
165September 2017 • IEEE ROBOTICS & AUTOMATION MAGAZINE •1070-9932/17©2017IEEE

T
he Robotics System Toolbox for MATLAB provides a wide and
growing set of functionalities for creating robotic systems:
Robot Operating System (ROS) integration, mobile robotics,
and robot manipulator arms. This capability increases with
each release and is targeted at industrial developers as well as

Robot Manipulator
Capability in MATLAB

By Peter Corke

Digital Object Identifier 10.1109/MRA.2017.2718418
Date of publication: 4 August 2017

A Tutorial
on Using the
Robotics System
Toolbox

©istockphoto.com/ Bedrin-Alexander

T u to r i a l

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 16:16:30 UTC from IEEE Xplore. Restrictions apply.

166 • IEEE ROBOTICS & AUTOMATION MAGAZINE • September 2017

academic teaching and research. This tutorial is concerned
with the robot manipulator kinematic functionality that
has been available since MATLAB release 2016b.

The Toolbox comes with several robot models, which can
be loaded by

>> load exampleRobots

and includes PUMA 560, KUKA LBR, and Baxter robots,
each represented as a tree of rigid bodies by objects
of the RigidBodyTree class. This class allows general
branched-mechanism representation, such as mul-
tiarm robots.

The model puma1 is a standard Denavit–Hartenberg rep-
resentation of the classical PUMA 560 serial-link manipulator.
The joint angles for the home configuration are given by

>> q = puma1.homeConfiguration;

and the forward kinematics is simply

>> puma1.getTransform(q, 'L6')
ans =

1.0000	 0	 0	 0.4521
0	 1.0000	 0	 -0.1500
0	 0	 1.0000	 0.4318
0	 0	 0	 1.0000,

where we specify by name the frame whose pose we wish to
compute, and the result is a 4 × 4 homogeneous transforma-

tion matrix. To solve the inverse kinematics, we first create an
inverse kinematics solver object:

ik = �robotics.InverseKinematics
(‘RigidBodyTree’, puma1);

Next, we define an arbitrary pose for our PUMA robot with
its end-effector pointing downward:

T = �trvec2tform([0.4 0.4 0.2]) *
eul2tform([0 0 pi], 'ZYX'),

and then solve for the joint angles:

>> [q, info] = �ik('L6', T, ones(1,6),
puma1.homeConfiguration);

where the passed arguments are the name of the robot frame
to solve for, the pose of that frame, the weights applied to the
pose error (three components for the orientation error and
three for the position error), and the initial solution. The
return values are the joint angles and the status of the solu-
tion. We can display a graphical representation of the PUMA
robot in this configuration by

>> puma1.show(q),

and the result is shown in Figure 1, where the individual link
coordinate frames can be clearly seen.

This short tutorial has
barely scratched the sur-
face of the capabilities,
which include, f rom
MATLAB release 2017a
and onwards: Universal
Robotic Descr ipt ion
Format (URDF) import,
rigid body tree dynamics,
and multiconstraint in-
verse kinematics. More
detail can be found in the
extended version of this
article, including code ex-
amples, which accompa-
nies this tutorial in IEEE Xplore.

Peter Corke, Queensland University of Technology, Brisbane,
Australia. Acts as a consultant to The MathWorks Inc.
E-mail: peter.corke@qut.edu.au.

�

–0.4
–0.2

0
0.2–0.3

–0.2

–0.1

0

0.4

0.1

(z
)

0.2

0.3

0.4

0.5

0.6

Figure 1. A display of the PUMA 560 robot coordinate frames,
produced by the show method of the RigidBodyTree class.

More detail can be found

in the extended version

of this article, including

code examples, which

accompanies this

tutorial in IEEE Xplore.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 16:16:30 UTC from IEEE Xplore. Restrictions apply.

