to execute bit flips the authors
had to solve two key challenges: (1) find a way to bypass
the CPU cache in JavaScript and (2) retrieve information
on physical addresses in JavaScript. The first challenge was
solved by using a novel cache eviction strategy. The second
challenge was solved by the observation that operating
systems tend to use huge pages when large typed arrays are
used. Qiao et al. analyzed whether it is possible to trigger
memory access patterns remotely from benign code [31],
and performed a search of clflush- and non-temporal
instructions. They found 7 packages containing clflush
and 21 packages containing non-temporal instructions in the
Debian source code repository, allowing them to induce bit
flips via benign code located in the Newlib C library.

11. Conclusion

In this paper, we presented practical fault attacks
on EdDSA and deterministic ECDSA signatures. Some-
what unexpectedly, we found EdDSA more susceptible to
Rowhammer-based attacks than classical ECDSA. The fault
attacks are not only applicable on smartcards but also on
commodity hardware. With the newest developments in the
area of Rowhammer, remote fault attacks are becoming a
more prevalent threat that needs to be considered.

Although the presented attacks are only effective under
special circumstances, they show a new fragile side of
deterministic signature schemes and their general sensitivity
to fault attacks. Our aim is to raise the awareness regarding
recent fault attacks on these signature schemes, given their
importance and fast deployment in practice.

We presented several countermeasures that could ef-
fectively mitigate our fault attacks and recommended to
extend EdDSA to incorporate a long-term secret as well
as additional per-signature entropy during nonce generation
as already specified in XEdDSA. This hardens EdDSA
against Rowhammer-based attacks and does not decrease its
security in most scenarios, even with bad RNGs in place.
This countermeasure should be implemented together with
a checksum protecting EdDSA’s public keys and messages
if not otherwise deployed.
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