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ABSTRACT Collaborative spectrum sensing (CSS) enables secondary users in cognitive radio networks
to collaboratively explore spectrum holes as well as protecting the primary user from being interfered.
Unfortunately, the emergence of spectrum sensing data falsification (SSDF) attack, also known as the
Byzantine attack, brings significant threat to the reliability of the CSS. Majority of the existing studies on
Byzantine defense can be divided into two categories: one is directly to make the judgment based on the
current spectrum sensing data, while the other uses the historical spectrum sensing data to update sensors’
reputation. The first category of studies does not take the historical spectrum sensing data into account, while
most of the second category of studies are heuristic in nature. In this paper, we invoke Bayesian learning to
design Byzantine defense schemes. First, we develop a Bayesian offline learning algorithm by considering
one practical challenge that the ground-truth spectrum state is unavailable for training. Then, we develop a
Bayesian online learning algorithm by considering the case that the sensors’ attribute may be time-varying.
In addition, we present simulations to show the performance of the proposed defence algorithms.

INDEX TERMS Cognitive radio networks, collaborative spectrum sensing, Byzantine attack, Bayesian
online learning.

I. INTRODUCTION
Increasing demand for wireless communication in various

the spectrum sensing data falsification attack, or Byzan-
tine attack [4]-[6]. To eliminate the impact of Byzantine

areas of human life has brought an exponential increase in
the number of wireless services. Such increase has resulted
in spectrum scarcity since the electromagnetic spectrum has
become too crowded to incorporate the upcoming wireless
services [1]. In order to make full use of spectrum resources,
cognitive radio technology has been proposed [2], where
the secondary user (SU) first performs the spectrum sens-
ing process, and then accesses the spectrum based on the
spectrum sensing result. To overcome the negative impacts of
noise, path loss, shadowing, and fading, cooperative spectrum
sensing (CSS) among multiple spatially-dispersed SUs has
received great research attention [3].

However, in order to maximize their own interests, some
SUs participating the CSS process may report false infor-
mation to mislead the decision-making. Usually, the case
of malicious falsification in the literature is well known as

attack, increasing studies on Byzantine defense have been
reported (see, e.g., [7]-[17]). Generally, the existing Byzan-
tine defense in the literature can be grouped into two classes:
current data based defense (CDbD) (see, e.g., [S], [18], [19])
and reputation updating based defense (RUbD)
(see, e.g., [1], [20]). Based on the current spectrum sensing
data, the CDbD makes a judgment on the sensors’ attributes
without using the historical data. In practice, since the sen-
sors’ behavior is relevant, the historical data has a certain
value on the judgment. On the other hand, in the RUbD, the
historical spectrum sensing data is used to update sensors’
reputation. However, most of the studies are heuristic in
nature.

Motivated by the fact that the existing work has strong
limitations, for example, the historical spectrum sensing data
is not used in Byzantine defense or the historical spectrum
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TABLE 1. Notations and symbols used in this paper.

Symbols Definitions
H The channel’s real state
N The number of sensors
Dy The sensor’s false-alarm probability in sensing process
Pd The sensor’s detection probability in sensing process
De The sensor’s sensing error probability
p’f The sensor’s false-alarm probability after sensing process
P The sensor’s detection probability after sensing process
Da The probability of a Byzantine attacker conducting attacks when the channel’s state is locally decided as idle
Db The probability of a Byzantine attacker conducting attacks when the channel’s state is locally decided as busy
pS’c The false-alarm probability of a Byzantine attacker after Byzantine process
Y The detection probability of a Byzantine attacker after Byzantine process
vV The sensing results
Pe The transmit error probability in the reporting process
U The sensors’ reports
PfH The false-alarm probability of an honest sensor
Pf The detection probability of an honest sensor
PfB The false-alarm probability of a Byzantine sensor
PB The detection probability of a Byzantine sensor
F The global decisions
w; The i*" sensor’s attribute
¢ The i’ sensor’s weight after Bayesian offline learning
kS The " sensor’s weight after current data learning
k; The ** sensor’s weight after Bayesian online learning
Dr The historical sample data

sensing data is used heuristically, this paper firstly focuses
on the issue of applying the Bayesian learning to Byzantine
defense. Bayesian learning is well known as a powerful tool
to learn from the given historical spectrum sensing data [21].
However, there are several limitations in direct application
of Bayesian learning: i) When the Byzantine attacker in
the given historical spectrum sensing data did not exhibit
its attack characteristics, it would probably not be able to
recognize the attacker, which has a terrible impact on the
decision making. Similarly, because of the terrible sensing
environment, the honest sensors might show relatively poor
sensing performance, leading to the isolation of the honest
sensors. As a result, the performance of CSS would be worse.
ii) Since the the results of the Bayesian offline learning
are fixed after the trading process, it could not be changed
once the sensor’s attribute is determined. In fact, the sen-
sor’s performance may be changing with time. Sometimes,
Byzantine attackers will show good sensing performance,
and the honest sensors will show poor sensing performance.
While the sensor has no opportunity to re-enter the spectrum
sensing system once it is identified as attacker in majority
of the existing studies. Bayesian online learning is a possible
solution to this problem. It not only takes the historical data
into consideration, but also uses the current data [22], [23].
By using the current data to dynamically adjust the results
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obtained by the historical data, which is a good solution to
the time-varying sensor attribute attack.

The main idea of applying Bayesian learning to Byzantine
defense in this paper is that it can solve the historical spectrum
sensing data utilization and the time-varying sensor attribute
attack. The contributions of this paper are:

o We develop a Bayesian offline learning algorithm by
considering one practical challenge that the ground-truth
spectrum state is unavailable for training.

« We present a Bayesian online learning framework to
dynamically identify Byzantine attackers. The frame-
work is divided into two parts, the historical data learn-
ing part and the current data learning part. The vector of
sensors’ weight is updated by considering both the his-
torical spectrum sensing data and the current spectrum
sensing data into consideration. What’s more, we pro-
pose a Byzantine attack behavior recognition algorithm
based on the proposed framework. The proposed algo-
rithm is more accurate and sensitive to the identification
of Byzantine attacks than offline learning.

« We present simulations to show the effectiveness of the
proposed Bayesian learning-based Byzantine defense
framework and algorithms.

The rest of this paper is organized as follows. Section II

presents the process of collaborative spectrum sensing.
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Section III introduces the Byzantine defense via Bayesian
offline learning. Then, we introduce the Byzantine defense
with time-varying sensor attribute via Bayesian online learn-
ing in Section IV. Furthermore, we give the conclusion
in Sections V.
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FIGURE 1. System model.

Il. THE PROCESS OF COLLABORATIVE

SPECTRUM SENSING

In this section, we present a CSS model under Byzantine
attack. As depicted in Fig. 1, a CSS system consists of N spec-
trum sensors sensing the occupancy state of a licensed spec-
trum band in order to opportunistically access the licensed
spectrum whenever it is idle. We consider the case that a SU
wants to exploit spectrum holes but its sensing performance
is undesirable due to serious shadowing. As a result, it is a
feasible solution to ask for help from other neighboring spec-
trum sensors. Based on its observation, each sensor solves
a hypothesis testing problem, in which a decision is made
between the hypothesis 1 (The channel’s state is busy) and
hypothesis or Ho (The channel’s state is idle). The one-bit
decision of sensor i is denoted by v;, i = 1,2, ..., N. Then,
sensor i sends its one-bit output v; to the SU who also plays
as a fusion center (FC) role.

A. SENSING UNCERTAINTY
To decide whether the primary user is present or not, each
spectrum sensor makes energy detection and decides between
Ho and H;. For each sensor, the spectrum sensing is gen-
erally formulated as a binary hypotheses testing problem as
follows [24]:

{ Ho : r(t) = n(t), "

1:r() =o-s() +n(),

where r(t) is the received signal at that sensor in time ¢, ()
is the PU’s transmit signal, « is the channel gain, and n(¢)
denotes the additive white Gaussian noise.

With an energy detector, the collected energy observation
can be given as xp = ngl |r(t)|2, where U = T - W is
the time-bandwidth product. According to the central limit
theorem, when U is sufficiently large (e.g., U > 10), xg can
be well approximated as a Gaussian random variable under
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both hypotheses Ho and H; as follows [25]:
{ Ho : xg ~ N(wo, o), ?)
Hi:xg ~ N(ui, o),

where g = 2U, 0} = 4U, uy = 2U(B + 1), 0} = 4U
(28 + 1) and B is the received signal to noise ratio (SNR) of
the sensor.

Each sensor uses an energy detection scheme with an iden-
tical local threshold X for binary hypothesis testing between
Ho and H; [5]. As a result, the binary decision v; of the SU
can be obtained as follows:

vi=0
xe Z A ?3)
vi=1

Here, we introduce two metrics, namely, the probability of
false alarm py and the probability of detection py to describe
the performance of spectrum sensing, and the corresponding
definitions are as follows:

A= Mo)
o0 ’

A— U
o1 ’

where Q(z) = (1/v/27 ) [ exp(—(x?/2 ))dx is the com-
plement distribution function for the normal distribution with
zero mean and unit variance. Further, the missed detection
probability can be given as p,, = 1 — pg.

What we have to point out is that we introduce the sens-
ing error probability p. in order the existence of realistic
situation, imperfect sensing. Consequently, the correspond-
ing detection probability and false alarm probability can be
formulated as follows, respectively,

wéPm=un=Q(
)

méPm=uH0=Q<

{pﬁi=pd~(1—pc)+(1—pd)~pc, )

pp=pr - (1 =pe)+ 1 —=pp) - pe.

B. BYZANTINE ATTACK

As aforementioned, after performing local hypothesis testing,
each spectrum sensor transmits its one-bit hard decision u;
to the fusion center. An honest sensor will report its original
local decision v; to the fusion center, i.e., u; = v;, for data
fusion. However, for a Byzantine attacker, u; may not be the
same as v;. That is to say, the Byzantine attacker will falsify
its local decision with a certain probability.

Specifically, for the Byzantine attack, we introduce two
probabilities, i.e., the probability of changing the decision of
the primary user being absent to that of the primary user being
present p,, p, = Pr(y; = O|v; = 1) and the probability of
changing the decision of the primary user being absent to that
of the primary user being present pp, pp = Pr(y; = 1|v; = 0).
The attack probabilities p, and p;, can range from 0O to 1, with
0 and 1 denoting two extreme cases, never-attack and always-
attack, respectively.
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Consequently, the corresponding sensing performance of a
Byzantine attacker is formulated as follows

{p2=p;'(1—pa)+(1—p;)~pb, ©

P} =p} - (L =pa)+ (1 —pp)-pp.

C. IMPERFECT REPORTING

In practice, owing to the hostile transmission environment,
the reporting channel between a sensor and the fusion center
is imperfect. To characterize this effect, we introduce a trans-
mission error probability p, for the data reporting process.
Now, we can derive the corresponding probabilities of false
alarm P]fl s Pj? and the probabilities of detection P Pg for
both the honest sensors and Byzantine sensors, respectively.

For honest sensors:

P =pl-(1=peo)+ (1= pp) - pe,

@)
P =p,-(1=p)+ (1 =p)) - pe.
For Byzantine sensors:
PE=pl-(1—pe)+ (1 —pD) - pe, ®)
P =pl - (1 —peo)+ (1 —p5) - pe.

D. DATA FUSION

Based on the received local decisions of each spectrum sen-
sor, the fusion center makes a global decision F about the
state of the PU (Hg or ). The main fusion rules include
L out of N rule [26] and likelihood ratio test (LRT)-based
rule [27], among which the LRT-based rule is the optimal data
fusion rule which jointly utilizes the sensing reports and the
average sensing performance of each sensor. Relatively, L out
of N rule is simple to implement and suitable for the case that
all sensors have the same sensing performance.

1Il. BYZANTINE DEFENSE VIA BAYESIAN

OFFLINE LEARNING

In this section, we first give the theoretical derivation of
Bayesian offline learning. Then, we give the simulation
results of Bayesian offline learning-based defense algorithm.

A. BAYESIAN OFFLINE LEARNING

1) PRIOR DISTRIBUTION

In the CRN, sensor i corresponds to an attribute index w;.
Specifically, the honest user’s attribute is set to 1, and the
malicious sensor’s attribute is set to -1. Besides, each sensor
has a corresponding weight k; to balance its trustworthiness.
The weight value varies between 0 and 1. Here, we assume
that the initial value of k; is 1/2. The statistical independence
of the individual examples results in a multiplicative form for
the likelihood of the sensor’s attribute:

pow)=[]lké wi— D+ A —k)swi+ D] (9

1

2) SAMPLE DATA
In this paper, the sample data is denoted by Dr =
{(ft,u’) 1<t < T}, where u/ = {u;, 1 <i <N} is the
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reported by all users to the data fusion center in the ¢ time
slot, and 7' € {0, 1} is the corresponding outcome of the
primary user’s channel state made by data fusion during the ¢
time slot. Due to the examples are independently drawn from
a distribution p ((F, u) |w). The statistical independence of
the individual examples results in a multiplicative form for
the likelihood of the training set:

pOriw) =[]p (F.u') Iw). (10)
t

We write p((F,uw)|lw) = p(F|lw,u)p(u), where
p (F|w, u) models the input-output relation, while the input
distribution p (u) is independent of w.

3) DATA FUSION RULE

In this paper, the data fusion rule F € {0, 1} can be expressed
as follows:

F=fkuw=Uk-u-N/4), 11

1, x>0
0, x<0’
N-dimensional vectors with components {k;, | <i < N} and
{u;, 1 <i < N}, respectively, N is the total number of sensors
participate in CSS, and the error probability of data fusion is
introduced by probability g. The likelihood of output F is
thus given by

pFIww =g+ 1 —-g §(F-f(wuw). (I2)

where U (x) = both k and u are

What we have to point out is that the F expressed in (12) is
only the possible outcome of the channel state, rather than the
exact result of the data fusion center.

4) BAYESIAN POSTERIOR PROBABILITY

Bayes rule provides a prescription for writing the posterior
distribution p (w|D7) in terms of the prior and the likelihood
of the sample:

p(w)]:[p(]-"lw,u’)
/ l:[p(f’lw,u’)p(vv) dw

p(w|Dr) = 13)

The posterior distribution quantifies our knowledge about w
after the observation of the training data Dr, and it is used to
compute the predictive probability for each possible output
F € {0, 1} given a new input u’ +1:

p(.7:|uT+1DT> =/ p(f|w, u”‘) p(WIDr) dw. (14)

Predictions based on the Bayes algorithm are guaranteed to
minimize the average prediction error through the choice of
output F which maximizes the above prediction probability
for a given input u’ +!. For the spectrum sensing problem
considered here, the Bayes prediction is given by

FBayes (uT+1,Dr>=U </p(W|DT) U (w . uT“) dw).
(15)
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Algorithm 1 Bayesian Offline Learning-based Byzantine
Defense Algorithm
1: Initialize: Set N as the number of sensors, and T as the
training time slots. Set p (w) as the prior distribution of
the sensors’ attributes, and k as the vector of sensors’
weight with the initial value 1/2.
2: fort=1,2,...,T do
3: fori=1,...,Ndo

4: Each sensor performs local spectrum sensing and
reports its result u; to the FC.
end for
The FC performs data fusion: F = f(k,u) =
Uk -u—N/4)

fori=1,...,Ndo
: IF u; # F, then the ith sensor is malicious.
9: ELSE IF u; = F, then the ith sensor is honest.
10:  end for
11:  Update the distribution of the sensors’ attributes p (w)
and the vector of sensors’s weight k.
12: end for

Furthermore, the proposed Bayesian offline learning
Byzantine attacker identification algorithm is summarized as
Algorithm 1.
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FIGURE 2. The Bayesian offline learning’s detection probability and
false-alarm probability change with time slots T.

B. SIMULATION RESULTS OF BAYESIAN

OFFLINE LEARNING

As shown in Fig. 2, we present the simulation result of the
Bayesian offline learning’s detection probability and false-
alarm probability with time slot 7. Obviously, the detection
probability increases with the increase of the number of the
time slot 7', while the false alarm probability decreases with
the increase of the number of time slot 7. What we can
conclude is that the performance of the defense system has
been improved through the training of the sample data.
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FIGURE 3. The Bayesian offline learning’s error probability changes with
time slots T.

As shown in Fig. 3, the Bayesian offline learning’s error
probability Q, changes with time slot 7. And the definition
of the error probability is O, = P(Ho)P(F = 1|Ho) +
P(H1)P(F = 0|H).Obviously, as the increasing of the time
slot T, the error probability Q. of the defense system is
greatly reduced. Namely, the performance of the system is
greatly improved.

—&— The honest sensors’ weight 7
—5— The attackers’ weight

The value of sensor’s weight

20 30 40 50 60 70 80 90 100
Time slot T

FIGURE 4. The value of sensor’s weight changes with time slots T.

Fig. 4 shows the relation of the sensor’s weight with the
number of the time slots 7. As the time slot 7 increases,
the value of the sensor’s weight tends to be stable. For the
honest sensors, with the cumulative number of samples of
learning, the weight gradually increase to 1. On the contrary,
for malicious sensors, with the cumulative number of samples
of the learning, the network parameters gradually reduced.
That is to say, the honest sensors play a more important role in
data fusion gradually, while the impact of malicious sensors
on the system is getting lower and lower.
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IV. BYZANTINE DEFENSE WITH TIME-VARYING SENSOR
ATTRIBUTE VIA BAYESIAN ONLINE LEARNING

In this section, we first give the time-varying sensor attribute
model. Then, we show the difference between offline learning
and online learning. Besides, the dynamic defense framework
is introduced. Moreover, we give the Bayesian online learning
defense process. And the performance evaluation is shown at
last.

Honest

Malicious

0t t

2

FIGURE 5. lllustration of a Byzantine sensor with time-varying attributes.

A. TIME-VARYING SENSOR ATTRIBUTE MODEL

In this paper, a more common and practical way of attack
modeling is considered. The sensors’ attributes are time-
varying, rather than immutable. As shown in the Fig. 5,
sensor’s attribute changes between honest sensor and attacker
at different times. The reasons for this are as follows: (i) the
sensor reports the malicious data for its own interests; (ii) the
poor spectrum sensing environment declines sensor’s sensing
accuracy. These would lead to errors in the results of the
CSS process.

Taking this attack mode into account, the Bayesian offline
learning approach is not applicable to be used to solve this
problem. The reason why the Bayesian offline learning is
not suitable is that the Bayesian offline learning only uses
the historical data when the decision is made. That is to
say, one sensor shows the honest attribute (attack attribute)
in the historical data, but it may show the attack attribute
(honest attribute) in the working time. As a result, we have
to find a new approach to solve this problem. The Bayesian
online learning method can be an appropriate solution to
this problem. Next, we will introduce the difference between
offline learning and online learning.

B. DIFFERENCE BETWEEN OFFLINE LEARNING

AND ONLINE LEARNING

As shown in Fig. 6, we give the working diagram of offline
learning. Specifically, the horizontal axis represents the time
slots and the vertical axis represents the sensors. During
each time slot, the larger rectangle represents the attributes
of each sensor, where green indicates that the sensor has an
honest attribute, and red indicates that the sensor appears as
a malicious attribute. Besides, the smaller rectangle is used
to represent the value of sensors’ weight. The depth of the
color represents the difference of the weight. The deeper of
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FIGURE 6. Bayesian offline learning.

the color, the greater of sensors’ weight. In offline learning,
there is a training process, based on historical data, to attain
the value of each sensor’s weight. It can be seen from the
figure, after 7y time slots of the historical data learning, each
sensor’s weight is attained. Since the different performance of
each sensor in historical data, the final value of each sensor’s
weight wolud be different. What we need to pay attention to
is that the value of each sensor’s weight is a fixed value after
the training process. It is this feature that makes the offline
learning show some drawbacks in practice.
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[ Honest sensor | =
Sensor’ s 3“50’] S 1 [ :Level3

attril weight
aubue | A vocker | o cLevel4
| DO cLevel 5

SensorN m

Sensor 3

Sensor 2 m
Sensor 1 M

FIGURE 7. Bayesian online learning.

As shown in Fig. 7, we give the working diagram of online
learning. As with the offline learning, the horizontal axis
represents the time slots and the vertical axis represents the
sensors. During each time slot, the larger rectangle represents
the attributes of each sensor, where green indicates that the
sensor has an honest attribute, and red indicates that the
sensor appears as a malicious attribute. Besides, the smaller
rectangle is used to represent the value of sensors’ weight.
The depth of the color represents the difference of the weight.
And the deeper of the color, the greater of sensors’ weight is.
Unlike the offline learning, the value of each sensor’s weight
in the online learning is no longer fixed. That is to say, as the
sensors’ attributes change, the value of each sensors’ weights
change along with it. Specifically, if the sensor exhibits the
attack characteristic, its weight is reduced. And if the sensor
exhibits the honest characteristic, its weight increases.
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FIGURE 8. The framework of Bayesian learning, where #y/%{; denotes the ground-truth channel state, V denotes the sensing results, 2/ denotes the

reports of sensors, and F denotes the results after data fusion.

C. A DYNAMIC DEFENSE FRAMEWORK

In the section 111, we give the attack model. Through the anal-
ysis of the attack model, we know that the sensors’ attributes
could change at any time. As a result, the assumption that
the sensors’ attributes are invariable are no longer reasonable.
Therefore, for the new problem, the online learning method
shows outstanding advantages. The key idea of Bayesian
online learning is that the sensors’ weights are dynami-
cally adjusted, combined with historical data and current
data.

As shown in Fig. 8, we present the framework of online
learning. In general, the proposed framework is divided into
two phases, historical data learning phase and new sample
learning phase. In the historical data learning phase, we use
the Bayesian offline learning method to train the existing
historical data. Through the training, we finally attain the
value sensors’ weight k;. In new sample learning phase, we
get the value of sensor’s weight ky through the analysis of
the current sensing data. The main idea of online learning is
that both the results obtained from the historical data and the
results obtained from the current data are used to obtain the
new weight of each sensor. The advantage of this approach is
that the result fits the reality situation by dynamically adjust
the value of sensors’ weights.

D. BAYESIAN ONLINE LEARNING

Bayesian online learning provides a framework for formu-
lating the Byzantine Identification problem of learning from
examples in purely probabilistic terms. In this paper, based
on the Bayesian learning, we propose an Byzantine attacker
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defense framework. Specifically, the sample data is used
to train the sensors’ attribute and its weights as an offline
learning phase. During the online phase, the current data is
used to update the sensors’ attribute and its weights gained on
offline learning phase. By dynamically adjusting the sensors’
attribute and its weights, we can not only make full use of the
history sample data and the current data, but also eliminate
the terrible effects of dynamic change of sensors’ attribute.
As a result, the whole system’s performance is greatly
improved. In this section, we firstly introduce the Bayesian
offline learning that we employed in Byzantine identifica-
tion work, and then the Bayesian online learning method is
given.

The new problem is how to adapt the Bayesian offline
learning summarized in the preceding subsection to obtain
an online version. Learning methods based on incorporating
all information provided by the data into the current values
of the sensors’ attribute and its weights are easily adapted
onto online versions: it suffices to use the information pro-
vided by a new example to update the current values of the
sensors’ attribute and its weights. In a Bayesian formulation,
the information provided by the data is incorporated into the
sensors’ attribute and its weights, and the sensors’ attribute
and its weights need to be updated in an online manner when
a new example becomes available.

1) ADD THE NEW EXAMPLE

When the new (F7*!, u” ™) is available, update the poste-
rior probability p (w|Dr) we derived in preceding subsection
combined with the new sample. Mathematically, the new
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posterior probability can be written as follow:

p (w|DT, (FTJrl’ uT+1))
_ p(F"w,u" ) p(wiDr)
[ p(ET Y w T p(wIDr) dw

(16)

2) APPROXIMATE

since we have derived the updated posterior probability
p (w|Dz, (FT+!,uT*1)), what we need to do next is to
parameterize the posterior probability. The parametrization
process can be expressed as follow:

p(wiDr. (F1 ™)) > pwiDri). (1)

In the parametrization process, we have a compromise
between the historical sample data and the new data. As a
result, some of the information provided by the historical
sample data and the new data is discarded.

Furthermore, the proposed Bayesian online learning
Byzantine attacker identification algorithm is summarized as
Algorithm 2.

Algorithm 2 Bayesian Online Learning-based Byzantine
Defense Algorithm
1: Initialize: Set N as the number of sensors, and T as the
working time slots. Set p (w) as the prior distribution of
the sensors’ attributes, and k; as the vector of sensors’
weights after learning the historical data, k; as the vector
of sensors’ weights after learning the current data, k as
the vector of sensors’ weights.
2: fortr=1,2,...,T do
fori=1,...,Ndo
Each sensor performs local spectrum sensing and
reports its result u; to the FC.
end for
The FC performs data fusion: F
U(k-u—N/4)
7. fori=1,...,N do
: IF u; # JF, then the ith sensor is malicious.
9: ELSE IF u; = F, then the ith sensor is honest.
10:  end for
11:  Update the distribution of sensor’s attributes p (w) and
the vector of sensors’s weight k.
12:  Drive the new vector of sensors’s weight k based on
k; and k;.
13: end for

s w

= fkw =

V. PERFORMANCE EVALUATION

A. BASIC SIMULATION SETUP

In the simulation, 100 nodes participate in the sensing pro-
cess. Without loss of generality, the probability of the licensed
band being busy is 0.4 and honest sensors’ local

sensing performance is set as Pg’ = 0.8, P = 0.2
For simplicity, the attack probability of Byzantine attackers
Pa =pp =0.8.
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To show the effectiveness of the Bayesian online learning
algorithm, we perform comparison among the following two
schemes:

« Bayesian offline learning algorithm.

« Bayesian online learning algorithm.

B. SIMULATION RESULTS OF BAYESIAN

ONLINE LEARNING

In this subsection, we present the simulation results of the
Bayesian online learning.

0.6

0.4

0.2

-02- —e— Sensor’s weights |
—8&— Sensor’s attribute

The value of sensor’s weights and attribute

1 Il Il Il Il
0 5 10 15 20 25 30
Time slots

FIGURE 9. The sensor’s attribute and corresponding weight change with
the time slots 7. Without loss of the general, the number of time slots for
each attribute is randomly generated.

As shown in Fig. 9, we show the sensor’s attribute and
corresponding weight change with the time slots. In the
given figure, with the sensor’s attribute changes, the value
of sensor’s weight also changes. Specifically, the sensor’s
attribute changes between the honest and the attack (i.e., w
change between 1 and —1), the weight of the sensor’s would
increase or decrease. When the sensor shows the honest
attribute in a certain period of time slots, the value of sensor’s
weight increase. On the contrary, when the sensor shows the
attack attribute in a certain period of time slots, the value of
sensor’s weight would reduce. In addition, when the sensor
lasted longer in a certain attribute, the proposed algorithm
show its better performance. For example, in the period of
the 10-22-th time slots, the sensor shows the honest attribute.
With the increase of the time slots, the value of sensor’s
weight increase. And the weight reaches the maximum at the
17-th time slot, after which the weight maintains the value in
subsequent time slots.

As shown in Fig. 10, we present the Bayesian online
learning’s and Bayesian offline learning’s detection proba-
bilities and false alarm probabilities with sensing time slots.
In general, with the increase of sensing time slots, the perfor-
mance Bayesian online learning gradually improved. On the
contrary, the performance Bayesian offline learning gradually
become worse. Specifically, on one hand, the false alarm
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FIGURE 10. The Bayesian online learning’s and Bayesian offline
learning’s detection probability and false-alarm probability change with
time slots 7.

probability of offline learning increases with the increase
of sensing time slots, while the false alarm probability of
online learning decreases with the increase of sensing time
slots. On the other hand, the detection probability of offline
learning decreases with the increase of sensing time slots, and
the detection probability of online learning increases with the
increase of sensing time slots. Bayesian online learning has a
stronger ability to adapt to changing sensor’s attribute.

VI. CONCLUSION

This paper studied the issue of collaborative spectrum sensing
against Byzantine attack via Bayesian learning. The first
contribution was to introduce the Byzantine offline learning
to train the historical spectrum sensing data. The second con-
tribution was to propose a attacker-identification algorithm,
based on Bayesian online learning, that is able to detect
attackers and eliminate their influence on CSS.
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