SPECIAL SECTION ON COMPLEX SYSTEM HEALTH MANAGEMENT BASED ON CONDITION

MONITORING AND TEST DATA

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received October 18, 2017, accepted November 13, 2017, date of publication November 20, 2017,

date of current version February 14, 2018.

Digital Object Identifier 10.1109/ACCESS.2017.2774261

Prognostics and Health Management: A Review
of Vibration Based Bearing and Gear

Health Indicators

DONG WANG"'!, KWOK-LEUNG TSUI', AND QIANG MIAOQ?, (Senior Member, IEEE)

! Department of Systems Engineering and Engineering Management, City University of Hong Kong, Hong Kong

2School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China

Corresponding author: Qiang Miao (mqiang @scu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 51505307 and Grant 51675355, in part
by the General Research Fund under Grant CityU 11216014, and in part by the research grants council theme-based research scheme under
Project T32-101/15-R.

ABSTRACT Prognostics and health management is an emerging discipline to scientifically manage
the health condition of engineering systems and their critical components. It mainly consists of three
main aspects: construction of health indicators, remaining useful life prediction, and health management.
Construction of health indicators aims to evaluate the system’s current health condition and its critical
components. Given the observations of a health indicator, prediction of the remaining useful life is used
to infer the time when an engineering systems or a critical component will no longer perform its intended
function. Health management involves planning the optimal maintenance schedule according to the system’s
current and future health condition, its critical components and the replacement costs. Construction of health
indicators is the key to predicting the remaining useful life. Bearings and gears are the most common
mechanical components in rotating machines, and their health conditions are of great concern in practice.
Because it is difficult to measure and quantify the health conditions of bearings and gears in many cases,
numerous vibration-based methods have been proposed to construct bearing and gear health indicators.
This paper presents a thorough review of vibration-based bearing and gear health indicators constructed
from mechanical signal processing, modeling, and machine learning. This review paper will be helpful
for designing further advanced bearing and gear health indicators and provides a basis for predicting the
remaining useful life of bearings and gears. Most of the bearing and gear health indicators reviewed in this
paper are highly relevant to simulated and experimental run-to-failure data rather than artificially seeded
bearing and gear fault data. Finally, some problems in the literature are highlighted and areas for future
study are identified.

INDEX TERMS Ball bearings, condition monitoring, feature extraction, gears, prognostics and health
management, signal processing algorithms, vibrations.

I. INTRODUCTION

Prognostics and health management [1], [2] is an emerging
discipline to scientifically manage the health condition of
engineering systems and their critical components, which
has attracted much attention from engineers and scholars
in recent years [3]-[7]. Prognostics and health manage-
ment is mainly concerned with three aspects: construction of
health indicators, remaining useful life (RUL) prediction and
health management. Construction of health indicators aims
to evaluate the current health condition of an engineering
system and its critical components, which is then used to

infer their remaining useful lifetime [8], [9]. Based on the
first two aspects, the optimal health management schedule
is planned to minimise costs and prevent unexpected acci-
dents [10]-[12]. Construction of health indicators is the key to
RUL prediction because it provides a health indicator for the
prediction. For example, rolling element bearings are critical
components commonly used in rotating machines [13], [14].
Once the rolling element bearings fail, they accelerate the
failure of other adjacent components and machines. There-
fore, predicting their health condition is necessary to pre-
vent any unexpected accidents caused by bearing failures.
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FIGURE 1. Relationship between a bearing health indicator and bearing RUL prediction: (a) three historical samples of a bearing health
indicator; each represents a specific type of bearing degradation; (b) determination of a statistical model with random coefficients and its
prior distributions; (c) on-line monitoring observations of the bearing health indicator for a new bearing; (d) RUL prediction by
extrapolation of a posteriorly updated statistical model to a predetermined failure threshold.

Because temperature is only sensitive to severe bearing
failures, it is preferable to use other signals, such as vibra-
tion signals collected by accelerometers and acoustic signals
collected by acoustic emission sensors, for the fault diag-
nosis and prognostic analysis of rolling element bearings.
Moreover, thanks to the concept of blind fault component
separation [15], bearing fault signals can be well separated
from loud heavy noises and other unwanted strong compo-
nents. The quantification of bearing fault signals can generate
a bearing health indicator for bearing condition degradation
assessment. Fig. 1 (a) shows that a bearing health indicator
consisting of the sum of bearing defect frequencies and their
harmonics in a laboratory environment [16] has two distinct
phases. In Phase I, the bearing health indicator stays stable,
which shows that the bearing is in a normal health condition.
After the first large change in the bearing health indicator,
the bearing enters an abnormal health condition and degrades
exponentially over time until the indicator reaches a user-
predetermined failure threshold. As a result, three historical
bearing degradation samples represent three bearing run-to-
failure processes, respectively. Based on these observations,
it is concluded that the bearing health indicator is the basis
for bearing prognostics, especially RUL prediction. First,
historical samples of the bearing health indicator in Fig. 1 (a)
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can be used to empirically establish a statistical model, such
as the exponential model with random coefficients proposed
by Gebraeel et al. [17], [18] or the piecewise statistical model
with random coefficients proposed by Chen and Tsui [19]
in Fig. 1 (b), and then to determine the prior parameter
distributions of the statistical model. Second, once on-line
monitoring observations of the bearing health indicator are
available for a new bearing, as shown in Fig. 1 (c), they can be
used to posteriorly update the prior parameter distributions of
the statistical model. Extrapolations of the posterior statistical
model to the failure threshold can be used to predict bearing
RUL and its uncertainty, as shown in Fig. 1 (d). Consequently,
in this example, the bearing health indicator provides the
observations for the statistical model and the Bayesian infer-
ence on the parameters of the statistical model for predicting
the bearing’s RUL.

Several distinguished scholars have conducted reviews
of RUL prediction [20]-[24]. Heng et al. [20] summarised
conventional reliability models, condition-based prognostic
models and their hybrid models. Ye and Xie [21] summarised
a number of degradation models and comprehensively com-
pared stochastic process models with general path models.
Si et al. [22], [25] discussed various prognostic methods
based on statistical modelling. Lee et al. [23] clarified the
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relationship between machine diagnostics and prognostics
and then summarised many prognostic methods for predict-
ing the RUL of critical components such as bearings and
gears. Zhang and Lee [24] reviewed prognostic methods for
rechargeable lithium-ion batteries, which are also potentially
useful for predicting the RUL of machines, especially bear-
ings and gears. The main difference between battery prog-
nostics and bearing and gear prognostics is that the health
status of rechargeable lithium-ion batteries can be quantified
and described by the battery capacity, which is calculated
by integrating the battery current over time in the process
of discharging. However, for bearing and gear prognostics,
it is rare to discover a simple and direct health indicator
to track the current health condition. This paper presents a
thorough review of vibration based bearing and gear health
indicators constructed from mechanical signal processing,
modelling and machine learning. The review is intended to
be useful in the design of bearing and gear health indicators.
Most of the reviewed health indicators are highly relevant
to simulated and experimental run-to-failure data rather than
artificially seeded bearing and gear data. The main advantage
of simulated and experimental machine run-to-failure data is
that they provide early bearing and gear fault detection and
their condition assessment in a natural fault-propagation way.

The rest of this paper is outlined as follows. Section II pro-
vides a thorough review of bearing and gear health indicators.
Section III discusses the methods and identifies some poten-
tial future works and Section IV provides some concluding
remarks.

Il. REVIEW OF VIBRATION BASED BEARING

AND GEAR HEALTH INDICATORS

Bearing and gear health indicators are reviewed in three cat-
egories: mechanical signal processing—based, model-based
and machine learning—based.

A. MECHANICAL SIGNAL PROCESSING-BASED

BEARING AND GEAR HEALTH INDICATORS

Mechanical signal processing is extremely useful in detection
of early defects, extraction of fault features and construction
of bearing and gear health indicators because it is able to
separate the components of interest from heavy noises and
other unwanted strong vibration components [15], [26]. After
pre-processing of the vibration signals, statistical parameters
are directly used to characterise the frequency components
of interest for construction of bearing and gear health indica-
tors. Here, construction of a mechanical signal processing—
based bearing health indicator is taken as an example. The
simulated and experimental bearing run-to-failure data [27]
were collected from an experimental platform installed in the
Center for Intelligent Maintenance System at the University
of Cincinnati and have been widely investigated by many
engineers and scholars. The real photo and schematic diagram
of the experimental platform are plotted in Figs. 2 (a) and (b),
respectively. The bearing run-to-failure experiment was con-
ducted at a constant speed and load. A vibration signal with a
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FIGURE 2. An experimental platform [27] for collection of bearing
run-to-failure vibration data: (a) a real photo of the experimental
platform; (b) a schematic diagram of the experimental platform.
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FIGURE 3. Bearing health indicators constructed from kurtosis and root
mean square: (a) kurtosis without signal pre-processing; (b) root mean
square without signal pre-processing; (c) kurtosis with signal
pre-processing; (d) root mean square with signal pre-processing.

length of 20,480 samples was stored every 10 minutes and
thus a total of 984 files were stored during the bearing’s
lifetime. Kurtosis and root mean square [28] are two of the
most commonly used statistical parameters and are directly
used to quantify the collected bearing run-to-failure vibra-
tion signals. The results are plotted in Figs. 3 (a) and (b),
which show obvious increasing trends and changes after file
number 703. Autoregressive filtering with an order of 50
and Gabor wavelet transform with a centre frequency of
4363 Hz and bandwidth of 4000 Hz, as determined by our
analyses, are then used to pre-process all vibration signals
before the same two statistical parameters are used to quantify
the collected bearing vibration signals. The final results are
plotted in Figs. 3 (c¢) and (d), in which an increasing trend can
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FIGURE 4. Squared envelope spectra with signal pre-processing at some
selected file numbers: (a) at file number 532; (b) at file number 533;
(c) at file number 540; (d) at file number 703.

be clearly observed after file number 533. To discover what
the increasing trend indicates, a squared envelope spectrum
analysis is performed after conducting the same signal pre-
processing on some selected vibration signals. The squared
envelope spectra of the filtered signals at some selected
file numbers are plotted in Figs. 4 (a) to (d). In Fig. 4,
a bearing defect frequency fo and its several harmonics can
be detected in file number 533, confirming that an early
bearing outer race defect occurred at this point. From this
case study, it is clear that mechanical signal processing is
helpful for bearing health indicators and statistical parameters
to detect early bearing defects and abnormal bearing health
conditions.

The spectral kurtosis proposed by Antoni [29] is one of
the most interesting and useful methods for construction of a
bearing health indicator. The basic idea is to use a statistical
parameter called kurtosis, which is the ratio of the fourth-
order central moment to the squared second-order central
moment, to characterise the amplitude distribution of a vibra-
tion signal filtered at specific frequency bands [30]. When a
bearing has a defect on the surface of an inner or outer race,
the impacts generated by the rollers striking the defect excite
resonant frequency bands and cause transients over time. The
underlying assumption of the spectral kurtosis is that higher
kurtosis indicates a more informative frequency band. Here,
the more informative frequency band is highly relevant to
resonant frequency bands. Consequently, the spectral kurtosis
indirectly finds the locations of resonant frequency bands for
bearing condition degradation assessment. One benefit is that
the lower bound of the kurtosis is 3 for real Gaussian noises
and 2 for complex Gaussian noises [29]. The kurtosis for a
bearing health indicator starts from 3 or 2. A recent study
showed that the kurtosis is proportional to the squared sum
of the squared envelope spectrum [31], which indicates that
the kurtosis is highly relevant to spectral correlation analysis,
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which is closely related to squared envelope spectrum
analysis [32]. Another benefit is that the kurtosis is dimen-
sionless, which indicates that it is insensitive to varying oper-
ating loads and speeds. The kurtosis can be easily generalised
to many other statistical parameters specified by considering
central moments with different orders [33].

The problem with the spectral kurtosis method is that it
is sensitive to outliers. Another classic statistical parameter
is the smoothness index [34], which is defined as the ratio
of the geometric mean to the arithmetic mean of the mod-
ulus of the wavelet coefficients. Bozchalooi and Liang [34]
mathematically proved that the upper bound of the smooth-
ness index is 0.8455 in the case of complex Gaussian
noises and the modulus of wavelet coefficients follows the
Rice distribution. The smoothness index for bearing con-
dition degradation assessment is constrained to a range
from 0 to 0.8455. With the assumption of cycloergodicity,
Wang et al. [35] proved mathematically that the modulus of
wavelet coefficients follows the non-central chi distribution
and that the squared modulus of wavelet coefficients fol-
lows the non-central chi square distribution. Because squared
envelope spectrum analysis is close to spectral correlation
analysis [32], the squared modulus is preferable for bearing
fault diagnosis and prognostics. Based on this motivation, the
smoothness index was redefined as the ratio of the geometric
mean to the arithmetic mean of the squared modulus of the
wavelet coefficients, and its upper bound is 0.5614 for com-
plex Gaussian noise [35]. The smoothness index for bearing
condition degradation assessment is constrained to a range
from O to 0.5614. With the assumption of cycloergodicity,
Wang and Tsui [36] extended the smoothness index to a
more general bearing health indicator, which is defined as
the ratio of the generalised means with different orders of
squared wavelet coefficients. For example, the smoothness
index is the ratio of the generalised mean with the first order
to the generalised mean with the zero order of the squared
wavelet coefficients; and the sparsity measurement is the
ratio of the generalised mean with the second order to the
generalised mean with the first order of the squared wavelet
coefficients [37]. More importantly, Wang and Tsui [36]
mathematically provided the upper bound of the generalised
bearing health indicator for complex Gaussian noise. It was
experimentally shown that the indicator decreases in the pres-
ence of transients caused by bearing defects. In addition to the
aforementioned statistical parameters, Shannon entropy [38]
and its variants, such as approximate entropy [39], permu-
tation entropy [40], Re’nyi entropy [33], and Lempel-Ziv
complexity [41], [42], a synthesised health indicator [43],
are much more attractive for construction of bearing health
indicators.

Another key issue for construction of bearing health indi-
cators is the proper design of a band-pass filter to retain one
of the resonant frequency bands [44]. The design of band-
pass filters has been extensively discussed in many review
articles relevant to wavelet transform [45], multi-wavelet
transform [46], spectral kurtosis and its variants [47],
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cyclostationary analysis [48], [49] and empirical mode
decomposition and its variants [50]. Many interesting and
useful methods have been proposed for construction of bear-
ing health indicators based on different band-pass filters and
statistical parameters. Qiu et al. [51] proposed a two-step
process to optimise the parameters of a Morlet wavelet filter
originally introduced by Lin and Qu [52] for the early detec-
tion of bearing defects in an accelerated bearing degradation
process. Hong and Liang [41] evaluated bearing degradation
based on Lempel-Ziv complexity and continuous wavelet
transform. He er al. [53] optimised Morlet wavelet filter-
ing and then used the sum of bearing defect frequencies
as a bearing health indicator to evaluate the whole bearing
life process of cooling fans. Miao et al. [54] constructed a
bearing health indicator based on comblet filtering and an
exponentially weighted moving average to analyse the same
cooling fan bearing degradation data. Pan et al. [S5] proposed
spectral entropy to quantify accelerated bearing degradation
signals. Dong and Chen [56] used cyclostationary analysis
to pre-process accelerated bearing degradation data and con-
sidered the integration of the cyclic power spectrum as a
bearing health indicator. Although cyclostationary analysis is
powerful for analysing bearing fault signals, its calculation
time is extensive. Wang and Shen [57] simplified the bear-
ing health indicator proposed by Dong and Chen [56] and
then constructed an equivalent indicator based on squared
envelope spectrum analysis, which considerably reduced the
calculation time. Furthermore, Borghesani et al. [31] discov-
ered that kurtosis is proportional to the squared sum of the
squared envelope spectrum and designed a more precise bear-
ing health indicator based on the kurtosis. Zhang et al. [58]
investigated the effectiveness of information exergy used
in thermodynamics for evaluating bearing degradation.
Lei et al. [59] used a Spearman coefficient to select some fea-
tures exhibiting monotonic degradation trends and then used
a correlation clustering algorithm to reduce the redundancy
of the selected features. They then fused the final typical
features into a bearing health indicator called the weighted
minimum quantisation error to track bearing condition
degradation. Tse and Wang [60] designed a new accelerated
bearing experiment and used the root mean square of a signal
filtered from a selected frequency band for bearing degra-
dation assessment. The root mean square was also used by
Lei et al. [61] to quantify accelerated bearing degrada-
tion data. Qian et al. [62], [63] and Yan et al. [64] used
recurrence quantification analysis to extract a recurrence
plot entropy feature for monitoring bearing degradation.
Kosasih e al. [65] extracted the root mean square, skew-
ness and kurtosis from vibration signals pre-processed by
the combination of a low-pass filter and adaptive line
enhancer to monitor low-speed slewing bearings. Further,
Caesarendra et al. [66] proposed several features including
circular-domain kurtosis and the largest Lyapunov exponent
feature [67] to monitor low-speed slewing bearings. The
results [68] showed that these new features were better able
to reveal the degradation trends than traditional methods
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such as time-domain features extracted from wavelet packet
transform and ensemble empirical mode decomposition.

Time synchronous averaging [69] is the most effective and
useful technology to process gear vibration signals for con-
struction of gear health indicators. An underlying assumption
of time synchronous averaging is the use of a fixed gear rota-
tion frequency. On the basis of the theoretical study of a resid-
ual acceleration error signal by Wang and McFadden [70],
and Miller [71] proposed the concept of a Comblet, which
consists of a linear superposition of several wavelets, to
relieve the underlying assumption and applied it to decom-
pose an acceleration error signal into a harmonic acceleration
error signal and a residual acceleration error signal. The
residual acceleration error signal was experimentally proven
to be sensitive to gear faults and less dependent on varying
loads. Miller [71] proposed a gear fault growth parameter
based on the residual acceleration signal and the three-sigma
rule. Following this work, Lin et al. [72] improved the gear
fault growth parameter by adding weights to it. Moreover,
they introduced incorporation of the gear fault growth param-
eter with proportional-hazards modelling. Because wavelet
transform is able to detect the singularity of a signal,
Miao et al. [73] proposed Lipschitz exponent-based kurtosis
to track gear deterioration over time. Wang et al. [74] used
discrete wavelet transform to quickly evaluate gear condi-
tion degradation over time and found that the energy of the
signal filtered by discrete wavelet transform is insensitive to
different wavelet decomposition levels and wavelet mother
functions. Based on the previous works on the fault growth
parameter, Wang et al. [75] used complex continuous Morlet
wavelet transform to construct a gear health indicator that
works at varying operating loads. Bartelmus and Zimroz [76]
and Bartelmus [77] discovered that the abnormal health con-
dition of a multistage gearbox is more susceptible to varying
operating conditions and proposed a health indicator in the
function of an instantaneous input speed to monitor its health
condition. Moreover, they suggested that for such a compli-
cated object, the interactions among different components of
the multistage gearbox should be taken into consideration in
the design of the health indicator [78]. A similar idea [79] was
also applied to bearing condition degradation under varying
operating conditions.

B. MODEL-BASED BEARING AND GEAR

HEALTH INDICATORS

Model-based gear health indicators aim to use an autoregres-
sive model residual to monitor gear deterioration over time.
The autoregressive model established using healthy gear data
exhibits a consistent prediction error if a gear is still in a
normal health condition, but results in significant prediction
errors if a gear departs from its normal health condition. The
main reason the autoregressive model is only used for gear
health indicator is that gear signals are purely periodic, whilst
bearing fault signals are slightly random and cyclostation-
ary [15], [80] and cannot be modelled by the autoregressive
model. Another point that should be highlighted is that the
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order of the autoregressive model and its variants is the dom-
inating factor for construction of model-based gear health
indicators.

Zhan et al. [81] and Zhan and Makis [82] extended
the idea of the autoregressive model residual initialised by
Wang and Wong [83] to a noise-adaptive Kalman filter—based
time-varying autoregressive model residual and then used
the three-sigma rule to construct an autoregressive model-
based gear state parameter for evaluating the evolution of
gear health under varying load conditions. Zhan er al. [81]
thoroughly analysed how to optimally choose the order of
an autoregressive model working under varying load con-
ditions and referred to the order selection procedure as
compromised model fitting. Zhan and Jardine [84] used
a noise-adaptive Kalman filter, an extended Kalman fil-
ter and a modified extended Kalman filter to estimate the
parameters of a time-varying vector autoregressive model
to investigate gear states under varying load conditions.
Zhan and Mechefske [85], [86] used Kalman filter—based
autoregressive filtering to model a residual acceleration error
signal and then used the Kolmogorov-Smirnov goodness of
fit test to check whether the autoregressive filtering residual is
normally distributed for gear condition assessment under
varying load conditions. Shao and Mechefske [87] proposed
an extended Kalman filter—based autoregressive model to fit a
residual acceleration error signal and obtain an autoregressive
model residual. They then used several hypothesis tests to
find the optimal order of an autoregressive model and con-
structed a gear health indicator working under varying load
conditions. Yang and Makis [88] used the F-test to check the
residual between a future residual acceleration error signal
and the signal predicted by an autoregressive model with
exogenous variables of a healthy residual acceleration error
signal for monitoring gear deterioration under varying load
conditions.

C. MACHINE LEARNING-BASED BEARING AND
GEAR HEALTH INDICATORS
Machine learning—based bearing and gear health indicators
require historical normal bearing or gear data to train a
statistical and probabilistic model, and any deviation from
the trained model can be regarded as a bearing or gear
health indicator. The main idea of machine learning—based
health indicators can be simply understood as anomaly detec-
tion/novelty detection/one-class classification/statistical pro-
cess control [89], [90] over time. The construction of
machine learning—based health indicators contains four main
steps: signal pre-processing, feature extraction, dimension-
ality reduction and statistical and probabilistic modelling.
Signal reprocessing and feature extraction methods are dis-
cussed and reviewed in Section II. A. In this section, the
main focus is on reviewing the application of dimensionality
reduction methods and statistical and probabilistic models to
generate bearing and gear health indicators.

Numerous machine learning-based methods for construc-
tion of bearing health indicators have been proposed in the
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past few years. Qiu et al. [91] used Morlet wavelet filtering
to de-noise bearing fault signals and then extracted the root
mean square, kurtosis and crest factor from the de-noised
signals to train a self-organising map. Any deviation from
the trained self-organising map was regarded as an indica-
tor of bearing condition degradation. By considering mutual
information on multiple fault features, Huang et al. [92] used
a self-organising map to derive the minimum quantisation
error as a bearing health indicator. Ocak ef al. [93] used
wavelet packet transform to extract node energies from nor-
mal bearing fault signals and then used the node energies to
train a hidden Markov model. Any deviation from the trained
hidden Markov model was used as a bearing health indicator.
Following the similar idea of Pan er al. used wavelet packet
node energies to train support vector data description [94]
and fuzzy c-means [95], respectively. Any deviation from the
trained support vector data description or fuzzy c-means was
used as a bearing health indicator. The mixture of support
vector data description and fuzzy c-means was also developed
by Pan et al. [96] to assess bearing condition degradation.
Several authors have developed variants of wavelet packet
transform and support vector data description-based bear-
ing health indicators, including rough support vector [97],
fuzzy support vector [98], a combination of wavelet packet
symbolic entropy and support vector [99], a combination of
bispectrum and support vector [100] and optimised support
vector data description [101].

The aforementioned hidden Markov model and its vari-
ants, including the semi-hidden Markov model [102], [103],
coupled hidden Markov model [104], [105], adaptive hidden
Markov Model [106], mixture of hidden Markov mod-
els [107] and adaptive hidden semi-Markov model [108],
are also attractive for construction of bearing health indica-
tors because the hidden Markov model and support vector
data description are two popular methods for anomaly detec-
tion [109]. Equivalently, the Gaussian mixture model has the
same functionality. Hong et al. [110] used ensemble empiri-
cal mode decomposition to pre-process bearing degradation
data and used a Gaussian mixture model to approximate
the distribution of a low-dimensional feature space obtained
by principle component analysis. Compared with principle
component analysis, locality preserving projections are able
to mine the local structure of the data manifold. Yu [111]
therefore used them to reduce the dimensionality of a feature
space and then proposed an exponential weighted moving
average statistic for bearing condition assessment. Instead
of the exponential weighted moving average, Yu [112] used
a Gaussian mixture model to model the low-dimensional
feature space obtained by locality-preserving projections.
Following this idea, Sun et al. [113] proposed a kernel locality
projection—based health indicator. Later, Yu [114] developed
a more advanced strategy based on a hybrid feature selec-
tion scheme and self-organising map. The hybrid feature
selection scheme consisted of Gaussian mixture models and
K-means to form an unsupervised learning method for feature
dimensionality reduction. Yu [115] proposed a generative
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topographic mapping and contribution analysis based bearing
health indicator to evaluate bearing degradation over time.
Instead of generative topographic mapping, Yu [116] consid-
ered the hidden Markov model, proposed a local and non-
local preserving projection and experimentally demonstrated
that the projection was more effective than principle com-
ponent analysis for dimensionality reduction. Furthermore,
Yu [117] proposed a joint global and local/nonlocal discrimi-
nant analysis to realise the same purpose. Lu ef al. [118] used
principle component analysis to fuse multiple feature vectors
including root mean square, kurtosis, wavelet energy entropy
and intrinsic mode function energy to form a bearing health
indicator for slewing bearing degradation. Ma et al. [119]
extracted statistical features from the sub-signals obtained by
a second generation wavelet packet and then constructed a
bearing health indicator based on locally linear embedding
on a Grassmann manifold.

Guo et al. proposed [120] a recurrent neural network—
based bearing health indicator to fuse several classic
bearing fault features for bearing condition assessment.
Ali et al. [121] used the Weibull distribution to fit the root
mean square, kurtosis and root mean square entropy, respec-
tively. The fitted features were then input to a fuzzy adaptive
resonance theory map neural network to identify different
degradation states over a bearing’s lifetime. This method can
avoid the fluctuations of some typical bearing health indi-
cators and monotonically evaluate bearing degradation over
time. Caesarendra et al. [122], [123] used logistic regression
to map kurtosis to a failure probability and used kurtosis as
an input to a Cox-proportional hazard model to assess bearing
degradation.

The Mahalanobis distance [124], [125] is an alterna-
tive anomaly-detection method that can be used to con-
struct a bearing health indicator from healthy bearing data.
Wang et al. [126] used empirical mode decomposition and
singular value decomposition to pre-process bearing fault
signals and then used the Mahalanobis distance to construct
a bearing health indicator. Wang et al. [127] extracted 14
time-domain features and then used the Mahalanobis dis-
tance calculated from healthy bearing data to fuse these
time-domain features to form a bearing health indicator.
Jin and Chow [128] used the Mahalanobis distance to
evaluate the cooling fan bearing deterioration. Because the
range of the Mahalanobis distance varies from zero to pos-
itive infinity, it is not easy to directly set a threshold to
detect abnormal cooling fan bearings. Considering this point,
Jin and Chow [128] used the Box-Cox transformation to
make the Mahalanobis distance normally distributed. In their
further work, Jin et al. [129] combined the Mahalanobis
distance with fault features selected by minimum redundancy
maximum relevance to track cooling fan bearing degradation.

For construction of gear health indicators, Miao and
Makis [130] found that the modulus maxima distribution of
a gear motion error signal can be used to characterise the
health condition of a gear and used this feature to train and test
hidden Markov models to monitor the health condition over
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the gear’s lifetime. Miao et al. [131] used empirical mode
decomposition to pre-process gearbox vibration signals
and combined several intrinsic mode functions to form a
combined-mode function covering the gear meshing fre-
quency band and its several harmonics. The energy of the
combined-mode function extracted from normal gearbox data
was then used to train a hidden Markov model. Any devi-
ation from the trained model was used as a gear health
indicator. Based on the residual acceleration error signal,
Wang et al. [132] found that different statistical parameters
mainly belong to two categories. The statistical parameters
located in the first category, such as residual acceleration
error signal-based kurtosis, are sensitive to early gear faults
but cannot be used for gear degradation trends because these
statistical parameters fluctuate severely as gear fault levels
increase. The parameters in the second category, such as the
residual acceleration error signal-based root mean square, are
insensitive to early gear faults but are useful in describing gear
degradation trends over time. Based on this phenomenon,
Wang et al. [132] suggested using two support vector data
description models to fuse these parameters into two gear
health indicators. In their successive work [133], they pro-
posed a high-order complex comblet to obtain a residual
acceleration error signal and then used a hidden Markov
model to construct a gear health indicator. In this work [133],
they used the envelope spectrum of the signal filtered by the
high-order complex comblet to explain the first severe change
in the gear health indicators caused by an early gear defect.
Furthermore, they connected gear health indicators with RUL
prediction using state space modelling and particle filtering.

1Il. DISCUSSION AND FUTURE WORKS

The various bearing and gear health indicators are sum-
marised in Table 1. We discuss the findings of our literature
review in this section.

First, as shown in Table 1, there are many more studies on
health indicators for bearings than for gears, perhaps due to
the availability of public bearing run-to-failure data provided
by the prognostics Data Repository [27], [134]. Any scholar
can download and use this bearing degradation data to verify
their ideas. Moreover, according to the work by Antoni and
Randall [80], bearing fault signals are not periodic but slightly
random and cyclostationary, whilst gear signals are purely
periodic. This phenomenon may cause scholars to prefer pro-
cessing cyclostationary bearing fault signals. Nevertheless,
only a few papers have explained why a sudden change was
observed in a bearing or gear health indicator and provided
sufficient evidence to support the occurrence of a bearing or
gear defect.

Second, almost all bearing health indicators have been
verified in a constant operating condition. So, more meth-
ods should be proposed and verified at varying operating
conditions. It should be noted that because many bearing
health indicators are not dimensionless, they are prone to
be affected by varying operating conditions, which signif-
icantly influence the bearing RUL prediction. If a bearing
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TABLE 1. Summary of vibration based bearing and gear health indicators.

Mechanical signal processing-based bearing and gear health indicators

Objects References Main ideas
Bearings  Gebraeel et al., [16-18], Chen and Tsui [19]  sum of bearing defect frequencies and their harmonics
Antoni and Randall [29, 30] spectral kurtosis
Borghesani et al. [31] cyclic band kurtosis
Bozchalooi and Liang [34], Wang et al.[35]  smoothness index and redefined smoothness index
Wang et al.[36] a generalised dimensionless bearing health indicator
Tse and Wang [37] sparsity measurement
Antoni [38], Yan and Gao [39], Yan et al.  spectral entropy, approximate entropy, permutation entropy, Re'nyi entropy, information Exergy,
[40], Tao et al. [33], Pan et al. [55], Zhang et  recurrence plot entropy feature
al. [58], Qian et al. [62-64]
Hong and Liang [41], Yan and Gao [42] Lempel-Ziv complexity
Lietal. [43] synthesised health indicator
Qiu et al. [51], He et al. [53], Miao, et wavelet filter and wavelet filter-based comblet filter
al.[54]
Dong and Chen [56], Wang and Shen [57] cyclic energy indicator and its simplified indicator
Lei et al. [59] weighted minimum quantisation error
Tse and Wang [60], Lei et al.[61] root mean square
Caesarendra et al. [66, 68] circular domain features
Caesarendra et al. [67] largest Lyapunov exponent feature
Kosasih et al. [65] low-pass filter and adaptive line enhancer
Zimroz et al. [79] regression analysis
Gears Miller[71], Lin et al. [72] fault growth indicator, weighted fault growth indicator
Miao et al. [73] Lipschitz exponent
Wang et al. [74], Wang et al. [75] discrete wavelet transform, continuous wavelet transform
Bartelmus et al. [76-78] regression analysis
Model-based gear health indicators
Objects References Main ideas
Gears Zhan et al. [81, 82, 84-86], Shao and compromised autoregressive models and hypothesis tests
Mechefske [87], Yang and Makis [88]
Machine learning-based bearing and gear health indicators
Objects References Main ideas
Bearings  Qiu et al. [91], Huang et al. [83], Yu [114] wavelet filter and self-organising map, hybrid feature selection and self-organising map
Ocak et al. [93], Dong and He [102, 103], wavelet packet transform and hidden Markov model, hidden semi-Markov model, coupled hidden
Liu et al. [104], Xiao et al. [105], Yu [106, Markov model, adaptive hidden Markov model, adaptive hidden semi-Markov model
116], Liu et al. [108], Medjaher et al. [107]
Pan et al. [94], Zhu et al. [97], Shen et al.  wavelet packet transform and support vector data description, rough support vector data description,
[98], Zhou et al. [99], Wang and Chen fuzzy support vector data description, bispectrum and support vector data description, modified support
[100], Wang et al.[101] vector data description
Pan et al. [95, 96] wavelet packet transform and fuzzy c-means
Hong et al. [110] ensemble empirical mode decomposition and Gaussian mixture model
Luetal. [118], Yu[l11, 112, 115-117], Sun  principle component analysis, locality preserving projections and Gaussian mixture model, kernel
etal. [113], Maetal. [111] locality preserving projection, global and local/nonlocal discriminant analysis, generative topographic
mapping and contribution analysis, hidden Markov model and contribution analysis, locally linear
embedding on Grassmann manifold
Guo et al. [120] recurrent neural network
Alietal. [121] Weibull distribution and artificial neural network
Caesarendra et al. [122, 123] relevance vector machine and logistic regression
Caesarendra et al.[141] Cox-proportional hazard model
Jin et al. [124, 128, 129], Shakya et al. Mahalanobis distance
[125], Wang et al. [127], Wang et al.[126]
Gears Miao et al. [130, 131], Wang et al. [132, modulus maxima distribution and hidden Markov model, empirical mode decomposition, high-order

133]

complex comblet, support vector data description

health indicator only works in a constant operating condition,
a statistical model working at varying operating conditions
and its Bayesian parameter inferences become extremely
complicated. However, if a bearing health indicator can work
at and be insensitive to varying operating conditions, a well-
known statistical model such as the exponential model with
random coefficients proposed by Gebraeel et al. [17], [18]
or the piecewise statistical model with random coefficients
proposed by Chen and Tsui [19] in Fig. 1 (b), can directly
predict bearing RUL. It is thus suggested that readers and
scholars should design more accelerated bearing degra-
dation data at varying operating conditions and propose
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more bearing health indicators working at varying operating
conditions.

Third, as suggested by Bartelmus and Zimroz [76] and
Bartelmus [77], component interactions should be taken into
consideration in the machine degradation process. Conse-
quently, more complicated machines rather than a simple
gearbox and a simple bearing housing should be taken as
objects of study and more accelerated run-to-failure experi-
ments should be designed and conducted. In addition, accord-
ing to the blind fault component separation method proposed
by Antoni [15], more advanced signal processing methods
should be used in the machine degradation process to separate
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bearing fault signals with gear signals and detect early bearing
and gear faults. Here, we should further point out that sparse
representation [135] and stochastic resonance [136] are two
emerging technologies in the research community of machine
fault diagnosis. These technologies should be used to detect
natural degradation defects rather than artificially seeded
defects to further verify their effectiveness in naturally early
fault detection.

Fourth, for machine learning—based bearing health indi-
cators, it is better to use bearing health indicators such as
those obtained by the mechanical signal processing methods,
instead of some traditional statistical parameters such as the
root mean square and kurtosis [137], to train a normal sta-
tistical and probabilistic model. This will naturally improve
the prediction accuracy of machine learning regardless of a
statistical and probabilistic model. Moreover, the idea of deep
learning [138]-[140] should be introduced in the machine
degradation process to fuse the increasing amount of data
collected from different sensors and locations and to mine
more fault signatures for construction of bearing and gear
health indicators.

Fifth, even though many gear and bearing health indicators
have been proposed for a constant operating environment in
the past few years, most gear and bearing health indicators do
not have theoretical upper and lower bounds, hence theoreti-
cal baselines do not exist. More theoretical research should be
conducted. Additionally, different performance metrics based
on monotonicity, variance, trendability, prognosability, early
fault detection, calculation time, etc., should be proposed and
used to compare different gear and health indicators.

IV. CONCLUDING REMARKS

In this paper, we clarified the relationship between health
indicators and RUL prediction in the framework of prog-
nostics and health management and pointed out that health
indicators are the key to RUL prediction. Based on the accel-
erated bearing and gear run-to-failure degradation data, we
then reviewed the vibration based bearing and gear health
indicators and discussed their existing problems. We then
suggested some directions for future work to enrich the
reviewed methods.
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