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Abstract—Authorization bugs, when present in online social
networks, are usually caused by missing or incorrect autho-
rization checks and can allow attackers to bypass the online
social network’s protections. Unfortunately, there is no practical
way to fully guarantee that an authorization bug will never
be introduced—even with good engineering practices—as a web
application and its data model become more complex. Unlike
other web application vulnerabilities such as XSS and CSRF,
there is no practical general solution to prevent missing or
incorrect authorization checks.

In this paper we propose INVARIANT DETECTOR (IVD), a
defense-in-depth system that automatically learns authorization
rules from normal data manipulation patterns and distills them
into likely invariants. These invariants, usually learned during
the testing or pre-release stages of new features, are then used to
block any requests that may attempt to exploit bugs in the social
network’s authorization logic. IVD acts as an additional layer of
defense, working behind the scenes, complementary to privacy
frameworks and testing.

We have designed and implemented IVD to handle the unique
challenges posed by modern online social networks. IVD is
currently running at Facebook, where it infers and evaluates
daily more than 200,000 invariants from a sample of roughly
500 million client requests, and checks the resulting invariants
every second against millions of writes made to a graph database
containing trillions of entities. Thus far IVD has detected several
high impact authorization bugs and has successfully blocked
attempts to exploit them before code fixes were deployed.

I. INTRODUCTION

Modern online social networks (OSNs) handle large

amounts of user data. These data are often generated by

users, are associated with their accounts and are subject to

access control rules governing who can read, create, modify,

and delete them. Because OSNs enable many types of user

interactions, with different levels of permissions, writing and

enforcing these rules quickly becomes nontrivial. Developers

need to flawlessly consider all possible interactions and cor-

rectly implement the appropriate checks while at the same time

iterate quickly to satisfy business needs.

OSNs are constantly evolving, with new features being

added regularly, often in an arms race to offer their users an

improved experience and more ways to express themselves,

which often concretizes in new types of interactions. For

example, users may use private messaging for a one-to-one

or a group conversation, in which case only the participants

should be allowed to send and receive messages associated

with the conversation and only participants or the conversation

moderator, depending on policy, should be allowed to add

people to the conversation. Furthermore, messages may be

edited in a short time interval after they were sent, but only by

the same person who sent them. Users may also interact by

posting content to their personal page, usually unrestricted, or

to a group, usually only after being explicitly accepted in the

group. They may also create connections (e.g. befriend, follow,

connect, become a fan, add to circles) with other users, which

often gives them additional ways to interact.

Authorization becomes even more difficult when multiple

types of entities and delegation are involved. For example,

an OSN can support personal users, businesses, and a many-

to-many business administrator relation between them. Users

connected by the business administrator relation are authorized

to act on behalf of the business in matters such as changing the

business address or answering customer messages. In addition

to this, a different relation, business owner, allows users to

merge two businesses into a single entity. Proper authorization

for the merge requires checking that the logged-in user is the

owner of both businesses.

Failing to perform correct authorization checks leads to

authorization bugs. Attackers can exploit them to impersonate

other users, perform actions on their behalf and gain access

to data. While all businesses can be negatively affected by

such bugs, OSNs are particularly sensitive: they contain large

amounts of user data, e.g. their pictures, personal interests,

job applications, physical location, and are home to their users’

online personas. In consequence, an OSN’s reputation depends

heavily on user trust.

However, missing or incorrect authorization checks are a

common issue. The Open Web Application Security Project

(OWASP) lists authorization bugs as the cause of two of the

top ten most common and important classes of web application

vulnerabilities [1]. In addition, authorization bugs are easy to

exploit if found. Typically, a malicious actor approaches such

an attack by trial and error: they first understand the API of

a web application by inspecting its normal functionality, they

identify the arguments that these APIs receive, and finally send

requests with systematically modified arguments and check

whether the application performed any action on the object

identified by the recently modified argument. The low success

rate of each attempt is balanced out by the short time needed

to devise the attack, the possibility of automating it, and by

its simplicity and accessibility.
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Fig. 1: INVARIANT DETECTOR distills normal behavior into

invariants that it then uses to blocks malicious requests.

We believe that writing, maintaining and consistently en-

forcing correct authorization checks in a quickly-evolving,

complex application is difficult, even with privacy frameworks

and engineering best practices. Developers need a holistic

understanding of the application and good programming dis-

cipline to avoid introducing bugs, and new contributors need

to be particularly careful to fully understand the privacy

implications of their changes.

To mitigate this problem, we propose INVARIANT DE-

TECTOR (IVD), a defense-in-depth system based on dynamic

invariant detection, that provides a safety net against missing

or incorrect authorization checks. As shown in Figure 1, IVD

intercepts requests made by an OSN to its database. It mines

likely invariants from the database writes the application code

performs and blocks database writes which break existing

invariants. IVD has a short learning period, usually covered by

internal testing, dogfooding, or a pre-release period, making

it ready to act by the time a new product feature is made

available to users. As we explain in more detail later (§III),
IVD’s design allows it to adapt automatically to OSN changes

by continuously learning invariants, without requiring manual

intervention or explicit training data sets.

While dynamic invariant detection has been previously

proposed for testing [2], [3], [4] and attack detection [5],

[6], most approaches have targeted the network or application

layer. Our experience shows that inferring invariants at the

database layer may instead offer more advantages by allowing

both expressive invariants and unprecedented scalability.

OSNs pose unique challenges to a dynamic invariant detec-

tion system. Some challenges stem from the sheer scale of an

OSN’s day-to-day operations; many popular OSNs have well

over 100 million active users, going up to 1.8 billion. This

leads to a large number of requests that have to be checked in

real time and a potentially huge invariants learning corpus. The

problem is compounded by the highly interconnected nature

of an OSN’s data, which can result in multiple objects being

involved in the final decision of an authorization check, a

characteristic that has to play a role in the invariant design.

The scale also reflects in the impact of false positives, causing

even false positive rates as low as 0.000001% to be impractical

due to the number of affected users and false alarms requiring

human attention.

Other challenges have to do with the complexity of an

OSN’s codebase. Any practical invariant-based system work-

ing at this scale must provide, along with its alerts, sufficient

information to allow engineers to quickly understand whether

they are facing a bug or a false positive. In case of a bug, the

information should facilitate debugging, while in the case of a

false positive there must be a straightforward way to blacklist

the spurious invariant. Black-box systems [7] have inherent

difficulties to offer this information as they are completely

agnostic to the application logic. IVD, on the other hand, is

positioned between the OSN’s code and its database. It can

both make use of the database schema to get insights into the

data, and access and report the application’s state, e.g. the call

stack at the time of a data access.

This paper presents our experience with running an invariant

detection system at the scale of an OSN and the set of trade-

offs between performance, invariant complexity and mining

technique required to make this possible. To our knowledge,

our system handles orders of magnitude more data than

previous invariant detection systems.

The main contributions of this paper are:

• A scalable distributed dynamic invariant detection system

for highly interconnected data.

• A two-step invariant generation mechanism and a set of

design and implementation choices that allow the system

to scale and to achieve negligible runtime overhead.

• A set of domain-specific enforcement excuses that tackle

the inherent susceptibility to false positives of invariant

detection systems.

• Results showing that dynamic invariant detection can

effectively identify incorrect authorization checks and

prevent attackers from exploiting them in a real-world

OSN.

This paper is organized as follows: we start with background

information pertaining to the data model that we target and ex-

isting practices and techniques for authorization enforcement

(§II). We then provide a high level description of IVD (§III),
after which we present implementation choices, focusing on

scalability and performance (§IV). We continue by evaluating

IVD’s effectiveness and performance (§V), and finally, we

present related work (§VI) and conclude (§VIII).

II. BACKGROUND

In this section we discuss the classic approach for avoiding

authorization bugs in web applications and where this fails. We

specifically look at a graph data model, we then describe how

an attacker can discover and take advantage of authorization

bugs and what IVD does to prevent this.

A. Graph Data Model

A graph data model structures data into interconnected

objects that form a graph. This organization of data is useful
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for any application domain that needs to efficiently generate

fine-grained customized content from highly interconnected

data, and is particularly popular among OSNs [8], [9], [10].

In this paper we use an attributed graph model [11], which

we briefly describe below for completeness.

The two fundamental entities of a graph data model are

objects and associations, corresponding respectively to the

nodes and edges of the underlying graph. Objects have a

unique identifier (ID) and a type (OTYPE) while associations

are identified by their source object (ID1), destination object

(ID2), and type (ATYPE). In addition, in attributed graph

models, both objects and associations may have properties in

the form of KEY �→ VALUE pairs. To summarize,

Object: (ID) �→ (OTYPE, (KEY �→ VALUE)*)

Association: (ID1, ATYPE, ID2) �→ (KEY �→ VALUE)*

where the Kleene star (*) denotes zero or more. In other words,

the graph data model maps object identifiers to their type and

properties, and maps object pairs along with an association

type to the properties of that association. When an object or

association does not exist, the mappings are not defined.

An OSN might use objects to represent users, business

profiles, groups, or photos, and associations to represent owner

relationships, friendships, follower-followee relationships, or

like relationships.

The fundamental operations supported by the graph

database are retrieval, creation, deletion, and mutation of

objects and associations.

While this paper focuses on a graph data model, the ideas

underpinning IVD naturally transfer to other data models which

use similar concepts. For example, a relational database model

replaces objects with records, object ids with primary keys,

object attributes with attributes and relationships with foreign
keys, while an object-oriented databases exposes similar con-

cepts through objects, object ids, attributes and pointers.

B. Reads vs. Writes

To understand IVD’s applicability, it is important to distin-

guish between how authorization checks are performed for

read and write operations. The main insight into their differ-

ence is that authorization checks often rely on information

contained in the graph, and therefore fundamentally need to

happen after reads. In other words legitimate object reads may

happen even if the user triggering them is not authorized to see

the information being read. Writes, on the other hand, should

always be preceded by any needed authorization checks since

writing data to the graph gives it legitimacy. As a result, writes

expose clearer authorization patterns that can be learned by a

system such as IVD.

To better understand this, we consider a simple hypothetical

OSN where people can create friend relationships, post

pictures to their friends’ profiles and see all pictures posted to

their friends’ profiles. Pictures are graph objects which hold

the identifier of the user on whose profile the picture was

posted and the URL to the content distribution network which

stores the actual image file. A simplified implementation of

input : picture object pic
1 u = logged-in user;

2 if graph.associationExists(u, friend, pic.target) then
3 graph.write(pic)
Algorithm 1: A simplified implementation of the authoriza-

tion checks required for picture posting in an OSN where

users are only allowed to post on their friends’ profiles.

input : picture identifier pic id
1 u = logged-in user;

2 pic = graph.getObject(pic id);

3 if graph.associationExists(u, friend, pic.target) then
4 return pic

5 else
6 return nil
Algorithm 2: A simplified implementation of the authoriza-

tion checks required for picture retrieval in an OSN where

users are only allowed to see pictures posted on their friends’

profiles.

the authorization logic for the post operation is shown in

Algorithm 1. As IVD intercepts requests between the OSN

and its graph database, it executes as a result of writing to the

graph on line 3. Because this line is only executed when the

logged-in user is a friend of the picture’s target profile, i.e.

the pic.target property, the rule “a picture can only be posted

when its target property refers to a friend of the logged-in

user” can be inferred.

On the other hand, when reading an image, the authorization

checks happen after the graph reads, as shown in Algorithm 2.

The algorithm is correct: the authorization checks only allow

users to see pictures from their friends’ profile. However, the

getObject method—and as a result IVD—is called both when

legitimate users access pictures from their friends’ profile, and

when prying users attempt to access pictures they do not have

access to. Therefore, the authorization rule “a picture can only

be read by a friend of the picture’s target user” is not clear

until line 4, outside IVD’s scope.

In addition, OSNs’ workloads are notoriously read-heavy,

as newly created content is often broadcast to subscribers,

followers or other connections, leading to several orders of

magnitude more database reads than writes and to increased

resource consumption for any system that has to inspect these

operations. As a result, in this work we only focus on write

operations and outline potential approaches for handling reads

in future work (§VII). However, it is important to realize

that authorization bugs in write operations can lead to data

breaches, e.g. allowing an attacker to befriend arbitrary users

without their consent would expose all data users shared only

with their friends.

C. Facebook

Facebook is one of the biggest OSNs, having a correspond-

ingly large graph database, both in terms of entities stored and
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users accessing it. Its database contains more than one trillion

entities, and receives over 10,000,000 peak writes per second.

To secure the data, most accesses to the graph database

happen through a declarative privacy-aware framework. The

framework implements rule-based authorization by allowing

developers to associate with any entity type authorization
policies, which are then automatically checked whenever an

entity of that type is read or written. An authorization policy

is a predicate that decides whether a user action should be

allowed or not. A typical model represents them as ordered

sets of authorization rules. Each rule can either allow, deny, or

take no decision regarding the action. The rules are evaluated

sequentially and the first decision taken is the overall result of

the policy.

For example, the previously discussed feature of merging

businesses can be implemented by creating a new business

object and connecting each of the businesses to be merged

with it through a MERGED INTO association. Enforcing autho-

rization checks is done by associating with the MERGED INTO

association type an authorization policy with a single rule that

allows the creation of the association only if the two business

objects being connected belong to the logged-in user.

We believe that while authorization policies are a very

powerful tool, they require a great amount of engineering dis-

cipline. First, the policies must be complete; developers must

reason about all possible cases, implement the appropriate

rules and connect them in the appropriate order. Over time, this

often leads to policies that are complex, hard to debug and hard

to reason about in the first place. Second, the authorization

policies must be checked on every database read or write;

any database access that, for historical or engineering reasons,

does not go through the privacy framework must manually

enforce the correct authorization checks, which can easily be

overlooked in a very large codebase modified by hundreds or

thousands of engineers. This problem is compounded when

multiple endpoints implement the same functionality for dif-

ferent platforms, e.g. a regular web interface, a mobile web

interface and a REST API. Any authorization checks added to

one of these endpoints must be replicated in all the others.

Even with structured authorization policies in place, bugs

still creep in. Since its launch, Facebook’s bug bounty

program1 received more than 2,400 valid submissions and

awarded more than $4.3 million to more than 800 researchers

around the world, with reports about business logic bugs

becoming more common [12]. In Section V we present several

case studies where IVD has or could have prevented exploits.

IVD works alongside authorization policies. While we ad-

vocate for writing correct policies and thoroughly enforcing

them, we recognize that bugs are inevitable and we add a

second layer of defense through IVD. All bugs detected and

blocked by IVD should shortly after materialize in new au-

thorization rules. As an added benefit, a missing authorization

1Facebook’s bug bounty program encourages security researchers and
whitehat hackers to poke at Facebook’s systems, discover bugs and earn mon-
etary rewards in exchange of disclosing them responsibly without accessing
or mutating actual user data.

check that IVD detects in one specific endpoint can point to

a systemic problem, whose fix will affect overall security.

In this sense, IVD picks up where testing leaves off; while

more testing may find more bugs, it is difficult to know

if one has tested “enough” or more testing is needed. IVD

mitigates this problem by contributing to a diversified set of

bug finding approaches, whose combined strengths increase

overall security.

D. Threat Model

IVD protects against attacks which rely on improper or

incomplete authorization checks, usually mounted through a

publicly accessible web interface or API. We adopt a realistic

threat model, where the attackers are either logged-out or have

regular user accounts. They can make any number of requests

and can pass arbitrary arguments to any endpoint exposed by

the OSN but cannot modify the OSN’s server-side code or

otherwise interfere with its execution.

In the most basic form, the exploits involve passing iden-

tifiers of objects that are not under the attacker’s control,

in the hope that the OSN’s code will not make appropriate

authorization checks, and inadvertently mutate the objects.

Such attacks are successful when developers miss a check,

make incorrect assumptions regarding the data that their code

processes, or rely on client-side code to perform authorization.

IVD only protects against attack vectors which involve unau-

thorized database requests made through usual APIs. While

other web application attacks such as XSS, CSRF, denial of

service, social engineering, and infrastructure compromise are

important, their prevention and mitigation require significantly

different approaches such as taint tracking, rate limiting or

intrusion detection. These approaches are complementary to

the enforcement of correct authorization checks.

III. DESIGN

In theory, invariants could be arbitrary graph predicates ex-

pressed in a graph database query language [13]. For example,

the following Lorel [14] query finds entities X and Y such that

the same sequence of edge properties that connects X and Y

connects John and Y:

s e l e c t X, Y

from Winners . a u t h o r A, Winners . a u t h o r X,

A. #@P. Y, X. #@Q.Y

where A. name = ’ John ’

and pa th−of ( P ) = pa th−of (Q)

where # denotes a path of any length, @P binds the path to

variable P, and path-of returns a sequence of edge properties.

It can be easily seen that such a query would be prohibitively

slow to perform in near-real time for all requests, at the scale

of a large graph database.

To achieve scalability IVD uses a lightweight invariant

design. The main insight behind our approach is that limiting

the scope of the query still offers enough expressive power

to catch many real-world problems. Our design drastically

limits both the extent of the graph that can be accessed and
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the predicates that can be used. An object invariant can only

reference properties of the object being manipulated, while

an association invariant can only reference properties of the

association and of the two objects the association connects.

We collectively call these properties local properties.

To mitigate the locality of this invariant design we introduce

a small number of domain-specific global properties that can

be referenced in addition to local properties, such as the

identity of the currently logged-in user or the set of groups

the logged-in user is an administrator of. This helps in two

ways: first, being able to reference the identity of the logged-in

user immediately allows creating more expressive invariants.

Second, being able to directly reference objects that often

determine a user’s permission to perform an action (e.g. being

an administrator of a group allows one to add other users

to the group) allows IVD to essentially side-step the locality

restriction for a small set of authorization-relevant objects.

To provide the most benefit, the global properties have to be

relevant to authorization checks and efficiently computable, i.e.

involve traversing a small number of edges from known graph

objects. Such properties are the logged-in user’s connections

or friends, or the business profiles that they administer.

Local or global properties are connected in an invariant

predicate by invariant operators. The only two operators an

IVD invariant can use are property equality and association
existence. Equality predicates assert that two properties are

always equal. For example

o1 .property1 = o2 .property2 .subproperty

While object properties can have scalar or aggregate types,

we only consider equality of scalar values and recursively

enumerate the values in any aggregate property, such as the

o2.property2 dictionary in the previous example.

Association existence predicates assert that an association

always exists between two objects. For example

logged-in user
⊕

ATYPE

o.propertyx

distills the constraint that a graph association of type ATYPE

must exist between the logged-in user and the object refer-

enced by the property propertyx of the object involved in

the database operation. While association existence predicates

and global properties have similarities, they have different use

cases: the former are domain-agnostic, but require a significant

amount of database queries to determine, while the latter are

intended to be used for efficiently-computable sets of values

that are relevant to authorization. As we detail later on (§IV-B),

our implementation uses different approaches to infer each

type of predicates.

Figure 2 shows the invariants that apply in the previously

discussed scenario of merging several businesses into a single

entity. The implementation creates a new business object

and connects all previous business with it (for simplicity we

only depict one connection) through an association of type

MERGED INTO. The creation of this association must only

be permitted when the logged-in user is the owner of both

MERGED_INTO

name: My First Business
owner: 1234
…

Old business (o1)
name: My New Business
owner: 1234
…

New business (o2)

o1.owner = logged-in user
o2.owner = logged-in user
o1.owner = o2.owner

Fig. 2: Three invariants that apply when a user merges a

business profile into another business profile. Adding the

MERGED INTO association must only be allowed when the

logged-in user (a global property) is the owner of both

businesses (local properties).

businesses being connected, a constraint which is distilled in

three invariants that respect the semantic restrictions imposed

by IVD.

As this example shows, IVD invariants contain, in addition

to a predicate, the context in which the predicate applies.

Rather than create global invariants that would be checked

on every operation, IVD uses a finer granularity and binds

predicates to specific operations. For example, it associates a

set of predicates to the operation of merging business profiles,

a different set of predicates to the operation of creating a

photo, and yet a different set to the operation of creating

a comment. At runtime, only the predicates relevant to the

current operation—if any—need to be checked. As a further

improvement, we also associate predicates to the code which

generated the request, i.e. a canonical representation of the

URI or API endpoint that was used to initiate the request. This

handles situations where an endpoint makes additional checks

before issuing the request, e.g. the administrator area of an

OSN could authorize users based on their IP address, hence

can afford making requests that break invariants associated

with openly accessible endpoints.

More formally, we define an invariant category as a 3-tuple

(ENDPOINT, OTYPE, OPERATION) for object invariants, and a

5-tuple (ENDPOINT, O1TYPE, ATYPE, O2TYPE, OPERATION)

for association invariants, where ENDPOINT is the source of the

request, OTYPE, O1TYPE, O2TYPE and ATYPE are the types of

the database entities involved in the request, and OPERATION

is one of CREATE, DELETE or MUTATE.

Using this notation, we define an invariant as a pair

I = (invariant category,P)
where

P : properties× properties→ {true, false}
is the invariant predicate function, restricted to the two oper-

ators previously discussed.

IVD’s invariants fall under two broad classes: authorization
invariants and data validation invariants.

Authorization invariants are the main focus of this work.

They are constraints that involve a user’s identity, e.g. a group

post can only be created if the request comes from a member of

1098

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 16:42:41 UTC from IEEE Xplore.  Restrictions apply. 



DB
Legitimate
requests

Malicious
request

Violations

In
va

ria
nt

Ch
ec

ke
r

Re
qu

es
t

Sa
m
pl
er

Logs

x

Invariants

(a) INVARIANT DETECTOR’s request sampler and invariant checker
intercept requests between a client and a database system.

Invariant Inference
Engine

Logs
Violations
Invariants DB

Legitimate
requests

Malicious
request In

va
ria

nt
Ch

ec
ke

r

Re
qu

es
t

Sa
m
pl
er

x

DB
Legitimate
requests

Malicious
request In

va
ria

nt
Ch

ec
ke

r

Re
qu

es
t

Sa
m
pl
er

x

DB
Legitimate
requests

Malicious
request In

va
ria

nt
Ch

ec
ke

r

Re
qu

es
t

Sa
m
pl
er

x

(b) INVARIANT DETECTOR uses a central invariant inference en-
gine and distributed request samplers and invariant checkers.

Fig. 3: INVARIANT DETECTOR has three loosely coupled components: the request sampler logs a representative part of database

requests, which are used for offline learning by the invariant inference engine. The learning process produces a set of likely

invariants, which are passed to the invariant checker to be tested by evaluating them against all requests for a period of time.

All invariants that are never broken are then ratified and used to block requests that do not match them.

the group. Breaking authorization invariants can have serious

consequences, such as allowing an attacker to perform actions

on behalf of a different user. In addition, such attacks can be

difficult to spot and recover from, since the database remains

consistent.

Conversely, data validation invariants are constraints that

apply to the entire database, regardless of user identity. In

other words, the database is consistent if and only if all data

validation invariants hold. For example, an advertiser cannot

remove their primary payment method if they have active

advertisement campaigns, or the length of a post must be under

1000 characters. While IVD can catch data consistency bugs,

as we will show in one case study (§V-C), consistency checks

often require other predicates and are not the focus of our

work.

In the rest of this section we discuss the three components

that make up IVD, shown in Figure 3: the request sampler

(§III-A), the invariant inference engine (§III-B) and the in-

variant checker (§III-C).

A. The Request Sampler

To achieve scalability, IVD does not attempt to infer invari-

ants in real time. Instead, we gather representative data and use

an offline learning process to mine for invariants. The request

sampler is responsible for the data gathering step. Its purpose

is to log a configurable number of requests from each invariant

category, along with the values of local and global properties

at the time of the database request.

To have access to all relevant data, the request sampler lives

at the boundary between a client and a database server, as

shown in Figure 3a. It intercepts database requests and has

access to both local properties through the database request

arguments and to global properties through a lightweight web

application API.

When multiple clients and database instances are involved,

the request sampler becomes a distributed system, sampler in-

stances being colocated with either the clients or the databases

to achieve good performance. For simplicity and robustness,

the individual samplers are stateless and completely indepen-

dent of each other. However, they still need to synchronize

to globally log the desired number of requests from each

invariant category. We solve this problem by globally assigning

a sampling rate to each invariant category, which the samplers

use as a probability to log. Due to the dynamic nature of

the workloads seen by IVD, we can not use a static sampling

rate. Instead an external component (not pictured in Figure 3)

periodically analyses all logs and increases the rate for invari-

ant categories that were under-sampled and decreases it for

categories that were over-sampled. The new sampling rates

are then distributed to every request sampler.

It is important to find the right balance in the number of

requests to sample. A number too low leads to increased

false positives while a number too high will be expensive in

terms of storage and processing time of the logged data. We

empirically found that 2000 samples per invariant category,

resulting in an invariant inference engine workload of roughly

500 million total samples per learning cycle, matches well our

computational capacity (§V-D).

B. The Invariant Inference Engine

The invariant inference engine looks for patterns in the

data logged by the request sampler. It first splits log entries

according to their invariant category. Each category is then

analyzed separately, allowing for a large degree of parallelism.
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To mitigate the false positives caused by sampling, we use

a two-stage invariant deployment process. All newly-created

invariants go through an evaluation period, in which they are

checked against all requests. However, any requests that violate

newly created invariants are not blocked, but rather cause the

invariants to be invalidated. If an invariant is not violated

during the evaluation period, it is ratified and any subsequent

requests violating it are classified as malicious and blocked

from reaching the database. The evaluation period mechanism

is implemented in the centralized invariant inference engine

rather than in the distributed invariant checkers, to allow

for a simple and robust implementation of the latter. The

invariant checkers only need to log all violations along with

the invariant that caused them. The inference engine then picks

up the violation logs and decides which invariants should be

invalidated.

The inference engine executes periodically. At each run

it analyzes the logs created since the previous run to find

invariants to be put into evaluation mode, and the logs for

the current evaluation period, i.e. the past five days in our

implementation, to ratify invariants that passed evaluation. Our

approach is stateless in that it does not look at the existing

invariants, but only at the request and violation logs. This

makes the algorithm easy to reason about and has the added

benefit of making the inference process oblivious to transient

failures in previous runs.

The invariant inference engine uses observations as ground

truth, therefore it fundamentally needs to observe the OSN

during normal operation. In particular, invariants for new OSN

features can only be learned if authorization bugs in the new

features are not actively exploited during the learning period.

We consider this to be only a small limitation because new

features usually go through testing and internal dogfooding

where triggered bugs are expected to be reported. Regression

bugs, on the other hand, are caught by virtue of preexisting

invariants, and their detection does not depend on a period of

quiescence.

C. The Invariant Checker

The invariant checker lives at the boundary between a client

and the database system, similarly to the request sampler.

However, unlike the request sampler, the checker runs syn-

chronously on all database requests. For each database request,

it first retrieves the endpoint that made the request and the

involved entity types to determine the invariant category for the

request. It then uses the category to get all relevant invariant

predicates. The predicates are evaluated and any violations

are logged. Furthermore, if a ratified invariant is violated, the

database request gets aborted and an application exception is

thrown.

Aborted requests cause notifications that trigger a manual

investigation. An engineer can either confirm that the root

cause of the violation is a bug and proceed to fix it, or deem the

violated invariant spurious or no longer relevant. For the latter

case, she will blacklist the invariant for the specific invariant

category where the violation was triggered.

Most blacklisted invariants fall under one of three classes:

coincidental correlations, modified product behavior, and

rarely used features. The first involve conditions that had

occurred almost always without being necessary for correct

product behavior. For example, a user would have almost

always seen a post before liking it (the has seen property is

usually encoded as an association from the user to the post,

which can be inferred into a association existence invariant),

but this is not a requirement. The second class includes

invariants that were valid for a previous OSN version but are

not anymore, e.g. after switching from a policy where only

a business profile’s administrator is allowed to ask users to

follow the business profile to a policy where users who already

follow the business profile can invite their friends to do the

same. Finally, some invariants are not correct but are learned

because the code paths that cause their violation were never

exercised during the learning period.

While spurious invariants are inevitable since our learning

process bases ground truth on a limited number of obser-

vations, we have several defenses against them. First, the

ratification algorithm requires the invariant to hold for a set

minimum number of requests over at least five days before

it can be enforced. This does not, however, protect against

invariants that are no longer correct as a consequence of

changes in system behavior. These situations are mitigated

in two ways. First, invariants are also enforced on developer

machines. This allows developers to notice problems early

and remove the invariants. Second, code changes are canaried

before being sent to the entire fleet of servers. The canaries

can detect an abnormal number of failures and block the

deployment until the situation is manually remediated. Finally,

invariants can be manually blacklisted, with changes taking

effect in a matter of seconds across the entire fleet of servers,

as we will discuss in IV-C.

IV. IMPLEMENTATION

In this section we describe INVARIANT DETECTOR’s imple-

mentation, focusing on the challenges that we had to overcome

to handle the scale of Facebook’s workload. We separate

the discussion into two: we first look at the request sampler

and invariant checker, which are implemented in the database

clients, and then discuss the invariant inference engine, which

is built on top of Facebook’s data analytics infrastructure.

A. Database Client Components

IVD’s request sampler and invariant checker are imple-

mented in Facebook’s graph database clients, i.e. its web

servers. The main reason for this placement is to avoid having

to pass client state, e.g. the logged-in user, to the databases.

This also allows us to distribute the load across many machines

at the expense of having to make the invariants accessible

on each of them. While Facebook offers several interfaces

through which users can interact with it—desktop and mobile

websites, APIs for external clients, mobile applications, and

internal tools— they all share the same database API, which
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input : Request sampler logs for the last day

output: invariant category → invariants map

1 foreach invariant category c in input do
// check that we have enough requests

2 rqs = size(c.requests);

3 if rqs < EvalThreshold then continue;

4 all eq pairs = [];

5 foreach request rq in c.requests do
6 foreach p in rq.equal properties do
7 all eq pairs.addAll(combinations(p, 2))

8 end
9 end

10 foreach property pair in all eq pairs do
11 if all eq pairs.count(property pair) == rqs then

output[c].add(property pair);

12 end
13 end

Algorithm 3: Pseudocode algorithm describing IVD’s

HiveQL invariant inference data pipeline for equality predi-

cates.

conveniently supports the visitor pattern, making it easy to add

new code to examine each database request.

The logged information for a request includes the invariant

category, a mapping from values to sets of properties (local

or global) that had those values, and the invariants that were

checked when performing this request. The checked invariants

are later used to determine how many times an invariant has

been evaluated and decide whether it is ready to be ratified.

For efficiency purposes, we do not attempt to infer potential

new invariants at this point but instead defer the task to the

invariant inference engine.

While the invariant category and the local properties are

directly available in the request, the request sampler may have

to query the graph database to retrieve global properties. How-

ever, because the actual logging is performed after responding

to the web request, the request sampler does not introduce any

user-noticeable delay.

The invariant checker’s main implementation decision re-

gards the storage of its invariants. Since the invariants are

checked at every database write, with any delays being per-

ceived as slower database replies, efficiency is critical. Our

implementation keeps a copy of the invariants in each web

server’s memory. When this is not feasible or economical, a

distributed in-memory store such as Memcached can be used

as an alternative.

B. Invariant Inference Engine

The invariant inference engine is built on top of Face-

book’s data warehousing and analytics infrastructure [15],

which mainly consists of three open-source systems: Scribe,

responsible for collecting and aggregating the request sampler

and invariant violation logs, Apache Hadoop [16], responsible

for storing them, and Apache Hive [17], responsible for

querying the data. The inference engine’s embodiment is a

set of HiveQL queries and Python scripts that define data

input : Request sampler logs for the last 7 days,

violation logs for the last month

output: invariant category → invariants map

1 foreach invariant category c in input do
2 checked = map();

3 foreach request rq in c.requests do
4 foreach iv in rq.checked invariants do
5 if iv not in violations[c] then

checked[iv].add(rq.date);

6 end
7 end
8 foreach iv in checked do
9 if MeetsRatificationThreshold(checked[iv]) then

output[c].add(iv);

10 end
11 end

Algorithm 4: Pseudocode algorithm describing IVD’s

HiveQL invariant ratification data pipeline.

pipelines for transforming (a) the raw logs into invariants, and

(b) invariants under evaluation into ratified invariants.

The main challenge in designing the invariant inference

engine was to formulate its algorithms in a fashion suited

to HiveQL’s data manipulation statements. The pseudocode

for the algorithm is shown in Algorithm 3. The code first

splits the log data by invariant category (line 1) and for

each category, concurrently, computes the equality invariants

by finding the sets of local and global properties that were

always equal. For this, it first checks that sufficient requests

are available to confidently create invariants (line 2). If the

condition is met, it iterates through all requests, and for each

of them iterates through its set of equal properties (lines 5–7).

rq.equal properties is itself a set of sets; each of its elements

contains two or more properties that had the same value

when the database operation occurred. Since some of these

elements may form an invariant while others may only appear

incidentally, all possible pairs of elements are computed and

added to the all eq pairs list (line 6). Finally, the pairs which

appeared in every request are output (line 10).

Invariants that use the association existence predicate are

more challenging to infer. The logged information from the

request sampler does not contain all the graph associations

that exist between identifiers from the logged data because ob-

taining this information in real time can introduce substantial

overhead in database requests. Therefore, the inference engine

first obtains the relationships between the user logged-in at the

time of the database request and the objects involved in the

request by querying the graph database post-hoc. Association

invariants are then created when an association of the same

type exists for all log entries corresponding to an invariant

category. While this offline analysis is not precise due to

changes that may have happened to the graph since the logs

were collected, it can only lead to missed invariants, and

not false positives, thanks to the evaluation period that the

invariants go through.
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The invariant ratification data pipeline takes all invariants

that were sufficiently evaluated—both in terms of number of

days and number and requests—without ever being violated

and marks them as ready to be enforced. Algorithm 4 describes

the invariant ratification process. All invariant categories are

processed concurrently; for each category and each request

associated with it (line 1), the algorithm adds the invari-

ants that were checked to the map checked, along with the

date on which the request occurred (lines 4–6), to be later

used by the ratification check (lines 8–11). Invariants that

caused violations in any request for the current invariant

category are ignored (line 5). Having all the invariants that

always held and the the number of times they were evalu-

ated, MeetsRatificationThreshold decides whether the invariant

should be ratified (lines 9–11). The ratification requires a

minimum of 500 requests evaluated every day for at least five

of the past seven days. In addition, we require a minimum

number of distinct values to be taken by the properties involved

in the invariant, as we describe in more detail in §IV-D.

The inference engine is designed to be autonomous and

resilient to workload changes and transient failures. The execu-

tion of the data pipelines is managed by an internal framework

which takes a job’s specification and automatically provides

scheduling, monitoring, alerting, and simple reliability features

such as automatic retries. Hive allows scaling the amount

of data that we process through its MapReduce model by

allocating more mappers or reducers, as needed, based on

the amount of data collected. Finally, the pipelines are de-

signed such that each execution is independent of previous

executions, mitigating potential cascading failures. By virtue

of this design, the code automatically picks up new invariant

categories and infers new invariants when new features are

added to Facebook, and purges invariants if the features they

were associated with are no longer used.

In addition to the daily invariant computations, we perform

hourly sampling rate adjustments. To determine the sampling

rate, we estimate the number of requests that will be made for

each invariant category by looking at the category’s history.

First, the request logger writes to each log entry the current

sampling rate for its invariant category. We then approximate

for each invariant category the total number of requests that

happened during period T as

N ≈
∑

L logged during T

1/RL

where RL is the sampling rate attached to log entry L. There

are different options for choosing the period on which to

base the estimation: the previous hour, the same time on the

previous day or the same time the previous week. To be able

to adjust quickly to new traffic, and because our workload is

seldom bursty, we use the previous three hours, which in our

experience results in daily counts close to our targeted number

of samples.

C. Data Distribution

IVD needs to transfer large amounts of data between its

central inference engine and the distributed components: logs

from the request sampler and invariant enforcer, invariants

to the invariant enforcer, and sampling rates to the request

sampler. We use separate mechanisms for each of them.

For transferring logs we leverage Scribe [15], Facebook’s

dedicated logging infrastructure. Scribe offers an API to de-

scribe the data types to be logged, and automatically creates

the needed boilerplate code and initializes the Hadoop data

store. We refer the interested reader to the original paper for

further details.

Distributing the invariants is done by leveraging Facebook’s

quasi-continuous deployment model. Our implementation pig-

gybacks on the infrastructure that sends application updates to

the web servers. Besides code, the updates also include new

web server cache data to be loaded on server restart, which

is where we bundle our invariants. The frequency of updates

is higher than the daily invariant computation, making this

distribution model effective for our use case.

Coupling application updates with invariant updates has the

added benefit of leveraging the canarying process used for

testing web application code to also test the code’s interaction

with newly-ratified invariants. This protects against deploying

invariants that would significantly affect Facebook’s operation,

either because of bugs in IVD or due to adverse interaction that

were not triggered during previous testing.

Even if incorrect invariants are deployed, they can be

rapidly blacklisted. Configerator [18], a system built on top of

Zookeeper [19], offers propagation delays of seconds, which

allow prompt reaction in the event an incorrect invariant

is detected in production systems. Conversely, this system

also allows manually adding new invariants to be enforced,

which can be an effective first-line mitigation for bugs found

through other means, since writing and deploying an invariant

is significantly faster than writing and deploying new code. In

addition, we use Configerator to distribute sampling rates.

D. Optimizations and Heuristics

Post-send processing. In order to minimize perceived

database response times, we keep a large part of IVD’s code

off the critical path. We do this by leveraging web server

functionality that allows registered callbacks to be executed

asynchronously after the HTTP response has been sent to

the user. All request sampler code executes in a post-send

processing context.

Enforcement excuses. We improve IVD’s precision by man-

ually specifying domain-specific rules that excuse violations,

i.e. allow requests to proceed even though they have violated

an invariant. As the excuses are checked just before a request

is about to be blocked, they have access to more information

than was available when the invariant was created, in particular

to the values that do not satisfy the invariant and much

of the application state. In addition, the excuses are rarely

executed since violations of ratified invariants are relatively

rare, affording them more thoroughness. IVD currently uses 17
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enforcement excuses that target common classes of false

positives, as we discuss in more detail in §V-C. Due to

their domain-specific nature, the enforcement excuses may

vary between OSNs, depending on the complexity of their

underlying data model. We believe Facebook has a relatively

complex model and other implementations will require fewer

enforcement excuses.

Distinct value count. The ratification conditions (§IV-B)

include a minimum threshold for the number of distinct values

that the properties involved in the invariant have taken. This

avoids ratifying incidental invariants that represent version

numbers, image resolutions, timestamps, or that are currently

unused, e.g. fields always set to “0” or the empty string.

We empirically picked 1440 for the number of daily unique

values required to ratify an invariant, i.e. one per minute.

Since the values that we are interested in are authorization-

related—often user identifiers—the minimum threshold of dis-

tinct values has the side effect of limiting invariant generation

to features involving more than 1440 users every day. This

number can be easily customized based on the size of the

OSN and more weight can be given to user identifiers used

during internal testing.

V. EVALUATION

INVARIANT DETECTOR’s initial incarnation was deployed

at Facebook more than two years ago and has since detected

several critical vulnerabilities that have since been fixed. In

this section we give an intuition on the amount of work IVD

does, show details on the invariants that it infers and ratifies,

describe our experience with running IVD at Facebook’s scale,

and evaluate its effectiveness and performance.

A. IVD Deployment at Facebook

We begin with an overall picture of Facebook’s IVD setup to

give the reader a better sense of scale. IVD checks more than

10,000,000 peak database write requests per second and uses a

sample of roughly 500 million requests for the daily invariant

inference engine execution. At the time of our evaluation, the

inference engine produced 226,598 invariants that that were

put into evaluation mode, out of which 158,205 were ratified

at the end of the evaluation period.

In the following we look in more detail at the invariants

to understand (1) which predicates are most often inferred,

(2) which invariants fail evaluation and (3) which invariants

are eventually enforced. To present representative examples,

we rank the invariant predicates according to the number

of invariant categories they are associated with. Intuitively,

a predicate associated with more invariant categories applies

more broadly to changes that are made to the social graph.

Table I shows the top 10 predicates put into evaluation, the

number of invariant categories for which they have been put

into evaluation, and the number of categories for which they

were ratified. For example, the first line can be read as: there

are 40,150 invariant categories, i.e. (ENDPOINT, OPERATION,

ATYPE, O1TYPE, O2TYPE) tuples, for which the predicate

“the association’s first object was the logged-in user” held

Invariant Predicate #Evaluated #Enforced
Invariants Invariants

logged-in user = o1 40,150 27,144
logged-in user = o1.creator id 9,018 6,738
logged-in user = o2 8,257 5,781
logged-in user = o.owner id 6,250 5,621
logged-in user = o2.creator id 6,146 4,691
o1 = o2 6,046 4,695
logged-in user = o2.owner id 5,834 4,106
logged-in user = o1.owner id 4,716 3,404
o1 = o2.owner id 4,210 3,112
the logged-in user is an 3,951 2,590
administrator of Page o1
... 2192 more
Total 226,598 158,205

TABLE I: Top 10 predicates by number of invariant categories

they are associated with. The numbers include both objects and

associations writes.

in all sampled requests whenever ENDPOINT performed OP-

ERATION on an association of type ATYPE between objects of

types O1TYPE and O2TYPE. Furthermore, the predicate passed

evaluation for 27,144 of the 40,150 invariant categories. As it

can be seen, all the top predicates reference common privacy-

related property names, which match against the logged-in

user (USER) or one of the objects involved in the request,

i.e. O1 or O2. These properties are common to many object

types, resulting in them being referenced in many invariant

categories. By contrast, predicates which appear in fewer

categories reference more specific properties, e.g. o1.user

= o2.job_data.owner_id.

The invariants which did not pass evaluation can be put

into two classes. First, there are invariants which did not hold

when tested against 100% of production requests. This reason

accounts for 30,098 invariants. Second, there are invariants

which always held but were not involved in a sufficiently

large and diverse number of requests for our system to have

confidence in their correctness, as described in §IV-D. This

accounts for 55,557 invariants. Note that the same invariant

predicate may cause violations for one particular invariant

category, not meet ratification threshold for another, and be

ratified for yet another.

The predicate that caused the most violations in our evalu-

ation step is o2 is a friend of the logged-in user. Intuitively,

this happens because users perform most of their interactions

with friends, resulting in the invariant being picked up initially.

However, many interactions are also valid for non-friends,

resulting in the invariant failing evaluation. A related example

is the predicate the logged-in user recently communicated with
o2. While that predicate usually holds, it is only an incidental

relationship and is not required. We see similar patterns in all

top 10 invariants ranked by number of violations caused in

the evaluation stage. We therefore conclude that checking the

invariants against all production requests, rather than against

a sample, is necessary for having a set of correct invariants.

The invariants which did not meet the ratification volume

requirements either reference properties that take a limited set

of values or are related to features that are only available to
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a limited number of users, either by virtue of their nature or

because they are not fully released. For example, certain object

properties contain enumerated values or version numbers. Not

only do these usually not concern privacy, but they can also

change over time, e.g. as a new version is released, leading

to false positives. On the other hand, product features with

limited exposure could benefit from a lower invariant ratifi-

cation threshold. For example, fundraisers are only available

for qualified US-based 501(c)(3) nonprofits, some business

features are only available to the employees of companies

that have come into an agreement with Facebook, and some

product features are only available to Facebook employees.

We are considering ways to enforce these invariants without

impacting the system’s overall false positive rate such as using

a finer granularity for the invariant categories.

B. Effectiveness

IVD is a defense-in-depth system, therefore we expect it to

only jump into action on the rare occasions when authorization

checks are missing. However, even before that, we have the

possibility of quantifying its effectiveness by looking in more

detail at the invariants that it creates.

We define authorization coverage as the fraction of autho-

rization checks required for a system’s correct functioning that

are actually performed by its implementation. A correct system

has therefore 100% authorization coverage. While ideally we

would compute IVD’s authorization coverage by comparing its

invariants against Facebook’s specification, this is not possible

due to the absence of a formal specification, which is very

often the case in large-scale projects. Rather than evaluate

IVD’s effectiveness on a smaller toy OSN, we believe we can

obtain more insights into the system by performing tractable

measurements that can be used as a proxy for its actual

authorization coverage.

One way to estimate authorization coverage is to compute

the fraction of invariant categories that appear in database

writes, that have at least one invariant associated with them.

This provides a rough overall estimate of the protection offered

by IVD: it infers invariants for 50% of invariant categories, and

enforces them for 36% of categories. These numbers, however,

may not accurately represent authorization coverage since

some categories do not perform privacy-sensitive operations,

e.g. logging, while others may require multiple invariants, of

which only some have been inferred.

To obtain a more granular view of IVD’s authorization

coverage, we use Facebook’s code as its specification and

manually compare IVD’s invariants against a sample of the

authorization checks implemented in Facebook’s code. Be-

sides helping us better quantify authorization coverage, this

approach also gives us insights into whether the expressive

power of IVD’s invariants is adequate, and has the added

benefit of comparing IVD invariants against checks that we

can assume to be essential for the correct functioning of the

OSN.

To achieve this, we manually went through Facebook’s

codebase, identified a sample of authorization checks, and

verified whether equivalent invariants existed. Such invariants

would prevent a hypothetical attempt to abuse Facebook in

case developers missed the check. As described in §II-C,

Facebook’s data access framework offers a structured way

of writing authorization policies. This allowed us to identify

the authorization rules by simply looking for classes that use

the PermissionsValidator trait. Out of roughly 1,000

such classes, we manually inspected the 22 which deny access

if the logged-in user does not satisfy a condition. We pick

these because (a) breaking them would have a significant

impact, (b) they are a prime target of IVD by design, and (c)

we could easily identify them by matching the class name

against the regular expression DenyIfViewerIs.*Not.*,

e.g. DenyIfViewerIsNotOwnerOfPage.

For each rule, we inspected its code to determine the object

and association types that it applies to, and the constraint that

it enforces. We then looked at the invariants IVD created for

those types and checked whether any of them corresponded to

the coded condition. We found that out of the 22 authorization

rules, 7 are unused (either deprecated or part of an upcoming

feature), and one is only enforced on reads. Out of the

remaining 14 rules, 10 have a corresponding invariant and

4 do not. It is important to note that IVD has also inferred

authorization rules not present in the codebase, as we will

describe in more detail in §V-C.

While it is difficult to draw definitive conclusions from these

observations, we consider them a good indication that IVD can

adequately represent and learn authorization rules. To further

confirm this we looked at IVD’s bottom line contribution,

expressed as the number of violations engineers have acted

upon. More precisely, we looked at a period of 6 months and

found 23 reports (out of a total of 222 IVD reports) which had

one or more code changes associated with them and more-

over, we manually confirmed that the changes are related to

authorization checks. To put this into perspective, Facebook’s

bug bounty program resulted in 526 valid submissions (out of

a total of 13,233 submissions) in a 12 months period [12].

Because Facebook’s bug bounty program accepts all types

of security issues across all of Facebook’s services [20], bug

bounty submissions are not limited to authorization bugs nor

to Facebook proper. We therefore consider IVD’s results to

provide an important contribution to Facebook’s security.

We next look at several specific bug instances to better

understand IVD’s strengths and blind spots.

C. Case Studies

IVD blocked abnormal behavior in several different scenar-

ios. Some involved benign users exercising a Facebook feature

in a way that was not expected or not taken into account

by the engineers. Others, however, were security researchers

participating in the bug bounty program or malicious actors

attempting to discover and exploit vulnerabilities in Facebook.

We present in more detail several cases where IVD stopped

bugs from being exploited and several cases where it did not,

along with the lessons that we have learned.
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True Positives. As described in §I, a lesser known Facebook

feature allows its users to merge business Pages that they

own. During the merge process, likes, followers and reviews

are consolidated into a single Page. Internally, this works by

creating a Page merge object and connecting all Pages involved

in the merge to it. IVD correctly inferred that when connecting

a Page object to a Page merge object, the logged-in user

must have an owner association with the Page. This invariant

was broken when a security researcher attempted to exploit

the merge system by crafting a merge request containing

identifiers of Pages that were not under their control. Even

though the researcher could not exploit the bug by virtue of

IVD, Facebook issued them a bounty for triggering it.

Another Facebook bug could have allowed any business

Page administrator to list other arbitrary Pages as their busi-

ness’ clients through a maliciously crafted request. The bug

was caused by a missing authorization check that IVD correctly

inferred: an administrator association must exist between the

logged-in user and the Page being connected for the operation

to be performed.

Another Facebook feature allows users to transform a per-

sonal profile into a business Page. Users who inadvertently

create a personal profile to represent a business use this feature

to convert the profile and benefit from additional business

features. The conversion process maintains all content and con-

nections with other users. Internally, this process (1) creates a

Page object, and (2), copies all content and connections from

the existing user profile to the newly-created Page. One of the

endpoints implementing this feature accepted a Page object

identifier and a set of user profile identifiers to be added as

followers to the Page. IVD correctly inferred that the logged

in user must be friends with the account being added as a

follower to the business. An attacker who attempted to exploit

this vulnerability aimed to force a number of users to follow

a Page they did not choose to.

While IVD aims towards authorization bugs, it inherently

detects other unintended changes to an OSN. One example

involved a refactoring that split the group member association

into two: confirmed member and unconfirmed member. The

now-legacy member relations was left into place to be used

by code predating the refactoring, IVD included, that did not

distinguish between the confirmed and unconfirmed status.

The new and old associations were therefore supposed to be

synchronized. However, as IVD pointed out soon after the

change, there were rare circumstances where the member as-

sociation was no longer created, while the corresponding new

associations were, leading to inconsistencies in the graph. IVD

exposed the inconsistencies, during legitimate user activity,

as violations of invariants requiring the logged-in user to be

member of a particular group.

False Negatives. An important part of IVD’s development

is the post-mortem analyses of uncaught vulnerabilities that

affected Facebook. These allow us to understand IVD’s blind

spots, find implementation bugs in IVD itself, and significantly

improve the system over time. In the next paragraphs we

discuss several authorization bugs that affected Facebook

during the course of our study and did not trigger invariant

violations.

A bug not caught by IVD allowed users to delete arbitrary

videos [21]. To exploit it, a malicious user would first (1)

create a comment, (2), attach the target video to it, and (3),

delete the comment. Step 2 caused the comment to take

ownership of the video, while step 3 caused the comment

deletion to also trigger the video’s deletion. Neither step 2

nor 3 performed the access control checks necessary to prevent

the problem. While Facebook’s web interface did not allow

arbitrary videos to be attached to comments, its REST API

did.

An IVD invariant that would have caught the bug would have

checked whether the video owner is the same as the comment

author in step 2, when adding the association between the

video and the comment. However, IVD was not enforcing

this invariant at the time the bug was discovered because the

vulnerable endpoint was part of a recent product feature that

was tested extensively via the web interface before release but

not significantly via Facebook’s REST API. Therefore, the

volume of sampled API requests was not sufficient to meet

IVD’s ratification criteria. We mitigated this problem through

a more aggressive request sampling policy for test users and

employees, which results in invariants being created faster

after new features are introduced.

Another bug [22] allowed any user to change the cover

photo of any event they could see. The root cause of this

problem was a missing permission check in the code handling

the cover photo update. IVD did not detect the problem because

of the complex authorization policy that determines whether

a user can edit an event cover photo. The policy recognizes

three situations: the event is public and has no cover photo

yet, the event is created for a group, or the event is created

for a Page. Each case is treated separately and additional case-

specific checks, such as whether the user is an administrator

of the group owning the event, are performed. In particular,

IVD failed to create an invariant because the permission

check requires a disjunction predicate and IVD lacks such

expressiveness (§III).
False Positives. False positives are invariant violations

caused by legitimate activity. They are inevitable artifacts

that result from basing ground truth on a limited number

of observations. We use two approaches to handle them:

we quickly stop further blocking by manually blacklisting

invariants and subsequently target their underlying cause with

enforcement excuses (§IV-D).

The most commonly-excused violations in our setup,

amounting to 81% of all violations, are those that are not

authorization-relevant, as described in §III. We heuristically

detect whether a violation is authorization-relevant by looking

at the runtime types of the objects involved in the graph request

and at the name of the properties that the violated invariant

references. The object types are compared against a whitelist

containing the types known to be used in authorization checks,

e.g. USER or PAGE, the association type is compared against a

blacklist that holds types which are known to never be relevant
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to authorization, e.g. logging, while the property names are

matched against strings commonly used for authorization

properties, e.g. “owner”, “privacy”. If none of the above

checks indicates an authorization-related violation we default

to excusing it. These violations do not cause requests to be

blocked but they are nevertheless logged, allowing for further

investigation.

Another enforcement excuse commonly triggered in our

setup concerns requests involving different identifiers that refer

to the same user. This can happen because a user might act as

their personal account, their business account, their advertiser

account or as a Page that they administer. These accounts

are represented by separate, but connected graph objects. As

violations are relatively rare events, we can afford to inspect

the graph in more detail and verify whether the mismatching

identifiers point to objects that are connected in a fashion that

indicates they refer to the same person, and if so, we excuse

the violations. This excuse applied to 17% of all violations.

The remaining excuses cover a smaller fraction of violations

but they nevertheless make an important contribution towards

keeping the number of users affected by spurious invariants

and the number of reports that have to be manually investi-

gated low.

For example, we noticed violations involving code that

lazily performs actions, such as minor graph garbage collec-

tion, after handling a user’s request. These actions appear to

be performed by the user who originally made the request

but they can operate on other users’ data and cause spurious

violations. Since the code relevant to these actions is localized,

we use a call stack-based enforcement excuse that matches

call stack frames to specific functions assumed to correctly

perform maintenance activities to the graph.

Other excused scenarios include unowned Pages, memori-

alized users, and different users acting on an object belonging

to a Page or group that they commonly administer. Overall,

the excuses rule out approximately 99% of violations, with the

remaining 1% having to be manually inspected. We believe we

can further decrease this number by identifying and excusing

more spurious types of violations. IVD’s final false positive

rate, i.e. the number of requests incorrectly blocked over the

number of requests which had invariants associated with them

is roughly 0.00000004%.

Vulnerability Mitigation. IVD may detect but not mitigate

vulnerabilities. This behavior can occur in web application

endpoints that manipulate multiple entity types. Consider the

endpoint that creates the Page merge object, associations

between the merge object and individual Page objects and

associations between the merge object and users. IVD consid-

ers these operations to belong to different invariant categories

(§III) and may infer and enforce different predicates on them.

It is possible for an attacker to cause an invariant violation on

the third step of the process but not earlier, when the sensitive

merge object is created. If this happens in the absence of trans-

actional semantics IVD blocks the last operation but allows

all previous operations to complete, potentially resulting in

merged, albeit corrupt, Page.

From the attacker’s perspective the attack is successful

so there is an incentive to keep exploiting it. IVD however

reports a continuous stream of invariant violations as the attack

unfolds and pinpoints the endpoint that is being exploited.

IVD’s behavior is still valuable despite the system not being

able to automatically mitigate the vulnerability and potentially

causing data corruption.

We conclude that IVD invariant violations must be moni-

tored by engineers closely; the engineers should try to under-

stand the expected product behavior and either whitelist the

invariant or fix the vulnerable endpoint.

D. Performance

IVD sits in a performance-critical part of the software stack,

between the web application and the graph database, therefore

its performance impacts most application features. Since IVD

is optimized to keep most of its data in memory and read

infrequently from the social graph beyond what is readily

available in the current request, its average execution can be

approximated by a CPU-bound workload.

To understand IVD’s performance impact we use a sampling

profiler that analyzes all of Facebook’s web servers and aggre-

gates the data globally. At Facebook the overall performance

and resource consumption of the web application are closely

monitored and distilled in a metric named “app weight”.

Any changes that regress the app weight must be well-

motivated. The measurements show that IVD’s contribution to

the total CPU time used executing web application code is a

mere 0.014%.

To further quantify IVD’s performance impact, we instru-

ment its code to measure the additional wall time it adds to

each database write and log a sample of the measurements. An

analysis of 40,000 samples yields a median overhead of 0.1ms

per database write, while the 99th percentile, i.e. the time taken

by the check that is slower than 99% of all checks, is 5ms.

However, these numbers are only an upper bound on the end-

to-end time penalty that IVD adds because Facebook’s code

may perform multiple operations concurrently. In particular,

unrelated I/O operations can be serviced while IVD executes,

leading to an increased level of parallelism but not necessarily

an increased end-to-end wall time.

To obtain a better idea of end-to-end wall time overhead

we measured the time needed to serve requests with and

without IVD enabled. We performed the analysis on Face-

book’s production systems in order to take into account all

interactions that may not be visible in a testing environment

and obtain a result representative of IVD’s intended use. We

logged the performance characteristics of approximately 1

million user requests that resulted in at least one database

write. Since the request wall time is significantly affected by

the request arguments, e.g. the time taken by a file upload

request depends on file size and on the quality of the internet

connection between the user and the OSN, we compared

median times. We separately recorded the time needed to send

a response back to the user and post-processing time—where

IVD’s request sampler runs—and observed a median difference

1106

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 16:42:41 UTC from IEEE Xplore.  Restrictions apply. 



of 1 millisecond for the former and 2 milliseconds for the

latter. We therefore conclude that IVD’s performance impact

is virtually imperceptible to an OSN’s end-user.

The performance of IVD’s invariant inference engine is also

important. The daily inference engine runs need to compute

new invariants in less than 24 hours. Our inference engine

implementation typically needs 4–6 hours to compute new

invariants, using a peak of 1,000 mappers and reducers.

VI. RELATED WORK

Traditionally, research on fighting web application bugs has

focused on runtime data-flow tracking and static analysis.

The former mainly targets injection vulnerabilities such as

XSS and SQL injection [23], [24], [25], while the latter

attempts to find, among others, missing authorization checks.

Systems such as Fix Me [26], MiMoSa [27], RoleCast [28],

SAFERPHP [29], and WAPTEC [30] use static analysis to

check a web applications’s security logic. However, such

analyses face a fundamental problem when confronted with

applications that have complex access control policies: in the

absence of a specification, it is impossible to decide whether

an operation should be allowed, and indeed, this approach has

been largely restricted to applications that use a simple privacy

model, of regular and privileged users. IVD does not have this

limitation.

One way to side-step this problem is to use the applica-

tion’s usual behavior as the specification. APP LogGIC [31],

Swaddler [32], Waler [2], and ZigZag [33] use Daikon [34]

to extract invariants that are part of the “intended” application

specification. The invariants are then either checked at runtime

or used in a model checking step to identify paths on which

they are not enforced. While their invariants are based on

program state, we propose the simpler and scalable approach

of basing them on database queries. In addition, we avoid

the expensive model checking step and ensure that runtime

checking of the invariants has virtually no overhead.

Other systems base their invariants on different data.

BLOCK [5] generates invariants from web requests and re-

sponses to detect state violation attacks, while InteGuard [6]

finds invariants in the HTTP traffic between providers, integra-

tors, and end-users, with the goal of protecting integrators from

malicious users. While these approaches have the advantage

of working outside the application they protect, the expressive

power of their invariants is inevitably lower as they have

limited access to application state. In addition, the graph

database layer affords us finer invariant granularity than the

HTTP layer.

IVD also has similarities to anomaly detection systems [35],

[36], [32]. While they share the same high-level idea, anomaly

detection systems assign to each request an anomaly score
which they compare against a threshold determined during the

learning phase. The score is usually computed using statistical

models such as string character distribution or token finder,

which makes them suitable for protecting against attacks that

involve specific input patterns, but less so against authorization

bugs. Several anomaly detection systems have been proposed

input : picture identifier pic id
1 u = logged-in user;

2 auth data = graph.getAuthInfo(pic id);

3 if graph.associationExists(u, friend, auth data.target)
then

4 return graph.getObject(pic id);

5 else
6 return nil
Algorithm 5: Possible approach for making IVD suitable for

reads by having the graph database API return an object’s

authorization-relevant information separately.

input : picture identifier pic id
1 u = logged-in user;

2 pic = graph.getObject(pic id);

3 if graph.associationExists(u, friend, pic.target) then
4 IVD.onAuthorizationSuccess(pic);

5 return pic;

6 else
7 return nil
Algorithm 6: Possible approach for making IVD suitable for

reads by explicitly informing it of successful authorization

checks. Line 4 assumes IVD is is a globally-accessible object.

specifically to target SQL queries [37], [38], and proved to be

effective against SQL injection or XSS.

Working to protect network applications from malicious

users, Vigilante [39] uses attack signatures rather than in-

variants. The signatures are generated by instrumentation that

looks for attacks that rely on detectable exploit mechanisms

such as buffer overflows. However, this approach does not

work in the context of semantic bugs, where a generic method

of detecting an attack does not exist. Also using attack

signatures, intrusion detection systems such as Snort [40]

protect against known vulnerabilities. However, this technique

has limited applicability in proprietary applications, such as

the ones powering OSNs.

VII. FUTURE WORK

IVD’s deployment at Facebook does not currently cover

database reads for reasons we have laid out in §II-B. The

key insight into making IVD applicable to reads is to inform

it of successful authorization. We propose two approaches to

achieve this:

1) Separately read authorization metadata and payload.

2) Explicitly inform IVD of successful authorization.

The former approach involves splitting object attributes

into two categories: relevant to authorization and irrelevant to

authorization. The database would then provide a separate API

for reading only the authorization-relevant attributes. Algo-

rithm 5 shows the application of this approach to Algorithm 2.

IVD would be invoked, as before, during the getObject call,

but not during the getAuthorizationInfo call.

The latter approach does not involve modifying the graph

API but requires the authorization code to explicitly notify IVD
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when authorization is successful. Algorithm 6 conceptually

presents the idea, applied to the same algorithm as above.

Similarly to the handling of writes, IVD has at line 4 the oppor-

tunity to learn or to block accesses to the object by throwing an

exception. In practice, the ivd.onAuthorizationSuccessfull call

can be made by the authorization framework without requiring

changes to user code.

A different direction for future work is to mitigate IVD’s

reliance on an attack-free learning period (§III-B). A potential

solution involves flagging for manual review invariants that

were almost ratified, i.e. they were only broken by requests

coming from a small group of users. Alternatively, the invari-

ants could be directly ratified, but then automatically disabled

if they block requests coming from a sufficiently large number

of users. More complex ratification criteria can be borrowed

from the field of robust statistics [41].

Finally, IVD can be extended to learn more complex in-

variants. The system currently protects against bugs caused

by missing authorization checks that can be expressed as

equality between object attributes, direct relationships, or a

conjunctions thereof. Potential extensions could allow IVD to

infer and enforce disjunctions, or introduce predicates that

capture indirect relationships, i.e. inspect objects separated

from the logged-in user by more than one edge in the graph.

VIII. CONCLUSION

We have presented IVD, a defense-in-depth system that

protects online social networks against missing or incorrect

authorization checks. IVD works by inferring invariants from

graph data query patterns and, after a short evaluation period,

blocks any requests in which the invariants do not hold.

IVD’s main novelty rests in its focus on the highly in-

terconnected data model specific to online social networks,

which allows inferring meaningful invariants at the database

layer, and in the design and implementation decisions that

allow it to learn and enforce invariants at an unprecedented

scale. To our knowledge, IVD is the first invariant detection

system that checks hundreds of thousands of invariants against

millions of requests every second, made to one of the largest

graph databases in the world. Additionally, IVD tackles the

inherent susceptibility of dynamic invariant detection systems

to false positives through a two-step evaluation and ratification

process, and a set of effective domain-specific enforcement

excuses.

IVD does have limitations stemming from the trade-offs

of our design: deciding to learn at the database layer al-

lows finding authorization-relevant invariants but has limited

applicability for read operations, and the restricted invariant

format offers good performance but does not allow inferring

all authorization checks that the code may perform. IVD is

therefore not a replacement for good engineering practices,

security audits or bug bounty programs. However we have

found it to be an effective additional layer of defense at

Facebook.
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