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ABSTRACT Object recognition and pose estimation are essential functions in applications of computer
vision, and they also are fundamental modules in robotic vision systems. In recent years, RGB-D cameras
become more and more popular, and the 3D object recognition technology has got more and more attention.
In this paper, a novel design of simultaneous 3D object recognition and pose estimation algorithm is proposed
based on RGB-D images. The proposed system converts the input RGB-D image to colored point cloud
data and extracts features of the scene from the colored point cloud. Then, the existing color signature of
histograms of orientations (CSHOT) description algorithm is employed to build descriptors of the detected
features based on local texture and shape information. Given the extracted feature descriptors, a two-stage
matching process is performed to find correspondences between the scene and a colored point cloud model
of an object. Next, a Hough voting algorithm is used to filter out matching errors in the correspondence
set and estimate the initial 3D pose of the object. Finally, the pose estimation stage employs RANdom
SAmple Consensus (RANSAC) and hypothesis verification algorithms to refine the initial pose and filter out
poor estimation results with error hypotheses. Experimental results show that the proposed system not only
successfully recognizes the object in a complex scene but also accurately estimates the 3D pose information
of the object with respect to the camera.

INDEX TERMS 3D keypoint matching, 3D object detection, 3D object recognition, 3D pose estimation.

I. INTRODUCTION
Due to the widespread use of RGB-D cameras in recent years,
3D object recognition technology has become popular in
many practical applications because it not only has a higher
object recognition rate in a complex environment, but also
can accurately estimate 3D pose information of the object
with respect to the camera. The main difference between the
2D and 3D feature-based recognition is that the former is
calculated using local image texture information, while the
latter is based on 3D geometric information, such as point
clouds, triangle meshes, etc. In the aspect of 3D object recog-
nition, the current methods can be divided into global and
local approaches according to the way of constructing feature
descriptors. The global approaches extract feature descriptors
based on the surface geometry of the entire object cluster, and
the local approaches extract and describe a feature point in a
local region of the object.

In the study of global approaches, Marton et al. [1] pro-
posed a comprehensive object categorization and classifi-
cation system, which adopts a global radius-based surface

description (GRSD) approach to categorize point clusters of
an object based on geometric labels (e.g. plane, surface, edge,
and sphere, etc) at each voxel cell. When an object point
cloud cluster is segmented, the GRSD approach can produce
a corresponding global cluster annotation, which represents a
unique signature for the object cluster. Hence, a conventional
support vector machine (SVM) model can be used to catego-
rize object clusters based on the GRSD descriptor efficiently.
Rusu et al. [2] proposed a 3D feature descriptor called the
viewpoint feature histogram (VFH), which encodes geometry
and viewpoint cues for applications of object recognition and
pose identification. However, the VFH descriptor requires
that objects are in light clutter and thus cannot perform well
in complex real-world environments.

A variety of local approaches have been proposed
in the literature. Compared with 3D global descriptors,
3D local descriptors are more robust in cluttered scenes
because they can providemore geometric information regard-
ing 3D objects or scenes. Frome et al. [3] proposed two
regional shape descriptors: 3D shape contexts (3DSC) and
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harmonic shape contexts. They showed that the 3DSC
descriptor has a higher recognition rate on noisy scenes. How-
ever, the 3DSC descriptor is not rotation invariant. To deal
with this issue, Tombari et al. [4] proposed a unique shape
context (USC) descriptor, which improves the accuracy and
robustness of the 3DSC descriptor by deploying a unique
local reference frame (RF). However, the USC description
method is computationally expensive because the dimension
of the USC descriptor is of size 1960. Rusu et al. [5]–[7]
proposed the point feature histogram (PFH) descriptor and
further improved it to yield the fast point feature his-
togram (FPFH) descriptor to handle point registration prob-
lems. The PFH descriptor accurately captures geometric
information surrounding the feature point according to the
difference between the directions of the normal vectors in
a local region. However, the PFH description method is
also computationally expensive and is difficult to perform
in real time. The FPFH description method greatly reduces
the computation load of PFH by removing additional links
between the feature point and its neighbors. Tombari et al. [8]
proposed the signature of histograms of orientations (SHOT)
descriptor, which encodes surface information within a spher-
ical region surrounding the feature point. This sphere is
divided into several volumes; each of them produces a local
histogram of angles between the normal vectors of the fea-
ture point and its neighbors within that volume. The SHOT
descriptor is then obtained by stitching all local histograms
together. Because the SHOT descriptor is also computed
based on a local RF, it is rotation invariant and robust to
noisy scenes. Tang et al. [9] proposed a robust local shape
descriptor called structure of geometric centroids (SGC),
which is computed by voxelizing the local shape within a
uniquely defined local RF and concatenating geometric cen-
troid and point density features extracted from each voxel.
The SGC descriptor is robust to occlusion and noise and
supports matching keypoints near scan boundary.

As 3D keypoint matching is a key step in local approaches,
some recent works on this topic have been proposed to
address this problem. Ma et al. [10] proposed a robust point
matching algorithm called vector field consensus (VFC),
which solves for correspondence by interpolating a vector
field between two sets of points to estimate a consensus
of inlier points whose matching satisfies a nonparametric
geometrical constraint. Ma et al. [11] proposed a robust
L2-minimizing based transformation estimation algorithm
and applied it to non-rigid registration problem for build-
ing sparse and dense correspondences. Tsai et al. [12]
proposed an L1-norm based multi-resolution exhaustive
search (MRES) algorithm to match high-dimensional image
keypoint descriptors efficiently. One merit of the MRES
algorithm is that it is suitable for parallel implementation
on the graphics processing unit to achieve better real-time
performance.

In the literature of object pose estimation,
Aldoma et al. [13] proposed an approach that uses the
CAD model to create clustered VFH (CVFH) descriptors of

the object combined with cameras roll histogram to assist
3D pose computation of the object in real environments.
Zhu et al. [14] proposed a deformable part-based model,
which is trained on clusters of the model silhouettes with
respect to some possible poses. A set of hypotheses about
possible object locations, which can be used to segment
and verify the object in the scene simultaneously, is then
produced according to the deformable part-based model.
The final object pose is iteratively calculated by fitting the
projection of the 3Dmodel to the object contour in the image.
Drouard et al. [15] proposed a robust head-pose estimation
method based on a partially-latent mixture of linear regres-
sions, which directly maps high-dimensional feature vectors
onto the joint space of head-pose angles and bounding-box
shifts. Recently, Zhang et al. [16] proposed a multistream
multitask deep network, which uses depth, RGB, and optical
flow data to jointly detect human and estimate head pose in
RGB-D videos.

From the above discussion, there are several studies related
to 3D feature description, 3D keypoint matching, 3D object
recognition, and 3D pose estimation. However, only a few
integrated systems have been proposed to deal with these
tasks efficiently. Therefore, this paper presents the design,
implementation, and verification of a 3D object recognition
and pose estimation system based on an RGB-D camera to
simultaneously handle object recognition and pose estimation
tasks in real-world environments. In the object recognition
process, a point-cloud segmentation method [17] is used to
obtain possible object clusters before starting the calcula-
tion of feature description. Then, a keypoint-based two-stage
matching process is performed to speedup the computation
of finding correspondences between the object clusters of
the current scene and a colored point cloud model of an
object. Next, a Hough voting algorithm [18] is employed
to filter out matching errors in the correspondence set and
estimate the initial 3D pose of the object. In the pose esti-
mation process, we utilize RANSAC and hypothesis veri-
fication algorithms to refine the initial pose and filter out
poor estimation results with error hypothesis. Experimental
results validate the object recognition performance and pose
estimation accuracy of the proposed system in a complex real-
world scene.

The remainder of this paper is organized as follows.
Section II introduces the system architecture of the proposed
object recognition and pose estimation algorithm. Section III
and Section IV present technical details of the proposed
3D object recognition and 3D pose estimation modules,
respectively. Experimental results are reported in Section V
to evaluate the effectiveness and efficiency of the proposed
object recognition and pose estimation method. Section VI
concludes the contributions of this paper.

II. SYSTEM ARCHITECTURE
Figure 1 shows system architecture of the proposed object
recognition and pose estimation algorithm based on colored
point clouds. The proposed system consists of an object
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FIGURE 1. System architecture of the proposed object recognition and pose estimation algorithm.

recognition module and a pose estimation module. First,
the color and depth images of a scene are captured from
an RGB-D camera to produce a colored point cloud of
the scene. The object recognition module then detects the
foreground objects in the scene and identifies the object-
of-interest (OOI) by matching feature descriptors between
the foreground objects and the OOI model recorded in the
database. Finally, the type of the OOI and its initial pose in
the scene are simultaneously obtained from a Hough voting
process.

To improve the accuracy of pose estimation, the initial pose
of the OOI is further refined via the pose estimation module,
which implements a RANSAC algorithm to optimize the
relative posture of the object in camera frame and employs a
hypothesis validation algorithm to obtain the best object pose
estimation result under some predefined pose hypotheses.
The following sections present the technical details of both
object recognition and pose estimation modules.

III. OBJECT RECOGNITION
This section introduces the processing steps of the proposed
3D object recognition module, which consists of four units to
perform scene segmentation, feature description, descriptor
matching and Hough voting processes, respectively. When
the colored point cloud of the scene is captured from the
RGB-D camera, the scene segmentation unit is used to
remove background points in the point cloud. The feature
description unit is then applied to construct feature descrip-
tors of all foreground objects in the scene. Finally, the descrip-
tor matching and Hough voting units identify the OOI and its
initial pose information.

A. SCENE SEGMENTATION
Scene segmentation is an important task for object detection
and recognition. The purpose of scene segmentation is to
separate foreground object and planar background regions of
the scene for increasing the computational efficiency in the
following feature extraction and description process. First,
the point cloud of the scene is divided into multiple planar
regions, which are supposed to be the background regions
of the scene. Next, the foreground regions of the scene are
clustered by a Euclidean distance criterion to extract objects
on each background plane. Finally, the clustered object points
are merged to form a foreground point cloud to be used as
the input of the feature description unit. In a complex scene,
there may be more than one plane to be segmented. Thus,
the proposed scene segmentation unit employs a multi-plane
segmentation method based on connected components [17]
to handle this situation.

The connected component algorithm is one of the con-
ventional techniques for image segmentation. The point-
cloud segmentation method proposed in [17] divides a 3D
point cloud data sampled from a regular 2D grid, called
an organized point cloud, based on labels of the connectiv-
ity components. This method is more efficient than others
existing methods that usually require a nearest neighbor-
hood search (NNS) process to determine adjacent neigh-
bors of each data point. After obtaining the labeled image
of the connected components, the background planes in
the scene are detected by the larger connected regions in
the labeled image. These regions usually correspond to
the wall plane, the ground plane or the desktop plane in
the scene and can be expressed by the planar equation
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nxx + nyy + nzz + nd = 0, where n = [nx , ny, nz]T

is the surface normal vector of the plane, and nd is the
projection distance between the normal vector n and a point
d = [x, y, z]T on the plane such that

nd = dTn. (1)

Here, we employ a real-time surface normal vector estimation
algorithm proposed in [19] to efficiently estimate the normal
vector of each plane in the scene. Finally, a data point p in the
organized point cloud is represented by p = [dT ,nT , nd ]T ,
where the projection distance nd is calculated by the inner
product of expression (1).

Let p1 and p2 denote two adjacent data points of the
organized point cloud. Then, two distance metrics are used
to measure the similarity between p1 and p2 such that [17]

dθ (p1,p2) = nT1 n2, (2)

dd (p1,p2) =
∣∣∣n1d − n2d ∣∣∣ . (3)

where n1 and n2 denote the normal vector of p1 and p2,
respectively; n1d and n2d denote the vertical distance of p1
and p2, respectively. The metrics dθ and dd measure the
difference in between p1 and p2, respectively. Based on these
two metrics, the connected components of a plane in the
organized point cloud can be decided by

Cp (p1,p2) =
{
true, if (dθ < tθ&&dd < td ) ,
false, otherwise,

(4)

where tθ and td are thresholds to evaluate the similarity of
orientation angle and projection distance between p1 and p2,
respectively. Finally, a labeled point cloud L that indicates
background planes in the scene is generated by substituting
the connected-component result obtained from Eq. (4) into a
3D connected-component labeling algorithm [20].

After separating the background planes, a Euclidean clus-
tering process is applied to the rest of data points to clas-
sify object clusters in the scene. To achieve this purpose,
the Euclidean distance between p1 and p2, denoted by
de(p1,p2) = ‖p1 − p2‖2, is employed. Let �p be a label
set of the detected planes in the organized point cloud. Then,
the connected components of an object in the scene can be
determined according to the labeled point cloud L such that

Cobj (p1,p2)

=

{
false, if (L(p1)∈�p||L(p2)∈�p||de(p1,p2)> te),
true, otherwise,

(5)

where te represents the threshold of the Euclidean distance
between p1 and p2. If the Euclidean distance between two
data points is greater than te, or one of the points belongs to
the label set�p, then the two data points do not belong to the
same object cluster. Similarly, we apply the 3D connected-
component labeling algorithm to the connected-component
result of Eq. (5) to obtain the labeled object clusters, which
are treated as the detected objects in the scene.

B. FEATURE EXTRACTION AND DESCRIPTION
The feature extraction operation only applies to the data
points of the detected object clusters obtained from the pre-
vious scene segmentation process. There are several ways to
extract 3D local features in a point cloud such as intrinsic
shape signatures (ISS) [21], normal aligned radial feature
(NARF) [22], and uniform sampling (US), etc. In this work,
the US method is used to uniformly down-sample the data
points of each object cluster, and the remained points are
considered as the feature points of each detected object. More
specifically, the US method divides the point cloud of an
object into multiple cube regions and takes the centroid point
of each cube as a feature point of the object. Empirically,
setting the size of a cube region as 1× 1× 1 cm3 works well
in our testing. The main advantage of the US method is that
it can greatly reduce the computational cost of the process.
Next, the feature description operation is performed

on each feature point of the detected object. In this
step, we employ the existing CSHOT feature description
algorithm [23], which characterizes a feature point with
its neighboring points to produce a combined texture-shape
3D descriptor as shown in Fig. 2. Let pf denote a feature
point of the detected object. Then, the CSHOT descriptor for
the feature point pf is established by multiple signatures of
histograms such that

D(pf ) =
m⋃
i=1

SHGi
fi (pf ), (6)

where m denotes the number of signatures of histograms,
and SHGi

fi (p) denotes the signature of histograms of a given
feature point p relative to the ith property function Gi and
the ith metric function fi. Here, the CSHOT descriptor incor-
porates two signatures of histograms (m = 2). The first one
is a signature of histograms of shape-related measurements,
which defines the G1 and f1 functions as the normal vector
of the feature point and the inner product of normal vectors,
respectively, such that

f1(G1(p),G1(q)) = nTpnq, (7)

where q is an adjacent point of the feature point p. The second
one is a signature of texture-related measurements, and here

FIGURE 2. Concept of the CSHOT descriptor.
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we define theG2 and f2 functions as the HSV color texture of
the feature point and the one-norm value of color differences,
respectively, such that

f2(G2(p),G2(q)) =
3∑
j=1

∣∣hj(p)− hj(q)
∣∣, (8)

where h(p) represents the HSV color triplets associated to
the feature point p, and j is the index of the color channel.
In general, the CSHOT descriptor can improve the accuracy
of 3D object recognition due to incorporating two different
types of signatures of histograms to construct a 3D feature
descriptor.

C. DESCRIPTOR MATCHING
After extracting the CSHOT descriptors of each feature point
in the object clusters, a descriptor matching process is per-
formed to find 3D correspondences between the detected
object point cloud and the recorded model point cloud. Tradi-
tionally, this problem is resolved by a NNS algorithm based
on k-d tree techniques. However, the CSHOT descriptor used
in this paper has a dimension of 1344, which greatly degrades
matching performance of the k-d tree based NNS algorithm
due to the curse-of-dimensionality issue [24], [25]. To deal
with this issue, we add two designs to the k-d tree based
NNS algorithm. The first one is to use multiple randomized
k-d trees instead of the traditional k-d tree method. This
design helps to speed up the NNS process and can be easily
implemented by the FLANN (Fast Library for Approximate
Nearest Neighbors) library [26], which provides an efficient
way to resolve the NNS problem in a large dataset of high-
dimensional feature descriptors.

The second one is to reduce the computational complexity
of the NNS process by adopting a two-stage CSHOT descrip-
tor matching algorithm, which divides the NNS process into
a preliminary candidate search (PCS) stage and a best match
determination (BMD) stage. In the PCS stage, we only take
the shape description of the CSHOT descriptor to search the
preliminarymatching candidates for each feature point. In the
BMD stage, the best match of each feature point is selected
from the preliminary matching candidates by evaluating the
similarity of the full CSHOT descriptor. The main idea of
the proposed two-stage matching algorithm is that it can
efficiently search candidate feature matches by less complex
matching operations and then select the best match from the
candidate matches in a more rigorous way. Therefore, the
processing speed of the NNS process can be greatly improved
when the number of feature points is increased rapidly.

D. HOUGH VOTING
After obtaining the 3D correspondences between the object
model and the current scene, the Hough voting algorithm [18]
is used to recognize the OOI while estimating its initial pose
in the scene. Moreover, the matching outliers can be filtered
out through the voting process. The Hough voting algorithm
is divided into offline and online processes. The former pro-

duces voting vectors of the feature points of the OOI model,
and the latter produces voting vectors of the correspondences
between the OOI model and the current scene. Let dMc and
dMi denote the center point and the ith feature point of the
OOI model in a global RF, respectively. In the offline pro-
cess, for each feature point of the OOI model, a rotation
and translation invariant voting vector represented in a local
RF is computed by

vMLi = RM
GLi (d

M
c − dMi ), (9)

where RM
GLi is the transformation matrix from the global

RF to the local RF associated with the local RF of the feature
point dMi , which is obtained from an invariant local RF esti-
mation algorithm [27].

When the correspondences between the OOI model and
the current scene are obtained from the descriptor matching
operation, the online process is activated to determine the
voting vector of the ith correspondence in the global RF of
the scene such that

vSGi = RS
LiGv

S
Li + dSi , (10)

where (dSi ↔ dMi ) denotes the ith correspondence between
the feature point of the scene and the feature point of the
OOI model, vSLi = vMLi is the rotation and translation invariant
voting vector of the feature point dSi in the local RF, and
RS
LiG is the transformation matrix from the local RF to

the global RF associated with the local RF of the feature
vector dSi . Figure 3 shows the concept of voting vector com-
putation based on Eq. (9) and Eq. (10). Because a voting
vector vSGi can cast a vote in the global RF of the scene,
the center point dSc of the OOI in the scene can be efficiently
identified by the cell having the maximum number of votes
in 3DHough space. Thematched points whose voting vectors
do not point to the same cell are regarded as the matching out-
liers, as indicated by the red lines in Fig. 4. Finally, the initial
pose of the OOI is estimated according to the identified center
point dSc of the OOI such that

RS
0 = RS

LiGR
M
GLi and tS0 = dSc − dMc , (11)

whereRS
0 and t

S
0 are the initial rotation matrix and translation

vector of the OOI in the global RF of the scene.

FIGURE 3. Voting vector computation based on the ith correspondence
between the feature point of the scene and the feature point of the
OOI model.
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FIGURE 4. Example of 3D object recognition based on the Hough voting
scheme. The center point of the OOI can be identified by the cell having
the maximum number of votes in the Hough space.

IV. POSE ESTIMATION
In this section, we introduce the processing steps of the
proposed pose estimation scheme based on the RANSAC
algorithm [28] to refine the initial pose of the OOI obtained
from the Hough voting approach. Next, a hypothesis verifi-
cation algorithm is used to get the best object pose estimation
result.

A. MODIFIED RANSAC ALGORITHM
Although theHough vote algorithm can provide a preliminary
pose estimation of the OOI, a post-optimization process is
still required to improve the robustness of pose estimation
process against matching outliers. Given N correspondences
between the OOI model and the current scene, previously
defined as (dSi ↔ dMi ), for i = 1 ∼ N . Let T = [R|t] ∈
<
3×4 denote a transformation matrix associated with a

3-by-3 rotation matrix R and a 3-by-1 translation vector t.
Define a metric based on the sum of squared distances
between the correspondences (dSi ↔ dMi ) associated with a
transformation matrix T such that

ε(T)|N
(dSi↔dMi )

=

N∑
i=1

∥∥∥5(T,dMi )− dSi
∥∥∥2
2
, (12)

where 5(T,d) = Rd + t is a rigid transformation of
a 3D point d associated with a transformation matrix T.
Then, the optimal transformation matrix T̂ between the cor-
respondences (dSi ↔ dMi ) is computed by minimizing the
metric (12) such that

T̂ = argmin
T∈<3×4

ε(T)|N
(dSi↔dMi )

, (13)

which can be solved by the Levenberg-Marquardt algorithm.
However, the pose estimation method using Eq. (13) is very
sensitive to the matching outliers. To deal with this problem,
a RANSAC algorithm is employed to collaborate with the
pose estimation method (13).
Let d̄Mi = 5(Ts0,d

M
i ) denote the ith transformed feature

point of the OOI model associated with the initial trans-
formation matrix Ts0 = [Rs

0|t
s
0]. The processing steps of

the proposed RANSAC pose estimation algorithm are listed
below.
Initialization: Set a positive threshold tpoly to evaluate the
similarity of polygon edge lengths. Clear an iterative counter

k = 0 and a best inlier number Nbest = 0. Set a maximum
number of iterative counter kmax.
Step 1: Randomly select n ≥ 3 correspondences between the
transformed OOI model and the current scene, (dSi ↔ d̄Mi ),
for i = 1 ∼ n.
Step 2: Calculate a dissimilarity vector δ between the
n sampled polygon edge lengths [29]

δ =

[ ∣∣lS1 − lM1 ∣∣
max(lS1 , l

M
1 )

. . .

∣∣lSn − lMn ∣∣
max(lSn , lMn )

]T
∈ <

n×1, (14)

where lSi =
∥∥∥dSj − dSi

∥∥∥
2
and lMi =

∥∥∥d̄Mj − d̄Mi
∥∥∥
2
for j =

i+1 mod n denote the edge length of the scene polygon and of
the transformed model polygon, respectively. If ‖δ‖2 > tpoly,
then go back to Step 1.
Step 3: Estimate a suboptimal hypothesis transformation TS1
using the n correspondences (dSi ↔ d̄Mi ) such that

TS1 = argmin
T∈<3×4

ε(T)|n
(dSi↔d̄Mi )

. (15)

Step 4: Apply the suboptimal hypothesis transformation to
the transformed OOI model to obtain hypothesis OOI model
points d̂Mi = 5(TS1 , d̄

M
i ).

Step 5: Find the matching inliers by the NNS process
between the feature points of dSi and of d̂Mi . If the number
of the current inliers Nin is lower than the best inlier number
Nbest , then increase the iterative counter k = k + 1 and go
back to Step 1.
Step 6: Record the current matching inliers as the best corre-
spondences and set the best inlier number as Nbest = Nin.
Step 7: Update the maximum number of iterative counter as

kmax =
ln(1− p)
ln(1− wn)

, (16)

where w = Nbest
/
N is the current inlier probability, p is the

desired inlier probability, and n is the sampling number used
in Step 1. Increase the iterative counter k = k+1. If k < kmax ,
then go back to Step 1.
Step 8: Estimate a hypothesis transformation TS2 using the
best correspondences (dSi ↔ d̂Mi ) such that

TS2 = argmin
T∈<3×4

ε(T)|Nbest
(dSi↔d̂Mi )

. (17)

Step 9:Recovery the optimal transformation of theOOI using
transformations TS0 , T

S
1 , and T

S
2 such that

TSOOI = TS2 ◦ (T
S
1 ◦ T

S
0 ), (18)

where the operation T2 ◦ T1 = [R2R1|t2 + R2t1] denotes a
composition computation between two transformation matri-
ces. Finally, the resulting transformation TSOOI represents the
refined pose of the OOI in the current scene.

In general, we also can define a convergence thresh-
old to terminate the RANSAC algorithm when the metric
ε(T)|Nbest

(dSi↔d̂Mi )
falls below the threshold.
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B. HYPOTHESIS VERIFICATION
In the Hough voting process, there may be more than one
object hypothesis being detected in the scene. However, not
every hypothesis is corresponding to one valid OOI detection
result. Therefore, the last step of the proposed pose estimation
algorithm is a global hypothesis verification process that
evaluates each object hypothesis according to geometrical
cues of the OOI model and the current scene. Suppose that
the Hough voting process provides m recognition hypotheses
related to an OOI model. Let TSO

∣∣
j, j = 1 ∼ m, denote the jth

optimal transformation matrix corresponding to the jth object
hypothesis and �S

O

∣∣
j = {d : d ∈ 5(TSO

∣∣
j ,d

M
i )} a point set

of the jth object hypothesis mapping into the current scene.
Let �S be the point set of the current scene. Then, the local
fitness between a scene point p ∈ �S and its nearest neighbor
q ∈ �S

O

∣∣
j can be measured by a weight function

wρ(p,q)
∣∣
j =

⌊
1−
‖p− q‖2

ρ

⌋
0
nTpnq, (19)

where bxc0 is a clipping function that sets x = 0 if x < 0, ρ is
a positive threshold to evaluate the distance between p and q,
and np and nq are the normal vectors of p and q, respectively.
Define a set of Boolean variables χb = {b1, b2, . . . , bm}

with each bj ∈ {0, 1} indicating that the jth recogni-
tion hypothesis is invalidated/validated. To find the optimal
hypotheses, a global hypothesis verification function =(χb) :
Bm→ < that summarizes geometrical cues of the OOImodel
and the current scene [30] is employed such that

=(χb) = fS (χb)+ λ · fM (χb), (20)

where λ is a regularization coefficient, and fM , fS are
scalar functions associated with the geometrical cues of the
OOI model and the current scene given by

fS (χb) =
∑
p∈�S

(
3χb (p)+ 0χb (p)− Eχb (p)

)
, (21)

fM (χb) =
m∑
j=1

bj8M
j , (22)

where Eχb (p) =
m∑
j=1

bj wρ(p,q)
∣∣
j evaluates the geomet-

rical cue of fitness between �S and �S
O

∣∣
j. 3χb (p) =⌊

m∑
j=1

sgn(wρ(p,q)
∣∣
j)

⌋
0

counts the number of multiple

assignment of each scene point between all hypotheses,
where sgn(x) is a sign function of a real number x. 0χb (p) =
m∑
j=1

bj rκη (p,q)
∣∣∣
j
measures the effect of an unexplained scene

clutter set �s
c nearby the jth hypothesis set �S

O

∣∣
j, in which

rκη (p,q)
∣∣∣
j
=

{
κ, ‖p− q‖2 ≤ η and p ∈ �

s
c,

wη(p,q)
∣∣
j , otherwise,

is a clutter weight function, where κ is a positive constant to
penalize unexplained scene points nearby the set �S

O

∣∣
j, and

η is a positive threshold to define the range of the clutter
set�s

c.8
M
j is the number of outliers for the jth object hypoth-

esis mapping into the current scene. Finally, the optimal
hypotheses are determined via an constrained optimization
process such that

χ̂b = argmin
χb∈Bn

=(χb) subject to ‖χb‖∞ > 0, (23)

which can be resolved by a classical simulated annealing
algorithm [31]. The initial Boolean set for the iterative update
process is set as χ (0)

b = {1, 1, . . . , 1}, which means all
hypotheses to be active at the beginning.

V. EXPERIMENTAL RESULTS
The proposed object recognition and pose estimation algo-
rithm was implemented with Point Cloud Library (PCL) [32]
running on a Windows 7 platform equipped with a 3.2 GHz
Intel R©Core(TM) i5-4460 CPU and 8GB system memory.
The RGB-D camera used in the experiments was a Microsoft
Kinect sensor. To evaluate the performance of the proposed
algorithm, the following experiments consist of three parts:
object recognition, pose estimation and computational effi-
ciency of the proposed algorithm. Figure 5(a) and 5(b) illus-
trate two point cloud models used in the experiment of object
recognition and pose estimation, respectively. Moreover, the
bottle object was mounted on the end-effector of UR5 robot
manipulator [Fig. 5(c)] to provide the ground truth of the OOI
poses for evaluation of 3D pose estimation results.

FIGURE 5. Experiment setup: (a) a bear point cloud model used in the
object recognition testing, (b) a bottle point cloud model used in the pose
estimation testing, and (c) a UR5 robotic manipulator used to grasp the
bottle object (b) to provide the ground truth of the OOI poses.

A. OBJECT RECOGNITION RESULTS
Figure 6 shows the experimental results of 3D object recog-
nition obtained from the proposed algorithm. In this exper-
iment, the OOI was surrounded by many other objects as
shown in Figs. 6(a1)-(a3) to increase the difficulty of the
object recognition task. Figures 6(b1)-(b3) show the corre-
sponding object recognition results, in which the green data
points indicate the object recognition results obtained from
the proposed algorithm. It is clear from the experimental
results that the proposed algorithm succeeds to recognize the
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FIGURE 6. Experimental results of the 3D object recognition: (a1-a3) the scene point clouds, (b1-b3) the object recognition results,
in which the green data points indicate the object recognition results obtained from the proposed algorithm.

OOI in the complex environment; even the OOI is occluded
[Fig. 6(b2)] or the camera is rotated [Fig. 6(b3)]. Therefore,
the object recognition performance of the proposed algorithm
is validated. More experimental results can refer to the web-
page of [33] and [34].

B. POSE ESTIMATION RESULTS
Figure 7 illustrates the experimental results of 3D pose esti-
mation obtained from the proposed algorithm, in which the
green data points also indicate the object recognition results
of the proposed algorithm. From Fig. 7, one can see that the
proposed algorithm successes to detect the OOI mounted on
the end-effector of the robot manipulator. In this experiment,
the actual 3D poses of the OOIwere recorded according to the
pose information of robot end-effector, which has a precise
repeatability accuracy of 0.1 mm. Table 1 tabulates the actual
3D poses of the OOI and the corresponding estimation results
obtained by the proposed algorithm, in which tx , ty, and

tz denote the translation quantity of the OOI on x-, y-, and
z-axis, respectively; rx , ry, and rz denote the Euler angle of
the OOI about x-, y-, and z-axis, respectively; (t∗x , t

∗
y , t
∗
z )

and (r∗x , r
∗
y , r
∗
z ) are the corresponding translation and rotation

estimates obtained from the proposed algorithm. To analyze
pose estimation errors of the proposed algorithm, the fol-
lowing absolute estimation errors are used to evaluate the
performance of our system such that

et� =
∣∣t� − t∗�∣∣ and er� =

∣∣r� − r∗�∣∣ , (24)

where � = {x, y, z} denotes one of the three axes of the
3D Cartesian coordinate system. Table 2 records the abso-
lute estimation errors of the proposed algorithm in the pose
estimation experiment. From Table 2, one can see that the
average absolute translation errors on x-, y-, and z-axis are
about 0.49 cm, 0.92 cm, and 0.55 cm, respectively. More-
over, the maximum absolute translation error on each axis
is all smaller than 2.0 cm. Therefore, the accuracy of object
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FIGURE 7. Experimental results of the 3D pose estimation of the bottle object mounted on the end-effector of the UR5 robotic manipulator.

TABLE 1. Actual target poses and the corresponding estimation results of the 3D pose estimation experiment.

translation estimation of the proposed algorithm is validated.
On the other hand, the rotation estimation on y-axis has the
maximum estimation error about 4.38 degrees in average.
By contrast, the average absolute rotation errors on both
x- and z-axis are about 1.30 degrees and 2.59 degrees, respec-
tively. Therefore, the above experimental results evaluate
that the proposed algorithm can provide accurate 3D pose
estimation results of the OOI based on a given point cloud
model.

C. COMPUTATIONAL EFFICIENCY
Table 3 tabulates the average processing time in each step
of the proposed object recognition and pose estimation algo-
rithm. It is clear from Table 3 that the total processing time
of the proposed algorithm depends on the number of fea-
tures detected in the scene point cloud, i.e., it increases from
2.16 to 3.49 seconds when the number of features increases
to 4,000 keypoints. Moreover, one can see that the stage of

TABLE 2. Absolute estimation errors of the 3D pose estimation
experiment.

descriptor matching costs the most processing time of the
proposed algorithm, especially when the number of features
becomes large. This observation highlights the importance of
the proposed descriptor matching method. Table 4 records
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TABLE 3. Average processing time (in seconds) in each step of the proposed algorithm.

TABLE 4. Comparisons of average descriptor matching time (in seconds)
between the k-d tree NNS method and the proposed two-stage matching
method.

the processing time comparisons between the k-d tree based
NNS method and the proposed two-stage matching method.
When the number of features is less than 1,000, the proposed
method can reduce overall descriptormatching time of the k-d
tree method about 33.3%. However, when the number of fea-
tures is more than 4,000, the proposed method significantly
reduces the descriptor matching time of the k-d tree method
up to 45.2% in average. Therefore, the proposed algorithm
can perform more efficiently when the number of features
increases rapidly.

VI. CONCLUSION AND FUTURE WORK
In this paper, a novel object recognition and pose estima-
tion algorithm has been proposed based on RGB-D cam-
eras. Regarding descriptor matching, a two-stage matching
algorithm is proposed to greatly speed up feature matching
process, especially when the number of features increases
rapidly. Regarding object recognition, the geometric shape
features are combined with color textures to achieve robust
3D object detection and recognition efficiently.Moreover, the
proposed method can recognize a partially occluded irregular
OOI in a crowded environment while providing an initial pose
estimation of the OOI. Regarding pose estimation, a robust
RANSAC algorithm is proposed to estimate the optimal pose
of the OOI against the matching outliers. Finally, a global
hypothesis verification method is employed to evaluate each
object hypothesis according to geometrical cues of the
OOI model and the current scene. Experimental results show
that the proposed method not only successes to recognize
an OOI in a crowded and complex environment, but also
provides accurate pose estimation results. The average trans-
lation and rotation estimation errors in the three axes are all
smaller than 1.0 cm and 5.0 degrees, respectively. Therefore,
the experimental results validate the performance of the pro-
posed algorithm.

In the future, the design of GPU acceleration for the pro-
posed algorithm will be further investigated to improve the
overall computational efficiency of the object recognition and
pose estimation system. By doing so, the proposed algorithm
can be used in many practical robotics and computer vision
applications.
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