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ABSTRACT Motivated by the vast applications of knowledge graph and the increasing demand in
education domain, we propose a system, called KnowEdu, to automatically construct knowledge graph
for education. By leveraging on heterogeneous data (e.g., pedagogical data and learning assessment data)
from the education domain, this system first extracts the concepts of subjects or courses and then identifies
the educational relations between the concepts. More specifically, it adopts the neural sequence labeling
algorithm on pedagogical data to extract instructional concepts and employs probabilistic association rule
mining on learning assessment data to identify the relations with educational significance. We detail all the
abovementioned efforts through an exemplary case of constructing a demonstrative knowledge graph for
mathematics, where the instructional concepts and their prerequisite relations are derived from curriculum
standards and concept-based performance data of students. Evaluation results show that the F1 score for
concept extraction exceeds 0.70, and for relation identification, the area under the curve and mean average
precision achieve 0.95 and 0.87, respectively.

INDEX TERMS Educational knowledge graph, instructional concept, educational relation, pedagogical data,
learning assessment, educational data mining.

I. INTRODUCTION
Knowledge graph serves as an integrated information repos-
itory that interlinks heterogeneous data from different
domains. Google’s Knowledge Graph [1] is such a promi-
nent example that represents real world entities and relations
through a multi-relational graph. Existing generic knowledge
graphs have demonstrated their advantages in supporting a
large number of applications, typically including semantic
search (e.g., Google’s Knowledge Panel), personal assis-
tant (e.g. Apple’s Siri [2]) and deep question answering
(e.g., IBM’s Watson [3] and Wolfram Alpha [4]). However,
those generic knowledge graphs usually cannot well sup-
port many domain-specific applications, because they require
deep domain information and knowledge. Education is one
of such domains, and in this work, we mainly focus on
how the knowledge graph for education can be automatically
constructed.

In education domain, knowledge graphs are often used for
subject teaching and learning in school, where they are also
called concept maps. Moreover, popular massive open online

course (MOOC) platforms, such as Khan Academy [5], also
adopt them for concept visualization and learning resource
recommendation. Such knowledge graphs are usually con-
structed by experienced teachers or domain experts in a
manual way. However, such a manual construction process is
actually time-consuming and not scalable to large number of
concepts and relations. What’s more, the number of courses
and subjects grows fast on MOOC platforms, so it is much
more difficult, or even impossible, to manually construct
knowledge graphs for each new course. On the other hand,
the manual construction approach is error-prone: according
to the pedagogical research, there often exists expert blind
spot [6], which means expert’s cognition and learner’s cog-
nition on the same concept often do not well align. In other
words, even the domain experts or experienced teachers may
easily misunderstand learners’ cognitive process. As a result,
those manually created knowledge graphs can be subopti-
mal or misleading for learners.

Motivated by the increasing demands for knowledge
graph in education domain and the limitations of manual
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construction approach, we propose this system, called
KnowEdu, to automatically construct educational knowledge
graphs that can be used for teaching and learning on school
subjects and online courses. Compared to existing generic
knowledge graphs, construction of educational knowledge
graphs faces several major challenges. Firstly, the desired
nodes in educational knowledge graphs represent instruc-
tional concepts in subjects or courses rather than common
real world entities in generic knowledge graphs. An instruc-
tional concept is a basic concept that learners need to fully
understand and grasp (e.g., ‘‘linear equation’’ in mathemat-
ics or ‘‘photosynthesis’’ in biology). The extraction requires
authoritative data from education domain and new entity
taggers (rather than the traditional taggers, e.g., Person, Loca-
tion and Organization). Existing NLP tools, including Stan-
ford NLP software [7] and Apache OpenNLP [8], mainly
employ the traditional entity taggers, and thus a new instruc-
tional concept extractor needs to be independently designed
and trained. Secondly, the relations between instructional
concepts reflect learner’s cognitive and educational process,
and thus are usually abstract and implicit, e.g., the learning
order between two math concepts ‘‘rational numberąś and
‘‘fraction’’. Such relations are relatively difficult to identify
without proper analysis and modeling on the specific educa-
tional data. Comparatively, in the case of generic knowledge
graphs, relations among node entities are more detailed and
explicit, e.g., the relation between United States and Barack
Obama can be explicitly inferred from text semantics. Hence,
we particularly select learning assessment and activity data to
identify educational relations, because such data can help to
capture learners’ cognitive and knowledge acquisition pro-
cesses.

The proposed KnowEdu system endeavors to tackle the
above challenges, and it principally makes the following key
contributions:
• We propose a novel and practical system to automati-
cally construct knowledge graphs for education, which
utilizes heterogeneous data, typically including peda-
gogical data and learning assessment data, to extract
instructional concepts and identify significant educa-
tional relations.

• Considering the educational purpose of instructional
concepts, we propose to apply recurrent neural
network models on pedagogical data (e.g., the cur-
riculum standards and textbooks) to accomplish the
instructional concept extraction task. To the best of our
knowledge, this is the first work of applying neural
sequence labeling on entity extraction for education
domain.

• We argue that the desired educational relations are
substantially different from the traditional relations in
generic knowledge graphs that can be properly identified
from text corpus. In this work, we particularly utilize
the concept-based student assessment data, on which we
perform the probabilistic association rule mining to infer
the desired relations.

• We demonstrate an exemplary case by constructing a
knowledge graph for a subject, with conducting com-
prehensive and empirical experiments to evaluate the
proposed system.

Moreover, the proposed system and the built knowl-
edge graphs can be integrated into intelligent tutoring sys-
tems (ITS) [9] and MOOC platforms to support personalized
teaching services and adaptive learning solutions.

The rest of this paper is organized as follows: Section II
introduces the related work. Section III briefly depicts the
proposed system. Section IV and V describe the concept
extraction and relation identification processes respectively.
Section VI demonstrates an exemplary case and the eval-
uation results. We conduct discussion in Section VII and
conclude in Section VIII.

II. RELATED WORK
Besides Google’s knowledge graph, a variety of generic
knowledge graphs, such as Freebase [10], Reverb [11],
Google Vault [12] and Microsoft’s Probase [13], have been
constructed by industry and academia, mainly utilizing data
collected from the Internet. In educational realm, few studies
focus on systematic construction of domain-specific knowl-
edge graphs, but there are some recent works investigating
different relation extractions between certain known educa-
tional entities: Wang et al. [14] extract concepts hierarchies
from the textbooks; Chaplot and Koedinger [15] induce struc-
tures of multiple units in a course; and Liang et al. [16]
recover prerequisite relations from university course depen-
dencies. The most relevant work to our research is carried
out by Carnegie Mellon University: the researchers utilize
observed relations among courses to create a directed con-
cept graph [17], but the relations are assumed to be known
in advance. In educational industry, MOOC providers, like
Khan Academy [5], have built some dedicated knowledge
graphs for their online courses, but most are undirected
graphs built by domain experts. All these pioneer studies
and efforts demonstrate the increasing interests and pressing
needs of knowledge graph construction in education domain.

Entity recognition, as a key step of knowledge graph con-
struction, aims to extract concepts of interest from struc-
tured or unstructured data. Among different models for entity
recognition task, one main group of models is based on
conditional random field (CRF) [18], which has been widely
applied in terminology recognition [19] and entity recog-
nition in Chinese [20]. Another popular group is based on
neural networks, where different neural architectures are
exploited, typically including gated recurrent unit [21] and
long short-term memory [22]. Our system mainly adopts
these neural network models, and to our best knowledge,
it is the first work of applying neural sequence labeling on
educational entity extraction.

Relation identification is another key step of knowledge
graph construction, and usually leverages on the semantic
meaning of data. The distant supervision approach [23] has
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been well studied, which can be combined with the attention
models [24], [25]. Moreover, the knowledge base comple-
tion [26] and refinement [27] techniques can also be used to
identify or predict the undetected andmissing relations. Com-
pared to generic knowledge graphs, educational relations are
usually more abstract and implicit, thus are hard to be directly
identified using the popular approaches and data. Our system
thus adopts data mining techniques (e.g., probabilistic associ-
ation rule mining) on learning assessment data to accomplish
the task of educational relation identification.

FIGURE 1. Block Diagram of the KnowEdu System.

III. SYSTEM OVERVIEW
The block diagram of proposed KnowEdu system is illus-
trated in Figure 1. Its hierarchical architecturemainly consists
of two modules: Instructional Concept Extraction Module
and Educational Relation Identification Module. Their gen-
eral descriptions are given as follows:
• Instructional Concept Extraction Module: the main
objective of this module is to extract instructional con-
cepts for a given subject or course. This module mainly
utilizes the pedagogical data, typically including the cur-
riculum standards, textbooks and course tutorials, which
are usually for teaching purposes and collected from the
education domain. Theymay need to be firstly converted
from printed documents into machine-readable text for-
mat. After the data selection and format conversion,
named entity recognition techniques, especially neural
sequence labeling, can be deployed to extract instruc-
tional concepts. The key outputs of this module are the
extracted concepts which are cornerstones of the built
knowledge graphs.

• Educational Relation Identification Module: the main
objective of this module is to identify the educational
relations that interlink instructional concepts to help the
learning and teaching process directly. Since educational

relations are more implicit and abstract, this module
mainly utilizes the learning assessment and activity data
that can reflect learners’ cognitive and knowledge acqui-
sition process, and adopts the latest data mining tech-
niques, such as the probabilistic association rule mining.
Finally, those identified relations connect instructional
concepts to formulate the desired knowledge graphs for
education, which can be used to support a variety of
applications and services for both learners and teachers.

In the following two sections, we will elaborate our design
for these two modules respectively.

IV. INSTRUCTIONAL CONCEPT EXTRACTION
A. DATA SOURCE AND PREPROCESSING
As mentioned earlier, the desired nodes in our educa-
tional knowledge graphs represent instructional concepts that
should be mastered by learners. The input data is thus mainly
collected from education domain and pedagogical practices,
such as curriculum standards, textbooks and course tutorials.
The input data can be in different formats, typically including
printed text, audio and video. Thus conversion into machine-
readable format may be needed and a variety of format con-
version techniques can be applied. For example, the opti-
cal character recognition (OCR) [28] technique can be used
to handle the printed documents (e.g., textbooks or course
tutorials). The speech to text (STT) [29] technique can be
employed to manage the audio data (e.g., teacher’s voice
records during lectures). After this pre-processing step of
transforming pedagogical data into machine-readable text,
the proposed system can perform the instructional concept
extraction.

B. CONCEPT EXTRACTION
Given converted machine-readable text, this concept extrac-
tion task can be naturally regarded as a word sequence label-
ing problem. For example, given a word sequence ‘‘under-
stand the meaning of rational number’’, the main objective
is to annotate each word with a label specifying whether the
word is part of an instructional concept.

We thus define three labels for concept extraction:
1) B-CP (meaning ‘‘beginning of a concept’’); 2) I-CP
(meaning ‘‘inside a concept’’) and 3) O (meaning ‘‘outside
a concept’’). Both B-CP and I-CP represent instructional
concepts. Table 1 illustrates a correct concept extraction result
for the given word sequence, where x = {x1, x2, . . . , xT }
denotes the input word sequence and y = {y1, y2, . . . , yT }
denotes the corresponding output labels. Both x and y are with
length T .

TABLE 1. An Example of concept extraction by word sequence labeling.

Different from common entities in generic knowl-
edge graphs, instructional concepts are usually well
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FIGURE 2. Architecture of the GRU Network.

defined or described with little ambiguity in the pedagogical
data sources, especially in curriculum standards or textbooks.
They usually co-occur with some signal words, such as
‘‘know’’, ‘‘understand’’ and ‘‘definition’’, which can be
leveraged to capture the desired concepts. Considering the
sequential nature of educational text data and their internal
word dependencies, we firstly describe the traditional CRF
model, and then propose neural network models to accom-
plish this task.

1) CRF MODEL
Briefly speaking, CRF model can be regarded as the con-
ditional probability distributions on an undirected graphical
model, which is commonly used to label the observation
sequence data. Since the sequential structure of the input text
data and output labels, the CRF model with a linear-chain
structure can be utilized. Specifically, given x and y as defined
earlier in this section, the model defines a distribution p(y|x)
that takes the form

p(y|x) =
1

Z (x)
exp(

T∑
t=1

K∑
k=1

λk fk (yt−1, yt , x, t)), (1)

where λ = {λk} ∈ <K is a parameter vector, F =

{fk (yt−1, yt , x, t)}Kk=1 is a set of real-valued feature functions,
t is the position in word sequence, and Z (x) is an input-
independent normalization function defined as

Z (x) =
∑
y

exp(
T∑
t=1

K∑
k=1

λk fk (yt−1, yt , x, t)). (2)

Simply speaking, feature function set F mainly captures
the state transition from yt−1 to yt and their dependencies on
input sequence x. For example, one feature function can be
defined as

fk (yt−1, yt , x, t) =


1 yt−1 = B-CP and yt = I-CP

and xt = ‘‘number ′′

0 otherwise.

(3)

Given a set of feature functions and labeled training data
sequences, the CRF model training process is to find the
model parameter vector λ using maximum likelihood esti-
mation. In practice, we employ the classic L-BFGS algo-
rithm [30] to learn λ, and adopt Viterbi algorithm [31] to infer
the optimal label sequence y. Both algorithms have been well
studied and the details can be found in [18] and [32].

As shown in equation 3, the traditional CRFmodel requires
a large amount of efforts on explicitly engineering features.
To overcome such a limitation, we propose to adopt the neural
network model, which is able to learn features automatically.

2) NEURAL NETWORK MODEL
Among different neural network models, we choose recur-
rent neural network (RNN), as it cannot only obviate the
feature engineering step but also well capture dependencies
in sequential data. Specifically, we adopt gated recurrent
unit (GRU) network [21], and the simplified architecture of
the proposed model is illustrated in Figure 2.

The proposed model mainly consists of three layers:
embedding layer, GRU layer and softmax layer. The embed-
ding layer utilizes the word2vec [33] algorithm to generate
embedding vector for each word, in which the text corpus
is built upon input data. The GRU layer is a series of GRU
units, which control the addition and removal of informa-
tion through a carefully designed gate structure, typically
including update gate and output gate. Figure 3 shows the
architecture of the GRU unit. In the GRU layer, the model
recurrently utilizes the GRU unit on each input word, with
following implementation:

zt = σ (Wzxt + Uzht−1) (4)

rt = σ (Wrxt + Urht−1) (5)

h̃t = tanh(Whxt + Uh(rt ∗ ht−1)) (6)

ht = (1− zt ) ∗ ht−1 + zt ∗ h̃t (7)

where xt and ht are the input and output of GRU unit,
where t is the position inword sequence.Wz,Wr ,Wh,Uz,Ur ,Uh

31556 VOLUME 6, 2018



P. Chen et al.: KnowEdu: System to Construct Knowledge Graph for Education

FIGURE 3. Architecture of GRU unit.

are weight matrices, σ () is the element-wise sigmoid func-
tion, and ‘‘∗’’ is the element-wise product. Note that GRU
can be regarded as a variant of the classic long short-term
memory (LSTM) [22] network, with simplifying LSTM unit
by combining LSTM’s forget gate and input gate. More
details about the GRU unit can refer to [34] and [35].

The softmax layer applies the softmax function on each
GRU unit output ht to produce a L-dimensional vector, which
gives the probability of each label defined in the concept
extraction task. Given a weighting vector ω and the current
GRU output ht , the predicted probability of the jth label is

P(y = j|ht ) =
eh

T
t ωj∑L

l=1 e
hTt ωl

, (8)

where L is the number of label types. L is currently set
to 3, as we define three labels in our model, namely B-CP,
I-CP and O.

Given the labeled text data sequences, the neural network
model training process is to find proper weight matrices for
the GRU layer and weighting vector for the softmax layer.
In practice, the model is trained by minimizing the cross-
entropy loss [36], where the Adam algorithm [37] and the
back-propagation through time (BPTT) [38] algorithm are
utilized.

Besides the GRU units, we also attempt to adopt the LSTM
units under the same architecture shown in Figure 2. All the
evaluation results on the GRU-based model, LSTM-based
model and CRF model summarize in section VI.

V. EDUCATIONAL RELATION IDENTIFICATION
A. RELATION TYPE AND DATA SELECTION
As mentioned earlier, the main task of this module is to iden-
tify the relations interlinking instructional concepts. These
relations can be any logic connections that can aid learn-
ing and teaching process directly. In the education domain,
a number of relations are critical to teachers and learners, such
as inclusion relation, causal relation, progressive relation and
prerequisite relation. In this section, wemainly focus on iden-
tifying prerequisite relation, while briefly introduce inclusion
relation.

1) PREREQUISITE RELATION
Among the above mentioned relations, prerequisite relation
is the most implicit one and thus relatively hard to identify.
Prerequisite relation is in accordance with the knowledge
space theory [39], which argues that prerequisite exists as
a natural dependency between concepts in human cognitive
process. Specifically, a prerequisite relation from concept A
to concept B means that a learner should master concept A
first before proceeding to concept B.

Hence, the identified prerequisite relations can help teach-
ers design proper pedagogical strategy and help learners study
effectively. For example, when students encounter difficulties
in learning math concept ‘‘quadratic equation’’, teachers can
utilize prerequisite relations to identify the possible reasons
for this learning obstacle. In addition, students can also uti-
lize prerequisite relations to determine their concept learn-
ing or revision order for subjects or courses. Furthermore,
prerequisite relations can also be used in today’s MOOC
platforms and online tutoring systems to support adaptive
learning and personalized teaching.

2) DATA SELECTION FOR PREREQUISITE RELATION
IDENTIFICATION
To identify a prerequisite relation between key concepts, edu-
cators traditionally use a specific strategy based on learners’
performance: when concept γ is mastered by learners, all
its prerequisites should have also been mastered by learners;
meanwhile, when any prerequisite of concept γ has not been
mastered by learners, it is hard for learners to master γ .
Inspired by the above strategy, we can utilize the learn-

ing assessment data to identify prerequisite relations auto-
matically. In fact, such data can be easily collected from
MOOC or online tutoring platforms on a large number of
learners and in the form of concept-based pretest or posttest
results.

3) INCLUSION RELATIONS
Besides the prerequisite relation, other relations, such as
inclusion relation, are also important for education. Inclusion
relation indicates one concept belongs to another one, which
is commonly used by educators to build concept hierarchies
for courses or subjects. Comparing with prerequisite relation,
inclusion relation is relatively easy to identify, as such infor-
mation is usually preserved in the original structure of text-
books or tutorials. Our system can thus adopt similarity-based
method to extract the hierarchical structure from the table
of content (TOC) of textbooks, and then specify inclusion
relations among concepts.

In the rest of this section, we mainly introduce how to iden-
tify prerequisite relation using students’ performance data.
Specifically, this system adopts the probabilistic association
rule mining algorithm which conveniently implements the
above mentioned strategy for prerequisite relation identifica-
tion and well handles uncertainties in students’ performance
data.
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B. PREREQUISITE RELATION IDENTIFICATION
1) PRELIMINARY OF ASSOCIATION RULE MINING
Association rule mining [40] is a simple, yet effective data
mining technique for discovering interesting relations hidden
in large databases. It is originally used to discover and analyze
the relations between sold products in supermarkets. Denote I
as a set of items andD as a set of transactions, each transaction
in D contains a subset of items in I . The uncovered relations
can be represented in the form of association rules, each of
which is an implication of the form X ⇒ Y , where X ,Y ⊂ I .
Two key measures, namely support and confidence, are com-
monly used for determining association rules. The support
of X ⇒ Y , denoted as supp(X ⇒ Y ), is the co-occurrence
of X and Y within data. The confidence of X ⇒ Y , denoted
as conf (X ⇒ Y ), is the percentage of transactions in data
containing X that also containing Y . Given threshold values
for the two measures, denoted as minsupp and minconf ,
an association rule X ⇒ Y can be considered interesting
and strong if the following condition is satisfied:

supp(X ⇒ Y ) ≥ minsupp AND conf (X ⇒ Y ) ≥ minconf .

(9)

Assuming instructional concepts as items and students’
performance data as transactions, association rule mining
is a natural way to implement the educators’ strategy for
identifying prerequisite relations.

2) PREREQUISITE RELATION IDENTIFICATION
As mentioned earlier, if concept i is a prerequisite of con-
cept j, learners who do not master i very likely do not master j
either. Meanwhile, learners who master concept j very likely
master concept i too. In the perspective of association rule
mining, such a prerequisite relation from concept i to con-
cept j is deemed to exist if the following pair of association
rules can be determined simultaneously:

Sj ⇒ Si AND Si ⇒ Sj, (10)

where Si and Sj denote learners havemastered concepts i and j
respectively, Si and Sj denote learners have not mastered
concepts i and j yet. Accordingly, the system needs to estimate
the interestingness of these two association rules with the
knowledge state information (i.e., whether concepts i and j
are mastered or not) from multiple learners.

However, a learner’s mastery on a concept usually cannot
be directly observed because knowledge state is typically a
latent variable. It is a common and feasible way to infer
one learner’s knowledge state using his or her academic
(exam) performance data. However, uncertainties exist in
exam results, especially due to slipping (i.e., making an error
despite having mastered that concept) and guessing (i.e., giv-
ing a right answer despite not understanding that concept),
a learner’s mastery on one concept is usually regarded as a
random variable. Hence, probabilistic association rule min-
ing [41] is required, which is an extension of the association
rule mining for handling uncertainties in data. Specifically,

given the support and confidence measures in probabilis-
tic data as random variables, the deterministic association
rule Sj ⇒ Si is formulated as P(Sj ⇒ Si), and the rule holds
if P(Sj ⇒ Si) is larger than a given threshold minprob:

P(Sj ⇒ Si) ≥ minprob. (11)

By taking support and confidence into account, we instan-
tiate equation (11) as

P{supp(Sj⇒Si) ≥ minsupp AND conf (Sj⇒Si)

≥ minconf } ≥ minprob. (12)

According to equation (10), in order to determine a prereq-
uisite relation from concept i to j, both rules need to be held,
so we require:

P(Sj ⇒ Si) ∗ P(Si ⇒ Sj) ≥ minprob. (13)

To calculate the probability in equation (13), we adopt the
p-Apriori [41] algorithm which is specifically designed for
probabilistic association rule mining. Note that it is possible
that a pair of concepts are determined to be the prerequisite
of each other, and such a symmetric relation means the two
concepts need to be learned together.

In short, we mainly introduce how to employ the prob-
abilistic association rule mining on students’ exam data to
identify prerequisite relations, while different techniques and
data can be further introduced and applied for different rela-
tion identification problems. To demonstrate the performance
of both concept extraction and relation identification in our
system, we construct an exemplary knowledge graph for a
subject and conduct the comprehensive evaluations using the
real-world educational data.

VI. EXEMPLARY CASE AND SYSTEM EVALUATION
To evaluate the proposed KnowEdu system, we construct an
exemplary knowledge graph for mathematics, which demon-
strates the instructional concept extraction and the educa-
tional relation identification processes. Comprehensive eval-
uations are conducted to assess the system performance.

A. CONCEPT EXTRACTION
1) DATASET AND PREPROCESSING
As mentioned earlier, different from generic knowledge
graphs, datasets for instructional concept extraction are usu-
ally from the pedagogical and educational sources, such as
curriculum standards, textbooks and course manuals. These
materials are usually used as official guidance for teaching
and pedagogical practice. We choose the national curriculum
standards of mathematics for primary and secondary schools,
which are published by the ministry of education of China,
as the main data source.

For the data preprocessing step, the system firstly uses
Tika [42] to extract text from the official version of the
curriculum standards, and then conducts sentence segmenta-
tion based on the specific symbols for sections, paragraphs
and punctuation. Moreover, non-text information such as
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FIGURE 4. Evaluation results for concept extraction. (a) B-CP: Begin-Concept. (b) I-CP: Inside-Concept. (c) O:Non-Concept.

images and table boundaries are automatically removed.
Subsequently, the system conducts word segmentation uti-
lizing ICTCLAS [43] which is an open source library for
Chinese word segmentation. In the end, 1,847 sentences and
36,697 words are obtained from the raw dataset.

2) EVALUATION FOR CONCEPT EXTRACTION
To obtain the ground truth for model evaluation, we invite
two domain experts from Beijing Normal University, who
were involved in drafting the national curriculum standards,
to label all the instructional concepts. Totally 4,251 words are
labeled as B-CP and 969 words are labeled as I-CP. The two
experts achieved a high consistency between their labeling
and the corresponding kappa value is 0.945.

To fully evaluate the model performance, we randomly
split the dataset into two parts for training and testing respec-
tively, and we gradually increase the percentage of training
examples from 10% to 90%. We repeat each experiment for
10 times and report the average results in evaluation.

For the proposed GRU-based and LSTM-based neural net-
work models, the dimension of each unit output ht is set to
128. For the Adam algorithm used for training the models, its

initial learning rate and its iteration number is set to 0.01 and
1000 respectively with parameters β1 = 0.9, β2 = 0.999 and
ε = 1× 10−8. For the CRF model, L-1 regularization is used
for conducting the maximum likelihood estimation. In the
L-BFGS algorithm used for training the CRFmodel, the num-
ber of iterations is set to 50 with parameters ε = 1 × 10−5

and δ = 1× 10−5 respectively.
Figure 4 summarizes the evaluation results, where

F1 scores of the three models (namely GRU, LSTM and CRF
models) are reported for each of the three types of labels
(namely B-CP, I-CP and O). In general, all the F1 score
curves grow with the portion of data for training increasing.
Figure 4a shows that for the B-CP (beginning of concept)
extraction, both the GRU-based and LSTM-based neural net-
work models outperform the CRF model, and no significant
difference between the two neural network models. Mean-
while, Figure 4b and Figure 4c illustrate that, for the I-CP
and Non-Concept extraction, all the three models have sim-
ilar performance. Moreover, by comparing Figure 4a with
Figure 4b, we see that for all the three models, the I-CP
extraction usually has lower F1 score than B-CP, which
indicates that the I-CP extraction is more difficult than
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FIGURE 5. A Comparison of relation identification results. (a) Ground truth. (b) minsupp = 400, minconf = 0.4. (c) minsupp =

1000, minconf = 0.7.

B-CP extraction. It is reasonable, as a correct I-CP labeling
conditions on a correct B-CP labeling. Table 2 gives the
precision, recall and F1 score on B-CP extraction of the three
models, when 50% data are used for training. We see that
for this case, the precision of the CRF model is even slightly
higher than the two neural network models, but its low recall
eventually results the worst F1 score among the three models.
In short, the above evaluation results verify the feasibility and
effectiveness of proposedmodels for the instructional concept
extraction task.

B. RELATION IDENTIFICATION
1) DATASET
The system collects students’ exam data from unit tests
and uses it to identify the prerequisite relations between

TABLE 2. System Performance on B-CP.

instructional concepts. Each unit test consists of multiple
questions for the same concept, and the corresponding score
rate is accordingly used to represent the knowledge state
of examinees on that concept. To ensure the statistical
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FIGURE 6. A snapshot of built knowledge graph for mathematics.

significance of collected data, the official online assessment
platform [44] is used to collect exam data from 31 middle
schools and totally 4,488 students in Beijing of China, who
are mainly the 7th grade middle school students.

2) EVALUATION
To obtain the ground truth of the prerequisite relations
between the instructional concepts, two domain experts are
invited to annotate the relations: if a prerequisite relation
exists from concept A to concept B, we call it a positive
relation, while if no prerequisite relation exists between them,
we call it a negative relation. A positive relation is determined
only when both experts annotate it positive, and the kappa
value is 0.896.

Similar to the traditional approach in educational data min-
ing, the system uses score rate as the estimated probability of
learners’ mastery on each concept. Accordingly, each concept
is regarded as one item, and the estimated knowledge states
from 4,488 students are regarded as 4,488 transactions in the
context of association rule mining. For each prerequisite rela-
tion candidate, the system calculates its probability of being
positive, where the key parameters are the two thresholds
minsupp and minconf .
To properly determine the two key parameters and evaluate

the performance of this probabilistic association rule min-
ing algorithm, we use Area Under ROC curve (AUC) [45]

TABLE 3. AUC with different parameter pairs.

and macro-averaged Mean Average Precision (MAP) [46]
as the main metrics. Tables 3 and 4 summarize the AUC
and MAP values for different pairs of minsupp and minconf
respectively. We see that the minconf and minsupp pairs
(0.6, 600) and (0.6, 800) have a significant higher AUC and
MAP than other pairs. Figure 5 further shows a comparison
of relation identification results in the form of heat map,
where 9 randomly selected concepts and 3 groups of typical
parameters are used. Figure 5a shows the ground truth of
all the prerequisite relations between the 9 concepts. The
(i, j)th entry denotes a prerequisite relation from concept j to
concept i. The color in heat maps indicates the probability
of a prerequisite relation according to the left part of equa-
tion (13), where a darker color means a higher probability.
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We can see clearly that Figure 5b is much more similar to
the ground truth in Figure 5a, when minconf = 0.6 and
minsupp = 800 are used as the threshold parameters in the
system.Meanwhile, we see that Figure 5c and Figure 5d show
the worse performance, which is mainly due to the improper
threshold parameters and results a low precision and a low
recall respectively.

TABLE 4. MAP with different parameter pairs.

Figure 6 further demonstrates a snapshot of the built
knowledge graph in English, where each circle represents
one concept and two key relations, namely the prerequisite
relation and inclusion relation, are marked on the graph using
solid line and dash line respectively.

VII. DISCUSSION
In general, the proposed system mainly focuses on instruc-
tional concepts and their internal relations, other educational
components, which are also significant to learners and teach-
ers, can also be considered and included as new categories
of entities, such as learning resources and pedagogical objec-
tives. Accordingly, new relations between such novel entities
need to be properly defined and identified. Moreover, the cur-
rent design only aims to identify the intra-concept relations
within one subject or one course, while the inter-course and
inter-subject relations can be further explored.

For the instructional concept extraction, both CRF model
and neural network models require a relatively large number
of training data to achieve a high performance. Some semi-
supervised learning models can be considered to utilize unla-
beled data for training, where the Wikipedia and other online
encyclopedia data may serve as an important role in the entity
extraction step. Moreover, constructing a knowledge graph
for mathematics or other science subjects is relatively easy,
but such a task would be harder for the subjects or courses
falling into languages and literatures. It is probably caused
by the complexity in human emotion and the ambiguity in
human expression, which accordingly impose new challenges
for both entity extraction and relation identification tasks.

VIII. CONCLUSION
We have introduced and implemented the KnowEdu system,
which automatically constructs knowledge graph for edu-
cation. It extracts instructional concepts and implicit edu-
cational relations from heterogenous data sources, mainly

including standard curriculum data and learning assessment
data. For the instructional concept extraction, neural net-
work models are employed, and for the prerequisite rela-
tion identification, the probabilistic association rule mining
is introduced. We demonstrate the promise of this system
via building a knowledge graph for mathematics, where the
F1 score on B-CP extraction exceeds 0.75 when 50% data
for training, and the AUC achieves 0.95 for the prerequisite
relation identification.

On a broader canvas, this KnowEdu system has demon-
strated the feasibility and effectiveness to automatically
construct dedicated knowledge graphs for different sub-
jects or courses. A variety of personalized teaching and learn-
ing services, such as online diagnosis of learning obstacles
and intelligent recommendation of learning resources, can be
developed using such dedicated knowledge graphs, especially
for the next generation of MOOC platforms.
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