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Abstract—This paper investigates a flow- and path-sensitive
static information flow analysis. Compared with security type
systems with fixed labels, it has been shown that flow-sensitive
type systems accept more secure programs. We show that
an information flow analysis with fixed labels can be both
flow- and path-sensitive. The novel analysis has two major
components: 1) a general-purpose program transformation that
removes false dataflow dependencies in a program that confuse
a fixed-label type system, and 2) a fixed-label type system that
allows security types to depend on path conditions. We formally
prove that the proposed analysis enforces a rigorous security
property: noninterference. Moreover, we show that the analysis
is strictly more precise than a classic flow-sensitive type system,
and it allows sound control of information flow in the presence
of mutable variables without resorting to run-time mechanisms.
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I. INTRODUCTION

Information-flow security is a promising approach to se-

curity enforcement, where the goal is to prevent disclosure of

sensitive data by applications. Since Denning and Denning’s

seminal paper [20], static program analysis has been widely

adopted for information-flow control [38]. Among these

program analyses, type systems (e.g., [33], [36], [41]) have

enjoyed a great popularity due to their strong end-to-end

security guarantee, and their inherently compositional nature

to combine secure components forming a larger secure

system as long as the type signatures agree.

Conventionally, we assume secrets are stored in variables,

and security levels (e.g., P for public and S for secret) are

associated with variables to describe the intended secrecy of

the contents. The security problem is to verify that the final

value of the public variables (outputs visible to the public)

is not influenced by the initial value of the secret variables.

Many security type systems (e.g., [33], [36], [41]) assume

fixed levels. That is, the security level for each variable

remain unchanged throughout program execution. Though

this fixed-level assumption simplifies the design of those

type systems, one consequence is that they tend to be over-

conservative (i.e., reject secure programs). For example,

given that s has a level S (i.e., s holds a secret value) and

p has a level P, a fixed-level type system rejects secure

programs, such as (p := s; p := 0;), even though the publicly

observable final value of p is always zero.

Previous work (e.g., [26]) observes that such inaccuracy

roots from the flow-insensitive nature (i.e., the order of

program execution is ignored) of fixed-level systems. From

this perspective, the previous example is mistakenly con-

sidered insecure because the (impossible) execution order

(p := 0; p := s; ) is insecure.

Hunt and Sands [26] propose a classic flow-sensitive type

system which allows a variable to have multiple security

levels over the course of computation. For example, this

floating-level type system correctly accepts the program

(p := s; p := 0;) by assigning p with levels S and P after

the first and second assignments respectively. However, this

floating-level system is still path-insensitive, meaning that

the predicates at conditional branches are ignored in the

analysis. For example, it incorrectly rejects the following

secure program since the (impossible) branch combination

(y := s; p := y; ) is insecure.

if (x = 1) then y := 0 else y := s;
if (x = 1) then p := y

This paper develops a flow- and path-sensitive information

flow analysis that is precise enough to accept the aforemen-

tioned secure programs. The novel analysis is built on two

key observations. First, flow-sensitivity can be gained via a

general-purpose program transformation that eliminates false

dataflow dependencies that confuse a flow-insensitive type

system. Consider the example (p := s; p := 0;) again. The

transformation removes the false dataflow dependency be-

tween s and p by introducing an extra copy of the variable p

and keeps track of the final copy of each variable at the same

time. So, the example is transformed to (p1 := s; p2 := 0;),
where p2 is marked as the final copy. Then, a fixed-level

system can easily type-check this program by assigning

levels S and P to p1 and p2 respectively.

Second, path-sensitivity can be gained via consolidating

dependent type theory (e.g., [16], [39], [43]) into security

labels. That is, a security label is, in general, a function

from program states to security levels. Consider the second

example above with branches. We can assign y a dependent

security label: (x = 1?P : S), meaning that the level of y
is P when x = 1, and S otherwise. Hence, the information

flow from y to p can be judged as secure since it only occurs

when x = 1 (hence, y has level p).
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Based on the key observations, we propose a flow- and

path-sensitive information flow analysis that consists of two

major components: a general purpose program transforma-

tion that removes false dataflow dependencies that otherwise

compromise the precision of a fixed-level system, as well

as a fixed-label type system with dependent labels. Each

component of our analysis targets one insensitive source of

previous type systems. The modular design not only enables

tunable precision of our analysis, but also sheds light on the

design of security type systems: we show that a fixed-level

system (e.g., [41]) plus the program transformation is as
precise as1 the classic flow-sensitive system in [26]; fur-

thermore, a fixed-label dependent type system can soundly

control information flow in the presence of mutable variables

without resorting to run-time mechanisms (e.g., [23], [45]).

This paper makes the following key contributions:

1) We formalize a novel flow- and path-sensitive infor-

mation flow analysis for a simple WHILE language.

The analysis consists of a novel program transformation,

which eliminates imprecision due to flow-insensitivity

(Section IV), and a purely static type system using

dependent security labels (Section V).

2) We formally prove the soundness of our analysis (Sec-

tion VI): the source program satisfies termination-

insensitive noninterference whenever the transformed

program type-checks. Novel proof techniques are re-

quired due to the extra variables introduced (for added

precision) in the transformed program.

3) We show that our analysis is strictly more precise than a

classic flow-sensitive type system [26] (Section VII). One

interesting consequence is that the program transforma-

tion automatically makes a sound flow-insensitive type

system (e.g., [41]) as precise as the classic flow-sensitive

system [26].

4) We show that our dependent type system soundly con-

trols information flow in the presence of mutable vari-

ables without resorting to dynamic mechanisms, such as

the dynamic erasure mechanism in previous work [23],

[45].

II. BACKGROUND AND OVERVIEW

A. Information Flow Analysis

We first review standard information flow terminology

used in this paper. We assume all variables are associated

with security levels. A security policy is specified as the

ordering of the security levels, typically in the form of a

security lattice. For data d1 with security level �1 and data

1We note that in the information flow literature, different terms (such as
“precision” and “permissiveness”) have been used to compare the amount
of false positives of various mechanisms [15]. In this paper, we say a static
analysis A is as precise as a static analysis B if A accepts every secure
program that is accepted by B. Moreover, we say A is (strictly) more precise
than B if A is as precise as B, and A accepts at least one secure program
that is rejected by B.

d2 with level �2, the policy allows information flow from

d1 to d2 if and only if �1 � �2. In this paper, we use

two distinguished security levels S (Secret) and P (Public)

for simplicity, but keep in mind that the proposed theory is

general enough to express richer security levels. The security

policy on the levels P and S is defined as P � S, while

S �� P. That is, information flow from public data to secret

variable is allowed, while the other direction is forbidden.

Hereafter, we assume variable s is labeled as S, and variable

p is labeled as P unless specified otherwise.

Explicit and Implicit Flows: An information flow anal-

ysis prohibits any explicit or implicit information flow that

is inconsistent with the given policy. Explicit flows take

place when confidential data are passed directly to public

variables, such as the command p := s, while implicit flows
arise from the control structure of the program. For example,

the following program has an implicit flow:

if (s = 0) then p := 0 else p := 1

Assume the secret variable s is either 0 or 1. This code

is insecure since it is functionally equivalent to p := s. That

is, the confidential data s is copied to a public variable p.

An information flow security system rules out all explicit

and implicit flows; any violation of a given security policy

results in an error. As in most information flow analyses, we

do not consider timing, termination and other side channels

in this paper; controlling side channel leakage (e.g., [1], [28],

[44]) is largely an orthogonal issue.

B. Sources of Imprecision

Most information flow analyses provide soundness (i.e.,

if the analysis determines that a program is secure, then

the program provably prevents disclosure of sensitive data).

However, since the problem of checking information flow

security is in general undecidable [38], one key challenge

of designing an information flow analysis is to maintain

soundness, while improving precision (i.e., reject fewer

secure programs).

In this section, we introduce the major sources of im-

precision in existing type systems. In the next section

(Section II-C), we illustrate how does our novel information

flow analysis alleviate those sources of imprecision.

Flow-Insensitivity: The first source of imprecision is

flow-insensitivity, meaning that the order of execution is not

taken into account in a program analysis [35]. In the context

of information flow analysis, the intuition is that an analysis

is flow-insensitive if a program is analyzed as secure only

when every subprogram is analyzed as secure [26].

Many security type systems, including [33], [36], [41],

are flow-insensitive. Consider the program in Figure 1(a)

(for now, ignore the brackets). This program is secure since

the public variable p has a final value zero regardless of the

secret variable s. However, it is considered insecure by a

flow-insensitive analysis because of the insecure subprogram

54

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 25,2024 at 02:45:05 UTC from IEEE Xplore.  Restrictions apply. 



1 x := s;
2 �x := 0�;
3 p := x;

(a) Flow-Insensitive Analysis
Rejects Secure Program.

1 x := s;
2 x1 := 0;
3 p := x1;

(b) Flow-Insensitive Analysis
Accepts Equivalent Program.

1 x := 0; y := 0;
2 if (p1 < 0) then y := s;
3 if (p1 > 0) then x := y;
4 p2 := x;

(c) Path-Insensitive Analysis Rejects Secure Program.

Figure 1: Examples: Imprecise Information Flow Analysis Rejects Secure Programs.

(x := s; p := x; ). Under the hood, the imprecision arises

since the analysis requires fixed levels: the security level of

a variable must remain the same throughout the program

execution. But in this example, these is no fixed-level for

the variable x: when the level is S, p := x is insecure; when

the level is P, x := s is insecure.

Path-Insensitivity: The second source of imprecision is

path-insensitivity, meaning that the predicates at conditional

branches are ignored in a program analysis [35]. In the

context of information flow analysis, the intuition is that

an analysis is path-insensitive if a program is analyzed as

secure only when every sequential program generated from

one combination of branch outcomes is analyzed as secure.

For instance, the flow-sensitive type system in [26] is

path-insensitive; consequently, it rejects the secure program

shown in Figure 1(c) (due to Le Guernic and Jensen [29]).

This example is secure since the value of the secret vari-

able s never flows to the public variable p2, since the

assignments y := s and x := y never execute together

in the same program execution. However, the type system

in [26] rejects this program because it lacks the knowledge

that the two if-statements cannot take the “then” branch

in the same execution. Hence, it has to conservatively

analyze the security of an impossible program execution:

x := 0; y := 0; y := s;x := y; p := x, which is insecure due

to an explicit flow from s to p.

Under the hood, we observe that the imprecision arises

from the fact that a path-insensitive analysis (e.g., [26])

requires that the security levels of a variable on two paths

to be “merged” (as the least upper bound) after a branch.

Consider the first branch in Figure 1(c). The “then” branch

requires y to be S due to the flow from s to y. So after that

if-statement, the label of y must be S (i.e., which path is

taken is unknown to the rest of the program). Similarly, x
has label S after the second if-statement. Hence, p2 := x is

rejected due to an explicit flow from S to P.

C. Overview

In order to alleviate analysis imprecision due to flow-

and path-insensitivity, our novel information flow analysis

has two major components: a program transformation that

enables flow-sensitivity and a type system with dependent

security labels, which enables path-sensitivity.

1) Program Transformation: Consider the example in

Figure 1(a) (for now, ignore the brackets). A fixed-level type

system rejects this program since the levels of x at line 1

and 3 are inconsistent. We observe that there are indeed two

copies of x in this program but only the final one (defined at

line 2) is released. So without modifying a type system, we

can explicitly transform the source program to a semantically

equivalent one that explicitly marks different copies.

The source language of our program analysis (Section III)

provides a tunable knob for improved precision: a bracketed
assignment in the form of �x := e�. Such an assignment is

semantically identical to x := e but allows a programmer to

request improved precision (the source language allows such

flexibility since reduced precision might be preferred for

reasons such as more efficient analysis on the program). In

particular, for a bracketed assignment �x := e�, the program

transformation (Section IV) generates a fresh copy for x
and uses that copy in the rest of program until another

new copy is generated. For example, given the bracketed

assignment at line 2 of Figure 1(a), the transformed program

is shown in Figure 1(b), where the second definition of x
and its use at line 3 are replaced with x1. The benefit is

that the false dataflow dependency from s to p in the source

program is eliminated. Hence, the transformed program can

be accepted by a fixed-level type system, by assigning x
and x1 to levels S and P respectively. In general, we prove

that (when all assignments are bracketed) the transformation

enables a fixed-level system to be at least as precise as a

classic flow-sensitive type system (Section VII).

2) Dependent Labels: Consider the example in Fig-

ure 1(c). A path-insensitive type system rejects this program

since such a type system ignores the path conditions under

which assignments occur. Consequently, the security level of

y is conservatively estimated as S after line 2, though when

p1 ≥ 0, variable y only carries public information.

In our system, path-sensitivity is gained via dependent

security labels (i.e., security labels that depend on program

states). Compared with a security level drawn directly from

a lattice, a dependent security label precisely tracks all

possible security levels from different branches; hence, path-

sensitivity is gained. Since dependent security labels are

orthogonal to bracketed assignments, extra precision can

be gained in our system even in the absence of bracketed

assignments. For example, while the program in Figure 1(c)

can not be accepted using any simple security level for y,

we can assign to y a dependent label (p1 < 0?S : P),
which specifies an invariant that the level of y is S when

p1 < 0 (i.e., the “then” branch is taken at line 2); the

level is P otherwise. Such an invariant can be maintained
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Vars x, y, z ∈ Vars

Expr e ::= x | n | e op e

Cmds c ::= skip | c1; c2 | x := e | �x := e� |
if (e) then c1 else c2 | while (e) c

Figure 2: Syntax of the Source Language.

by the type system described in Section V. For instance,

to ensure that the explicit flow from y to x at line 3

is secure, the type system generates a proof obligation

(p1 > 0 ⇒ (p1 < 0?S : P) � P), meaning that the

information flow from y to x must be permissible under the

path condition p1 < 0. This proof obligation can easily be

discharged by an external solver. The soundness of our type

system (Section VI) guarantees that all security violations

are detected at compile time.

III. LANGUAGE SYNTAX AND SEMANTICS

In this paper, we consider a simple imperative WHILE

language whose syntax and operational semantics are shown

in Figures 2 and 3 respectively. The syntax and semantics

are mostly standard: expressions e consist of variables x,

integers n, and composed expressions e op e, where op

is a binary arithmetic operation. Commands c consist of

standard imperative instructions, including skip, sequential

composition c1; c2, assignments, conditional if branch and

while loop. The semantics of expressions are given in the

form of 〈e,m〉 ⇓ n (big-step semantics), where memory m
maps variables to their values. The small-step semantics of

commands has the form of 〈c,m〉 → 〈c′,m′〉, where 〈c,m〉
is a configuration. We use m{x �→ n} to denote the memory

that is identical to m except that variable x is updated to

the new value n.

The only interesting case is the bracketed assignment

�x := e�, which is semantically equivalent to normal

assignment x := e in the source language. These commands

are tunable knobs for improved precision in our information

flow analysis, as we show shortly.

IV. PROGRAM TRANSFORMATION

To alleviate the imprecision due to flow-insensitivity, one

component of our analysis is a novel program transformation

that introduces extra variable copies to the source program,

so that false dataflow dependencies that otherwise may

confuse flow-insensitive analyses are removed.

A. Bracketed Assignments and the Transformed Program

We propose a general and flexible design for the program

transformation. In particular, the program transformation is

triggered only for assignments that are marked with brackets.

Such a design enables a tunable control of analysis precision

for programmers or high-level program analysis built on

our meta source language: when there is no bracketed

assignment, the transformed program is simply identical to

the source program; when all assignments have brackets, the

transformation generates a fresh copy of x for each bracketed

assignment �x := e�.

Due to the nature of the transformation, the transformed

program follows the same syntax and semantics as the source

language, except that all bracketed assignments are removed.

To avoid confusion, we use underlined notations for the

transformed program: e for expressions, c for commands and

m for memories, when both the original and the transformed

programs are in the context; otherwise, we simply use e, c
and m for the transformed programs as well.

B. Transformation Rules

The program transformation maintains one active copy for

each variable in the source code. One invariant maintained

by the transformation is that for each program point, there

is exactly one active copy for each source-program variable.

Intuitively, that unique active copy holds the most recent

value of the corresponding source-program variable.

Definition 1 (Active Set): An active set A : Vars �→
Vars, is an injective function that maps a source variable

to a unique variable in the transformed program.

For simplicity, we assume that the variables in the trans-

formed program follow the naming convention of xi where

x ∈ Vars and i is an index. Hence, for any variable v in the

range of A, we simply use v � to denote its corresponding

source variable (i.e., a variable without the index). Hence,

v = A(v �) always holds by definition. Moreover, since we

frequently refer to the range of A, we abuse the notation

of A to denote active copies that A may map to (i.e., the

range of A). That is, we simply write v ∈ A instead of

v ∈ Ran(A) in this paper. Moreover, we use A{x �→ xi} to

denote an active set that is identical to A except that x is

mapped to xi.

The transformation rules are summarized in Figure 4.

For an expression e, the transformation has the form of

〈e,A〉 � e, where e is the transformed expression. The

transformation of an expression simply replaces the source

variables with their active copies in A.

For a command c, the transformation has the form of

〈c,A〉 � 〈c,A′〉, where c is the source command and

c is the transformed one. Since assignments may update the

active set, A′ represents the active set after c.
Rule (TRSF-Assign) applies to a normal assignment. It

transforms the assignment to one with the same assignee and

update A accordingly. Rule (TRSF-Assgin-Create) applies

to a bracketed assignment �x := e�. It renames the assignee

to a fresh variable. For example, line 1 of the transformed

program in Figure 1(b) is exactly the same as the original

program in 1(a); but the assignee of line 2 is renamed to x1.

Rule (TRSF-IF) uses a special Φ function, defined in Fig-

ure 5, to merge the active sets generated from the branches.

In particular, Φ(A1,A2) � A3 generates an active set
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〈n,m〉 ⇓ n 〈x,m〉 ⇓ m(x)

〈e1,m〉 ⇓ n1
〈e2,m〉 ⇓ n2

n = n1 op n2

〈e1 op e2,m〉 ⇓ n

S-SKIP

〈skip; c,m〉 → 〈c,m〉

S-ASSIGN

〈e,m〉 ⇓ n

〈x := e,m〉 → 〈skip,m{x �→ n}〉

S-ASSIGN-BRACKET

〈e,m〉 ⇓ n

〈�x := e�,m〉 → 〈skip,m{x �→ n}〉

S-SEQ

〈c1,m〉 → 〈c′1,m′〉
〈c1; c2,m〉 → 〈c′1; c2,m′〉

S-WHILE

〈while (e) c,m〉 → 〈if (e) then (c; while (e) c) else skip,m〉

S-IF1
〈e,m〉 ⇓ n n �= 0

〈if (e) then c1 else c2,m〉 → 〈c1,m〉

S-IF2
〈e,m〉 ⇓ n n = 0

〈if (e) then c1 else c2,m〉 → 〈c2,m〉

Figure 3: Semantics of the Source Language.

〈n,A〉 � n 〈x,A〉 � A(x) 〈e1,A〉 � e′1 〈e2,A〉 � e′2
〈e1 op e2,A〉 � e′1 op e′2

TRSF-SKIP

〈skip,A〉 � 〈skip,A〉
TRSF-ASSIGN

〈e,A〉 � e

〈x := e,A〉 � 〈x := e,A{x �→ x}〉

TRSF-ASSIGN-CREATE

〈e,A〉 � e i is a fresh index for x

〈�x := e�,A〉 � 〈xi := e,A{x �→ xi}〉

TRSF-SEQ

〈c1,A〉 � 〈c1,A1〉 〈c2,A1〉 � 〈c2,A2〉
〈c1; c2,A〉 � 〈c1; c2,A2〉

TRSF-WHILE

〈c,A〉 � 〈c1,A1〉 〈c,A1〉 � 〈c,A2〉 〈e,A1〉 � e

〈while (e) c,A〉 � 〈A1 := A; while (e) (c;A1 := A2),A1〉

TRSF-IF

〈e,A〉 � e 〈c1,A〉 � 〈c1,A1〉 〈c2,A〉 � 〈c2,A2〉 Φ(A1,A2) � A3
〈if (e) then c1 else c2,A〉 � 〈if (e) then (c1;A3 := A1) else (c2;A3 := A2),A3〉

Figure 4: Program Transformation. We use A := A′ as a shorthand for {A(v) := A′(v) | v ∈ Vars ∧ A(v) �= A′(v)}.

merge(A1,A2) = λx.

{
xi, i fresh for x, A1(x) �=A2(x)
A1(x), A1(x)=A2(x)

A3 = merge(A1,A2)
Φ(A1,A2) � A3

TRSF-PHI

Figure 5: Merge Function.

A3 that maps x to a fresh variable iff A1(x) �= A2(x).
Transformation for the while loop is a little tricky since

we need to compute an active set that is active both before

and after each iteration. Rule (TRSF-WHILE) shows one

feasible approach: the rule transforms the loop in a way that

A1 is a fixed-point: the active set is always A1 before and

after an iteration by the transformation.

We note that given an identity function as the initial

active set A, a program without any bracketed assignment is

transformed to itself with a final active set A. At the other

extreme, the transformation generates one fresh active copy

for each assignment when all assignments are bracketed.

C. Correctness of the Transformation

One important property of the proposed transformation

is its correctness: a transformed program is semantically

equivalent to the source program. To formalize this property,

we need to build an equivalence relation on the memory for

the source program (m : Vars → N) and the memory for

the transformed program (m : Vars → N). We note that

the projection of m on an active set A defined as follows

shares the same domain and range as m. Hence, it naturally

specifies an equivalence relation on m and m w.r.t. A: m
can be directly compared with mA.

Definition 2 (Memory Projection on Active Set): We use

mA to denote the projection of m on the active set A,

defined as follows:

∀x ∈ Vars. mA(x) = m(A(x))

57

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 25,2024 at 02:45:05 UTC from IEEE Xplore.  Restrictions apply. 



We formalize the correctness of our transformation as the

following theorem. As stated in the theorem, the correctness

is not restricted to any particular initial active set A.

Theorem 1 (Correctness of Transformation): Any trans-

formed program is semantically equivalent to its source:

∀c, c,m,m,m′,m′,A,A′.
〈c,A〉 � 〈c,A′〉 ∧ 〈c,m〉 →∗ 〈skip,m′〉
∧ 〈c,m〉 →∗ 〈skip,m′〉 ∧ m = mA

⇒ m′ = (m′)A
′
.

Proof sketch. By induction on the transformation rules. The

full proof is available in the full version of this paper [30].

D. Relation to Information Flow Analysis

Up to this point, it might be unclear why introducing

extra variables can improve the precision of information

flow analysis. We first note that transformed programs enable

more precise reasoning for dataflows. Consider the program

in Figure 1(a) and Figure 1(b). In the transformed program,

it is clear that the value stored in x never flows to variable p;

but such information is not obvious in the source program.

Moreover, Theorem 1 naturally enables a more precise

analysis of the transformed program, since it implies that

if any property holds on the final active set A′ for the
transformed program, then the property holds on the entire
final memory for the original program. That is, in terms

of information flow security, the original program leaks no

information if the transformed program leaks no information

in the subset A′ of the final memory. Consider the example

in Figure 1(b) again. Theorem 1 allows a program analysis

to accept the (secure) program even though the variable x,

which is not in A′, may leak the secret value.

In Section VII, we show that, in general, the program

transformation automatically makes a flow-insensitive type

system (e.g., the Volpano, Smith and Irvine’s system [41]

and the system in Section V) at least as precise as a classic

flow-sensitive type system [26].

E. Relation to Single Static Assignment (SSA)

SSA [17] is used in the compilation chain to improve

and simplify dataflow analysis. Viewed in this way, it is

not surprising that our program transformation shares some

similarity with the standard SSA-transformation. However,

our transformation is different from the latter in major ways:

• Most importantly, our transformation does not involve

the distinguishing φ-functions of SSA. First of all,

removing φ-functions simplifies the soundness proof,

since the resulting target language syntax and semantics

are completely standard. Moreover, it greatly simplifies

information flow analysis on the transformed programs.

Intuitively, the reason is that in the standard SSA from,

the φ-function is added after a branch (i.e., in the

form of (if (e) then c1 else c2);x := φ(x1, x2)).

However, without a nontrivial program analysis for the

φ-function, the path conditions under which x := x1
and x := x2 occur (needed for path-sensitivity) is

lost in the transformed program. On the other hand,

extra assignments are inserted under the corresponding

branches in our transformation. The consequence is that

the path information is immediately available for the

analysis on the transformed program. We defer a more

detailed discussion on this topic to Section V-F, after

introducing our type system.

• As discussed in Section IV-D, the final active set

A′ generated from the transformation is crucial for

enabling a more precise program analysis on the trans-

formed program (intuitively, an information flow anal-

ysis may safely ignore variables not in A′); however,

such information is lost in the standard SSA form.

• Our general transformation offers a full spectrum of

analysis precision: from adding no active copy to

adding one copy for each assignment, but the standard

SSA transformation only performs the latter.

V. TYPE SYSTEM

The second component of the analysis is a sound type

system with expressive dependent labels. The type system

analyzes a transformed program along with the final active

set; the type system ensures that the final values of the public

variables in the final active set are not influenced by the

initial values of secret variables.

A. Overview

We first introduce the nonstandard features in the type

system: dependent security labels and program predicates.

Return to the example in Figure 1(c). We observe that

this program is secure because: 1) y holds a secret value

only when p1 < 0, and 2) the information flow from y to

x at line 3 only occurs when p1 > 0. Accordingly, to gain

path-sensitivity, two pieces of information are needed in the

type system: 1) expressive security labels that may depend

on program states, and 2) an estimation of program states

that may reach a program point.

We note that such information can be gained by intro-

ducing dependent security labels and program predicates to

the type system. For the example in Figure 1(c), the relation

between the level of y and the value of x can be described as

a concise dependent label (p1 < 0?S : P), meaning that the

security level of x is S when p1 < 0; the level is P otherwise.

Moreover, for precision, explicit and implicit flows should

only be checked under program states that may reach the

program point. In general, a predicate overestimates such

states. For the example in Figure 1(c), checking that the

explicit flow from y to x is secure under any program state

is too conservative, since it only occurs when p1 > 0. With

a program predicate that p1 > 0 for the assignment x := y,

the label of y can be precisely estimated as P. Note that
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1 x := 0; y := 0;
2 if (p1 < 0) then

3 y := s;
4 �p1 := 1�;
5 if (p1 > 0) then

6 x := y;
7 p2 := x;

(a) Insecure Program.

1 x := 0; y := 0;
2 if (p1 < 0) then

3 y := s;
4 p3 := 1;
5 if (p3 > 0) then

6 x := y;
7 p2 := x;

(b) Transformed Program of 6(a).

Figure 6: Examples: Implicit Declassification.

our analysis agrees with the definition of path-sensitivity: it

understands that the two assignments y := s and x := y;
never execute together in one execution. The example in

Figure 1(c) is accepted by our type system.

B. Challenge: Statically Checking Implicit Declassification

Though designing a dependent security type system may

seem simple at the first glance, handling mutable variables

can be challenging. The implicit declassification problem,

as defined in [45], occurs whenever the level of a variable

changes to a less restrictive one, but its value remains the

same. Consider the insecure program in Figure 6(a), which

is identical to the secure program in Figure 1(c) except for

line 4. This program is obviously insecure since the sequence

y := s; p1 := 1;x := y; p2 := x; may be executed together.

Compared with Figure 1(c), the root cause of this program

being insecure is that at line 4 (when p1 is updated), y’s new

level P (according to the label p1 < 0?S : P) is no longer

consistent with the value it holds.

The type systems in [23], [45] resort to a run-time

mechanism to tackle the implicit declassification problem.

However, that also means that the type system might change

the semantics of the program being analyzed. In this paper,

we aim for a purely static solution.

Program Transformation and Implicit Declassification:
Although the program transformation in Section IV is

mainly designed for flow-sensitivity, we observe that it

also helps to detect implicit declassification. Consider the

example in Figure 6(a) again, where the assignment at line

4 has brackets. The corresponding transformed program

(Figure 6(b)) does not have an implicit declassification

problem since updating p3 at line 4 does not change y’s level,

which depends on the value of p1, rather than p3. Moreover,

the insecure program cannot be type-checked since both

“then” branches might be executed together.

While adding extra variable copies helps in the previous

example, it unfortunately does not eliminate the issue. The

intuition is that even for a fully-bracketed program, variables

modified in a loop might still be mutable (since the local

variables defined in the loop might change in each iteration).

Consider the program in 7(a). This program is insecure since

it copies s to y in the first iteration, and copies y to p in the

next iteration. When fully-bracketed, the loop body becomes

1 x = 0;
2 while (x < 10) {
3 if (x%2=0) then

4 y := s;
5 else

6 p := y;
7 x := x+ 1;
8 }

(a) Insecure Program.

1 x = 0;
2 while (x < 10) {
3 if (x%2=0) then

4 y := s;
5 else

6 p := y;
7 x := x+ 1;
8 y := 0;
9 }

(b) Secure Program.

Figure 7: Examples: Implicit Declassification in Loop.

Level � ∈ L
Label τ ::= � | e?τ1 : τ2 | τ1 � τ2 | τ1 � τ2

Figure 8: Syntax of Security Labels.

if (x2%2 = 0) then y1 := s; y3 := y1 else . . .;
x3 := x2 + 1;x2 := x3; y2 := y3;

where the labels of y1 and y3 depend on x2. In this program,

implicit declassification happens when x2 is updated.

One naive solution is to disallow mutable variables in a

program. However, dependence on mutable variables does

not necessarily break security. Consider the program in

Figure 7(b), which is identical to the previous example

except that y is updated at line 8. In this program, y’s level

depends on the mutable variable x, but it is secure since the

value of s never flows to the next iteration.
Our Solution: Our insight is that changing y’s level at

line 7 in Figure 7(b) is secure since the value of y is not

used in the future (in terms of dataflow analysis, y is dead

after line 6). This observation motivates us to incorporate

a customized liveness analysis (Section V-D) into the type

system: an update to a variable x is allowed if no labels of

the live variables at that program point depend on x.

C. Type Syntax and Typing Environment

In our type system, types are extended with security

labels, whose syntax is shown in Figure 8. The simplest form

of label τ is a concrete security level � drawn from a security

lattice L. Dependent labels, specifying levels that depend on

run-time values, have the form of (e?τ1 : τ2), where e is an

expression. Semantically, if e evaluates to a non-zero value,

the dependent label evaluates to τ1, otherwise, τ2. A security

label can also be the least upper bound, or the greatest lower

bound of two labels.

We use Γ to denote a typing environment, a function

from program variables to security labels. The integration of

dependent labels puts constraints on the typing environment

Γ to ensure soundness. In particular, we say Γ is well-
formed, denoted as � Γ, if: 1) no variable depends on a more

restrictive variable, preventing leakage from labels; 2) there

is no chain of dependency. These restrictions are formalized

as follows, where FV(τ) denotes the free variables in τ :
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LIVEout[final] = A
LIVEin[s] = GEN[s] ∪ (LIVEout[s]− KILL[s])

LIVEout[s] =
⋃

p∈succ[s]

LIVEin[p]

GEN[x :=η e] = FV(e) ∪ (
⋃

v∈FV(e)
FV(Γ(v)))

KILL[x :=η e] = {x}

Figure 9: Liveness Analysis of ŁA.

Definition 3 (Well-Formedness): A typing environment Γ
is well-formed, written � Γ, if and only if:

∀x ∈ Vars. (∀x′ ∈ FV(Γ(x)). Γ(x′) � Γ(x))

∧(∀x′ ∈ FV(Γ(x)). FV(Γ(x′)) = ∅)
We note that the definition rules out self-dependence,

since if x∈FV(Γ(x)), we have FV(Γ(x))=∅. Contradiction.

D. Predicates and Variable Liveness

Our type system is parameterized on two static program

analyses: a predicate generator and a customized liveness

analysis. Instead of embedding these analyses into our

type system, we follow the modular design introduced in

[45] to decouple program analyses from the type system.

Consequently, the soundness of the type system is only

based on the correctness of those analyses, regardless of

the efficiency or the precision of those analyses.

Predicate Generator: We assume a predicate generator

that generates a (conservative) program predicate for each

assignment η in the transformed program, denoted as P(η).
A predicate generator is correct as long as each predicate is

always true when the corresponding assignment is executed.

A variety of techniques, regarding the trade-offs between

precision and complexity, can be used to generate predicates

that describe the run-time state. For example, weakest pre-

conditions [21] or the linear propagation [45] could be used.

Our observation is that for path-sensitivity, only shallow

knowledge containing branch conditions is good enough for

our type system.

Liveness Analysis: Traditionally, a variable is defined

as alive if its value will be read in the future. But in our type

system, if a variable x is alive, then any free variable in the

label of x should also be considered as alive, because the

concrete level of x depends on those variables. Moreover,

we assume at the end of a program, only the variables in

the final active set are alive, due to Theorem 1.

The liveness analysis is defined in Figure 9, where s
denotes a program command, and final refers to the last

command of the program being analyzed. Here, final is

the initial state for the backward dataflow analysis. succ[s]
returns the successors (as a set) of the command s. In

the GEN set of an assignment x := e, both FV(e), and

⋃
v∈FV(e) FV(Γ(v)), the free variables inside their labels, are

included. Since we are analyzing the transformed program,

the state of the final active set is crucial for precision.

Therefore, the analysis also enforces that, at the end of the

program, all active copies in A are alive. Other rules are

standard for liveness analysis.

Interface to the Type System: We assume each assign-

ment in the transformed language is associated with a unique

identifier η. We use •η and η• to denote the precise program

points right before and after the assignment respectively.

For example, P(•η) represents the predicates right before

statement η, and ŁA(η•) denotes the alive set right after

statement η with initialization of A as the final live set.

E. Typing Rules

The type system is formalized in Figure 10 and Figure 11.

Typing rules for expressions have the form of Γ � e : τ ,

where e is the expression being checked and τ is the label

of e. The typing judgment of commands has the form of

Γ, pc � c. Here, pc is the usual program-counter label [38],

used to control implicit flows.

Most rules are standard, thanks to the modular design

of our type system. The only interesting one is rule (T-

ASSIGN). For an assignment x :=η e, this rule checks

that both the explicit and implicit flows are allowed in the

security lattice: τ � pc � Γ(x). Note that since τ might be

a dependent label that involves free program variables, the

� relation is technically the lifted version of the relation

on the security lattice. Hence, the constraint τ � pc � Γ(x)
requires the label of x to be at least as restrictive as the

label of current context pc and the label e under any program

execution. For precision, the type system validates the partial

ordering under the predicate P(•η), the predicate that must

hold for any execution that reaches the assignment.

Moreover, the assignment rule checks that for any variable

in the liveness set after the assignment, its security label

must not depend on x; otherwise, its label might be incon-

sistent with its value. As discussed in Section V-B, this check

is required to rule out insecure implicit declassification.

At the top level, the type system collects proof obligations

in the form of |= P ⇒ τ1 � τ2, where τ1 and τ2 are

security labels, and P is a predicate. Such proof obligations

can easily be discharged by theorem solvers, such as Z3 [19].

As an example, consider again the interesting examples in

Figure 7. In both programs, we can assign y to the dependent

label (x%2 = 0?S : P), and assign x to the label P. From the

liveness analysis, we know that the live sets right after line

7 are {x, y, s} and {x, p, s} for Figure 7(a) and Figure 7(b)

respectively. Hence, the type system correctly rejects the

insecure program in Figure 7(a) since the check at line 7,

∀v ∈ ŁA(η•). x �∈ FV(Γ(v)), fails. On the other hand, the

check at line 7 succeeds for the program in Figure 7(b).

For line 4 in Figure 7(b), the assignment rule generates one
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Γ � n : ⊥ T-CONST
Γ(x) = τ

Γ � x : τ
T-VAR

Γ � e : τ1 Γ � e′ : τ2
Γ � e op e′ : τ1 � τ2

T-OP

Figure 10: Typing Rules: Expressions.

Γ, pc � skip
T-SKIP

Γ, pc � c1 Γ, pc � c2

Γ, pc � c1; c2
T-SEQ

Γ � e : τ Γ, τ � pc � c1 Γ, τ � pc � c2

Γ, pc � if (e) then c1 else c2
T-IF

Γ � e : τ |= P(•η)⇒ τ � pc � Γ(x) ∀v ∈ ŁA(η•).x �∈ FV(Γ(v))

Γ, pc � x :=η e
T-ASSIGN

Γ � e : τ Γ, τ � pc � c

Γ, pc � while (e) c
T-WHILE

Figure 11: Typing Rules: Commands.

proof obligation

|= (x%2 = 0)⇒ P � S � (x%2 = 0?S : P)

which is clearly true for any value of x. In fact, the secure

program in Figure 7(b) is correctly accepted by the type

system in Figure 10 and Figure 11.

F. Program Transformation and Information Flow Analysis

We now discuss the benefits of the program transforma-

tion in Section IV for information flow analysis in details.

1) Simplifying Information Flow Analysis: As discussed

in Section IV-E, our transformation does not involve the

distinguishing φ-functions of SSA. Doing so simplifies

information flow analysis on the transformed programs.

We illustrate this using the following example, where y is

expected to have the label (x = 1?P : S) afterwards.

if (x = 1) then y := 0 else y := s

Our transformation yields the following program, which can

be verified with labels y1 : P, y2 : S, y3 : (x = 1?P : S).

if (x = 1) then (y1 := 0; y3 := y1)
else (y2 := s; y3 := y2);

In comparison, the standard SSA form is:

(if (x = 1) then y1 :=0 else y2 :=s; )y3 :=φ(y1, y2);

To verify this program, a type system would need at least a

nontrivial typing rule for φ, which somehow “remembers”

that y3 := y2 occurs only when x = 1. Even with

such knowledge, the type of y2 cannot simply be S, since

otherwise, assigning y2 to y3 at φ is insecure. In fact, the

labels required for verification are y1, y2, y3 : (x = 1?S : P).
Similar complexity is also involved for the φ-functions

inserted for loops: to precisely reason about information

flow, the semantics and typing rules of φ also need to track

the number of iterations.

2) Improving Analysis Precision: Precision-Wise, brack-

eted assignments improve analysis precision in two ways.

First, as discussed in Section IV-D, they improve flow-

sensitivity by introducing new variable definitions. Second,

they also improve path-sensitivity by enabling more accurate

program predicates. Consider the following example.

x := −1;
if (x > 0) then y := S; else y := 1;
�x := −x�;
if (x > 0) then p := y;

This program is secure since p becomes 1 regardless of

the value of s. However, without the bracket shown, the

type system rejects it since no such label τy satisfies the

constraints that (x > 0) ⇒ (S � τy) (arising from the first

if) and (x > 0)⇒ (τy � P) (arising from the second if).
However, with the bracket, the last two lines become

x1 := −x;
if (x1 > 0) then p := y;

This program can be type-checked with y’s label as (x >
0?S : P) and a precise enough predicate generator, which

generates x1 = −x after the assignment x1 := −x, because

constraints (x > 0)⇒ (S � τy) and (x1 > 0∧x1 = −x)⇒
(τy � P) can be solved with y’s label mentioned above.

VI. SOUNDNESS

Central to our analysis is rigorous enforcement of a strong

information security property. We formalize this property in

this section and sketch a soundness proof. The complete

proof is available in the full version of this paper [30].

A. Noninterference
Our formal definition of information flow security is based

on noninterference [24]. Informally, a program satisfies

noninterference if an attacker cannot observe any difference

between two program executions that only differ in their

confidential inputs. This intuition can be naturally expressed

by semantics models of program executions.
Since a security label may contain program variables, its

concrete level cannot be determined statically in general. But

it can always be evaluated under a concrete memory:
Definition 4: For a security label τ , we evaluate its con-

crete level under memory m as follows:

V(τ,m) = �, where 〈τ,m〉 ⇓ �

Moreover, to simplify notation, we use TΓ(x,m) to denote

the concrete level of x under m and Γ (i.e., TΓ(x,m) =
V(Γ(x),m)).
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To formally define noninterference in the presence of

dependent labels, we first introduce an equivalence relation

on memories. Intuitively, two memories are (Γ, �)-equivalent

if all variables with a level below level � agree on both their

concrete levels and values.
Definition 5 ((Γ, �)-Equivalence): Given any concrete

level � and Γ, we say two memories m1 and m2 are

equivalent up to � under Γ (denoted by m1 ≈�
Γ m2) iff

∀x ∈ Vars.

(TΓ(x,m1) � � ⇐⇒ TΓ(x,m2) � �) ∧ TΓ(x,m1) � �

=⇒ m1(x) = m2(x)

It is straightforward to check that ≈�
Γ is an equivalence

relation on memories. Note that we require type of x be

bounded by � in m2 whenever TΓ(x,m1) � �. The reason

is to avoid label channels, where confidential data is leaked

via the security level of a variable [37], [45].
Given initial labels Γ on variables and final labels Γ′ on

variables, we can formalize noninterference as follows:
Definition 6 (Noninterference): We say a program c satis-

fies noninterference w.r.t. Γ, Γ′ if equivalent initial memories

produce equivalent final memories:

∀m1,m2, �.

m1 ≈�
Γ m2 ∧ 〈c,m1〉 →∗ 〈skip,m′

1〉 ∧
〈c,m2〉 →∗ 〈skip,m′

2〉
=⇒ m′

1 ≈�
Γ′ m′

2

The main theorem of this paper is the soundness of our

analysis: informally, if the transformed program type-checks,

then the original program satisfies noninterference. Since the

type system applies to the transformed program, we first

need to connect the types in the original and the transformed

programs. To do that, we define the projection of types for

the transformed program in a way similar to Definition 2:
Definition 7 (Projection of Types): Given an active set A

and Γ, types of variables in the transformed program, we

use ΓA to denote a mapping from Vars to τ as follows:

∀v ∈ Vars. ΓA(v) = Γ(A(v))
Formally, the soundness theorem states that if a program c

under active set A (e.g., an identity function) is transformed

to c and final active set A′, and c is well-typed under

the type system (parameterized on A′), then c satisfies

noninterference w.r.t. ΓA and ΓA′
:

Theorem 2 (Soundness):

∀c, c,m1,m2,m
′
1,m

′
2, �,Γ,A,A′ .

〈c,A〉 � 〈c,A′〉∧ � Γ ∧ Γ � c ∧m1 ≈�
ΓA m2∧

〈c,m1〉 →∗ 〈skip,m′
1〉 ∧ 〈c,m2〉 →∗ 〈skip,m′

2〉
=⇒ m′

1 ≈�
ΓA′ m′

2

To approach a formal proof, we notice that by the cor-

<c, m1> <skip, m1
’>

<c, m1> <skip, m1
’>

<c, m2> <skip, m2
’>

<c, m2> <skip, m2
’>

Soundness
(Transformed)

Soundness
(Original)

Figure 12: Soundness of original and transformed programs.

erase(m,x, η)(x′) =

{
0, x ∈ FV(x′) ∧ x′ �∈ ŁA′(η)

m(x′), otherwise

〈x,m〉 ⇓ n m′ = m{x �→ n}
〈x :=η e,m〉 →ER(A′) 〈skip, erase(m′, x)〉 ST-ERASE

Figure 13: Erasure Semantics of Assignment.

rectness of the program transformation (Theorem 1), it is

sufficient to show that the transformed program leaks no in-

formation on the subset A′. Such connection is illustrated in

Figure 12. We formalize the soundness for the transformed

program w.r.t. initial and final active sets as follows:

Theorem 3 (Soundness of Transformed Program):

∀c,m1,m2,m3,m4, �,Γ,A,A′ .

〈c,A〉 � 〈c,A′〉∧ � Γ ∧ Γ � c ∧ mA
1 ≈�

ΓA mA
2

∧ 〈c,m1〉 →∗ 〈skip,m3〉 ∧ 〈c,m2〉 →∗ 〈skip,m4〉
=⇒ mA′

3 ≈�
ΓA′ mA′

4

Proof sketch. One challenge in the formal proof is that the

equivalence relation ≈�
Γ only holds on the active copies and

it may break temporarily during the program execution. Con-

sider the example in Figure 7(b). During the first iteration of

the loop body, y holds a secret value but its level is P right

after line 8. Hence, the relation ≈�
Γ may break at that point

in the small-step evaluation starting from two memories that

only differ in secrets. To tolerate such temporary violation

of the ≈�
Γ relation, we prove the soundness with a new

semantics which enforces that the relation ≈�
Γ holds for

all variables, and the final values of variables in A′ agree

with those in the standard semantics. The new semantics,

called the erasure semantics is shown in Figure 13. The

semantics is parameterized on the final active set A′. The

only difference from the standard one is for assignments: the

new assignment rule (ST-ERASE) sets variables that are not

alive and whose types depend on x to be zero. It is easy to

check that the erasure semantics agrees on the final value of

the variables in A′. Also, it removes the temporary violation

of the equivalence relation by forcing value of y to be zero

after line 7 of Figure 7(b). The complete proof is available

in the full version of this paper [30].
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VII. ENABLING FLOW-SENSITIVITY WITH PROGRAM

TRANSFORMATION

Recall that the dependent security type system (with-

out program transformation) is flow-insensitive; yet, our

program analysis is flow-sensitive with the novel program

transformation in Section IV. In this section, we show

that this is not a coincidence: the program transformation

automatically makes a flow-insensitive type system (e.g., the

Volpano, Smith and Irvine’s system [41] and the system in

Section V) flow-sensitive.

A. The Hunt and Sands System

In [26], Hunt and Sands define a classic flow-sensitive

type system where the security level of a program variable

may “float” in the program. In particular, Hunt and Sands

(HS) judgments have the form of pc �HS Γ{c}Γ′, where Γ
and Γ′ are intuitively the typing environments before and

after executing c respectively.

Consider the program in Figure 1(a). While a flow-

insensitive type system rejects it, the HS system accepts it

with the following typing environments:

Γ{x := s; }Γ{x := 0; }Γ′{p := x; }Γ′

where Γ = {x �→ S, p �→ P} and Γ′ = {x �→ P, p �→ P}.
The HS typing rules for commands are summarized in

Figure 14. We use �HS to distinguish those judgments from

the ones in our system. The interesting rules are rule (HS-

IF) and rule (HS-WHILE): the former computes the type for

each variable as the least upper bound of its labels in the

two branches; the latter computes the least fixed-point of a

monotone function (the while loop) on a finite lattice.

B. Program Transformation and Flow-Sensitivity

We show that the program transformation in Section IV

along with a flow-insensitive type system subsumes the

HS system: for any program c that can be type-checked

in the HS system, the transformed program of �c� (i.e., a
fully-bracketed program) can be type-checked in a flow-

insensitive type system. This result has at least two inter-

esting consequences:

1) The program transformation removes the source of

“flow-insensitivity”; a flow-insensitivity type system

can be automatically upgraded to a flow-sensitive one.

2) The flow- and path-sensitive system in this paper

strictly subsumes the HS system: any secure program

accepted by the latter is accepted by the former, but not

vise versa (e.g., the program in Figure 1(c)).

To construct types in the transformed program, we first

introduce a few notations. Given a typing environment

Γ : Vars → τ for the original program and an active set

A, we can straightforwardly construct a (minimal) typing

environment, written ΓA, whose projection on A is Γ:

∀v ∈ A. ΓA(v) � Γ(v �)

Easy to check that (ΓA)A = Γ.

Moreover, given a sequence of tying environments for the

transformed program, say Γ1,Γ2, . . . , we define a merge

function, denoted as ∪, that returns the union of Γ1,Γ2, . . .
so that conflicts in the environments are resolved in the order

of Γ1,Γ2, . . . . For example, ∪({x1 �→ S, y2 �→ P}, {x1 �→
P, y2 �→ P}) = {x1 �→ S, y2 �→ P}.

For a fully bracketed program �c�, we can inductively

define the construction of Γ as inference rules in the form

of

(pc,Γ,A){�c� � c}(Γ′,A′) ↪→ Γ

where pc,Γ, c,Γ′ are consistent with the HS typing rules

in the form of pc �HS Γ{c}Γ′; A, �c�,A′, c are consis-

tent with the program transformation rules in the form of

〈�c�,A〉 � 〈c,A′〉. Γ is the constructed typing environment

that, as we show shortly in Theorem 4, satisfies Γ, pc � c.
The construction algorithm is formalized in Figure 15.

Most parts of the rules are straightforward; they are simply

constructed to be consistent with the HS typing rules and

the transformation rules in Figure 4. The following lemma

makes such connections explicit.

Lemma 1:

∀pc,Γ,Γ′,A,A′, c, c. pc �HS Γ{c}Γ′∧〈�c�,A〉 � 〈c,A′〉
⇒ ∃Γ. (pc,Γ,A){�c� � c}(Γ′,A′) ↪→ Γ

Proof: By induction on the structure of c.
To construct types for the transformed program: for skip,

we use ΓA (the typing environment before this command);

for assignment, since xi must be fresh, we can simply

augment ΓA with {xi �→ τ}. Other rules simply merge

constructed types from subexpressions in a conflict-solving

manner, using ∪. An eagle-eyed reader may find the con-

struction is intuitively correct if there is no conflict at all in

the merge operations.

We show that there is no conflict during construction by

two observations. First, if a variable has the same active copy

before and after transforming a fully-bracketed command

�c�, then its type must remain the same (before and after c)
in the HS system. This property is formalized as follows:

Lemma 2:

pc �HS Γ{c}Γ′ ∧ 〈�c�,A〉 � 〈c,A′〉 ⇒
∀v ∈ Vars. (A(v) = A′(v))⇒ (Γ(v) = Γ′(v))

Proof sketch. By induction on the structure of c. The most

interesting cases are for branch and loop.

• if (e) then c1 else c2: by the HS typing rule, pc �HS

Γ{c1}Γ1 ∧ pc �HS Γ{c2}Γ2 ∧ Γ′ = Γ1 � Γ2. By the

transformation rules, 〈�ci�,A〉 � 〈ci,Ai〉, i ∈ {1, 2}.
Suppose A(v) �= A1(v), A1(v) must be a fresh variable

generated in c1, and hence, cannot be in A2. By the

definition of Φ, A3(v) must be fresh. This contradicts

the assumption A(v) = A′(v). Hence, Γ(v) = Γ1(v)
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HS-SKIP
pc �HS Γ{skip}Γ

HS-SEQ
pc �HS Γ{c1}Γ′′ pc �HS Γ

′′{c2}Γ′

pc �HS Γ{c1; c2}Γ′

HS-ASSIGN
Γ �HS e : τ

pc �HS Γ{x := e}Γ{x �→ pc � τ}

HS-IF
Γ �HS e : τ τ � pc �HS Γ{c1}Γ1 τ � pc �HS Γ{c2}Γ2

pc �HS Γ{if (e) then c1 else c2}Γ′ where Γ′ = Γ1 � Γ2

HS-WHILE
Γ′
i �HS e : τi τi � pc �HS Γ

′
i{c}Γ′′

i 0 ≤ i ≤ n

pc �HS Γ{while (e) c}Γ′
n where Γ′

0 = Γ,Γ′
i+1 = Γ′′

i � Γ,Γ′
n+1 = Γ′

n

Figure 14: The Hunt and Sands System [26].

C-SKIP
(pc,Γ,A){skip � skip}(Γ,A) ↪→ ΓA

C-SEQ
(pc,Γ,A){�c1� � c1}(Γ′′,A′′) ↪→ Γ1 (pc,Γ′′,A′′){�c2� � c2}(Γ′,A′) ↪→ Γ2

(pc,Γ,A){�c1; c2� � c1; c2}(Γ′,A′) ↪→ ∪(Γ1,Γ2)

C-ASSIGN
pc �HS Γ{x := e}Γ{x �→ τ} 〈�x := e�,A〉 � 〈xi := e,A{x �→ xi}〉

(pc,Γ,A){�x := e� � xi := e}(Γ{x �→ τ},A{x �→ xi}) ↪→ ΓA ∪ {xi �→ τ}

C-IF

Γ �HS e : τ
〈e,A〉 � e

(τ � pc,Γ,A){�c1� � c1}(Γ1,A1) ↪→ Γ1
(τ � pc,Γ,A){�c2� � c2}(Γ2,A2) ↪→ Γ2

Φ(A1,A2) � A3 Γ′ = Γ1 � Γ2

(pc,Γ,A){�if (e) then c1 else c2� � if (e) then (c1;A3 := A1) else (c2;A3 := A2)}(Γ′,A3) ↪→ ∪(Γ1,Γ2,Γ′
A3
)

C-WHILE

pc �HS Γ{while (e) c}Γ′

Γ′ �HS e : τ
〈�c�,A〉 � 〈c1,A1〉 〈e,A1〉 � e (τ � pc,Γ′,A1){�c� � c}(Γ′,A2) ↪→ Γ0

(pc,Γ,A){�while (e) c� � A1 := A; while (e) (c;A1 := A2)}(Γ′,A1) ↪→ ∪(Γ0,ΓA)

Figure 15: Type Construction in Transformed Program.

by the induction hypothesis. Similarly, we can infer that

Γ(v) = Γ2(v). So Γ′(v) = Γ1(v) � Γ2(v) = Γ(v).

• while (e) c: By rule (TRSF-WHILE), we have

〈�c�,A〉 � 〈c1,A1〉, where A′ is A1 in this case.

Hence, by the assumption, we have A(v) = A1(v).
By rule (HS-WHILE), there is a sequence of environ-

ments Γ′
i,Γ

′′
i such that pc � τi � Γ′

i{c}Γ′′
i . By the

induction hypothesis, Γ′′
i (v) = Γ′

i(v). Since Γ′
0 = Γ

and Γ′
i+1 = Γ � Γ′′

i in rule (HS-WHILE), we can

further infer that Γ′
i+1(v) = Γ′′

i (v). Hence, we have

Γ′(v) = Γn(v) = Γ0(v) = Γ(v).

Second, the constructed environment is minimal, meaning

that it just specifies types for the variables in A and the

freshly generated variables in c (denoted as FVars(c)).

For technical reasons, we formalize this property along

with the main correctness theorem of the construction,

stating that the transformed program c type-checks under the

constructed environment Γ. Note that given any A, a fully

bracketed command �c� always transforms to some c and

A′. Hence, by Lemma 1, the following theorem is sufficient

to show that our program analysis is at least as precise as

the HS system:

Theorem 4:

∀c, c, pc,A,A′,Γ,Γ′,Γ. (pc,Γ,A){�c� � c}(Γ′,A′) ↪→ Γ

⇒ Dom(Γ) ⊆ A ∪ FVars(c) ∧ Γ, pc � c

Proof: Complete proof is available in the full version

of this paper [30].

An interesting corollary of Theorem 4 is that the trans-

formed program can be type-checked under the classic fixed-

level system in [41] as well.

Corollary 1: Theorem 4 also applies to the type system in

Figure 10 and Figure 11 with the restriction that all labels are

security levels (i.e., non-dependent labels), which is identical

to the system in [41].

Proof: We note that the construction in Figure 15 only

uses the non-dependent part of our type system. Given all

labels are security levels, it is straightforward to check that
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our type system degenerates to the system in [41].

Theorem 4 has a strong prerequisite that all assignments

in the original program are bracketed. We note that the result

remains true when such prerequisite is relaxed. Intuitively, a

bracket is unnecessary when the old and new definitions have

the same security label. Otherwise, a bracket is needed for

flow-sensitivity. For example, to gain flow-sensitivity, only

the second assignment in Figure 1(a) needs a bracket. The

strong prerequisite is used in Theorem 4 to make the result

general (i.e., type-agnostic).

According to Corollary 1, the result that any secure pro-

gram accepted by the HS system is accepted by our analysis

is true even if all dependent security labels degenerate to

simple security levels. On the other hand, introducing depen-

dent security labels makes our analysis strictly more precise

than the HS system. For example, the program in Figure 1(c)

cannot be verified without dependent security labels, but it

can be type-checked with a label y : (p1 < 0?S : P).

C. Comparison with the transformation in [26]

Hunt and Sands show that if a program can be type-

checked in the HS system, then there is an equivalent

program which can be type-checked by a fixed level sys-

tem [26]. However, their construction of the equivalent

program is type guided, meaning that the program trans-

formation assumes that security labels have already been

obtained in the HS system, while our program transforma-

tion (Figure 4) is general and syntax-directed. An interesting

application of our transformation is to test the typeability of

the HS system without obtaining the types needed in the HS

system in the first place.

It is noteworthy that our transformation is arguably sim-

pler than the HS transformation since our rule for loop has

no fixed-point construction while the latter has one. The

reason is that compared with the HS transformation, the goal

of our transformation is easier to achieve: our transformation

improves analysis precision, while the HS transformation

infers the type for each variable in a program. For example,

consider a loop with only one assignment x := x + 1,

and x is initially P. In the HS system, the transformed

program is xP := xP + 1, where xP is the public version of

variable x. On the other hand, our transformation generates

x1 := x2;x2 := x1 + 1. From the perspective of inferring

labels, introducing x1 and x2 might seem unnecessary since

they must have the same label according to the type system.

However, doing so might improve analysis precision (e.g.,

the type system can specify the dependencies on x1 and x2
separately with two copies of x).

VIII. RELATED WORK

We refer to [38] for a comprehensive survey of static

information flow analysis. Here, we focus on the most

relevant ones.

Dependent Labels and Information Flow Security:
Dependent types have been widely studied and have been

applied to practical programming languages (e.g., [7], [16],

[32], [33], [42], [43]). New challenges emerge for infor-

mation flow analysis, such as precise, sound handling of

information channels arising from label changes.

For security type systems, the most related works are

SecVerilog [23], [45], Lourenço and Caires [31] and Mur-

ray et al. [32]. SecVerilog is a Verilog-like language with

dependent security labels for verifying timing-sensitive non-

interference in hardware designs. The type systems in [23],

[45] are not purely static: they remove implicit declassi-

fication by a run-time enforcement that modifies program

semantics. A recent extension to SecVerilog [22] allevi-

ates such limitation by hardware-specific static reasoning.

However, those type systems do not handle loops (absent

in hardware description languages), which gives rise to

new challenges for soundness. Moreover, they are not flow-

sensitive. The recent work [31] also allows the security

type to depend on runtime values. However, the system

is flow-insensitive, and it does not have a modular design

that allows tunable precision. Moreover, the language has

limited expressiveness: it has no support for recursion, and

it disallows dependence on mutable variables. Exploring

dependent labels to their full extent exposes new challenges

that we tackle in this work, such as implicit declassification.

Murray et al. [32] present a flow-sensitive dependent security

type system for shared-memory programs. The type system

enforces a stronger security property: timing-sensitive non-

interference for concurrent programs. However, even when

the extra complexity due to concurrency and timing sen-

sitivity are factored out, extra precision in their system is

achieved via a floating type system that tracks the typing

environments and program states throughout the program.

In comparison, our analysis achieves flow-sensitivity via

a separate program transformation, which results in an

arguably simpler type system. Moreover, for dependency

on mutable variables, their system only allows a variable’s

security level to upgrade to a higher one, while our system

allows a downgrade to a lower level when doing so is secure.

Some prior type systems for information flow also support

limited forms of dependent labels [25], [27], [33], [39], [40],

[46]. The dependence on run-time program state, though, is

absent in most of these, and most of them are flow- and

path-insensitive.

Flow-Sensitive Information Flow Analysis: Flow-

sensitive information flow control [8], [26], [37] allows

security labels to change over the course of computation.

Those systems rely on a floating type system or a run-time

monitor to track the security labels at each program point.

On the other hand, the program transformation in our paper

eliminates analysis imprecision due to flow-insensitivity.

Moreover, the bracketed assignments in a source program

provide tunable control for needed analysis precision. These
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1 x := 1; y := 1;
2 if (s == 0) then skip

3 else x := y;
4 p := x;

Figure 16: False Control-Flow Dependency.

features offer better flexibility and make it possible to turn

a flow-insensitive analysis to be flow-sensitive.

Semantic-Based Information Flow Analysis: Another

direction of information flow security is to verify the seman-

tic definition of noninterference based on program logics.

The first work that used a Hoare-style semantics to reason

about information flow is by Andrews and Reitman [5]. In-

dependence analysis based on customized logics [2]–[4] was

proposed to check whether two variables are independent or

not. Self-Composition [9], [18] composes a program with a

copy of itself, where all variables are renamed. The insight

is that noninterference of a program P can be reduced to a

safety property for the self-composition form of P .

Relational Hoare Logic [13] was first introduced for a

core imperative program to reason about the relation of two

program executions. It was later extended to verify security

proofs of cryptographic constructions [11] and differential

privacy of randomized algorithms [10], [12]. In the context

of information flow security, Relational Hoare Type The-

ory [34] extends Hoare Type Theory and has been used to

reason about advanced information flow policies.

Though some semantic-based information flow analyses

are flow- and path-sensitive, most mechanisms incur heavy

annotation burden and steep learning curve on programmers.

We believe our approach shows that it is not necessary to

resort to those heavyweight methods to achieve both flow-

and path-sensitivity.

IX. CONCLUSIONS AND FUTURE WORK

This paper presents a sound yet flow- and path-sensitive

information flow analysis. The proposed analysis consists

of a novel program transformation as well as a dependent

security type system that rigorously controls information

flow. We show that our analysis is both flow- and path-

sensitive. Compared with existing work, we show that our

analysis is strictly more precise than a classic flow-sensitive

type system, and it tackles the tricky implicit declassifica-

tion issue completely at the compile time. Moreover, the

novel design of our analysis allows a user to control the

analysis precision as desired. We believe our analysis offers

a lightweight approach to static information flow analysis

along with improved precision.

The proposed analysis alleviates analysis imprecision due

to data- and path-sensitivity, but it still may suffer from other

sources of imprecision, such as the presence of insecure

dead code and false control-flow dependency. For example,

consider the secure program in Figure 16 (simplified from

an example in [14]) with security labels s : S, p : P. In this

example, although x is updated under a confidential branch

condition, both branches result in the same state where

x = 1; thus, the outcome of p is independent of the value of

s. However, our analysis rejects this program since rule (T-

ASSIGN) conservatively assumes that any public variable

modified in a confidential branch would leak information.

Motivated by the type system in [14], a promising direction

that we plan to investigate is to incorporate sophisticated

static program analyses so that the implicit flows can be

ignored for the variables whose values are independent

of branch outcomes. Additionally, hybrid information flow

monitors (e.g., [6], [14], [37]) are shown to be more precise

than static flow-sensitive type systems. We plan to compare

the analysis precision with those systems in our future work.
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