
Large-scale Analysis & Detection of Authentication Cross-Site Request Forgeries

Avinash Sudhodanan∗, Roberto Carbone∗, Luca Compagna†, Nicolas Dolgin†,
Alessandro Armando‡ and Umberto Morelli∗

∗Fondazione Bruno Kessler, Italy
Email: 6.avinash@gmail.com, {carbone, umorelli}@fbk.eu

†SAP Labs France
Email: luca.compagna@sap.com, nicolas.dolgin@gmail.com

‡University of Genova
Email: alessandro.armando@unige.it

Abstract— Cross-Site Request Forgery (CSRF) attacks are one
of the critical threats to web applications. In this paper, we
focus on CSRF attacks targeting web sites’ authentication and
identity management functionalities. We will refer to them
collectively as Authentication CSRF (Auth-CSRF in short). We
started by collecting several Auth-CSRF attacks reported in
the literature, then analyzed their underlying strategies and
identified 7 security testing strategies that can help a manual
tester uncover vulnerabilities enabling Auth-CSRF. In order to
check the effectiveness of our testing strategies and to estimate
the incidence of Auth-CSRF, we conducted an experimental
analysis considering 300 web sites belonging to 3 different
rank ranges of the Alexa global top 1500. The results of
our experiments are alarming: out of the 300 web sites we
considered, 133 qualified for conducting our experiments and
90 of these suffered from at least one vulnerability enabling
Auth-CSRF (i.e. 68%). We further generalized our testing
strategies, enhanced them with the knowledge we acquired
during our experiments and implemented them as an extension
(namely CSRF-checker) to the open-source penetration testing
tool OWASP ZAP. With the help of CSRF-checker, we tested
132 additional web sites (again from the Alexa global top
1500) and discovered that 95 of them were vulnerable to Auth-
CSRF (i.e. 72%). Our findings include serious vulnerabilities
among the web sites of Microsoft, Google, eBay etc. Finally,
we responsibly disclosed our findings to the affected vendors.

1. Introduction

Cross-Site Request Forgery (CSRF) is one of the top
threats to web applications and has been continuously
ranked in the OWASP Top Ten [2]. In a CSRF attack,
the attacker makes a victim’s web browser silently send a
forged HTTP request to a vulnerable web site and cause an
undesired state-changing action. The term victim refers to
an honest user of the vulnerable web site.

CSRF attacks can be classified as post- and pre-authen-
tication CSRF attacks, depending on whether the undesired

This work has been partly supported by the EU under grant 317387
SECENTIS (FP7-PEOPLE-2012-ITN).

Figure 1: Most-common Auth-CSRF-vulnerable processes

state-changing action requires the victim to have an already-
established authenticated session or not, respectively. Post-
authentication CSRF is known at least since 2001 [8] and
has received a lot of attention from the web community. For
instance, the OWASP Testing Guide [31] devotes an entire
section to this vulnerability (cf. Testing for CSRF in [31]).
On the contrary, pre-authentication CSRF is not mentioned
in the OWASP Testing Guide although severe exploits have
been reported in the literature, including:

• the execution of malicious JavaScript code at the
victim’s web browser [13],

• the association of the victim’s financial details (or
Google Search History) with the attacker’s PayPal
account (or Google account, respectively) [13], and

• the tracking of the videos watched by the victim by
the attacker [37], [21].

In this paper, we focus on state-changing CSRF attacks
that affect web sites’ authentication and identity manage-
ment functionalities. If carried out successfully, these attacks
can enable an attacker to (i) authenticate as the victim on
the vulnerable web site for post-authentication actions or (ii)
authenticate the victim into an attacker-controlled account
on the vulnerable web site for pre-authentication actions.
We refer to them collectively as Authentication CSRF (Auth-
CSRF for short). We will refer to pre-authentication Auth-
CSRF attacks as preAuth-CSRF and post-authentication
Auth-CSRF attacks as postAuth-CSRF.

We begin by analyzing the Auth-CSRF attacks reported
in literature, we have been able to (i) identify 7 commonly-
found processes whose vulnerable implementation causes
Auth-CSRF attacks (an overview of them is shown in Fig-
ure 1), (ii) rationally reconstruct 7 process-based testing

2017 IEEE European Symposium on Security and Privacy

© 2017, Avinash Sudhodanan. Under license to IEEE.

DOI 10.1109/EuroSP.2017.45

350

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 29,2024 at 04:26:59 UTC from IEEE Xplore. Restrictions apply.

strategies that can be followed by testers to uncover Auth-
CSRF vulnerabilities and also included in widely-used web
application testing guides (to spread awareness of Auth-
CSRF attacks), (iii) generalize the 7 process-based testing
strategies into 2 (one pre and one postAuth-CSRF testing
strategy) with the prospect of automating them and thereby
reducing the manual effort required in applying them. Ad-
ditionally, we review the (semi-)automatic CSRF-prevention
mechanisms proposed in the literature (see, e.g., [18], [28],
[20]), establishing that only a subset of the Auth-CSRF
attack vectors can be blocked by them.

To estimate the incidence of Auth-CSRF in online web
applications and evaluate the effectiveness of our process-
based testing strategies, we run an experimental analysis
considering 300 Alexa global top web sites (see www.alexa.
com/ topsites) belonging to 3 different rank ranges of the
Alexa top 1500. The results of our experimental analysis
are alarming: out of the 300 web sites we considered, 133
qualified for conducting our experiments (many web sites
were skipped because of language barriers, duplicates, etc.,
see Section 5 for details) and 90 of these suffered from at
least one vulnerability enabling Auth-CSRF (i.e. ∼68% of
the tested web sites are vulnerable). In total, we discovered
150 vulnerabilities in this phase and some of our most-
severe findings are mentioned in Table 1.

Motivated by the challenges we encountered while
conducting our experiments (e.g., identifying the relevant
HTTP requests to test for Auth-CSRF, altering the re-
quests based on stored v/s reflected CSRF criteria etc.),
we developed CSRF-checker, a proof-of-concept testing tool
based on OWASP ZAP [3] that assists a tester to (semi-)
automatically detect vulnerabilities enabling Auth-CSRF.
Using CSRF-checker, we assessed 132 additional web sites
(from the Alexa global top 1500) and identified 95 vul-
nerable ones that are susceptible to Auth-CSRF attacks. In
these experiments, CSRF-checker helped in uncovering 168
vulnerabilities.

All the experiments reported in this paper have been
conducted in a responsible and non intrusive way (explained
in Section 8). We reported our findings to the affected ven-
dors and some of them already acknowledged our findings
(their identities are disclosed in the paper). For instance,
Microsoft and Twoo (a prominent dating web site) paid
us $1500 and $500 bug bounties respectively. Similarly,
eBay fixed an Auth-CSRF based account hijack vulnera-
bility (on eBay.com) we reported. Additionally, LiveJournal
and a prominent smartphone company offered non-monetary
rewards (e.g., free subscriptions, gift cards etc.) for our
findings related to Auth-CSRF in their web sites.

The contribution of our paper is manifold:

• we provide a comprehensive analysis of Auth-CSRF
attacks taking into account both pre-authentication
and post-authentication processes (to the best of our
knowledge, something like this has not been done
yet);

• we provide precise security testing strategies for
Auth-CSRF; introducing these strategies within, e.g.,

the OWASP Testing Guide may help increase aware-
ness and ultimately improve CSRF protection in web
sites;

• we present a proof-of-concept prototype that sup-
ports the (semi-)automatic discovery of Auth-CSRF;

• we report on a large-scale experimental analysis for
Auth-CSRF we conducted on popular websites from
the Alexa global top 1500; this provides experimen-
tal evidence to our statements;

• combining the results of all our experiments shows
that there are 318 exploitable Auth-CSRF vulner-
abilities affecting 185 web sites from the Alexa
global top 1500 (among the 265 web sites we tested),
i.e. ∼70% of the web sites we tested were vulnerable
to Auth-CSRF; we also report on our responsible
disclosure experience.

Structure of the paper. In Section 2, we introduce some
background information about CSRF attacks and defenses.
We continue in Section 3 discussing Auth-CSRF over key
processes of a web application. Section 4 defines precise
security testing strategies to detect Auth-CSRF attacks.
We discuss our first experimental evaluation of Alexa top
web sites in Section 5, and some relevant case studies
in Section 6. In Section 7 we present our prototype for
assisting users toward testing for Auth-CSRF. Our ethics and
responsible disclosure experience is reported in Section 8.
In Section 9 and Section 10 we discuss some limitations
of our work and a comparison with the related work. We
conclude in Section 11 with some final remarks.

2. Background

This section provides background knowledge of different
types of CSRF attacks and the widely-used defenses to
prevent them.

2.1. CSRF Attacks

In a CSRF attack, an attacker makes a victim user’s
web browser send a forged HTTP request to an honest web
site and cause an undesired state-changing action at the
web site. The seriousness of a CSRF attack depends on the
consequences of the state-changing action that was initiated
by the attacker. For instance, in [42], it was shown that while
being logged in on prominent web sites like nytimes.com
(an online newspaper web site), INGdirect.com (a famous
banking web site) etc., if a victim user loads an attacker-
controlled web page in his/her web browser, the attacker can
send forged HTTP requests to these web sites and (1) steal
the victim’s personal email address stored at nytimes, (2)
transfer money from the victim’s ING bank account to the
attacker’s account etc.

From 2001 (first reporting of CSRF [8]) to 2008, it was
widely-considered that only the state-changing actions that
can be caused by authenticated users need to be protected
from CSRF attacks. This is mainly due to the assumption
that only authenticated users can execute actions having

351

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 29,2024 at 04:26:59 UTC from IEEE Xplore. Restrictions apply.

Type Vulnerable Web Sites Impact
p
re

A
u
th

-C
S

R
F

e-Government web site for tax filing Victim can be tricked to reveal his/her private financial information

Search engines (Google, Bing) Web Search history of the victim can be accessed by the attacker

Video-sharing (YouTube) History of the videos searched & watched by the victim is accessible to the attacker

p
o
st

A
u
th

-C
S

R
F

Online Dating (Twoo) Attacker can compromise the victim’s Twoo account and access the victim’s chat
history, know the victim’s dating preferences, sexual orientation etc.

Online shopping (eBay) Attacker can access victim’s eBay account and shop using the financial information
associated to that account.

Smartphone company’s web site Attacker can compromise the victim’s account at the phone company’s web site
and access the victim’s phone data remotely, including SMS, contacts list, gallery
items, location info, etc.

TABLE 1: Excerpt of our Findings

high-impacts (e.g., transferring money from one account
to another). However, in 2008, Login CSRF attack was
introduced [13]. In a Login CSRF attack, an attacker makes
a victim’s browser send a HTTP request to the authentication
end point of a web site (e.g., action URL of the login
form) with the attacker’s username & password for the web
site and thereby authenticating the victim into the web site
as the attacker. By doing so, the attacker can keep track
of the actions performed by the victim on the vulnerable
web site until the end of the session, enabling the attacker
to steal sensitive information. The authors demonstrated
this by showing that the Google search history (or bank
account details) of another user can be stolen by mounting
a Login CSRF attack on Google (or PayPal respectively).
The authors even demonstrated the possibility of executing
malicious JavaScript code at the victim’s web browser by
exploiting a Login CSRF in iGoogle. Recently, several
variants of Login CSRF attack have also been reported in
the Single Sign-On (SSO) domain [10], [12].

Pre- and Post-authentication CSRF Attacks: It is inter-
esting to note that the victims of Login CSRF attacks (and
its variants [10], [12]) are not authenticated users (unlike
previously-reported CSRF attacks). Based on these findings,
we divide CSRF attacks into two categories: CSRF attacks
that do not require the victim to have an authenticated
session with the vulnerable web site (hereafter what we refer
to as pre-authentication CSRF attacks) and the type of CSRF
attacks that require the victim to have an authenticated
session (hereafter referred to as post-authentication CSRF
attacks). We will show in Section 2.2 that this distinction is
important when it comes to protecting web sites from CSRF
attacks.

Reflected and Stored CSRF Attacks: Depending on the
way in which the attacker makes the victim send the forged
HTTP request, CSRF attacks can be classified into reflected
CSRF attacks and stored CSRF attacks [17], [34]. While in
reflected CSRF attacks, the attacker uses a medium other
than the vulnerable web site—for instance a malicious web
site controlled by the attacker—to make the victim’s browser
send the state-changing HTTP request, in stored CSRF at-

tacks, the attacker can either directly use the vulnerable web
site or a web site running in a related domain [16] to make
the victim’s browser send the state-changing HTTP request.
As we will show in Section 2.2, this distinction is important
in understanding the drawbacks of CSRF defenses.

2.2. Defending against CSRF Attacks

There are three main defense methods for protecting web
sites from CSRF attacks, namely secret validation token,
HTTP Referer/Origin header validation, and custom
HTTP header validation. Hereafter, we briefly describe them
(interested readers can refer to [13] for more details), also
reporting some (semi-)automatic CSRF protection mecha-
nisms that leverage these defenses.
Secret Validation Token: This method helps a web site
to maintain session integrity by validating a secret token.
Whenever a user starts a session with a web site, the web
site generates (1) a unique identifier for the session (what
we refer to as session identifier) and (2) a non-guessable
secret token that is cryptographically bound to the session
identifier. The session identifier is stored on the web browser
associated to the session (e.g., using the Set-Cookie
HTTP header) and the secret token is embedded in all
HTTP responses to the web browser. Whenever the user
executes an important operation that will cause a state-
changing action at the web site, a HTTP request is sent
to the web site containing both the session identifier and
the secret token. Upon receiving the request, the web site
checks whether the secret token and the session identifier
maintain the expected cryptographic relationship. Only if
this condition is satisfied the state-changing operation will
be executed. Even though this is an effective defense, we
will show in Section 5 that many web sites implement this
defense incorrectly and thereby enable CSRF attacks.
Referer/Origin Header Validation: In this method, when-
ever a web site receives a HTTP request associated to
a state-changing action, the web site checks whether the
request originated from a trusted domain. This can be done
by checking the value of either the Referer header or

352

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 29,2024 at 04:26:59 UTC from IEEE Xplore. Restrictions apply.

the Origin header present in the HTTP request. The
Referer header carries the value of the URL of the
web page that caused the request. The Origin header
contains only the scheme, host, and port of the URL of
the web page that caused the request. If the value in the
Referer/Origin header does not belong to that of a
trusted domain, the request is dropped. We will show in
Section 3 that there are certain special scenarios (e.g., URL-
based account activation) where the web site will have
to execute state-changing actions upon receiving HTTP
requests from unknown domains and erroneous logic of
the implementation of these scenarios can cause CSRF
attacks. Additionally, certain browser-based vulnerabilities
can also enable an attacker to spoof the Referer/Origin
headers (e.g., [22] explains a PDF reader-based vulnerabil-
ity enabling CSRF). Browser-based security vulnerabilities
enabling CSRF is beyond the scope of this paper.
Custom HTTP Header Validation: A web site adopting
this defense must implement all state-changing actions via
XMLHttpRequests [7]. In this way, the web site can add
custom HTTP headers to all state-changing HTTP requests
and validate these headers to ensure that the request has not
been forged. In [13], it is suggested to validate the presence
of the X-Requested-By header (a header present in all
XMLHttpRequests) to ensure that the request originated
from a trusted domain. The logic behind this idea is that
an attacker’s web page loaded at a victim’s web browser
will not be able to send XMLHttpRequests to another web
site (which is not under the control of the attacker) unless
the web site suffers from Cross-Site Scripting vulnerabil-
ities (commonly referred to as XSS), or if the web site
defines erroneous cross-domain policies [26], or if the victim
uses a vulnerable web browser (beyond the scope of this
paper, see [22] for details). In [13] it is also suggested
to drop all state-changing requests that do not contain the
X-Requested-By header. However, we will show in Sec-
tion 5 that many web sites implementing their login actions
via XMLHttpRequest do not reject the request even if it does
not contain the X-Requested-By header. This allows an
attacker to send forged login requests.
(Semi-)automatic CSRF Protection Mechanisms: Manu-
ally implementing the above mentioned CSRF defenses is
not only tedious, but also error prone. Even though there
are web site development frameworks like ASP.NET that
supports swift adoption of CSRF defenses, it was pointed
out in [29, §2.1.2] and [18, §3.1.1] that these frameworks
have many exceptions (e.g., no protection for SSO [29,
§2.1.2]). Another interesting option available for web site
developers and users to avoid CSRF attacks is to make use of
(semi-)automatic CSRF protection mechanisms (e.g., [23],
[25], [18], [30]).

These mechanisms are implemented either at the client-
side (e.g., as a browser plugin) or at the server-side of a web
site. They can be broadly seen as having two parts. First
they use certain heuristics to identify suspicious requests
(e.g., [23] considers all cross-domain requests as suspicious)
and then they perform certain operations on the suspicious
HTTP requests (e.g., [23] removes authentication credentials

from the header of suspicious requests). We will show in
Section 3.3 that many CSRF attacks cannot be prevented
by these mechanisms.

In the following section we explain the subclass of CSRF
attacks we focus on in this paper.

3. Authentication CSRF Attacks (Auth-CSRF)

As shown in the previous section, CSRF attacks can af-
fect any sensitive process of a web site, and their impact can
have different levels of severity depending on the process
considered, and a number of defenses can be put in place to
defend against CSRF. It is thus difficult to evaluate whether
all the sensitive processes of a web site are protected from
CSRF.

For our purposes, we identified a significant subclass
of CSRF attacks that affects the authentication and identity
management processes of web sites. We refer to them as
Authentication CSRF attacks (or Auth-CSRF in short). In
Auth-CSRF attacks, the attacker exploits a CSRF vulner-
ability on a web site to cause either the (1) victim to be
authenticated as the attacker on the target web site or (2)
attacker to be authenticated as the victim on the target web
site.

The reason why we considered this subclass is manifold.
Auth-CSRF attacks are pervasive (as shown by recent stud-
ies [35], [29]) and affect both pre- and post-authentication
processes of web sites (cf. Figure 1). In addition, verifying
the success of the application of an Auth-CSRF attack strat-
egy on a web site can be done easily by checking whether
(i) the victim has been authenticated as the attacker or (ii)
the attacker can authenticate as the victim. Last but not
least, given that Auth-CSRF attacks affects authentication,
the impact of Auth-CSRF attacks can be even more serious
than other kinds of CSRF attacks. In the following section
we explain this in more detail.

3.1. Impacts of Auth-CSRF Attacks

CSRF attacks causing the victim to be authenticated as
attacker are often underestimated. This is mainly due to the
fact that it is not clear how an attacker can exploit this
scenario. Some of the possible exploitations that are reported
in the literature are as follows.

• In [13] it was shown that by logging the victim
into the attacker’s Google (or PayPal) account, an
attacker can steal the Google search history (or bank
account details respectively) of the victim, execute
arbitrary JavaScript code on the victim’s browser etc.
Interestingly, another researcher [21] showed that by
exploiting this vulnerability an attacker can host a
malicious flash file and steal the search history of
the victim’s actual YouTube account.

• In [37] it was shown that an attacker can authenticate
the victim to the attacker’s account on a famous
video-sharing web site and thereby track the videos
watched by the victim.

353

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 29,2024 at 04:26:59 UTC from IEEE Xplore. Restrictions apply.

• It was shown in [29] that by logging the victim
into the attacker’s Facebook account, an attacker can
associate his/her Facebook account to the victim’s
StackExchange account. This enables the attacker to
sign into the victim’s StackExchange account via the
“log in with Facebook” option on StackExchange.

CSRF attacks causing the attacker to be authenticated as
the victim are obviously serious. They allow an attacker to
have complete access to the victim’s account on a web site.
An attacker can purchase items using the victim’s credit card
if the vulnerable web site is an online shop where victim
has associated his/her credit card. Similarly, the attacker can
access the victim’s confidential files if the vulnerable web
site is an online file-sharing web site.

We will present additional impacts of Auth-CSRF at-
tacks from our experimental analysis in Section 6.

3.2. Selection of Auth-CSRF-vulnerable Processes

Before defining of security testing strategies for Auth-
CSRF, we started with a scrutiny of several Auth-CSRF
attacks reported in the literature and the selection of the
processes affecting authentication. Table 2 shows the Auth-
CSRF attacks that cause the victim to be authenticated as
the attacker and Table 3 shows the attacks that cause the
attacker to be authenticated as the victim. The process whose
vulnerable implementation caused the attack is shown in
the last column of Tables 2 and 3. An overview of all
the processes considered in Tables 2 and 3 is illustrated
in Figure 1. Hereafter, we describe each process (labeled as
P1 to P7) and the associated attacks.
Form-based Registration (P1): In many web sites, users
can create accounts by providing the necessary information
(such as username, desired password, etc.) in a registration
form. We refer to this process as form-based registration.
Attack #1: The attack was discovered in www.localize.io
(Localize). The web site’s Sign Up form was not protected
from CSRF attacks and the web site directly authenticates a
user upon submitting the registration form with valid data.
When the victim visits the attacker’s web site, a forged
HTTP request corresponding to the submission of the regis-
tration form is sent from the victim’s web browser. Being a
reflected CSRF attack (see Section 2 for details), the origin
of the forged attack request (shown as Atk Req—meaning
Attack Request—in Table 2) will be a URL associated to
the attacker’s web site (shown as AtkWS—abbreviation of
Attacker’s Web Site—in column 4, row #1 of Table 2) and
the HTTP request containing the username, password and
other registration information chosen by the attacker, similar
to that of the victim (represented as unameA, passA and
infoA in column 5, row #1 of Table 2). A benign version
of this forged request (shown as Benign Req—meaning
Benign Request—in Table 2) is supposed to originate from
the vulnerable web site (shown as VulnWS—abbreviation
of Vulnerable Web Site—in column 3, row #1 of Table 2)
which in this case is Localize. Upon receiving the request,
the victim is authenticated as attacker on Localize.

URL-based Account Activation (P2): On many web sites,
whenever a user creates an account, the web site sends
a URL containing a secret activation token to the email
address provided by the user during registration. The user
is then instructed to click on the link. This procedure helps
the web site to verify whether the user is actually the owner
of the provided email address. When the user passes this
verification, the newly-created account is fully activated. We
refer to this process as URL-based account activation and
to the URL with the secret activation token as the activation
link.
Attack #2: This attack was found in open.sap.com (openSAP
in short). When the user clicks on the account activation
link sent by openSAP, the web site not only activates the
account but also authenticates the user. The attacker can
create an account on openSAP that looks (visually) similar
to the victim’s actual openSAP account (in openSAP this
can be done by keeping the firstname and lastname of the
victim’s openSAP account as the firstname and lastname of
the spoofed account). After creating the account, the attacker
receives an activation link containing the secret activation
token (act tokenA). The attacker embeds this link on the
attacker’s web site. When the victim visits the attacker’s web
site, the attacker makes the victim’s browser sends a forged
HTTP request corresponding to clicking the activation link
containing (act tokenA) and the victim is authenticated as
the attacker on openSAP.
Form-based Login (P3): In many web sites, the user can
authenticate by providing a user identifier—in most cases
this is the email address—and a password on a login form
provided by the web site. We refer to this process as form-
based login.
Attack #3: This attack is known as Login CSRF attack
and the attack was discovered in twitter.com (Twitter) and
google.com (Google) due to the absence of CSRF protection
in the login forms. The description of the attack is as
follows. The attacker creates an account on Google (or
Twitter) with the attacker’s email address (emailA) and pass-
word (passA). The newly created account looks (visually)
similar to the victim’s actual Google (or Twitter) account
(for instance, a Google or Twitter account created with
the same first name and last name as that of the victim’s
actual account). When the victim visits the attacker’s web
site, the attacker makes the victim send a forged HTTP
request corresponding to the submission of the login form on
Google (or Twitter) with emailA and passA. Upon receiving
the request, the victim is authenticated as the attacker on
google.com (or twitter.com).
Attack #4: This attack was found in facebook.com (Face-
book). Facebook protects its login form from CSRF attacks
by checking the Referer header of the login requests (to
understand whether the request originated from a web page
associated to Facebook). However, if the Referer header
is missing in the request, Facebook allows the request. This
allows an attacker to perform an attack similar to attack #3
of Table 2 but with the difference that, while sending the
forged login request with the attacker’s login credentials,
the attacker abuses a browser trick to send the request

354

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 29,2024 at 04:26:59 UTC from IEEE Xplore. Restrictions apply.

Reference Referer/Origin Credentials in Atk Req Vulnerable Process
Benign Req Atk Req

1 Localize.io’s Sign up form [9] VulnWS AtkWS Body[unameA, passA, infoA] Form-based Registration

2 openSAP’s account activation URL [37, §IV.B.2] TrustWS AtkWS URL[act tokenA] URL-based Account Activation

3 Twitter’s [12, §IV.E] and Google’s [13, §3] Login Form VulnWS AtkWS Body[emailA, passA]

Form-based Login4 Facebook’s Login Form [13, §4.2] VulnWS [] Body[emailA, passA]

5 Facebook’s Login Form [29, §2.2.1] VulnWS AWPVulnWS Body[emailA, passA]

6 Two web sites implementing Mozilla’s BrowserID [11, §6.2]

TrustWS AtkWS

Body[auth assertA]

SSO Login

7 Many web sites implementing Open ID [13, §6.1] Body[tokenA]

8 Stanford’s WebAuth implementation [10, §IV.E] URL[id tokenA]

9 Many web sites implementing OAuth protocol [37, §VI.B.3], [12,
§V.C], [38, §4.4], [35, §3.1]

URL[codeA]

Legend: (1) VulnWS: Vulnerable Web Site, (2) AtkWS: Attacker’s Web Site, (3) TrustWS: Trusted Web Site (e.g., an IdP, a mailbox provider, etc.), (4) AWPVulnWS:
Attacker-configurable Web Page on the Vulnerable Web Site, (5) []: empty Referer Header

TABLE 2: Auth-CSRF attacks causing Victim to be Authenticated as Attacker

Reference Referer/Origin Credentials in Atk Req Vulnerable Process
Benign Req Atk Req

10 Web site implementing OAuth-based account association feature
[33], [6], [41, §5.2.1(A6)]

TrustWS AtkWS Body[codeA], Hdr[cookieV] SSO-based Account Association

11 Primary Email change in MetaFilter[42, §3.3] VulnWS AtkWS Body[emailA], Hdr[cookieV] Primary Email Change

12 Web sites having Password change forms without CSRF protec-
tion [1]

VulnWS AtkWS Body[new passA], Hdr[cookieV] Password Change

Legend: (1) TrustWS: Trusted Web Site (e.g., an IdP), (2) AtkWS: Attacker’s Web Site, (3) VulnWS: Vulnerable Web Site

TABLE 3: Auth-CSRF attacks causing Attacker to be Authenticated as Victim

without the Referer header (see [23, §3.1], [13, §4.2.1])
and thereby authenticating the victim as the attacker on
Facebook.
Attack #5: This attack was also discovered in facebook.com.
The attack is similar to attack number #4 of Table 2. The de-
scription is as follows. The attacker creates a Facebook can-
vas app running on a domain with prefix apps.facebook.com.
The app is configured in such a way that when the victim
visits the web page associated to the app, a POST request is
send to the attacker’s web site (running on say attacker.com).
Upon receiving the POST request, attacker.com sends a 307
redirection response to the login end point of facebook.com
with the attacker’s Facebook credentials and thereby authen-
ticating the victim as the attacker on Facebook. The attack
succeeds because facebook.com accepts login requests with
Referer header values belonging to the subdomains of
facebook.com and the 307 redirection response maintains
the Referer header of the source request (i.e. the POST
request from apps.facebook.com) in the subsequent request.
The web page configured by the attacker and running
on apps.facebook.com is represented as AWPVulnWS—
meaning the Attacker-configurable Web Page on the Vul-
nerable Web Site—in column 4, row #5 of Table 2.
SSO Login (P4): Many web sites depend on trusted third-
party web sites for authentication. An example is SSO where
a Service Provider (SP) web site (e.g., pinterest.com) de-
pends on an Identity Provider (IdP) web site (e.g., facebook.
com) for authenticating a user. When a user initiates SSO
on a SP web site, the SP redirects the user’s browser to the

SSO authentication end point of the IdP. At this point the
user is required to provide his/her login credentials to the
IdP. If the provided credentials are correct, IdP redirects the
user back to the SP web site with authentication data that
will help the SP to uniquely identify the user and thereby
authenticate him/her. We refer to this process as SSO login.
Attack #6: This attack was discovered in two web sites
integrating Mozilla’s BrowserID SSO protocol. When the
victim visits the attacker’s web site, the attacker forges
a HTTP request to the SSO authentication end point of
the vulnerable web site (which is acting as the SP) with
the attacker’s authentication assertion (represented as auth -
assertA in column 5, row #6 of Table 2) issued by the IdP
in the body. The SP validates the submitted auth assertA
and authenticates the victim as the attacker.
Attack #7: Similar to attack #6 but with the difference that
the underlying SSO protocol is OpenID and the authenti-
cation data sent by the attacker to the vulnerable SP (via
the victim’s browser) is the OpenID token of the attacker
(represented as tokenA in column 5, row #7 of Table 2).
Attack #8: Similar to attacks #6 and #7 but with the dif-
ference that the underlying SSO protocol is WebAuth, the
authentication data sent by the attacker to the vulnerable SP
web site (via the victim’s browser) is the WebAuth id token
of the attacker (represented as id tokenA in column 5, row
#8 of Table 2) and id tokenA is located in the URL of the
forged request.
Attack #9: Similar to attack #8 but with the difference
that the underlying SSO protocol is OAuth 2.0 and the

355

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 29,2024 at 04:26:59 UTC from IEEE Xplore. Restrictions apply.

authentication data sent by the attacker to the vulnerable
SP web site (via the victim’s browser) is the OAuth 2.0
authorization code of the attacker (codeA).
SSO-based Account Association (P5): In many web sites,
the user has the possibility to authenticate both via form-
based login and SSO login. This is achieved by allowing
users who do form-based login to later associate their SSO
account. The association is done by executing a protocol
that has a flow similar to that of the SSO Login flow. The
description is as follows. The user must authenticate to the
trusted web site (i.e. the IdP) and the IdP makes the user’s
browser send certain authentication data of the user to the SP
web site at which the user wants to do account association.
We refer to this process as SSO-based Account Association.
Note that SSO-based account association can be executed
only while the user is logged in on the SP web site.
Attack #10: This attack was found in web sites implementing
SSO-based account association via the OAuth 2.0 protocol
and lacking CSRF protection. When the victim visits the
attacker’s web site while being logged in on the vulnerable
SP web site, the attacker forges a HTTP request to the
account association end point of the vulnerable SP web site
with the attacker’s authorization code (issued by the IdP) for
account association (represented as codeA). Since the victim
is logged in on the vulnerable SP web site, the authenticated
session identifier of the victim on the vulnerable SP web
site (represented as cookieV) is also present in the header
of the forged request. Upon receiving the forged request,
the vulnerable web site associates the attacker’s IdP account
with the victim’s form-based login account. This enables the
attacker to login (via SSO) to the victim’s account (on the
vulnerable web site) using the attacker’s IdP credentials.
Primary Email Change & Password Change (P6, P7):
In many web sites, users perform form-based login by
providing the email address and password associated to the
user’s account. Some web sites allows the user to set new
values for the email and password associated to the user’s
account. We call these processes as primary email change
and password change. The user must be authenticated on the
web site while executing these processes. Note that these
processes are different from the “forgot email/password”
processes in web sites that do not require the user to be
logged in.
Attack #11: An attack was discovered in metafilter.com
(MetaFilter) in which the form for primary email change was
not protected from CSRF attacks. When the victim visits the
attacker’s web site while logged in on the vulnerable web
site, the attacker forges a HTTP request to the vulnerable
web site that will change the primary email address asso-
ciated to the victim’s account. In particular, the new value
of the primary email address will be the attacker’s email
address (represented as emailA). This allows the attacker to
obtain a fresh password for the victim’s account (via the
“forgot password” feature) and have access to the victim’s
account on MetaFilter. Note that the authenticated session
identifier of the victim for the vulnerable web site (rep-
resented as cookieV) is automatically sent by the victim’s
browser along with the forged request.

Attack #12: Same as #11 but the forged request changes the
victim’s account’s password at the vulnerable web site to
a value chosen by the attacker (represented as new passA).
This enables the attacker to login to the victim’s account
(provided that the attacker knows the username of the vic-
tim’s account).

3.3. Preventing Auth-CSRF: Challenges

The following is our comparison of the defenses pro-
posed for preventing CSRF attacks (explained in Section
2.2) and the Auth-CSRF attacks shown in Tables 2 and 3.
The secret validation token method if carefully implemented
can defeat all attacks (#1 to #12). However, it was shown
in [35], [38], [33] that many developers do not implement
this defense to protect their SSO Login and SSO-based Ac-
count association processes and thus leaving these web sites
vulnerable to attacks #9 and #10. This raises the question
of whether this trend of developers not implementing CSRF
defenses is also applicable to other processes.

The Referer/Origin header validation method is
suitable for preventing standard reflected Auth-CSRF at-
tack vectors. However, the ambiguity in handling sce-
narios like empty or related-domain (cf. [16]) values for
Referer/Origin leaves web sites vulnerable to at-
tacks like #4 and #5. Additionally, the Referer/Origin
header validation method is not suitable for protecting pro-
cesses such as URL-based account activation mainly due
to the unpredictable nature of the Referer/Origin (the
value of the Referer/Origin is chosen by the third-
party mailbox provider). Lastly, browser-based vulnerabil-
ities enabling Referer/Origin header spoofing (see
[22]) is also a threat to this defense.

As we explained in Section 2, the custom header vali-
dation approach can be considered to be an effective CSRF
defense only in the absence of XSS vulnerabilities, erro-
neous cross-domain policies and browser-based vulnerabil-
ities. Past studies (e.g., [2], [26]) show that at least the first
two issues are hard to avoid.

In [29], it was shown that the default CSRF protection
offered by web site development frameworks like ASP.NET
cannot prevent attacks like #9, #10 etc.

When it comes to (semi-)automatic defenses, it was
shown (e.g., in [18], [20]) that while many of the proposed
techniques [19], [24], [34], [23] break normal cross-domain
behavior such as SSO Login, others (e.g., [42]) suffer from
drawbacks of either being too permissive or restrictive. We
noticed that some of them [18], [28], [20] cannot detect
attacks like #2. Similarly, stored CSRF is not supported by
[25].

As shown above, existing defenses for Auth-CSRF are
either insufficient or prone to implementation errors. Hence,
there is a strong need for good security testing strategies
that can detect vulnerabilities causing Auth-CSRF. Although
there exist many web vulnerability scanners, it has been
shown (e.g., [14]) that they have low detection rate for CSRF
in general. It is in this context that we propose manual and
(semi-)automatic testing strategies for Auth-CSRF.

356

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 29,2024 at 04:26:59 UTC from IEEE Xplore. Restrictions apply.

4. Manually Testing for Auth-CSRF Attacks

By carefully analyzing the attacks we discussed in Sec-
tion 3, we have been able to distill testing strategies for
processes P1 to P7 explained in Section 3.2. A tester can
manually apply these testing strategies to detect vulnerabili-
ties causing Auth-CSRF on any Web site Under Test (WUT).
Prerequisites. We assume that the tester is in control of a
web browser and, using a proxy (e.g., OWASP ZAP [3]), is
capable of intercepting and modifying HTTP traffic between
the browser and WUT. Moreover, the tester owns creden-
tials associated with two separate accounts (having unique
usernames and passwords) on the WUT. We will refer to
these accounts as AtkAcc and VictAcc as they represent the
accounts of an attacker and of a victim on the WUT. The
tester should also have a social account enabling SSO login
to the WUT (if this option is available on the WUT). We
will refer to this account as AtkAccSoc (as it represents
the social account of the attacker). The last step of each
test strategy is a check of the success criteria. A positive
answer to this check is an indication that the corresponding
process on the WUT is vulnerable. Hereinafter we define
each testing strategy.

The general idea is to first run the selected process as
the attacker. This allows us to intercept a HTTP request, that
can be used as a reference to forge the one to test for Auth-
CSRF attacks. After some experiments, we noticed that the
following fields of the intercepted HTTP request must be
kept unchanged: HTTP method, URL, Content-Type
and Content-Length headers, and the request body. It
is then necessary to alter the Referer/Origin header
according to the different scenarios (see Table 4).

Let us first consider the strategies for detecting preAuth-
CSRF attacks:

TS1: Test Strategy for Form-based Registration
(1) Visit the registration page of WUT
(2) Submit registration details (including login-credentials)
for AtkAcc
(3) Intercept the HTTP request containing the registration
details
(4) Copy the HTTP method, URL, Content-Type,
Content-Length and body of the intercepted request
(5) Clear browser cookies and reset the intercepting proxy
(6) Visit WUT
(7) Send a new HTTP request with a forged Referer
(based on A1, A2 and A3 of Table 4), the same HTTP
method, URL, Content-Type, Content-Length and
body as those in the intercepted request
(8) Check: Is it logged in as AtkAcc?

TS2: Test Strategy for URL-based Account Activation
(1) Register an account AtkAcc on WUT
(2) Receive account-activation URL at the email-address
used for registration
(3) Clear browser cookies
(4) Visit WUT
(5) Visit account activation URL

(6) Check: Is it logged in as AtkAcc?

TS3: Test Strategy for Form-based Login
(1) Visit the login page of WUT
(2) Submit login-credentials for AtkAcc
(3) Intercept the HTTP request containing the login-
credentials
(4) Copy the HTTP method, URL, Content-Type,
Content-Length and body of the intercepted request
(5) Clear browser cookies and reset the intercepting proxy
(6) Visit WUT
(7) Send a new HTTP request with a forged Referer
(based on A1, A2 and A3 of Table 4), the same HTTP
method, URL, Content-Type, Content-Length and
body as that of the intercepted request
(8) Check: Is it logged in as AtkAcc?

TS4: Test Strategy for SSO Login
(1) SSO login to AtkAcc account on the WUT via
AtkAccSoc
(2) Intercept the HTTP request containing the authentication
token of AtkAccSoc
(3) Copy the HTTP method, URL, Content-Type,
Content-Length and body of the intercepted request
(4) Clear browser cookies and reset the intercepting proxy
(5) Visit WUT
(6) Send a new HTTP request with a forged Referer
(based on A1, A2 and A3 of Table 4), the same HTTP
method, URL, Content-Type, Content-Length and
body as that of the intercepted request
(7) Check: Is it logged in as AtkAcc?

Let us now consider the strategies for detecting
postAuth-CSRF attacks:
TS5: Test Strategy for SSO-based Account Association
(1) Login to AtkAcc on WUT
(2) Visit SSO-based account association page on WUT
(3) Run SSO account association process using AtkAccSoc
(4) Intercept the HTTP request containing the authentication
token of AtkAccSoc
(5) Copy the HTTP method, URL, Content-Type,
Content-Length and body of the intercepted request
(6) Clear browser cookies and reset the intercepting proxy
(7) Login to VictAcc on WUT
(8) Send a new HTTP request with a forged Referer
(based on A4, A5 and A6 of Table 4), the same HTTP
method, URL, Content-Type, Content-Length and
body as that of the intercepted request
(9) Clear browser cookies and reset the intercepting proxy
(10) Check: Is it possible to perform a SSO Login to
VictAcc with the credentials used in (3)?

TS6 & TS7: Test Strategy for Email/Password-change
(1) Login to AtkAcc on WUT
(2) Visit the page for Email/Password-change of WUT
(3) Submit a new Email/Password as AtkAcc
(4) Intercept the HTTP request containing the new
Email/Password

357

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 29,2024 at 04:26:59 UTC from IEEE Xplore. Restrictions apply.

Run P as AtkAcc
I n t e r c e p t CandidateReq
C l e a r c o o k i e s
V i s i t WUT
A l t e r CandidateReq
Send CandidateReq
Check Success Criteria

(a) preAuthTS

Login t o AtkAcc a t WUT
Run P as AtkAcc
I n t e r c e p t CandidateReq
C l e a r c o o k i e s
Login t o VictAcc a t WUT
A l t e r CandidateReq
Send CandidateReq
Check Success Criteria

(b) postAuthTS

Figure 2: Testing strategies

Referer/Origin CSRF Type Covered

A1 attacker.com Reflected preAuth-CSRF

A2 WUT Stored preAuth-CSRF

A3 Empty preAuth-CSRF with empty Referer

A4 attacker.com Reflected postAuth-CSRF

A5 WUT Stored postAuth-CSRF

A6 Empty postAuth-CSRF with empty Referer

TABLE 4: Alterations

(5) Copy the HTTP method, URL, Content-Type,
Content-Length and body of the intercepted request
(6) Clear browser and reset the intercepting proxy
(7) Login to VictAcc on WUT
(8) Send a new HTTP request with a forged Referer
(based on A4, A5 and A6 of Table 4), the same HTTP
method, URL, Content-Type, Content-Length and
body as that of the intercepted request
(9) Clear browser cookies and reset the intercepting proxy
(10) Check: Is it possible to access VictAcc on WUT with
new Email/Password?

We have been able to generalize all seven testing strate-
gies mentioned above down to two, namely preAuthTS (a
common testing strategy for the pre-authentication processes
P1 to P4) and postAuthTS (a common testing strategy for the
post-authentication processes P5 to P7). We reported them
in Figures 2a and 2b, respectively.

We call Candidate HTTP Request (CandidateReq) a
HTTP request that is generated by the browser while ex-
ecuting any of the processes P1 to P7. A CandidateReq
always contains a security token (or credential) either as
a query parameter in the request URL or as a parameter in
the request body. Hence, CandidateReq is an ideal candidate
for mounting an Auth-CSRF attack.

Strategy preAuthTS consists in running a pre-
authentication process P as AtkAcc, intercepting the Can-
didateReq issued by the browser and corrupting the CSRF
prevention mechanisms occurring in the header by applying
the changes given in Table 4. In particular, A1 is used
to perform attacks like #3 of Table 2 where the forged
HTTP request is sent from an attacker’s web site (which
is simulated by changing the Referer/Origin header in the

P CandidateReq Success Criteria

P1 Body/URL[regpass]

Authenticated
as attacker

p
re

A
u
th

T
S

P2 URL[acttoken]

P3 Body/URL[loginpass]

P4 Body/URL[ssotoken]

P5 Body/URL[ssotoken] Account Associated

p
o
st

A
u
th

T
S

P6 Body/URL[newemail] Email Changed

P7 Body/URL[newpass] Password Changed

TABLE 5: Testing Strategy Information

request to attacker.com). Similarly, A2 is used to perform
attacks like #5 of Table 2 where the forged request originated
from a web page on the vulnerable web site. This is done
by changing the Referer header to a non-existing URL
in the domain of the WUT. This URL will represent the
web page in the WUT that is configurable by the attacker
(e.g., similar to the feature offered by apps.facebook.com
explained in Section 3). A3 is to consider attacks like #4
of Table 2 where the attacker manages to send the forged
HTTP request without a Referer header. Once forged,
the corrupted CandidateReq is submitted and finally the
success criteria is checked. The form of CandidateReq and
the success criteria for each process are given in Table 5.

Strategy postAuthTS consists in logging-in with AtkAcc
credentials, running a post-authentication process P and in-
tercepting the CandidateReq issued by the browser, logging-
in using VictAcc credentials, replaying a variant of Candi-
dateReq obtained by corrupting the CSRF prevention mech-
anisms as in the previous case, and finally checking the
success criteria.

In the following section we explain our experiments of
applying the testing strategies TS1 to TS7 to the Alexa top
web sites, focusing only on reflected Auth-CSRF attacks
(as the attack surface for mounting stored CSRF attacks is
relatively low), i.e. applying only A1 and A4 of Table 4.

5. Experiments (Manual)

Selection. For this initial experimental analysis we focused
on a corpus of 300 popular web sites drawn from the
following three ranges of Alexa global top 1500 ranking:

(R1) 1-100 as the top 100 in Alexa Top 500 category,
(R2) 501-600 as the top 100 in Alexa Top 501 to

1000 category, and
(R3) 1001-1100 as the top 100 in Alexa Top 1001 to

1500 category.

This selection allowed us to target the most popular web
sites—cf. range (R1)—expected to have good security mea-
sures in place and to compare them with relevant set-ranges
lower in the ranking—cf. ranges (R2) and (R3)—by a fixed
offset (in our case, 400 web sites lower). The idea was to
evaluate whether a lower Alexa rank meant a higher chance

358

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 29,2024 at 04:26:59 UTC from IEEE Xplore. Restrictions apply.

of CSRF vulnerabilities. We will show in Section 7.3 that
we also conducted experiments on other rank ranges but
with more automation.

Result Overview. Figure 3 shows an overview of the re-
sults. Among the 300 web sites in this corpus, we could
successfully test 133 and 90 have been found vulnerable and
exploitable to at least one of the testing strategies discussed
in Section 4 (while focusing only on reflected Auth-CSRF,
i.e. applying only A1 and A4 of Table 4). The remaining web
sites have been skipped because of language barriers (90),
lack of an account creation feature (17), domain duplicates
such as google.com and google.co.in (31), high requirements
such as payment for account creation (17), etc. The tested
web sites are well distributed over the three selected Alexa
ranges: 45 web sites for (R1), 48 for (R2) and 40 for
(R3). Our results indicate that overall around 68% of the
tested web sites are vulnerable to attacks similar to the ones
mentioned in Tables 2 and 3. This percentage starts at a
lower 53% for range (R1) and goes up to 75% for (R2) and
(R3), indicating that there is indeed some difference between
the most popular web sites—i.e. web sites in (R1)—and
the others. However there is no significant difference in the
aggregated results between (R2) and (R3).

Figure 3: Result overview

Though the severity of each attack strongly depends on
the vulnerable web site, these numbers are in general quite
alarming.

Pre- Versus Post-authentication CSRF. The figures be-
come even more interesting when comparing the incidence
of pre-authentication versus post-authentication attacks, see
Figure 4. Overall 66% of the tested web sites are vulnerable
to and exploitable through pre-authentication CSRF and
only 19% to post-authentication CSRF. These percentages
start slightly lower with (R1): 53% for pre-authentication
and 6% for post-authentication, followed by a slight increase
for (R2) and (R3): 69% for pre-authentication and around
25% for post-authentication attacks. These results indicate
that there is a significant difference between pre- and post-
authentication CSRF incidence and seem to confirm our

Figure 4: Result comparison

hypothesis that pre-authentication CSRF has not received
much attention from the web community.
Results Per Testing Strategy. As already mentioned we
applied all the security testing strategies TS1 to TS7 of Sec-
tion 4 against our corpus of web sites (focusing mainly on
reflected Auth-CSRF attacks). Each security testing strategy
aims to probe whether a web site is subject to a specific
Auth-CSRF attack. Figures 5 and 6 present the incidence of
each one of these pre-authentication and post-authentication
attacks, both in general and over the three individual Alexa
ranges that we considered.

Figure 5: Incidence of pre-authentication vulnerabilities

URL-based Account Activation. Over our corpus of 133
testable web sites, 71 send an email with an account acti-
vation link after registration. After applying our TS2 testing
strategy, we found that around 37% of these web sites
are vulnerable to this form of pre-authentication CSRF,
indicating that the occurrence of this attack is significant.
For all these web sites an attacker can trick an unaware
victim into signing onto an account that seems familiar, but
was created and is actually owned by the attacker (cf. attack
number #2 of Section 3). We performed this check for all
the vulnerable web sites, ascertaining that each vulnerability
was exploitable. The incidence is lower (15%) for the most
popular web sites (R1) and is higher for the other two
ranges: 48% for (R2) and 50% for (R3). The small difference

359

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 29,2024 at 04:26:59 UTC from IEEE Xplore. Restrictions apply.

Figure 6: Incidence of post-authentication vulnerabilities

between (R2) and (R3) is not statistically significant given
the sample size.

Form-based Login. We performed TS3—i.e. Login CSRF
attack—against the majority of the testable web sites as
most of them feature a form-based login (124 of the 133,
the remaining 9 web sites only feature SSO Login to au-
thenticate users). Login CSRF affects 55% of the tested
web sites overall, making it the most prevalent vulnerability
among all the Auth-CSRF attacks we tested. As usual we
checked that an attacker could have indeed authenticated
the victim into the attacker’s account in each vulnerable
web site, proving the flaw was actually exploitable. Once
more the incidence of this vulnerability starts at a lower
35% for the Alexa top 100 (R1) and increases to 62%
and 65% respectively within (R2) and (R3) (no statistically
significant difference between (R2) and (R3)). As explained
in Section 2.2, for the custom header validation CSRF de-
fense, in [13], it is suggested to implement the login request
(i.e. the HTTP request generated upon submitting the login
form) as a XMLHttpRequest for preventing a malicious
web site from forging login requests for mounting Login
CSRF attack. However, among the web sites we tested, 19
of them implement the login request via XMLHttpRequest
but do not complain even if the request is sent as a standard,
cross-origin HTTP request (non-XMLHttpRequest) which is
allowed by the web browser. This makes these 19 web sites
vulnerable to Login CSRF attacks.

SSO Login. Over our corpus of 133 testable web sites, 70
implement the SSO login feature. The overall incidence of
a successful attack is about 51%. However, the incidence
distribution over the three selected ranges seems to violate
the classical trend. In particular the incidence of 60% in (R1)
is not lower than in (R2) and (R3). The reason (interestingly
enough) being the following. We observe that in (R1) there
are 10 well-known service provider web sites owned by
big corporations and which use proprietary SSO protocols.
Namely: google.co.in, youtube.com and blogger.com owned
by Google and associated to accounts.google.com; live.com,
msn.com, bing.com, office.com and microsoft.com owned
by Microsoft and associated to login.live.com; and two
other web sites from the same vendor. These SSO protocols

were designed to have a single authentication method across
several services of the same company. They are not used by
third parties and were much more susceptible to CSRF: all
these “internal” service providers are vulnerable and Auth-
CSRF attacks causing the victim to be authenticated as the
attacker can be mounted (explained later in Section 6.3). It is
interesting to observe that both Google and Microsoft use a
different SSO protocol “internally” from the one provided to
third-party service providers. For instance, Google provides
an OAuth-based protocol for external service providers,
while it uses a custom one for its own services. These
cases were only encountered in (R1) since smaller-caliber
companies encountered in (R2) and (R3) did not feature
several services and therefore did not have a proprietary
SSO protocol. By focusing on the usual third-party SSO
protocols, the trend goes back to the standard one (20%
incidence in (R1) versus 42% and 54% for (R2) and (R3)).
In [35, §4.2], the authors mention that 77 out of the 302 web
sites implementing OAuth 2.0-based SSO (from the Alexa
top 10,000) are vulnerable to Auth-CSRF. The absence of
the state the parameter—a parameter used for implementing
the secret validation token-based CSRF defense (see Section
2.2)—was the criterion used to classify a web site as vul-
nerable. We found this metric to be an unreliable approach
to the issue: among the 29 web sites we tested that use an
OAuth 2.0-based SSO login protocol, 20 of them use the
state parameter and would have been considered safe by
the approach mentioned in [35], but when we performed
our test, 8 of those 20 were found to be vulnerable (due
to improper validation of the state parameter by the service
provider). It seems that the state parameter’s presence does
not imply whether a service provider validates it to prevent
Auth-CSRF.
And when considering the OAuth 2.0-based web sites we
tested that did not use the state parameter, only 4 of the
9 web sites were actually vulnerable to a CSRF attack.
In these instances, the state parameter was replaced by a
local dialogue between a child and parent window for CSRF
protection.
In the end, our results imply a 40% false negative rate
for their metric, and a 44% false positive rate, making it
quite unreliable. If we were to combine our values (4/9
web sites that don’t use the state parameter are vulnerable
and 8/20 web sites that use it are vulnerable) with their
findings (77/302 domains not using the state parameter) we
can estimate a successful attack on 124 of the 302 web sites,
giving us a 41% which exceeds their prediction (25%).

SSO-based Account Association. A few web sites (27/133)
offer the possibility to link the user’s form-based login
account to an existing social account and thereby enabling
SSO-based authentication. Forcing an association to an at-
tacker’s social account through CSRF allows the attacker to
then login to and hijack the user’s account. We found out
that about 22% of the tested web sites (6/27) are vulnerable
to this attack. Given the rarity of this functionality, it is
hard to extract reliable proportions from our tests. However,
we will show in Section 7.3 (see Experiment 2) that after

360

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 29,2024 at 04:26:59 UTC from IEEE Xplore. Restrictions apply.

considering 52 additional web sites implementing the SSO-
based account association process, we find that 17 of them
are vulnerable (i.e. 33%).

Email Change. Most of the tested web sites, precisely 103
over 133, feature a post-authentication action for email
change (or similar e.g., phone number change). Auth-CSRF
attacks were successful in only 14% of these web sites,
indicating a less important incidence for this. However the
severity of these attacks is obviously high, given that an
attacker can trick a user to change the email (or e.g., phone
number) and then trigger a password reset to take control
over the victim’s account. As for most of the previous tests,
the incidence starts lower at 6% for range (R1) and slightly
increases to 16% for (R2) and to 19% for (R3). It is worth
noticing that 19 web sites, outside the ones we tested, do not
allow for a modification of the account’s main email, i.e. by
construction they do not feature the email change action and
are therefore safe. Several web sites (precisely 37) featuring
email change make use of an additional security mechanism:
asking the user for their current account password and
sending it with the email-change request. Since we aimed to
use email change as an action representative for the overall
category of post-authentication actions, we conducted ad-
ditional experiments to be sure that this protection, which
is specific to account settings, was not interfering with our
general results. In this respect, we selected 25 web sites
among those that had a password-based protection against
email change. On these 25 web sites, we tested for CSRF
against other post-authentication actions (e.g., add to cart,
forum post, etc.). Only 3 web sites over 25 were detected
vulnerable to the additional test for CSRF and they are all
in range (R3). All together, this had a small impact (few
percentage points) on the post-authentication CSRF results
presented in Figures 4 and 6. Additionally, while performing
the Auth-CSRF test for email-change, we also ran some tests
on the password-change feature. In web application security
testing guidelines such as the one provided by OWASP [31],
it is explicitly mentioned to protect the password-change
feature from CSRF attacks. We ran the password-change test
on around 2/3 of the web sites within (R2) and (R3), those
having more chances to be vulnerable and only 2 web sites
were found to be vulnerable. Perhaps we can infer that since
there is an explicit mention of this attack in security testing
guidelines, there is a higher awareness from developers and
therefore only a few web sites remain vulnerable. Though
it is difficult to draw conclusive arguments from this extra
experiment, it seems to speak in favor of that inference.

Form-based Registration. We expected CSRF against
registration-form to have an evolution very similar to the
one for Form-based Login but with a higher protection on
registration to prevent mass-registration of fake accounts
(e.g., by using captchas). To evaluate this hypothesis, we
selected a small set of 18 web sites evenly spread across all
three ranges and applied the TS1 testing strategy explained
in Section 4 on the registration form. As expected, there
was a lower occurrence of registration CSRF (39% with 7
vulnerable web sites) and with one web site as exception,

every other web site having a registration form vulnerable to
Auth-CSRF also had a login form vulnerable to Auth-CSRF.
Additionally, the attack on the registration form is harder
to exploit than login-form CSRF: a freshly created account
upon submission of the registration details is less likely to
be confused with the victim’s actual account. However, this
is not the case for login-form CSRF as the attacker can
first create a convincing forged account to ensure extended
usage by the victim before being discovered. Given these
information, we considered it unnecessary to perform a
registration-form CSRF test on all the web sites having the
registration process.

Aware of the issues reported about HTTP Strict Trans-
port Security (HSTS for short) and their potential impact
on CSRF, we decided to augment our experimental analysis
with an extra test to evaluate whether or not the web site
has a proper protection in this respect.

HSTS-enabled Session Management. It has been shown (e.g.,
[43], [15]) that it is difficult for web sites lacking proper
HSTS protection and using secret token validation approach
based on cookies for CSRF defense to prevent a network
attacker from mounting CSRF attacks. We tested for the
presence of the HSTS header with includesubdomains op-
tion (if the web site under test has sub-domains) against all
the 133 testable web sites. The incidence of this issue is
extremely high (see Figure 7): 75% of the tested web sites
are susceptible to this attack. Percentages are a bit better for
Alexa top 100 web sites, but still quite frightening (>50%).
It seems this security-header is widely ignored, possibly due
to the high requirements for a successful exploit compared to
the relatively low payoff (i.e. victim can be authenticated as
the attacker). However, as shown in [43, §5.1.1], depending
on the web site, the impact can be serious.

Figure 7: Incidence of HSTS

During our experiments, we encountered several vul-
nerabilities with interesting characteristics. In the following
section, we explain a subset of these cases.

6. Selected Case Studies

6.1. A Very Prominent Adult Website

This vulnerable adult website has an account system
that logs a watched-video history. The logged-in state is
barely noticeable, so a victim would have trouble identifying
the account in which he/she is logged in, especially if the
attack is targeted and the attacker uses a believable username

361

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 29,2024 at 04:26:59 UTC from IEEE Xplore. Restrictions apply.

for the fake account. After a successful attack (Auth-CSRF
using account activation URL), the victim will be logged in
as the attacker and all content consumed by the victim will
be logged in the attacker’s account. The attacker can steal
the victim’s watch-history and given the nature of such a
website, this theft could lead to a breach of privacy or even
blackmail.

6.2. A Government Website for Tax Filing

We found a vulnerable government web site where cit-
izens must provide sensitive personal data such as annual
income, expenditure etc. Since it is a government web site,
many citizens who may not be aware of web-based attacks
might use it to store their personal information. An attacker
can perform a targeted attack by performing login form-
based Auth-CSRF and waiting for the victim to store his/her
personal details on the attacker’s account.

6.3. Web sites of Google and Microsoft

We noticed that when a user visits google.com from
a non-US location (e.g., France), there is a redirection to
google.x where x is the place-holder for the country code
(e.g., google.fr for France). Additionally, when the user logs
in on google.x, the following happens. There is a redirection
to the URL accounts.google.x with an authentication token
having name sidt as one of the query parameter. This token
is used for authenticating the user on google.x. There is no
CSRF protection for this authentication request. An attacker
can perform the following targeted attack against a user
residing in Italy: (i) the attacker visits google.it, performs au-
thentication and intercepts the request to accounts.google.it
containing sidt, (ii) the attacker makes the victim visit the
URL associated to the intercepted request (e.g., by tempting
the victim to click on a hyperlink of the URL). (iii) when the
victim clicks on the link, the victim is authenticated as the
attacker on google.it and this enables the attacker to steal the
victim’s Google search history. This attack is more stealthy
than the Login CSRF in Google mentioned in [13] because
in our attack, when the victim clicks on the URL sent by the
attacker, a blank page will be loaded on the victim’s browser.
In the meantime, the victim has been silently authenticated
as the attacker. Interestingly, if the victim is logged into
all Google services (e.g., google.it, gmail.com, youtube.com,
etc.) while clicking the link sent by the attacker, the victim
will first be logged out of google.it (not other services) and
then be logged into google.it as the attacker. We noticed
that a similar attack is possible on YouTube as there is also
a request to accounts.youtube.com with the sidt parameter
having the same purpose as explained above.
Similar problems emerged on Microsoft services such as
bing.com and skype.com (the authentication parameter for
Microsoft services is ANON). The exploit on skype.com is
particularly interesting because an attacker can trick the vic-
tim into associating the victim’s credit card on the attacker’s
Skype account, allowing the attacker to recharge his/her
Skype account using the victim’s credit card.

6.4. twoo.com

The web site twoo.com (Twoo in short) is a dating
web site with over 13 million monthly active users. This
web site allows users to associate their social accounts.
We found that an attacker can silently associate the at-
tacker’s Facebook account to the victim’s Twoo account.
This enables an attacker to authenticate to Twoo as the
victim. The following are the steps to perform the attack:
(i) the attacker needs to initiate the process of associating
his/her Twoo account with the his/her Facebook account,
(ii) intercept the HTTP POST request sent to the URL
https://www.twoo.com/ facebook/couple with the Facebook
access token of the attacker in the POST body, (iii) make
the victim’s web browser send the intercepted POST request
while the victim is logged in on Twoo (this can be done
by making the victim visit an attacker-controlled web page
that automatically sends the intercepted POST request). This
attack can be serious because many Twoo users store their
dating preferences, sexual orientation, credit card details etc.
in their Twoo account.

6.5. ebay.com

During our experiments we noticed that when a user
requests for primary email change, eBay asks for pass-
word confirmation and other security measures such as a
captcha. However, the HTTP request containing the new
email address neither has CSRF protection, not has any
details regarding the user who wants to change the email.
This enables the attacker to make the victim’s browser send
the HTTP request to eBay with an email address that is
under the control of the attacker. When this happens, eBay
sends a confirmation link to the attacker’s email address.
The attacker can also send the HTTP request associated to
clicking on the confirmation link from the victim’s web
browser (by embedding the link as the src of an image
in a web page controlled by the attacker and loaded on
the victim’s web browser). When this happens, the primary
email associated to the victim’s eBay account changes and
this enables the attacker to log into victim’s eBay account
and make purchases using the victim’s credit card details
stored on eBay.
Additional Details. More information on our communica-
tions with vendors and some screencasts for the case-study
attacks are available on this paper’s companion web site [5].

7. (Semi-)Automatic Testing for Auth-CSRF

In Section 5 we showed the results of applying each
(manual) testing strategy (see Section 4) on top web sites.
During our experiments we noticed that manually perform-
ing certain steps in the testing strategies can be cumbersome
and error-prone. For instance, to test a SSO Login process,
the tester must intercept the HTTP request carrying the
authentication token (Step 2 of TS4). As shown in Section 6,
in the SSO login implementation of Google and Microsoft, it
is difficult to infer from the name of the parameters (i.e. sidt

362

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 29,2024 at 04:26:59 UTC from IEEE Xplore. Restrictions apply.

and ANON) whether they carry authentication tokens. Since
there are several parameters syntactically resembling an
authentication token, it takes a considerable amount of
time for the tester to manually spot the relevant request to
intercept. Even if the tester manages to correctly spot the
request containing the authentication token, the tester must
perform the subsequent steps (i.e. modifying the intercepted
request based on reflected/stored criteria shown in Table 4
and resending the request) faster before the token expires.
All these requirements points to the necessity of having
an automated means to perform the challenging steps (of
the testing strategies) faster. It is in this context that we
introduce CSRF-checker, a tool that assists the tester in
detecting vulnerabilities causing Auth-CSRF. In Section 7.1
we explain the concept behind CSRF-checker. In Section
7.2 we briefly explain the implementation details of CSRF-
checker. Section 7.3 presents the outcome of our experi-
ments on Alexa top 1500 web sites with CSRF-checker.

7.1. CSRF-checker Concept

The tool implements the strategies reported in Figures 2a
and 2b. The tool detects potential CandidateReqs (the HTTP
request containing a security token or credential) by asking
simple questions to the tester. For instance, in the case of
SSO Login and Account Association processes, the tool asks
the tester to provide the URL of the IdP and to give an
input just before authenticating into the IdP. Upon receiving
the input from the user, the tool considers all subsequent
requests from the IdP’s domain to other domains which
contain alphanumeric strings either as the value of a URL
parameter, or as the value of a parameter in the request
body as CandidateReq. The same principle is also applica-
ble to URL-based account activation. The tester needs to
provide the URL of the mailbox provider and notify the
tool just before clicking the activation link. For Form-based
Login, Form-based registration and Email/Password-change,
to identify the CandidateReq, the tool requires the tester
to provide the URL of the WUT and the credentials used,
i.e. username and password for registration/login and new
email/password for email/password change.

7.2. Implementation

CSRF-checker is implemented in Python 2.7.12 and uses
the API of the widely-used, open-source, penetration testing
tool OWASP ZAP [3] to perform standard proxy engine
operations such as collecting HTTP traffic to identify the
CandidateReq, setting proxy rules to alter the HTTP traffic
(according to Table 4), etc. The source code, installation
guide and tutorial for the tool’s proof-of-concept imple-
mentation can be obtained (upon request) from the paper’s
companion web site [5].

7.3. Additional Experiments with CSRF-checker

Experiment 1. The goal of this experiment was to
measure the effectiveness of CSRF-checker in finding vul-
nerabilities causing Auth-CSRF. In this regard, we checked

whether CSRF-checker was able to rediscover 124 vulnera-
bilities (present in processes P3-P6 explained in Section 3.2)
that we found during our manual experiments (explained in
Section 5). The end result was that CSRF-checker was able
to re-discover 88 of them (i.e. 71%). For the remaining 36
vulnerabilities, the following is what happened: (i) in 23 of
them the vulnerability was absent during the retest as the
vendor fixed the issue (the HTTP traffic of the old and the
new experiments clearly indicated the presence of a fix), (ii)
in 5 of them CSRF-checker crashed during the test (hence
no result was obtained), (iii) in 7 of them the vulnerability
was absent and there were no obvious indications of a fix
and (iv) in 1 case, the vendor fixed the issue but the old
vulnerable end-point was still active and hence it was still
possible to mount the attack (notice that we would not have
known about the existence of this vulnerable end-point if
we had not performed the manual experiments explained in
Section 5).
Experiment 2. The goal of this experiment was to estimate
the incidence of Auth-CSRF in the remaining 12 ranges
(of 100 web sites) of the Alexa top 1500 that we did not
consider for our manual experiments (e.g., 101-200, 601-
700, 1401-1500, etc.). To this end, we selected 132 web sites
(11 web sites chosen from each of the 12 different ranges)
and tested them using CSRF-checker. For this selection,
priority was given to web sites having the SSO-based login
and account association processes (as the number of web
sites having these processes were relatively low in our
manual experiments). In the end, CSRF-checker discovered
168 vulnerabilities in 95 of the total 132 tested web sites
(i.e. 72%). The percentage of vulnerable web sites for each
process is as follows: URL-based account activation 37%
(37/100), Form-based Login 58% (75/129), SSO Login 28%
(31/111), SSO-based Account Association 33% (17/52),
Email-change 11% (8/71). This is more or less in-line with
the results we obtained during our manual experiments.

8. Ethics & Responsible Disclosure

We ensured that our tests did not cause any harm to the
web sites we tested. For instance, we neither injected any
code in the HTTP requests nor tried to have unauthorized
access to user accounts that are not under our control. All
tests were performed using the test accounts we created on
the web sites. Our tests can be seen as replaying values
from one session in another. This kind of test can cause
financial loss to the web site if we had tested processes
such as online shopping. For instance, previous studies (e.g.,
[40], [32]) have shown that it is possible to shop for free
from real web sites by replaying payment tokens from one
session in another. Since we considered only authentication
and identity management processes and replayed only cre-
dentials and authentication tokens (belonging to the user
accounts we created), our test cases are different from that
of [40], [32]. Additionally, when we conducted further tests
with CSRF-checker, we made sure that CSRF-checker did
not send too many HTTP requests in too short time interval
and cause (possible) denial of service attack.

363

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 29,2024 at 04:26:59 UTC from IEEE Xplore. Restrictions apply.

We contacted the vendors of all the vulnerable web
sites through the contact information available on the corre-
sponding web sites. A recent study [36] has shown that this
procedure is hard to automate in an effective way. On web
sites having well-defined communication channels to report
security vulnerabilities (precisely 39 web sites, including
Google, Mircosoft, Twoo, eBay etc.), we filed vulnerability
reports. For others, we contacted them through the infor-
mation available on their web sites for general enquiry.
We received mostly positive responses for our reports. For
instance, Microsoft and Twoo patched the vulnerabilities
quickly and paid us bug bounties of $1500 and $500, respec-
tively. LiveJournal and a prominent smartphone company
offered us non-monetary rewards for our findings. Google
and another prominent company specialized in Internet-
related services acknowledged our report. We were denied
a bounty because they were already aware of the issue.
However, no information regarding these vulnerabilities is
publicly available. eBay appreciated our report and fixed
the issue immediately. For all other vendors, we are either
waiting for the acknowledgements or working closely with
them to fix the issues. This is mainly due to the fact that
the experiments concluded recently and it has not been long
since we reported our findings to the affected vendors. We
will update the details on the companion web site of this
paper [5].

9. Limitations

One main drawback of our approach is that most of
the experimental analysis is done manually. In [44] the
authors faced challenges similar to ours (i.e. creating an
account was necessary to check for vulnerabilities) in con-
ducting large-scale experiments and also followed a manual
approach. However, in a later study [45], the very same
authors managed to completely automate the execution of
Login via Facebook SSO. Since our goal was not to focus
on specific protocols, we did not have other choice but
to depend on manual means. To mitigate this issue we
implemented CSRF-checker, allowing testers to reduce as
much as possible the manual effort in conducting the tests,
even if, given the generality of our approach, the automation
cannot be as advanced as that in [45].

Another drawback of our study is that although we
identified a lot of serious vulnerabilities in real web sites—
due to the lack of good responsible disclosure plans—we
had to manually contact hundreds of affected vendors. Very
recently, there has been a study [36] that checked the feasi-
bility of automating the process of vulnerability disclosure.
But the conclusion of [36] is that there are no reliable
vulnerability notification channels available for researchers
who conduct large-scale experiments.

Lastly, we do not propose any novel techniques to tackle
Auth-CSRF attacks. Indeed, we believe that currently avail-
able techniques—like the secret token validation method—
can be sufficient to prevent Auth-CSRF attacks, and promis-
ing new techniques (such as same-site cookies [4]) are
emerging. Still, more awareness of some CSRF attacks is

necessary and we provide a tool supporting the testing phase
of web sites.

10. Related Work

In [35] the authors developed a crawler that automati-
cally found 302 web sites implementing OAuth 2.0-based
SSO and found out that 77 of them were missing CSRF
protection parameters. In order to avoid the challenges in
automatically executing the SSO login, the crawler was de-
signed to check whether the parameter for CSRF protection
was present in the SSO initialization URL. As explained in
Section 5, we identified that their approach is susceptible to
a number of false positives and false negatives.

In [38], the authors conducted a security evaluation of 96
popular web sites implementing the Facebook SSO Login.
The authors also encountered the challenge of automatically
executing the Facebook SSO Login and similarly preferred
a mostly-manually approach (as we did for the experiments
mentioned in Section 5). This helped them avoid the false
positives and false negatives that affected [35]. However,
CSRF-checker can provide the same level of accuracy as
[38] but with more automation.

In [39] the authors conducted a passive security analysis
of 22,000 European web sites. The criteria used to determine
if a web site is vulnerable to CSRF is by checking whether
the web site has a form that has a long, pseudo-random,
hidden element that cannot be guessed or brute-forced by
an attacker. Although it is a good criteria for a large-
scale evaluation, we noticed that more than 22% of the
web sites in our sample do not require a pseudo-random
login form element for CSRF protection as they implement
login requests via XMLHttpRequest [7] (in the absence of
vulnerabilities like XSS, an attacker cannot forge a cross-
site XMLHttpRequest). Hence we infer false positives in the
approach used in [39].

Past studies [42], [26], [27] have shown that many web
sites have an insecure cross-domain policy enabling an at-
tacker to mount CSRF attacks. Since a large-scale evaluation
has already been done in this respect, we did not focus on
this specific vulnerability.

It has been shown in [43] and [15] that many web sites
either lacks or incorrectly implements HSTS protection.
During our experiments we also checked whether web sites
are correctly implementing HSTS and our results are shown
in Figure 7.

11. Conclusions

The findings reported in this paper indicate that develop-
ers often fail to protect sensitive processes from Auth-CSRF
attacks and that the default CSRF protection offered by web
frameworks and automatic/semi-automatic CSRF prevention
mechanisms may not protect web sites from all Auth-CSRF
attack vectors. This shows the importance of security testing
web sites for Auth-CSRF attacks. The security testing strate-
gies proposed in this paper and implemented in our proof-

364

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 29,2024 at 04:26:59 UTC from IEEE Xplore. Restrictions apply.

of-concept prototype assist web developers in checking their
web site against Auth-CSRF.

References

[1] Cross-Site Request Forgery (CSRF). https://www.owasp.org/index.
php/Cross-Site Request Forgery (CSRF).

[2] OWASP Top Ten 2013 Project. https://www.owasp.org/index.php/
Category:OWASP Top Ten 2013 Project.

[3] OWASP Zed Attack Proxy Project. https://www.owasp.org/index.php/
ZAP.

[4] Same-site Cookies draft-west-first-party-cookies-07. https://tools.ietf.
org/html/draft-west-first-party-cookies-07.

[5] Supporting Materials. https://sites.google.com/site/authcsrf/.

[6] The Most Common OAuth2 Vulnerability. http://homakov.blogspot.
it/2012/07/saferweb-most-common-oauth2.html.

[7] XMLHttpRequest. https://developer.mozilla.org/en-US/docs/Web/
API/XMLHttpRequest.

[8] Mail From Peter Watkins about CSRF. http://www.tux.org/∼peterw/
csrf.txt, 2001.

[9] Sign-up Form CSRF. https://hackerone.com/reports/7865, 2014.

[10] D. Akhawe, A. Barth, P. E. Lam, J. Mitchell, and D. Song. Towards
a Formal Foundation of Web Security. CSF ’10, pages 290–304,
Washington, DC, USA, 2010. IEEE Computer Society.

[11] G. Bai, J. Lei, G. Meng, S. S. Venkatraman, P. Saxena, J. Sun,
Y. Liu, and J. S. Dong. AUTHSCAN: Automatic Extraction of Web
Authentication Protocols from Implementations. In Proceedings of
the 20th NDSS’13, San Diego, CA, USA, 2013.

[12] C. Bansal, K. Bhargavan, and S. Maffeis. Discovering Concrete
Attacks on Website Authorization by Formal Analysis. In CSF, 2012
IEEE 25th, pages 247–262, June 2012.

[13] A. Barth, C. Jackson, and J. C. Mitchell. Robust Defenses for Cross-
site Request Forgery. In Proceedings of the 15th ACM, CCS ’08,
pages 75–88, New York, NY, USA, 2008. ACM.

[14] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell. State of the art:
Automated black-box web application vulnerability testing. In IEEE
Symposium on Security and Privacy, pages 332–345. IEEE, 2010.

[15] K. Bhargavan, A. D. Lavaud, C. Fournet, A. Pironti, and P. Y. Strub.
Triple handshakes and cookie cutters: Breaking and fixing authenti-
cation over TLS. In IEEE Symposium on Security and Privacy, pages
98–113. IEEE, 2014.

[16] A. Bortz, A. Barth, and A. Czeskis. Origin cookies: Session integrity
for web applications. Web 2.0 Security and Privacy (W2SP), 2011.

[17] J. Burns. Cross site request forgery. An introduction to a common
web application weakness, Information Security Partners, 2005.

[18] A. Czeskis, A. Moshchuk, T. Kohno, and H. J. Wang. Lightweight
server support for browser-based csrf protection. In 22nd interna-
tional conference on World Wide Web, pages 273–284. International
World Wide Web Conferences Steering Committee, 2013.

[19] P. De Ryck, L. Desmet, T. Heyman, F. Piessens, and W. Joosen.
CsFire: Transparent client-side mitigation of malicious cross-domain
requests. In Engineering Secure Software and Systems, pages 18–34.
Springer, 2010.

[20] P. De Ryck, L. Desmet, W. Joosen, and F. Piessens. Automatic and
precise client-side protection against CSRF attacks. In Computer
Security–ESORICS 2011, pages 100–116. Springer, 2011.

[21] J. Grossman. I used to know what you watched, on youtube, 2008.

[22] A. Infuhr. Pdf - mess with the web. In OWASP AppSec EU, 2015.

[23] M. Johns and J. Winter. RequestRodeo: Client side protection against
session riding. In the OWASP Europe 2006 Conference, 2006.

[24] N. Jovanovic, E. Kirda, and C. Kruegel. Preventing cross site request
forgery attacks. In Securecomm and Workshops, 2006, pages 1–10.
IEEE, 2006.

[25] F. Kerschbaum. Simple cross-site attack prevention. In SecureComm
2007, pages 464–472. IEEE, 2007.

[26] S. Lekies, M. Johns, and W. Tighzert. The state of the cross-domain
nation. In Proceedings of the 5th Workshop on Web, volume 2, 2011.

[27] S. Lekies, N. Nikiforakis, W. Tighzert, F. Piessens, and M. Johns.
DEMACRO: defense against malicious cross-domain requests. In
Research in Attacks, Intrusions, and Defenses. Springer, 2012.

[28] S. Lekies, W. Tighzert, and M. Johns. Towards stateless, client-side
driven Cross-Site Request Forgery protection for Web applications.
In Sicherheit, pages 111–121, 2012.

[29] R. Lundeen. The deputies are still confused. In Blackhat EU, 2013.

[30] Z. Mao, N. Li, and I. Molloy. Defeating cross-site request forgery
attacks with browser-enforced authenticity protection. In Financial
Cryptography and Data Security, pages 238–255. Springer, 2009.

[31] M. Meucci and A. Muller. The OWASP Testing Guide 4.0, 2014.

[32] G. Pellegrino and D. Balzarotti. Toward Black-Box Detection of
Logic Flaws in Web Applications. In NDSS Symposium 2014. Internet
Society, 2014.

[33] S. Sclafani. CSRF Vulnerability in OAuth 2.0 Client Implementations.
http://stephensclafani.com/2011/04/06/oauth-2-0-csrf-vulnerability/.

[34] H. Shahriar and M. Zulkernine. Client-side detection of cross-site
request forgery attacks. In IEEE 21st International Symposium ISSRE,
2010, pages 358–367. IEEE, 2010.

[35] E. Shernan, H. Carter, D. Tian, P. Traynor, and K. Butler. More
Guidelines Than Rules: CSRF Vulnerabilities from Noncompliant
OAuth 2.0 Implementations. In DIMVA 2015, Milan, Italy, July 9-10,
2015, pages 239–260, Cham, 2015. Springer International Publishing.

[36] B. Stock, G. Pellegrino, C. Rossow, M. Johns, and M. Backes.
Hey, You Have a Problem: On the Feasibility of Large-Scale Web
Vulnerability Notification. In 25th USENIX Security Symposium
(USENIX Security 16), pages 1015–1032, Austin, TX, 2016. USENIX
Association.

[37] A. Sudhodanan, A. Armando, R. Carbone, and L. Compagna. Attack
Patterns for Black-Box Security Testing of Multi-Party Web Appli-
cations. In 23nd Annual Network and Distributed System Security
Symposium, NDSS 2016, San Diego, CA, USA, February 21-24, 2016.

[38] S.-T. Sun and K. Beznosov. The Devil is in the (Implementation)
Details: An Empirical Analysis of OAuth SSO Systems. CCS ’12,
pages 378–390, New York, NY, USA, 2012. ACM.

[39] T. Van Goethem, P. Chen, N. Nikiforakis, L. Desmet, and W. Joosen.
Large-scale security analysis of the web: Challenges and findings. In
International Conference on Trust and Trustworthy Computing, pages
110–126. Springer, 2014.

[40] R. Wang, S. Chen, X. Wang, and S. Qadeer. How to Shop for
Free Online – Security Analysis of Cashier-as-a-Service Based Web
Stores. In IEEE Symposium on Security and Privacy, pages 465–480,
Washington, DC, USA, 2011. IEEE Computer Society.

[41] R. Wang, Y. Zhou, S. Chen, S. Qadeer, D. Evans, and Y. Gurevich.
Explicating SDKs: Uncovering Assumptions Underlying Secure Au-
thentication and Authorization. In USENIX Conference on Security,
pages 399–414, Berkeley, CA, USA, 2013. USENIX Association.

[42] W. Zeller and E. W. Felten. Cross-Site Request Forgeries: Exploita-
tion and Prevention, Princeton (2008).

[43] X. Zheng, J. Jiang, J. Liang, H. Duan, S. Chen, T. Wan, and
N. Weaver. Cookies Lack Integrity: Real-World Implications. In 24th
USENIX Security Symposium (USENIX Security 15), pages 707–721,
Washington, D.C., Aug. 2015. USENIX Association.

[44] Y. Zhou and D. Evans. Why aren’t HTTP-only cookies more widely
deployed. Proceedings of 4th Web, 2, 2010.

[45] Y. Zhou and D. Evans. SSOScan: Automated Testing of Web
Applications for Single Sign-on Vulnerabilities. In 23rd USENIX
Conference on Security Symposium, pages 495–510, CA, USA, 2014.
USENIX Association.

365

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 29,2024 at 04:26:59 UTC from IEEE Xplore. Restrictions apply.

