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Abstract—Since the first whole-genome sequencing, the
biomedical research community has made significant steps to-
wards a more precise, predictive and personalized medicine.
Genomic data is nowadays widely considered privacy-sensitive
and consequently protected by strict regulations and released
only after careful consideration. Various additional types of
biomedical data, however, are not shielded by any dedicated legal
means and consequently disseminated much less thoughtfully.
This in particular holds true for DNA methylation data as one
of the most important and well-understood epigenetic element
influencing human health.

In this paper, we show that, in contrast to the aforementioned
belief, releasing one’s DNA methylation data causes privacy issues
akin to releasing one’s actual genome. We show that already
a small subset of methylation regions influenced by genomic
variants are sufficient to infer parts of someone’s genome, and to
further map this DNA methylation profile to the corresponding
genome. Notably, we show that such re-identification is possible
with 97.5% accuracy, relying on a dataset of more than 2500
genomes, and that we can reject all wrongly matched genomes
using an appropriate statistical test. We provide means for
countering this threat by proposing a novel cryptographic scheme
for privately classifying tumors that enables a privacy-respecting
medical diagnosis in a common clinical setting. The scheme
relies on a combination of random forests and homomorphic
encryption, and it is proven secure in the honest-but-curious
model. We evaluate this scheme on real DNA methylation data,
and show that we can keep the computational overhead to
acceptable values for our application scenario.

I. INTRODUCTION

Since the first whole-genome sequencing in 2001, the cost

of molecular profiling has been plummeting, enabling a signif-

icant progress in biomedical science and the rise of precision

medicine [1]. This scientific breakthrough is triggered by

the increasing availability of biomedical data, whose main

negative counterpart is the new threat towards health privacy.

The extent of the threat, and mechanisms to mitigate it, have

been extensively studied regarding the genomic data. The

various attack vectors and protection techniques have been

well surveyed and categorized back in 2014 already [2]. The

genome is especially privacy sensitive as it uniquely identifies

someone, it is very stable over our whole lifetime, and it

is correlated among relatives [3]. This may explain why the

security community has been, so far, focusing essentially on

enhancing the privacy of genomic data, and not the other

types of biomedical data, such as epigenetic data, despite their

vital functions for human health and their rapidly growing

availability [4].

DNA methylation is one of the most important and best

understood epigenetic elements influencing human health. It is

an essential regulator of gene transcription. As a consequence,

aberrant DNA methylation patterns (such as hypermethylation

and hypomethylation) have been associated with a large num-

ber of cancer types [5], [6], [7]. Because of its crucial role in

human health, DNA methylation data might constitute highly

sensitive data as well, whose privacy should be protected using

dedicated legal or technical means. However, epigenetic data

might not even be considered as genetic information in the

strict legal sense, and thus not be protected by legal frame-

works, such as the US Genetic Information Nondiscrimination

Act (GINA) [8], [9].

Contrary to the genome, DNA methylation data, and more

generally epigenetic data, vary quite significantly over time,

mainly because they are highly influenced by environmental

factors. This may explain why DNA methylation data are

simply released (without identifiers) on open online platforms

with nonrestricted access. In order to prevent privacy breaches,

the genomic data corresponding to the DNA methylation data

are generally not made publicly available, and follow stricter

privacy rules. However, it is well-known that DNA methylation

is also influenced by genetic factors [10]. As a consequence,

correlations between DNA methylation and the genome could

be exploited in order to re-identify anonymous DNA methy-

lation profiles by using some public genomic database (e.g.,

OpenSNP [11]). Unfortunately, previous work has only tackled

potential re-identification risks and countermeasures from a

relatively high-level qualitative perspective (see Section IX). In

this work, we provide the first detailed quantitative assessment

of the identification risks inherent to DNA methylation data

and, moreover, propose a provably secure technical mechanism

to enable privacy-preserving methylation-based diagnosis.

a) Contributions: Specifically, we present a Bayesian

inference framework to predict part of the genotype from DNA

methylation data. We then propose an algorithm that matches

DNA methylation profiles to the genotypes whose posterior

probabilities are maximized given these methylation profiles.

By using a rich methylation-genotype dataset, we show that

only a few tens of methylation regions are sufficient to
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accurately match DNA methylation to genotypes. Furthermore,

we present a statistical method that enables us to reject the

small fraction of cases where the matching algorithm does not

provide 100% accuracy, e.g., when the genotype corresponding

to the methylation profile is not part of the genotype dataset.

We also observe that, in such cases, if a relative is part of

the genotypes’ dataset, it is the one (wrongly) matched to

the methylation profile. By including all genotypes contained

in phase 3 of the 1000 Genome Project, we show that the

attack success is very robust to an increase in the size of the

genotype dataset. All accuracy, false-positive and true-positive

rates remain constant for a size of the genotype dataset varying

from 75 to 2579.

Given the extent of the threat, we propose a novel crypto-

graphic scheme for privately classifying tumors, which enables

a privacy-preserving medical diagnosis in a common clinical

setting. With our method, neither a curious third-party running

the machine-learning algorithm can learn the personal DNA

methylation data, nor the data owner (e.g., the patient) can

learn the detailed machine-learning model. In particular, we

adapt existing homomorphic schemes for privately evaluating

random forests with encrypted data, and prove the resulting

scheme secure in the honest-but-curious adversarial model,

which constitutes the state-of-the-art adversary model in this

problem setting. We evaluate the classifier performance on

real methylation data, and show that it can precisely classify

brain tumors in 9 subtype classes based on 900 methylation

levels in less than an hour, which represents a fully tolerable

computational time for the considered application scenario.

b) Organization: In Section II, we introduce the relevant

concepts and properties of DNA methylation. In Section III,

we present the considered adversarial model. We then detail

the analytical method behind our identification attack in Sec-

tion IV. We describe our dataset in Section V before using it to

evaluate the success of our attack in Section VI. In Section VII,

we present our private classification algorithm and evaluate

its performance in Section VIII. We review the most relevant

previous work in Section IX, before concluding in Section X.

We provide the detailed security proofs of our cryptographic

scheme in the Appendix.

II. BACKGROUND

Methylation of the DNA is one of the most important

epigenetic modifications in the genome, with profound conse-

quences on the structure and the activity of the DNA molecule

[12], [13]. It has been observed in numerous species (animals

and plants), but some species lack this mechanism. It consists

in the addition of a methyl group to the cytosines or adenine

by specific enzymes called methyltransferases; however in

humans, only cytosine methylation in CpG-dinucleotides, lead-

ing to the formation of 5-methylcytosine, has been observed.

Given its mostly repressive effect on gene expression, DNA

methylation at the promoter of genes is a mechanism by which

genes can be silenced during development, for example to

maintain the pluripotent state of stem cells [14].

Aberrant changes in the DNA methylation patterns, which

are frequently observed in cancer, can lead to the hyper-

activation of genes such as oncogenes, or the silencing of

tumor suppressor genes [5]. While the changes in the DNA

methylation pattern can be dramatic in cancer, DNA methyla-

tion in normal tissues can also be modified due to, for example,

environmental influences. It has been shown in diverse studies

that environmental cues such as pollution, exposure to stress

or cigarette smoke leads to changes in the DNA methylation of

the genome for persons exposed to these influences [15], [16],

[17], [18]. Recently, several studies analyzed the influence

of these external effects on the methylation patterns in a

cohort of mothers and children and found massive number of

differentially methylated regions when comparing children of

smoking and non-smoking mothers, with downstream effects

on the expression of genes involved in important pathways of

lung development and maturation [15], [16].

Besides external factors, the genotype of an individual can

also affect the methylation of certain regions [19], [10], [20].

Individuals carrying particular alleles at some single nucleotide

polymorphisms (SNPs) can exhibit specific DNA methylation

patterns at some loci. Such SNPs having an influence on

the methylation are called methylation quantitative trait loci

(meQTLs), and have been studied previously to uncover the

mechanisms by which single nucleotide polymorphisms can

have a effect on the methylation patterns. An obvious effect

is when the polymorphism affects a CpG dinucleotide. If the

polymorphism affects the cytosine (C) or the guanine (G),

the CpG dinucleotide is lost, leading to a loss of methylation

at this site. However, other polymorphisms beyond these

“CpG destroying SNPs” can lead to methylation changes.

Given this possible link between varying genotypes and DNA

methylation, the question is to what extent knowledge of the

DNA methylation pattern could be used to reverse-engineer

the meQTLs and predict genotypes based on the methylation.

III. THREAT MODEL

We assume that the adversary gets access to one or multiple

individual profiles of genome-wide DNA methylation levels, as

well as to a set of genotypes. There are around 28 million CpG

sites per individual and about 150 million known genomic

variants to which the adversary can potentially have access.

Then, we study various scenarios that could occur in practice.

A typical example is to map a given anonymized DNA methy-

lation profile to a genotype in order to re-identify it. Indeed,

genomic data can facilitate de-anonymization, because there

are already many profiles publicly available online with real

identifiers, but also because it includes information about phe-

notypic traits, and kinship that can be further matched to side

channels such as surname-genome associations databases [21]

or online social networks [22]. Moreover, the genome is very

stable over our whole lifetime, and thus cannot be revoked.

Note that we assume the adversary to have no prior knowl-

edge about the presence of the target’s genotype in the set

of genotypes. Thus, the adversary also wants to determine

whether the genomic profile that most likely matches to DNA
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methylation profile belongs to the same person. In other words,

the adversary also tests if the owner of the DNA methylation

profile is also part of the genomic dataset. We also study

if familial relationships can mislead the adversary about the

genotype corresponding to the methylation profile.

In the private classification model, we consider an honest-

but-curious adversary as this assumption is standard in previ-

ous works on privacy-preserving medical diagnosis in a clin-

ical setting [23], [24], [25], [26]. Indeed, it seems reasonable

to assume that involved parties in the healthcare setting, such

as hospitals or medical practitioners, will follow the protocol

honestly. We leave the strengthening of our protocols to work

with active adversaries for future investigations.

IV. ATTACK METHODOLOGY

We present here our de-anonymization attack from a theo-

retical perspective. The attack relies upon the matching of one

or multiple DNA methylation profiles to their corresponding

genotypes. To do so, the adversary first infers the probability

of a genotype given only methylation data, and second maps

the methylation profile to the genotype that maximizes the

average posterior probabilities between genotypic positions

and methylation sites. Once the best matching has been found

by the adversary, he also wants to be sure that the methylation

and genotypic samples in the matching pair belongs to the

same person. Indeed, it could be that an individual is part of the

DNA methylation dataset but not of the genotype dataset, or

vice versa. To verify this, the adversary relies on a test statistic

related to the matching score that provides him with a degree

of certainty about whether the matching between methylation

data and genotype is significant enough to be considered

correct. If there is not enough certainty, the adversary can

conclude that the corresponding genotype is most likely not

part of the dataset.

A. Learning the Attack Model

The probabilistic relationships between methylation levels

and genotypes are derived by relying on a separate training

dataset T = {(�mi, �gi)}ti=1 containing t pairs of DNA methy-

lation levels’ profiles and their corresponding genotypes. In

practice, methylation profiles �mi and genotypes �gi have tens of

millions of different positions. Specifically, the training phase

aims: (i) to determine the meQTLs, i.e., the positions q in

the genotype influencing the methylation levels in a region r,

and (ii) to learn the magnitude of this influence. During this

training phase, we select a subset G of n independent meQTLs

gqi , and determine, for each of them, the single most correlated

methylation region mr
i over all the t pairs. In case more

than one methylation region is most correlated with the same

meQTL, we pair the highest correlated methylation region with

the given meQTL first, and then pair the other methylation

region with the second most correlated meQTL, and so on

and so forth. This eventually provides us with a set of

methylation region-meQTL position pairs Q = {(rj , qj)}nj=1,

where ∀(rj , qj), (rk, qk) ∈ Q : rj �= rk ⇔ qj �= qk.

Once we have identified the positions in the genotype that

influence most DNA methylation, we are interested in inferring

the posterior probability of every meQTL gij given the corre-

sponding methylation region mi
j , Pr(Gi

j = gij |M i
j = mi

j). In

this probability, Gi
j denotes the discrete random variable of the

meQTL at position qi of individual j, where gij ∈ {0, 1, 2} for

any qi and j, and M i
j denotes the continuous random variable

representing the methylation levels of individual j averaged

over all CpG sites within region ri, where mi
j ∈ [0, 1]. By

Bayes theorem, we have that:

Pr(Gi
j = gij |M i

j) =
p(M i

j | Gi
j = gij) Pr(G

i
j = gij)∑

gi
j
p(M i

j | Gi
j = gij) Pr(G

i
j = gij)

(1)

The prior genotype probabilities Pr(Gi
j = gij) can be

retrieved from population statistics databases, such as dbSNP,1

or directly computed on any dataset of populations with

similar ethnicity background. Moreover, we can learn the

conditional probability distributions p(M i
j | Gi

j = gij), for all

gij ∈ {0, 1, 2}, by relying on our training dataset T , focusing

only on the meQTL-methylation pairs contained in Q. In this

process, we must select the continuous distribution function

that best fits the methylation-meQTL data. We discuss what

distribution function fits best in Section VI.

B. Matching Attack

After having trained p(M i
j | Gi

j = gij) for all pairs in Q
and, for each pair, all three possible genotype values, on the

training dataset T , we can predict the posterior probabilities

Pr(Gi
j = gij | M i

j) of the n meQTLs in G given methylation

profiles in another dataset, referred to as the test set in the

following. The test set consists of two independently chosen

subsets: (i) a set S = {(�si)}ng

i=1 containing ng ≥ 1 genotypes,

and (ii) a set E = {(�ei)}nm
i=1 containing nm ≥ 1 methylation

profiles. Note that individuals in S and E may be different,

and that the adversary wants to infer the links between S
and E . In this endeavor, the adversary must compute, for all

meQTLs in G and ng×nm pairs of individuals’ in the test set,

the posterior probabilities of the actual value of the genotypes

given the methylation sites (by using the previously learned

probabilities), i.e., pij,k := Pr(Gi
j = sij |M i

k = eik).
We derive a match score wj,k between individu-

als j and k by averaging the conditional probabilities

pij,k over all n meQTL-methylation pairs in Q, i.e.,

wj,k = 1
n

∑n
i=1 p

i
j,k. We then select the matching α∗ over

(max(ng, nm))! /(max(ng, nm)−min(ng, nm))! possible as-

signments that maximizes the sum of the individual match

scores, i.e.,

α∗ = argmax
α

nm∑
k=1

ng∑
j=1

wj,k (2)

= argmax
(j,k)

1

n

nm∑
k=1

ng∑
j=1

n∑
i=1

Pr(Gi
j = sij |M i

k = eik). (3)

1https://www.ncbi.nlm.nih.gov/SNP/
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This problem boils down to finding a best vertex matching

on a weighted bipartite graph, with ng vertices on one side

representing the genotypes of ng individuals, and nm on

the other side representing the methylation profiles of nm

individuals. Each edge between any two vertices pair (j, k)
has a weight equal to wj,k. As the number of possible

assignments increases with O(max(ng, nm)min(ng,nm)), the

naive matching approach is computationally intractable if

both ng and nm are big. Fortunately, there exist several

algorithms in the literature that find the maximum weight

assignment in polynomial time. In our experiments, we use

the blossom algorithm [27], because it only has a complexity

of O((ng+nm)3) and it can also be applied to general graphs.

Of course, if nm = 1 or ng = 1, there is no need to use

any maximum weight assignment algorithm as one can simply

select the genotype �sj , respectively methylation profile �ek,

maximizing wj,1, respectively w1,k, and the complexity is then

linear in ng , respectively nm.

C. Statistical Validation of the Best Matching

In order to evaluate the significance of the match score

between genotype �sj and methylation profile �ek, we rely on

the z-test and the corresponding z-score, defined as zj,k =
(wj,k − μ(�wk)) /σ(�wk), where �wk is the vector of match

scores between methylation profile of individual k, �ek, and all

genotypes in S, μ(�wk) is its mean, and σ(�wk) is its standard

deviation. The z-score can be similarly derived between the

genotype �sj of individual j and all methylation profiles in

E . The only requirement is that the cardinality of the set over

which we compute the mean and variance is large enough. The

z-score allows us to determine, once a methylation profile is

mapped to a genotype, whether these two profiles correspond

to the same individual. Indeed, the pair that maximizes the

match score might not be the one between the profiles of the

same individual, especially when the individual’s data is not

part of one of the sets E or S . In this case, we should be

able to detect that the mapped pair does not contain the same

individual. This is done by validating the mapped pair for a

z-score greater than a given threshold.

If nm-by-ng matching becomes computationally infeasible,

it is worth noting that it is also possible to map methylation

profiles one-by-one to genotypes, i.e., carry out nm times a

one-by-ng matching whose complexity is then linear in nmng .

Moreover, it can occur that the adversary has access to multiple

methylation profiles of the same person but at different points

in time. In this case, it can also be beneficial to rely on

the one-by-ng matching, which allows multiple methylation

profiles to be mapped to the same genotype, contrary to the

bipartite graph matching. In case the adversary is certain

that there is only one methylation profile per individual,

the nm-by-ng matching outperforms the one-by-ng matching

(see Section VI), but if he is not sure about the number of

methylation profiles per individual, the nm-by-ng matching

becomes more challenging to use.

V. DATASET

The dataset that was used in this study consists of meQTLs

determined from a set of 75 individuals, 42 of which have

parental relations (21 mother/child pairs) for which whole

blood was available. The DNA methylation was determined

using whole genome bisulfite sequencing (WGBS), allowing

a genome wide measurement of the DNA methylation levels

for all 28 million CpG dinucleotides. The sequencing data was

processed using an in-house processing pipeline consisting of

alignment of the sequencing reads, quality assessment, and

methylation calling. Then, the genotype was determined at

known SNP loci listed in the dbSNP database version 141,

using the Bis-SNP tool, which calls SNP genotypes from

WGBS data [28]. For the majority of individuals (67 out of

75), samples collected at the birth of the child, referred to as

t0, were available, but also at later times: one year (t1), up to

8 years (t8) for some individuals after birth.

Such a longitudinal dataset containing individuals with

parental relations represents a very unique and valuable data

source in the biomedical community. Note that this dataset

cannot be released publicly yet, but will be certainly made

available to researchers in a near future.

On a subset of these samples, we selected the CpGs based

on their high variance across the dataset. CpG showing a very

stable methylation profile across the subset of samples were

discarded, as they are not expected to be under the influence

of meQTLs. meQTLs were determined using a Spearman

rank correlation test [29] (false discovery rate threshold after

Benjamini-Hochberg correction [30] of 1%) for all SNPs

located within 50 kb (kilobases) up-/downstream of the CpG

showing highly variable methylation. This filtering process

eventually output 568,103 meQTL-methylation pairs contain-

ing 502 methylation regions and 544,762 different SNPs. This

implies an average number of approximately 1132 meQTLs

per methylation region.

VI. ATTACK EVALUATION

We present here our main experimental results, using the

dataset described in the previous section. As explained in

Section IV, the training phase relies on two different phases:

(i) identify the meQTLs, i.e., the positions in the genotype

that influence the methylation levels, and (ii) quantify the

magnitude of this influence. As we carry out the first step

similarly for all experiments, we present it first. This can also

be seen as a data preprocessing step, which filters out non-

relevant genotypic positions and methylation regions.

A. Generic Training Phase

We focus here on the meQTL-methylation pairs with a

Spearman rank correlation coefficient larger than 0.49 (FDR

threshold after Benjamini-Hochberg correction of 1%). This

provides us with 326 methylation regions and 9,532 pairs,

i.e., around 29 meQTLs per methylation region. Then, we

keep only one most correlated meQTL for each methylation

region, resulting in 326 pairs, as expected. Filtering out the

meQTLs for which no information was available on dbSNP,
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we are left with 314 meQTL-methylation pairs. Finally, since

we have to compute the variance (see below) of the conditional

probability p(M i
j | Gi

j = gij) for all possible values of gij , we

filter out meQTLs that do not have at least two samples per

genotype value gij . This eventually led us to a total of 293

meQTL-methylation pairs for the whole dataset.

Normal Distribution Function: The first step towards

precisely modeling the influence of meQTLs on methylation

regions is the selection of the continuous distribution function

that best fits the observed data. We rely on the normal

distribution which happens to be well fitted from both a visual

and statistical perspective. First, in order to evaluate if the

normal distribution approximation was statistically significant,

we applied the one-sample Kolmogorov-Smirnov test to all

293 meQTL-methylation region pairs and possible genotype

values, gij ∈ {0, 1, 2}. The null hypothesis (the samples

belonging to the normal distribution) was only rejected in a

minority of cases at significant level 0.05 (134 out of 879).

When we inspected those few cases manually, we found that

all of those cases contained either a very few outliers or almost

all of the methylation levels belonged to the exact same bin

in the histogram and thus were almost exactly the same.

We also visually inspected the empirical conditional distri-

butions p̂(M i
j | Gi

j = gij) for gij ∈ {0, 1, 2} and reached the

same conclusion. Fig. 1 exemplarily shows Q-Q plots as well

as the empirical distribution of methylation levels given each

possible genotype of a representative pair (M i
j , G

i
j) in our

dataset. Moreover, it also displays the corresponding normal

distributions induced by the unbiased estimators of the mean

and standard deviation. The Q-Q plots depict on the x-axis

the theoretical quantiles of a standard normal distribution.

The y-axis displays the normalized quantiles of the sample

distribution for each Gi
j = gij . Given the minor discrepancies

between the points and the diagonal, we can expect that the

normal distribution will be a sufficiently good fit for the attack.

Second, the part of the figure at the bottom right confirms that

the normal distribution indeed is a good approximation for the

conditional probability. More importantly, it also shows that

the overlap between the distributions conditioned on different

genotype values is small, which can be used to recover the

correct genotype given the methylation level. This gives the

intuition behind our re-identification attack.

B. Experiment-specific Training and Testing Sets

In this second phase, we quantify the magnitude of the

influence of each meQTL on its corresponding methylation

region. From now on, in order to illustrate the performance

of the attack under different scenarios, we build our training

dataset from different subsets of the whole dataset described

in Section V. We consider three different training/testing

experimental setups. In the first scenario, referred to as (a), we

select one methylation profile per individual, i.e., 75 profiles,

as follows: we pick the 67 profiles available at time t0 and,

in addition, the profiles of individuals not yet selected at t0
(because of absence of data) at the smallest time point as

possible: 1 at t1, 1 at t3, 3 at t4, 2 at t5, and 1 at t6. We further

Fig. 1. Example of the empirical distribution p̂(M i
j | Gi

j) of methylation

levels conditioned on genotype values gij = {0, 1, 2} for the pair with meQTL
rs10928633 (in chromosome 2, position 138625907) and methylation region
[138625907, 138626564] in the same chromosome. Red color (top-left plot)
is p̂(M i

j | Gi
j = 0), blue color (top-right plot) is p̂(M i

j | Gi
j = 1), and

green color (bottom-left plot) is p̂(M i
j | Gi

j = 2).

select the 75 genotypes corresponding to these methylation

profiles. Then, we randomly select 37 pairs for the training

set, and 38 for the testing set, or attack set. We repeat the

random splitting 100 times.

In the second setup, (b), we want to make sure that there

are no individuals in the training and testing sets who have

familial relationships, i.e., we want to avoid a child being in

the training set, and his mother being in the test set, or the

other way around. We also aim at 37 samples in the training

set and 38 in the test set. Thus, we first randomly select from

2 to 18 mother-child pairs to be included in the training set,

which leads us to 4 to 36 samples. Then, we randomly select

the remaining samples among the isolated individuals (i.e.,

those who have no child or mother in our dataset) to attain

37 samples. We repeat this random selection 100 times, and

select the 38 remaining profiles to be part of the test set. This

process ensures that there is no individual in the test set who

is member of the same family as somebody in the training set.

The third experimental setup, (c), is used for the scenarios

where we want to map more than one methylation profile

at a time with the genotypes. In both previous settings, we

consider nm = 1 and ng = 75 (or more, as we will see

later), but we repeat the attack over all 38 methylation profiles

independently. Now, we want to match nm > 1 methylation

profiles to ng = 75 genotypes. We then select our samples in

order to maximize the number of methylation profiles in the

test set, as follows. We select all individuals at time t1 and at

time points t > t1 that do not have methylation profiles at t0
and t1. This gives us 16 methylation profiles at t1 plus 7 at

later time points, thus 23 methylation profiles for the training

set. Then, for the test set, we select all methylation profiles at

t 0 whose owners do not overlap with those in the training set.
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Fig. 2. Identification of one methylation profiles among 75 genotypes:
Average accuracy of the matched pairs, and true-positive, false-positive rates
for a varying z-score threshold.

This leads to 52 methylation profiles for the test set.

Note that the requirement of having two samples per geno-

type value to learn the variance of the normal distribution is

reducing the number of meQTL-methylation pairs when we

apply it to the training set and not the whole dataset. The

total number of pairs ranges from 237 to 248 with a median

value 240 in setup (a). It ranges from 208 to 236 with a median

of 222.5 for (b), and it is of 187 pairs for setup (c) for which

there is only one run and the number of samples in the training

set is smaller (due to stronger constraints).

C. Results

We start by showing the performance of the attack with all

available meQTL-methylation pairs (given the aforementioned

constraints), nm = 1 and ng = 75. We include all 75 indi-

vidual genotypes to be potentially matched to the methylation

profiles as we assume that this can only make the attack harder

for the adversary than considering only the 38 or 52 genotypes

corresponding to the methylation profiles of the test set. Of

course, we only select the 38 methylation profiles present in

the test set to run our experiments. Therefore, we try to match

one methylation profile with 75 genotypes, 38 times, over 100

runs, i.e., 3,800 times, and average the results.

Fig. 2 shows: (i) the matching accuracy, i.e., the fraction

of pairs containing genotypes and methylation profiles of the

same individual, (ii) the true-positive rate (TPR) after applying

the z-score test, i.e., the number of true matchings divided by

the sum of the number of true matching pairs and the number

of matching pairs that are wrongly identified as non-matching,

and (iii) the false-positive rate (FPR) after applying the z-score

test, i.e., the number of false mappings that are identified as

true divided by the sum of the latter value and the number of

true mappings identified as false. We could have also depicted

other metrics, such as accuracy after z-score, but we consider

Fig. 3. Identification of 52 methylation profiles among 75 genotypes: Average
accuracy of the matched pairs, and true-positive rate for a varying z-score
threshold.

the TPR and FPR as sufficient metrics to depict the success

of the identification attack.

First, Fig. 2 shows that, on average, the attack accurately

matches the methylation profile to its corresponding genotypes

around 97.5% of the time. Then, we notice that, there exists a

z-score for which, given a certain matching, we always reject

all wrongly matched pairs (FPR = 0 for z-score approximately

greater than 5), and never reject those that are correct (TPR =

1 for z-score approximately smaller than 5.5). This means that

for the 2.5% of the pairs that are wrongly matched, we are

able to identify that they are false positives. Finally, we notice

that the matching accuracy is the same for both scenarios (a)

and (b), and that the FPR and TPR are also very similar.

Fig. 3 shows the attack when there are more than one

methylation profiles to match to their genotypes. Specifically,

given the experimental setup (c), we have 52 methylation

profiles that we try to match again to the whole 75 genotypes.

First of all, we notice that the matching accuracy is 100%,

i.e., that the attack correctly matches the 52 methylation-

meQTL pairs. Then, by looking at the z-score to validate the

matched pairs, we note that it starts rejecting valid pairs from

around 5.2. As we only have correctly matched pairs after the

matching algorithm, there is no point in displaying the FPR

because there is no wrong pair to reject. We conclude from

Fig. 2 and 3 that the attack is more successful when matching

more than one methylation profile to multiple genotypes.

Next, we evaluate the impact of reducing the number

of methylation-meQTL pairs on the attack success. In this

endeavor, we gradually use an increasing number of observed

methylation-meQTL pairs, from 1 to 237, in decreasing order

of correlation. Fig. 4 shows the evolution of the matching

accuracy and of the TPR after applying the z-test, for three

possible FPR vaues: 0, 0.05, and 0.1. First, we notice that

we reach the maximum matching accuracy with only 20

methylation-meQTL pairs, and almost 90% accuracy with 10
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Fig. 4. Identification of one methylation profile among 75 genotypes with an
increasing number of observed meQTLs/methylation regions (in descending
levels of correlation): Average accuracy of the matched pairs, and true-positive
rates at various false-positive levels.

pairs. Second, we see that we attain a TPR of 0.6 at a FPR of

0.05 when we apply the z-test (at 10 pairs). Furthermore, we

reach a 0.95 TPR at 0.05 FPR with 20 methylation-meQTL

pairs, and 0.99 with 30 pairs.

When evaluating the same experiment with a fixed threshold

of 5.5 (as found suitable in Fig. 2), we notice that 80

methylation-meQTL pairs are necessary to achieve a TPR of

almost 0.9 and a FPR of 0. This arises from the fact that

a larger number of methylation-meQTL pairs provides more

information and thus gives a more accurate match score, which

also allows for higher z-score thresholds to perform better.

Similarly, Fig. 5 shows the evolution of the various metrics

with respect to an increasing number of observed methylation-

meQTL pairs, for nm = 52. The less smooth behavior of the

curves is due to the fact that we have one run here compared

to 100 runs in the case where nm = 1. We notice here

that the matching accuracy and TPRs reach highest values

for a number of methylation-meQTL pairs that is lower than

when nm = 1. Precisely, the attack reaches full accuracy

and TPR at 0 false-positives with only 13 pairs. Again, we

see that matching more than one methylation profiles to their

corresponding genotypes induces higher attack success.

We evaluate now how the attack performance evolves when

the genotype corresponding to the targeted methylation profile

is not present in the genotype dataset. We have ng = 74
genotypes if the targeted genotype is not present and, for the

sake of comparison, we keep the same number when it is

present, by removing another of the 74 genotypes at random.

Fig. 6 shows the evolution of this performance with respect to

an increasing probability that the targeted genotype is in the

dataset, from 0 to 1, by intervals of 0.01. For each probability

value x, we randomly generate a value v between 0 and 1,

uniformly, and keep the targeted genotype in the dataset if

and only if v < x. We repeat this sampling process 100 times

Fig. 5. Identification of 52 methylation profiles among 75 genotypes with an
increasing number of observed meQTLs/methylation regions (in descending
levels of correlation): Average accuracy of the matched pairs, and true-positive
rates at various false-positive levels.

Fig. 6. Identification of one methylation profiles among 75 genotypes with
an increasing probability of the correct matching genotype being present in
the dataset: Average accuracy of the matched pairs, true-positive and false-
positive rates.

and average its outcomes. As expected, the matching accuracy

increases with the probability that the correct genotype is

present in the dataset. The adversary cannot find the correct

genotype if it is not there. The crucial point here is that

the adversary can detect that the genotype is not present

for any presence probability. Indeed, with the appropriate z-

score (between 4.9 and 5.4), the adversary always rejects

the wrongly matched genotypes (FPR=0) while accepting the

correctly matched genotypes (TPR=1).

We also investigate the effect of a relative’s genotype being

in the genotype dataset, with a varying presence probability

of the targeted genotype, as in Fig. 6. The relative here is

either the mother or the child of this mother. Fig. 7 shows
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Fig. 7. Wrongly matched first-degree relatives in the identification of one
methylation profiles among 74 genotypes with an increasing number of
observed meQTLs/methylation regions (in descending levels of correlation):
Average accuracy of the matched pairs, and true-positive rates at various false-
positive levels.

the percentage of times the relative’s genotype is matched to

the methylation profile, in absolute value, and relative to the

condition that the matched pair was wrong, and the percentage

of times this wrongly matched pairs were rejected by the z-test.

First, we observe a linear decrease of the probability of being

matched to the relative with respect to the presence probability.

We also see that this curve does not start at 1 but at around

0.7. This means that, when the targeted genotype is not in the

dataset, the wrongly matched genotype is in 70% of the cases

the relative’s genotype, and in the 30% remaining cases the

one of an unrelated individual.

In order to better understand these proportions, we display

the fraction of familial matches among all wrong matches

(green dashed curve). We observe that this fraction increases

with the presence probability. In order to understand this

behavior, we must recall that the matching accuracy also

increases with the presence probability. This means, that the

fewer wrong matched pairs there are, the more likely these

are pairs containing the genotype of a relative and not of an

unrelated individual. Also, it means that, when the chance that

the targeted genotype is present in the dataset is high, the

only genotype that can mislead the adversary’s matching is

the relative’s genotype in the vast majority of cases.

Finally, we study the robustness of our attack for an increas-

ing number of genotypes, from 75 to 2579, by including the

2504 genotypes of the 1000 Genomes Project (phase 3) [31].

Fig. 8 shows the evolution of the matching accuracy, of the

false-positive and true-positive rates after the z-test, of the

minimum z-score for reaching a null FPR. First, we notice

that the matching accuracy remains constant, at 97.5%, for

all genotype dataset’s size ng . Moreover, there always exists

a z-score that enables us to reject all wrongly matched pairs

while keeping all correctly matched pairs. We notably notice

Fig. 8. Identification of one methylation profiles among an increasing number
of genotypes, from 75 to 2579: Average accuracy of the matched pairs, true-
positive and false-positive rates and minimum z-score threshold for a null
false-positive rate.

that this z-score evolves quite a lot until around ng = 1000 and

that it tends to converge to a fixed value when ng gets closer

to 2579. We conclude from this figure that the identification

attack is very robust to an increase in the number of genotypes

we have to match the methylation profile to.

We also evaluated this experiment with fixed thresholds

on the z-score. When less than 100 genotypes are present,

a threshold of 5.5 provides a TPR of 1 and FPRs below

0.05. When more than 100 genotypes are part of the test

set, a threshold of 6 achieves the same effect. Since these

observations conform with previous experiments, we believe

that an adversary is able to determine a suitable threshold from

her training data.

VII. PRIVATE CLASSIFICATION WITH RANDOM FORESTS

As we have shown, publicly releasing methylation profiles

has a huge detrimental effect on the patients’ privacy, with a

risk close to 100% to have one’s methylation data re-identified.

Therefore, we first strongly recommend to reconsider if the ex-

isting DNA methylation datasets should remain publicly avail-

able in online databases. Moreover, it is vital to understand the

needs of the medical community for designing appropriate

protection mechanisms that provide privacy guarantees and

diagnosis utility to the patients. In this section, we propose

a novel cryptographic scheme for privately classifying tumors

based on random forests. We first describe the preliminaries

on random forests, and then present our private random forest-

based classifier.

Random forests are a promising technique used in the med-

ical community for classifying diseases [32]. This ensemble

method bases its classification on a multitude of classification

trees in order to prevent overfitting and to reduce the prediction

variance [33]. Danielsson et al. for example developed a

random forest classifier tool enabling the identification of

pediatric brain tumor subtypes with an accuracy of 98% [34].
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In practice, when diagnosing a patient’s disease, a sample

is taken from the patient by a medical practitioner. Then, the

sample needs to be analyzed either by the hospital or by a

medical laboratory, resulting, e.g., in the DNA methylation

profile of the patient. The actual classification based on

these data can then be outsourced to a third-party company

providing data-driven medicine, such as Sophia Genetics [35].

The DNA methylation profile is sent to the third party, which

then provides the diagnosis to the physician or hospital. While

the business model of this third party is inherently protected

by keeping the classification model secret, the patient’s privacy

is clearly at risk, as his data are available to the third party.

Hence, when classifying a patient’s disease, two privacy

goals must be achieved: (1) protecting the company’s clas-

sification model, and (2) protecting the patient’s data from

the third-party company. Note that, in order to construct its

classifier, the company must have access to a training set of

DNA methylation data in clear. Our scheme protects the data

on which only classification has to be carried out (e.g., for

diagnostic purposes). Finally, our scheme is flexible in the

sense that it can release two outcomes: (i) only the class with

the plurality vote (most frequently chosen by the random forest

algorithm), or (ii) the class of every tree in the random forest,

which enables the medical practitioner to carry a more fine-

grained analysis of the distribution over the possible classes.

A. Preliminaries

1) Classification Trees: Classification trees (or decision

trees) are a popular, predictive tool in machine learning,

used to classify an input �v into a set of different classes

Y = {y0, . . . , yk}. As the name suggests, a classification tree

can be represented by a simple, usually binary tree, in which

each interior node corresponds to an input value vi. The two

edges of each interior node partition the node’s input domain

into two distinct sets. Each leaf node of the tree is labeled with

a class yj . It is worth noting that a single class may occur at

more than one leaf.

In order to classify an input using a classification tree, one

starts at the root node and walks down the tree until a leaf

node is reached. At each interior node, the decision which

edge to select is determined by the partition to which the

corresponding input value belongs. Finally, the class label

of the leaf node determines the result of the classification

task. In the following, we will focus on the most common

form of classification trees as implemented in many libraries:

binary classification trees in which the partitioning at each

interior node is given by a comparison of the input value

with a threshold wi. The model of such a classification tree

is completely described by the structure of the tree, the input

values vi corresponding to each node, as well as the thresholds

wi applied at each node.

2) Random Forests: Classification trees usually suffer from

a high prediction variance and can easily suffer from overfit-

ting to their training set. In order to reduce the prediction

variance, random forests put together multiple noisy, but

approximately unbiased classification trees.

In general, a random forest consists of B classification

trees, where the number B is subject to tuning. The training

of a random forest is performed on a training dataset T =
{(�x1, y1), . . . , (�xn, yn)}, consisting of n samples together with

their corresponding class label. During the training, each tree

is grown on n randomly chosen (with replacement) training

samples using only a randomly chosen set of input predictors

(components of the training samples) K ⊆ {1, . . . , len(�x)}.
This random subset of input predictors is what distinguishes

random forest from simple tree bagging and ensures the trees

to be de-correlated so that the same input predictors are not

used in all of the trees. This step is important to reduce the

correlation of the trees, which then enables further reduction

of the prediction variance [33].

Given a random forest model and an input �v, the classifica-

tion algorithm evaluates each of the model’s trees individually.

Then, depending on the application, implementation or pref-

erence, the resulting class can be determined by plurality vote

(or majority vote for binary classification), averaging the class

predictions or providing class probabilities in terms of relative

vote counts.

B. Private Classification with Random Forests

Next, we introduce our construction that enables to securely

evaluate random forests between a third party and a querier.

More specifically, we do not want the querier (referred to as

client) to learn the structure of the trees, nor should the third

party (referred to as server) learn anything about the input

sample or the result of the classification.

We build our construction on top of the work of Bost et

al. [23] and extend it to work with random forests. In their

work, they introduced three major classification protocols,

namely for hyperplane decision, Naı̈ve Bayes, and classifi-

cation trees, all satisfying the constraint to keep both the

classifier model and the data confidential. Since classification

trees are an important component of random forests, we first

recap the details of the classification tree protocol, before

extending it to random forests.

It is important to note that the classifier is trained upfront

on data in the clear, whereas only the actual classification of

new samples is performed securely on encrypted data.

1) Cryptosystem and Notation: In the following, we will

rely on three different additively homomorphic public-key

cryptosystems. An additively homomorphic public-key en-

cryption scheme allows, given the two encrypted messages

Enc(a) and Enc(b), to compute Enc(a+ b) using a public-

key operation on the encrypted messages. Moreover, one of

our cryptosystems is a leveled fully homomorphic encryption,

which also allows to perform a bounded number of multi-

plications in sequence, i.e., to compute Enc(a · b) on the

encrypted messages. Bounded means that the cryptographic

scheme allows to evaluate polynomials only up to a certain

multiplicative depth L. Below, we list the cryptosystems we

use and also mention the corresponding plaintext spaces M :

1) the QR (Quadratic Residuosity) cryptosystem of

Goldwasser-Micali [36] (M = F2, bits),
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2) the Paillier cryptosystem [37] (M = ZN with N being

the public modulus of Paillier),

3) a leveled fully homomorphic encryption (FHE) scheme

based on the Brakerski-Gentry-Vaikuntanathan [38]

scheme as implemented by HELib [39] (M = F2).

We denote the client in our protocols by C and the server

by S. [b]A denotes a bit b encrypted by the QR scheme under

party A’s key (so only A can decrypt the message using her

secret key). Similarly, [[m]]A denotes an integer m encrypted

by the Paillier scheme, and [[[b]]]A denotes a bit b encrypted by

the leveled FHE scheme. SKs
A is used for party A’s secret key

for the encryption scheme Paillier (s = P ), QR (s = QR) or

leveled FHE (s = FHE), and PKs
A is the respective public

key. For a distribution D, a ← D means that we assign a a

random sample from that distribution.
2) Cryptographic Assumptions and Adversarial Model:

The security of our protocol relies on the semantic secu-

rity [40] of the cryptosystems we use and, hence, also on the

well-studied assumptions underlying those systems, namely

the Quadratic Residuosity assumption, the Decisional Com-

posite Residuosity assumption, and the Ring Learning With

Errors (RLWE) assumption.

We prove our protocol to be secure in the two-party

computation framework for passive adversaries (or honest-but-

curious [40]), by relying on modular sequential composition

of smaller protocols as described below.
3) Building Blocks: Specifically, we will reuse existing

building blocks from the work of Bost et al. and also design a

new one that is needed for our protocol: changing encryption

ownership. Their work already introduced several smaller

building blocks, such as different comparison protocols on

encrypted data, or a protocol to evaluate the argmax function

on encrypted data. Those building blocks necessary for our

own construction are briefly reviewed hereunder, before we

introduce our own building blocks as well as the full con-

struction.
a) Comparison Protocols: Bost et al. introduce five

slightly different comparison protocols, two of which we

will need in our construction. Let A,B be two parties. A
has PKP

B ,PK
QR
B and B has the corresponding secret keys

SKP
B , SK

QR
B .

The first comparison protocol (referred to as (1) later)

assumes that A has two values [[a]]B , [[b]]B . This protocol then

allows to compare a and b, such that A learns [a ≤ b]B and

B learns nothing about the comparison.

The second comparison protocol, (2), works the same way,

the only difference being that B also learns a ≤ b.
More details as well as the other comparison protocols can

be found in [23].
b) argmax on Encrypted Data: Based on their compar-

ison protocol (2), Bost et al. develop a protocol to compute

the argmax on encrypted data. Let A,B be two parties. A
has k encrypted values ([[a1]]B , . . . , [[ak]]B) (where k is also

known to B) and wants to know the argmax over unencrypted

values (i.e., the index i of the largest value ai), but neither

party should learn anything else.

Hence, this protocol allows to compute argmax1≤i≤k ai
given only the values encrypted under B’s key. In particular,

during the computation, B should neither learn the values ai,
nor should B learn the order relations between the ai’s. The

full details of this protocol are described in [23].

c) Changing the Encryption Scheme: In order to convert

ciphertexts from one of the cryptosystems to another, Bost

et al. rely on a simple protocol to change the encryption

scheme. Since this protocol is crucial for essential parts of

our construction, we will provide a more detailed description

of the protocol.

First, we consider the case, for which Ms1 = Ms2 = F2,

i.e., the two cryptosystems have the same message space:

Let A,B be two parties, A having PKs1
B ,PKs2

B and a ci-

phertext c = Encs1(x). B has the corresponding secret keys

SKs1
B , SKs2

B . The goal is to re-encrypt x using the cryptosystem

s2, without B learning x.

Intuitively, the protocol works as follows. First, A uniformly

picks a random noise r ← Ms1 , encrypts it using PKs1
B and

adds it to the ciphertext c, before sending the result to B. B
then decrypts the ciphertext to x + r ∈ Ms1 , re-encrypts it

using SKs2
B and sends Encs2(x+ r) to A, who can strip off r

using the homomorphic property of s2. B only obtains x+ r,

which hides x information-theoretically (this can be seen as a

one-time pad).

For the second case, when Ms1 �= Ms2 , we only require the

transformation from Ms1 = F2 to Ms2 = ZN , i.e., from FHE

to Paillier. Here, the beginning of the protocol remains the

same and A obtains [[x ⊕ r]]B with x, r ∈ F2. The important

difference to the previous case now arises when A wants to

strip off r ∈Ms1 = F2 from the encryption. Since the additive

operation on F2 is ⊕ and on ZN is +, we have to emulate

⊕ in Paillier’s message space. This can be easily done by

computing:

[[x]]B =

{
[[x⊕ r]]B if r = 0

g([[x⊕ r]]−1
B ) mod N2 if r = 1

Before giving the result to an adversary, who knows [[x ⊕
r]]B , but not SKP

B , the obtained result has to be refreshed to

preserve semantic security. A pseudocode implementation as

well as the security and correctness proofs of this protocol can

be found in [23].

d) Private Evaluation of Classification Trees: The most

useful protocol is the one for privately evaluating a classifica-

tion tree. Here, the main idea is to represent the classification

tree as a polynomial P , whose output is the result of the

classification.

Let bi be the boolean outcome of a comparison between the

ith node’s input value vj and the corresponding threshold wi,

i.e., wi < vj . Then, given the class labels Y = {y0, . . . , yk},
one can express a classification tree by a polynomial. The

polynomial is constructed recursively by a procedure F(T ).
If T is a leaf node, F(T ) = y, where y is the class label at

the leaf T . If T is an internal node, and T1 is the child tree

in case the corresponding b is true, and T2 is the child tree in
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case b is false, then F(T ) = bF(T1) + (1 − b)F(T2) is the

polynomial that evaluates T1 if b and T2 otherwise.

Using this polynomial, Bost et al. then introduce a protocol

to evaluate the tree, while revealing only the outcome and the

number of comparisons. Let S and C denote the server and

client respectively. First, S and C make use of the comparison

protocol (1), so that S learns the bits [bi]C for every node.

Then, they interact in the protocol to change the encryption

scheme from QR to FHE, obtaining [[[bi]]]C .

The server S can then evaluate the polynomial P using

the homomorphic properties of the FHE scheme. However,

since the plaintext space is only F2 and the class labels

potentially take more than one bit, we would have to evaluate

the polynomial for each bit individually. Fortunately, the so-

called SIMD slots of the FHE scheme (described in details

in [41]) allow the scheme to encrypt a vector of bits in one

ciphertext and evaluate the polynomial on the whole vector

at once, in parallel. Hence, for each class label yi, the server

encrypts its bit representation yi0, . . . , yil using these SIMD

slots to [[[yi0, . . . , yil]]]C and can evaluate the polynomial for

each bit in parallel.

The client can later decrypt the resulting class label and

convert it back to the normal integer representation. A more

detailed explanation, as well as proofs of correctness can be

found in [23].

e) Changing Encryption Owner: Next, we will introduce

our protocol to change the ownership of an encryption, which

we will need in order to apply the argmax protocol in a way

that only the client learns the result of the plurality vote.

Given two parties A and B, out of which A holds the en-

crypted message [[x]]B , we want B to hold the same encrypted

message, but this time under A’s key. However, neither A nor

B should learn the message x itself. In the following, we

design a protocol to meet this goal and provide the proof in

the appendix.

Let A have PKP
B , SK

P
A, [[x]]B and B have SKP

B ,PK
P
A. Then

A first blinds the encrypted message by uniformly sampling

a random noise r from the plaintext space, encrypting it and

adding it to the ciphertext. Then, A also encrypts r using his

own secret key and sends both [[x + r]]B and [[r]]A to B. B
then decrypts the first ciphertext to x + r, which hides x in

an information-theoretic way and encrypts it again using PKP
A.

Then B strips off r using the sent encryptions without learning

r itself and obtains [[x]]A.

The complete protocol is shown in Protocol 1.

Protocol 1 Changing Encryption Owner

Input: A : ([[x]]B , SK
P
A,PK

P
B), B : (PKP

A, SK
P
B)

Output: B : [[x]]A
1: A: uniformly pick a random noise r ← MP = ZN

(Paillier’s message space), encrypt it using PKP
B and

compute [[x+ r]]B
2: A: encrypt r using SKP

A to [[r]]A
3: A: send ([[x+ r]]B , [[r]]A) to B
4: B: decrypt [[x+r]]B to get x+r and encrypt it using PKP

A

to [[x+ r]]A
5: B: compute [[x]]A = [[x+ r]]A · [[r]]−1

A using the homomor-

phic property

Theorem 1. Protocol 1 is secure in the honest-but-curious
model.

The proof of the theorem is provided in the appendix.

4) Private Random Forests: Now that we introduced all

building blocks necessary to privately evaluate a random for-

est, we first give an intuition of our protocol before presenting

its pseudocode in Protocol 2.

Intuitively, one could just evaluate each tree of a random

forest individually, given the protocol introduced by Bost et

al., and return the outcomes to the client. The client is then able

to compute the plurality vote or any metric she is interested

in. This, however, will not only leak the number of trees, but

most likely also the number of nodes within each tree to the

client. Indeed, the scheme of Bost et al. reveals the number

of comparisons, thus the number of inner nodes to the client.

We modify this idea to only leak the total number of trees and

the total number of nodes. Moreover, we extend it by giving

the option to only reveal the plurality-vote class to the client.

To this end, we do not evaluate one tree after another, but we

perform the evaluations of all trees in a batch, e.g., running the

comparison protocol for the bi’s of all trees in a row. This way,

the client cannot distinguish between different trees during the

evaluation.

In order to allow the protocol to only reveal the plurality-

vote class, we have to modify the protocol further. Intuitively,

for the server S to determine the plurality-vote class, S
needs to be able to count the votes for each class without

learning the actual outcomes of the trees. We can achieve

this by slightly changing the way the class labels are encoded

into the SIMD slots: Instead of encoding each integer class

label as its binary representation, we encode a class label

yi by only setting the ith bit to 1. While encoding k labels

into a binary representation needs only �log2(k)� + 1 bits,

our method will take exactly k bits. However, if enough

SIMD slots compared to the number of classes are available,

this should not have a substantial effect on the protocol’s

performance. More specifically, a class label yi is now encoded

as (yi1, . . . , yik) with yij = 1 if i = j and 0 otherwise.

After obtaining the outcomes of all trees, the server and

client interact to change the outcomes’ encryption schemes

from FHE to Paillier, resulting in ciphertexts for each outcome

and class label [[yij ]]C for i ∈ {1, . . . , n}, j ∈ {1, . . . , k},
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Protocol 2 Evaluate a Random Forest

Input: Client C : (SKP
C , SK

QR
C , SKFHE

C ,PKP
S , �v), Server S :

(PKP
C ,PK

QR
C ,PKFHE

C , SKP
S ,F = {t1, . . . , tn})

Output: Client C : the outcome of evaluating F on �v in terms

of a plurality vote or the individual votes

1: S: produces the polynomials P1, . . . , Pn for each tree in

{ti}ni=1

2: C: sends the encrypted query [[v0]]C , . . . , [[vm]]C to S
3: S and C perform the comparison protocol (1) on a shuffled

order of the nodes, so that S obtains [bi]C for every node

in the trees

4: S: changes the encryption obtaining [[[bi]]]C
5: S: computes each class label yi by setting only the ith bit

to 1 and encrypts the class labels using FHE and SIMD

slots to [[[yi1, . . . , yik]]]C with yij = 1 if i = j and 0
otherwise

6: S: evaluates the polynomials using the fully homo-

morphic encryption, obtaining the encrypted outcomes

{[[[yj1, . . . , yjk]]]C}nj=1 for each tree

7: if C is allowed to get all individual outcomes then
8: S: rerandomizes the encrypted outcomes, shuffles their

order and sends them to C, who can decrypt them

9: else
10: S: rerandomizes the encrypted outcomes and changes

their encryption scheme to Paillier, resulting in [[yij ]]C
for i ∈ {1, . . . , n}, j ∈ {1, . . . , k}

11: S: sums the bits for each class separately, obtaining

[[
∑n

i=1 yij ]]C =
∑n

i=1[[yij ]]C for every j ∈ {1, . . . , k},
effectively computing the vote counts of each class

12: S and C change the ownership of the vote counts, so

that C obtains [[
∑n

i=1 yij ]]S using our protocol

13: C and S perform the argmax protocol, so that C learns

only the outcome of the plurality-vote class

14: end if

where yij = 1 if the outcome of the ith tree was class j
and yij = 0 otherwise. This encoding allows to sum up all

votes for each class (or vote count), so that the server obtains

[[
∑n

i=1 yij ]]C using Paillier’s homomorphic property.

However, we cannot directly apply the argmax protocol

as this would reveal the classification result to the party

holding the ciphertexts, i.e., the server. Hence, we leverage our

encryption ownership protocol to transfer the vote counts to the

client under the server’s key. The client thus has [[
∑n

i=1 yij ]]S ,

which allows him to determine the plurality-vote class by

applying the argmax protocol.

The complete protocol is provided in Protocol 2.

Theorem 2. Protocol 2 is secure in the honest-but-curious
model.

We refer to the appendix for the proof.

VIII. EVALUATION OF THE PRIVATE CLASSIFIER

Now that we have introduced our protocol for private clas-

sification on random forests, we will evaluate its performance

on a dataset and classifier used in practice. More specifically,

we base our performance evaluation on MethPed [34], [42],

a random forest classifier for the identification of pediatric

brain tumor subtypes based on DNA methylation data, which

is available as an R package. From this package, we extract

their random forest model and feed it into our protocol

implementation for the performance evaluation.2

MethPed, in its standard configuration, trains a random

forest model of 1000 trees based on its original training data,

consisting of 472 clinically diagnosed brain tumor cases after

data cleaning and k-nearest neighbor imputation of missing

values [42]. The DNA methylation samples have been col-

lected from several datasets, all of which are publicly available

on the GEO database (GEO accession numbers GSE50022,

GSE55712, GSE36278, GSE52556, GSE54880, GSE45353

and GSE44684). The random forest is then trained on a total of

900 methylation sites, which were shown to yield the highest

predictive power in a large number of regression analyses.

Our protocol implementation is based on the original im-

plementation of the work of Bost et al.3. We extended it

by implementing the protocol for changing the encryption

scheme from FHE to Paillier, as well as by adding our

own protocol for changing the ownership of the encryption.

Moreover, we fully implemented the random forest classi-

fication protocol (Protocol 2) and tested its correctness on

sample inputs. Then, we ported the MethPed classifier into

our implementation and included two methylation samples to

evaluate the classifier on. The implementation of our private

random forest classifier is written in C++ using GMP4, Boost,

Google’s Protocol Buffers5, and HELib [39]. The source code

of our implementation can be found at https://github.com/

paberr/ciphermed-forests.

In order to represent the methylation levels as integers in

our protocol, we multiply them by 108 and store the result as

an integer. Since the data we used is available at a precision

of eight digits after the decimal point and methylation values

are bounded by the range [0, 1], we do not lose any precision.

A. Evaluation Setup

To evaluate the performance of our protocol, we ran the

client and server of the classification task on different ma-

chines, both on the same network and on different networks.

One client was run on a local computing server with ap-

proximately 775 GB RAM and four Intel Xeon E5-4650L

processors, providing 64 cores (with hyperthreading enabled)

running at 2.60 GHz. Another client was run on an Amazon

AWS instance of the type r4.2xlarge with 61 GB RAM

and 8 Intel Xeon E5-2686 v4 vCPUs and a network bandwidth

up to 10 gigabit located in Frankfurt, Germany. The server

was run on a local computing server with approximately

1.55 TB RAM and four Intel Xeon E7-8867 processors,

2The R implementation and the used methylation sites are available at
http://bioconductor.org/packages/devel/bioc/html/MethPed.html.

3Available at https://github.com/rbost/ciphermed.
4https://gmplib.org
5https://code.google.com/p/protobuf/
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Fig. 9. Duration of different protocol steps on the client side for varying
number of trees and both protocol variations.

Fig. 10. Duration of different protocol steps on the server side for varying
number of trees and both protocol variations.

providing 128 cores (with hyperthreading enabled) running at

2.50 GHz. Since our implementation does not make use of any

multithreading technique, we used the large number of cores

to run multiple experiments, i.e., classification tasks, at once.

Similar to Bost et al., we also used 1024-bit cryptographic

keys and chose the statistical security parameter λ to be 100.

HELib was configured to use 80 bits of security, roughly

corresponding to a 1024-bit asymmetric key [23].

B. Performance Evaluation

We evaluate our protocol for a varying number of trees

n ∈ {1, 2, . . . , 9, 10, 20, . . . , 90, 100, 200, . . . , 400, 500} and

two independent classification queries provided in the Meth-

Ped R package [42]. We restricted the number of trees to a

maximum of 500 in order to keep the computational costs

low. We can still estimate the cost of running our protocol

with 1000 trees by the general trend as seen in the following.

Moreover, we evaluate both versions of our protocol, the

first revealing only the plurality-vote class to the client, and

the second revealing one outcome per tree to the client.

For n ≤ 100, we classify each of the samples five times,

resulting in a total of 10 executions for each of our protocol

instantiations. For n > 100, we classify each of the samples

only once, due to the increased computational costs. The trees

used for the classification consist of between 16 and 37 inner

nodes, with an average of around 25 inner nodes.

In the following figures, a solid line is used for operations

common to both our protocol instantiations, a dashed line is

used for the instantiation returning the plurality-vote class, and

a dotted line is used for the one outputting the outcome for

each tree. The performance evaluation of common operations

groups together the results of both instantiations, yielding 20
executions if n ≤ 100, and 4 executions if n > 100.

Fig. 9 depicts the performance evaluation on the client side,

both axes scaled logarithmically. Generally, the computational

costs of most of our protocol steps scale approximately linearly

in the number of trees. Only changing the ownership of

the encryption and performing the argmax seem to have a

constant execution time. These two blocks scale linearly with

the number of class labels, which are fixed (to the 9 types of

brain tumors) in our experiments.

Next, we compare the execution time of both protocol in-

stantiations. We see that both, helping to change the encryption

scheme of the trees’ outcomes from FHE to Paillier and

retrieving all the tree’s outcomes in the FHE cryptosystem,

unexpectedly take almost the same amount of time, since

essentially the same operations are required. Performing the

plurality vote protocol then only adds a constant computational

burden on the client’s side, only negligibly increasing the total

computation time.

In Fig. 10, we analyze the same scenarios on the server

side. Unsurprisingly, the relationships between the number

of trees in the random forest and the computational costs

are the same as for the client. It is worth noting that the

computationally most expensive operation is by far the FHE

evaluation of the polynomials. Evaluating the polynomials

takes almost an order of magnitude more time than the second

most expensive protocol step. Thus, minimizing the number of

trees and potentially also the number of inner nodes is a main

concern when applying our protocol. Moreover, parallelizing

the evaluation of the polynomials is a possible improvement,

which we did not explore in our implementation.

In terms of the amount of exchanged data and the number

of interactions, both protocol instantiations seem to be more or

less equivalent as shown in Fig. 11. Revealing the individual

outcomes to the client is not noticeably different from perform-

ing the plurality vote protocol. While time is mostly the major

concern when running a classification task, the amount of data

exchanged over the network should not be underestimated. For
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Fig. 11. Data exchange and number of interactions for varying number of
trees and both protocol variations.

example, evaluating 50 trees involves exchanging around 0.67

GB of data over the network. Increasing the number of trees

to 100, involves around 1.33 GB of data exchange.

Finally, in Fig. 12, we study the total time to run the

protocol on the server side (excluding the time for sending

packets over the network) in comparison with the accuracy of

the random forest built on the given number of trees. The

accuracy was determined based on the out-of-bag samples

during the training phase and averaged over 10 different runs.

Since our private classification uses the same precision for

the methylation values as the R implementation and builds on

exactly the same trees, the accuracy provided by our private

classification technique is the same. While the computational

costs clearly increase approximately linearly in the number

of trees, the accuracy does not. While 1000 trees provide

an accuracy of 98.3%, 50 trees are already sufficient to

provide an accuracy of 97.6% at only an estimated 5% of the

computational cost. We also depict the communication time

between our Amazon AWS instance and the local computing

server for a smaller range of number of trees. Evaluating 50
trees takes in total less than a hour, even when including the

time for sending and receiving packets over the internet. We

also evaluated the timing on the client’s side, which exhibits

the same behaviour as on the server’s side.

We emphasise that our current implementation does neither

aim at minimizing the number of interactions, nor does it

make use of pipelining of interactions. Based on the mea-

sured throughput between the Amazon AWS instance and our

computing server, we additionally depict the estimated optimal

communication time over the network in Fig. 12. Improving

the transmission of data in setup can potentially decrease the

communication time for 500 trees down to 50 seconds.

Since, in the current medical scenario, it usually takes

at least one day for a laboratory to analyze a sample, we

assume a similar computational limit on the classification.

Given such a limit, we conclude that a laboratory offering

Fig. 12. Total duration of a classification task and accuracy of the random
forest for varying number of trees and both protocol variations.

the privacy preserving analysis using our protocol would be

able to provide a good trade-off between computational costs

and accuracy. Moreover, the structure of random forests offers

a great potential to parallelize some of the operations (e.g.,

the polynomial evaluation), which we leave for future work.

We note that both protocol instantiations take approximately

the same time to run. While returning the selected classs for a

number of 50 trees is about 2 minutes faster than returning the

majority vote, this difference only accounts to about 6 minutes

for 100 trees and to about 23 minutes for 500 trees. Hence,

we suggest to select the instantiation based on the output the

client needs and the classifier information the server agrees to

reveal. If the client wants a fine-grained output to analyze the

distribution of the different classes, then he may request to get

access not to the plurality-vote class, but to the selected class

of each tree. However, this will leak more information about

the underlying random forest model than disclosing only the

plurality-vote class.

IX. RELATED WORK

We first summarize the two most closely related papers,

which report about the risk of identification of DNA methy-

lation data. The first (short) paper studying this risk shows

that part of the genotype (around 1,000 positions), as well

as alcohol consumption and smoking, can be inferred from

certain methylation data [43]. They warn that such genotype

inference could represent personally identifying information

but do not study further how genotypes could be matched

to methylation profiles, neither do they quantify with what

success such an attack could be carried out, and under which

conditions. Besides also identifying CpGs correlated with

genomic variants, Dyke et al. propose high-level guidelines

for methylation data disclosure that preserves privacy [9]. They

notably mention the restriction of access to methylation data

that are highly correlated with the genotype. Again, a concrete

970

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 06,2024 at 09:17:54 UTC from IEEE Xplore.  Restrictions apply. 



scenario is missing in order to evaluate the extent of the threat

as well as the protection provided by their countermeasure.

In a similar vein as our approach, Schadt et al. propose

a Bayesian method to predict from and match genotypes to

RNA-expression profiles [44]. By using 1,000 eQTLs (ex-

pression quantitative trait locus), they were able to correctly

match RNA expression profiles and genotypes of more than

300 individuals. Furthermore, they simulated dataset of 300

million individuals and showed that the matching accuracy was

still as high as 97%. Franzosa et al. study whether individuals

possess microbial patterns that could be used to uniquely

identify them [45]. Their results demonstrate that more than

80% of individuals can still be uniquely identified among a

population of hundreds of individuals, up to one year later in

the case of the gut microbiome. Backes et al. also study how

microRNA expression profiles can be tracked over time [46].

They demonstrate that such data can be linked with a success

rate of 90%, and that success rates remain constant up to one-

year time shift between two profiles. They further propose

two countermeasures: one based on hiding part of microRNA

expressions, and the other based on probabilistic sanitization

of the microRNA expression profiles. Backes et al. further

show that microRNA-based datasets are prone to membership

inference attacks by relying on the average statistics of their

microRNA expression values [47].

Gymrek et al. show that genotypes can be re-identified by

querying genetic genealogy databases (containing surnames)

with short tandem repeats on the Y chromosome [21]. By

combining the inferred surnames with other types of metadata,

such as age and state, they are able to trace back with high suc-

cess the identitites of multiple contributors in public databases.

Humbert et al. show that single nucleotide polymorphisms

(SNPs), which are more commonly available online, can be

also exploited to infer various phenotypic traits, such as eye

color or blood type, in order to further re-identify anonymous

genotypes, by typically using side channels such as online

social networks [22]. Both these works clearly illustrate that,

once the genotype corresponding to a DNA methylation profile

has been identified, it becomes relatively simple to recover the

real identity of the owner of this methylation profile.

Finally, there have been several works on privacy-preserving

disease prediction by relying on encrypted genomic data.

Bost et al. develop three main private classification protocols

(including decision trees) that protect both the patients’ data

and the classifier model [23]. They prove their protocols to

be secure in the honest-but-curious adversarial model, and

evaluate its performance on real medical datasets. We build

upon their constructions for our own private random forest

classifier. Duverle et al. propose a new protocol that enables to

privately compute statistical tests on patients’ data by relying

on exact logistic regression [48]. Their performance evaluation

shows that they can perform statistical tests with more than

600 SNPs across thousands of patients in several hours.

Ayday et al. have developed schemes for private disease

susceptibility tests by using homomorphic encryption and

proxy-encryption [24], [49]. The considered tests are based

on linear combinations of the SNPs (and other environmental

and clinial factors in [49]) contributing to a given disease, and

do not involve complex machine-learning classifiers. Danezis

and De Cristofaro improve upon the protocol of [24] by

using an alternative SNP encoding and make the patient-side

computation more efficient [26]. McLaren et al. use a similar

security architecture as the one initially proposed by Ayday

et al. to develop a practical privacy-preserving scheme of

genome-based prediction of HIV-related outcomes [25]. All

these papers assume an honest-but-curious adversary, which

is considered as realistic in the healthcare environment.

X. CONCLUSION

In this work, we have first demonstrated that DNA methy-

lation datasets can be re-identified by having access to an

auxiliary database of genotypes. Following a Bayesian ap-

proach, we have shown that we could reach an accuracy of

97.5% to 100% depending on the attack scenario, with a

few hundreds of methylation regions and genotype positions.

Then, by using a statistical test upon our matching outcomes,

we have empirically demonstrated that the very few wrongly

matched pairs could be correctly identified and rejected,

yielding a false-positive rate of 0 and true-positive rate of 1

for appropriate statistical thresholds. We have further shown

that our identification attack was very robust to a decrease

of methylation-meQTL pairs. When matching 52 methylation

profiles with 75 genotypes, we could reach a full accuracy

with only 13 meQTLs and methylation regions. We have also

observed that, especially when the targeted genotype is present

in the genotype dataset, the very few wrongly matched pairs

contain the genotype of the relative (in more than 90% of the

cases). Finally, we have shown that our attack was robust to

an increase of the database size to more than 2500 genotypes.

Facing this severe threat to epigenetic privacy, we have

proposed a novel cryptographic scheme for privately classify-

ing tumors based on methylation data. Our protocol relies on

random forests and homomorphic encryption, and it is proven

secure in the honest-but-curious adversarial model. We have

implemented our private classifier in C++ and evaluated its

performance on real data. We have shown that it can accurately

classify brain tumors in nine classes of tumor subtypes based

on 900 methylation levels in less than an hour. This consti-

tutes an acceptable computational overhead in the considered

clinical setting at hand. As a meta-consequence, we highly

recommend to remove DNA methylation profiles from public

databases as these are extremely prone to re-identification,

especially given that genotypes are also increasingly available

online, sometimes with their owners’ identifiers [11].

As future work, we plan to study if the identification

attack is as successful when meQTL-methylation pairs are

learned from a different tissue’s data. At the defense side,

we would like to study other machine-learning algorithms,

and to propose private schemes for those that are efficient

in classification with methylation data. Differentially private

approaches could also be studied, although differential privacy

may degrade utility too much for typical medical needs [50].
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APPENDIX

Although we assume the same security model as in the work

by Bost et al. [23], we recap here the necessary concepts.

A. Secure two-party computation framework

Both, our protocol to change the ownership of an encryption

and the protocol to privately evaluate a random forest model

are two-party protocols. Let the two parties be denoted by

A and B. In order to show that all computations are done

privately, we assume the honest-but-curious (semi-honest)

model as described in [40].

Let f = (fA, fB) be a (probabilistic) polynomial function

and Π be a protocol computing f . Using A’s input a and B’s

input b, the two parties want to compute f(a, b) by applying

the protocol Π with the security parameter λ.

We denote the view of a party P ∈ {A,B} dur-

ing the execution of Π by the tuple VP (λ, a, b) =
(1λ; a; rP ;mP

1 , . . . ,m
P
t ) where r is P ’s random tape and

mP
1 , . . . ,m

P
t are the messages received by P . We define

the outputs of parties A and B for the execution of Π as

OutΠA(λ, a, b) and OutΠB(λ, a, b). The global output is defined

as the tuple OutΠ(λ, a, b) = (OutΠA(λ, a, b),OutΠB(λ, a, b)).
To ensure the private, secure computation, we require that

whatever A can compute from its interactions with B can be

computed from its input and output, yielding the following

security definition.

Definition 1. A two-party protocol Π securely computes the
function f if there exist two probabilistic polynomial time
algorithms SA and SB (also called simulators) such that for
every possible input a, b of f ,

{SA(1
λ, a, fA(a, b)), f(a, b)} ≡c {VA(λ, a, b),OutΠ(λ, a, b)}

and

{SB(1
λ, b, fB(a, b)), f(a, b)} ≡c {VB(λ, a, b),OutΠ(λ, a, b)}.

≡c means computational indistinguishability against proba-
bilistic polynomial time adversaries with negligible advantage
in the security parameter λ.

B. Cryptographic assumptions

In this section, we briefly review the cryptographic assump-

tions underlying the cryptosystems we use.

Assumption 1 (Quadratic Residuosity Assumption [36]).
Let N = p × q be the product of two distinct odd
primes p and q. Let QRN be the set of quadratic
residues modulo N and QNRN = {x ∈ Z∗N |
x is not a quadratic residue modulo N , but JN (x) = +1}
be the set of quadratic non residues, where JN (x) is the
Jacobi symbol.
{(N,QRN ) | |N | = λ} and {(N,QNRN ) | |N | = λ} are

computationally indistinguishable with respect to probabilistic
polynomial time algorithms.

Assumption 2 (Decisional Composite Residuosity Assump-

tion [37]). Let N = p× q with |N | = λ be the product of two
distinct odd primes p and q. We call z a N th residue modulo
N2 if there exists y ∈ ZN2 such that z = yN mod N2.
N th residues and non N th residues are computationally
indistinguishable with respect to probabilistic polynomial time
algorithms.

Assumption 3 (RLWE [38]). Let f(x) = xd + 1 where d =
d(λ) is a power of 2. Let q = q(λ) ≥ 2 be an integer. Let
R = Z[x]/(f(x)) and let Rq = R/qR. Let χ = χ(λ) be a
distribution over R. The RLWEd,q,χ problem is to distinguish
between two distributions: In the first distribution, one samples
(ai, bi) uniformly from R2

q . In the second distribution, one first
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draws s ← Rq uniformly and then samples (ai, bi) ∈ R2
q

by sampling ai ← Rq uniformly, ei ← χ, and setting bi =
ai ·s+ei. The RLWEd,q,χ assumption is that the RLWEd,q,χ

problem is infeasible.

C. Modular Sequential Composition

In order to ease the security proof of our construction, we

rely on sequential modular composition as defined in [51]. The

idea is that two parties run a protocol Π and use calls to an

ideal functionality f while running Π. This can be imagined

as A and B privately computing f by sending their inputs

to a trusted third party T and receiving the results from it.

If we can now show that Π respects security and privacy in

the honest-but-curious model and if we have a protocol ρ that

securely and privately computes f in the same model, we can

replace f by executions of ρ in Π. The resulting protocol Πρ

is then still secure in the aforementioned model.

We call (f1, . . . , fm)-hybrid model the semi-honest model

augmented with an incorruptible trusted party T for evaluating

the functionalities. The parties A and B run a protocol Π that

contains calls to T for these functionalities. For each call,

the parties send their input to T and wait until they receive

the respective results. It is crucial that both parties must not

communicate until receiving the result, since we only consider

sequential composition here. T does not keep state between

different calls to the functionalities. Therefore the protocol

may contain multiple calls even for the same function, which

all are independent.

Let Π be a two-party protocol in the (f1, . . . , fm)-hybrid

model and ρ1, . . . , ρm be secure protocols in the semi-honest

model computing f1, . . . , fm. We define Π{ρ1,...,ρm} as the

protocol where all ideal calls of Π have been replaced by

executions of the corresponding protocol: if party Pj needs to

compute fi with input xj , it halts, starts an execution of ρi
with the other party, gets the result βj from ρi and continues

as if βj was received from T .

Theorem 3 (Modular Sequential Composition Theorem [51],

[52]). Let f1, . . . , fm be two-party probabilistic polynomial
time functionalities and ρ1, . . . , ρm be protocols that compute
respectively f1, . . . , fm in the presence of semi-honest adver-
saries.

Let g be a two-party probabilistic polynomial time func-
tionality and Π a protocol that securely computes g in the
(f1, . . . , fm)-hybrid model in the presence of semi-honest
adversaries.

Then Πρ1,...,ρm securely computes g in the presence of semi-
honest adversaries.

D. Changing Encryption Owner

Proof of Theorem 1. The function f this protocol computes

is:

f(([[x]]B , SKA,PKB), (PKA, SKB)) = (∅, [[x]]A)
For the sake of simplicity, we do not take into account the

randomness used for the encryptions of r for A and c′ =
x + r for B. The distribution of these coins for one party

is completely independent of the other elements taken into

account in the simulations, so we omit them in our security

proof.

A’s view is VA = (SKA,PKB , [[x]]B ; r; ∅). A does not

output anything. The simulator SA(SKA,PKB , [[x]]B) runs as

follows:

1) Picks uniformly at random r̃ ←MP .

2) Outputs (SKA,PKB , [[x]]B ; r̃; ∅)
Since r and r̃ are sampled from the same distribution, inde-

pendently from any other parameter,

{(SKA,PKB , [[x]]B ; r̃; ∅), f([[x]]B , SKA,PKB ,PKA, SKB)} =
{(SKA,PKB , [[x]]B ; r; ∅), f([[x]]B , SKA,PKB ,PKA, SKB)}.

Moreover, it holds that

{(SKA,PKB , [[x]]B ; r; ∅), f([[x]]B , SKA,PKB ,PKA, SKB)} =
{(SKA,PKB , [[x]]B ; r; ∅), (∅, [[x]]A)}

and we can conclude

{SA(SKA,PKB , [[x]]B), f([[x]]B , SKA,PKB ,PKA, SKB)} ≡c

{VA([[x]]B , SKA,PKB ,PKA, SKB),

Out([[x]]B , SKA,PKB ,PKA, SKB)}.

B’s view is VB = (PKA, SKB ; [[x+ r]]B , [[r]]A). B outputs

[[x]]A. We build a simulator SB(PKA, SKB) as follows:

1) Pick uniformly at random r̃ ←MP and c̃←MP .

2) Generate the encryptions [[r̃]]A and [[c̃]] using PKA.

3) Output (PKA, SKB ; [[c̃]]B , [[r̃]]A)

By semantic security of the encryption scheme (in our concrete

case the Paillier cryptosystem), it holds that (proof see below)

{(PKA, SKB ; [[c̃]]B , [[r̃]]A), f([[x]]B , SKA,PKB ,PKA, SKB)} ≡c

(4)

{(PKA, SKB ; [[x+ r]]B , [[r]]A), f([[x]]B , SKA,PKB ,PKA, SKB)}
(5)

and hence (using also the correctness of the scheme)

{SB(PKA, SKB), f([[x]]B , SKA,PKB ,PKA, SKB)} ≡c

{VB([[x]]B , SKA,PKB ,PKA, SKB),

Out([[x]]B , SKA,PKB ,PKA, SKB)}.

We will prove the computational indistinguishability of

(4) and (5) in more detail by giving a reduction to the

semantic security. To this end, we assume that we have a

distinguisher D that can distinguish (4) and (5). Specifically,

given {(PK, SK′, [[y]]SK′ , [[r]]SK), [[x]]SK} D outputs 1 if y, r and

x are independent uniformly random values and 0 if r = y−r′

for a random r′ and x = y − r = r′. Then, we construct a

reduction R as follows:

1) On input PK, generate a new key pair (SK′,PK′) ←
KeyGen(1λ).

2) Pick uniformly at random y, r̃ ←M .

3) Choose challenger messages m0 = y − r̃, m1 = r̃ and

give them to the semantic security challenger.
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4) Receive c from the challenger, compute [[r̃]]PK and query

the distinguisher D({(PK, SK′, [[y]]SK′ , c), [[r̃]]PK}),
which returns b.

5) Return b to the challenger.

Since we simulate both cases ((4) and (5)) perfectly to the

distinguisher, its success probability in distinguishing (4) and

(5) transfers exactly to our reduction in the semantic security

game. Since Paillier encryption is shown to be semantically

secure under the Decisional Composite Residuosity Assump-

tion, the distinguisher must have at most negligible success

probability. And hence our scheme is secure.

E. Private Random Forest Evaluation

The correctness of our protocol follows from the correctness

of the private classification tree protocol in [23]. Moreover, we

will provide a security proof for the protocol revealing only

the plurality-vote class. Since our second protocol instantiation

– revealing all trees’ outcomes – is essentially only a shorter

version of the main protocol, we do not provide a separate

security proof for this protocol.

Proof of Theorem 2. Let A be the server S and B be the client

C. We prove the security of our protocol (see Protocol 2) in

the hybrid model using the following 5 ideal functionalities,

which we let execute by a trusted third party:

• the comparison protocol in step 3:

f1([[x]]B , [[y]]B , l, SK
QR
B ,PKQR

B , SKP
B ,PK

P
B) = ([x ≤

y]B , ∅)
• the protocol to change the encryption scheme in step 4:

f2([b]B , SK
QR
B ,PKQR

B , SKFHE
B ,PKFHE

B ) = ([[[b]]]B , ∅)
• the protocol to change the encryption scheme in step 10:

f3([[[y1, . . . , yk]]]B , SK
FHE
B ,PKFHE

B , SKP
B ,PK

P
B) =

({[[y1]]B , . . . , [[yk]]C}ki=1, ∅)
• the protocol to change the ownership of the encryption

in step 12:

f4([[x]]B , SK
P
A,PK

P
B ,PK

P
A, SK

P
B) = (∅, [[x]]A)

• the argmax protocol in step 13:

f5({[[ai]]A}ki=1, l, SK
P
A,PK

P
A, SK

QR
A ,PKQR

A ) =
(∅, argmaxi{ai}ki=1)

We will conclude using Theorem 3, our own security proofs

for those steps, as well as the proofs in [23].

The whole protocol computes the function:

f({Pi}ni=1, {wh}h, {[[vi]]B}gi=1, l,

SKP
A,PK

P
A, SK

QR
A ,PKQR

A ,

SKP
B ,PK

P
B , SK

QR
B ,PKQR

B ,

SKFHE
B ,PKFHE

B )

where {Pi}ni=1 are the polynomials, {wh}h are the thresholds

for each inner node, g is the number of features of the

client’s sample, {[[vi]]B}gi=1 is the input by the client. fA
returns nothing, while fB returns the plurality-vote class of

the random forest evaluation.

A’s view now is:

VA = ({Pi}ni=1, {wh}h, {[[vi]]B}gi=1, l,

SKP
A, SK

QR
A ,PKP

B ,PK
QR
B ,PKFHE

B ;

coins;
{[bh]B}h, {[[[bh, . . . , bh]]]B}h,
{[[yij ]]B}i∈{1,...,n},j∈{1,...,k})

where coins is the random tape for encryptions and {[bh]B}h
the comparison result for each node. We simulate A’s real

view with the following simulator SA:

1) Generate a random bit b̃h for each inner node in the

random forest.

2) Generate random bits yij for i ∈ {1, . . . , k}, j ∈
{1, . . . , n}.

3) Generate a random tape c̃oins of the required length.

The length can be determined based mainly on the

polynomials, which encode the number of trees, number

of classes and the number of nodes in the tree.

4) Output

H0 = ({Pi}ni=1, {wh}h, {[[vi]]B}gi=1, l,

SKP
A, SK

QR
A ,PKP

B ,PK
QR
B ,PKFHE

B ;

c̃oins;

{[b̃h]B}h, {[[[b̃h, . . . , b̃h]]]B}h,
{[[ỹij ]]B}i∈{1,...,n},j∈{1,...,k})

Since c̃oins and coins come from the same distribution, H0

is indistinguishable from:

H1 = ({Pi}ni=1, {wh}h, {[[vi]]B}gi=1, l,

SKP
A, SK

QR
A ,PKP

B ,PK
QR
B ,PKFHE

B ;

coins;

{[b̃h]B}h, {[[[b̃h, . . . , b̃h]]]B}h,
{[[ỹij ]]B}i∈{1,...,n},j∈{1,...,k})

Moreover, by the semantic security of QR and FHE (we

abstain from the trivial reduction proof here), we can deduce

that H1 is computationally indistinguishable from:

H2 = ({Pi}ni=1, {wh}h, {[[vi]]B}gi=1, l,

SKP
A, SK

QR
A ,PKP

B ,PK
QR
B ,PKFHE

B ;

coins;
{[bh]B}h, {[[[bh, . . . , bh]]]B}h,
{[[ỹij ]]B}i∈{1,...,n},j∈{1,...,k})

And by the semantic security of Paillier, we get that H2 is

computationally indistinguishable from:

H3 = ({Pi}ni=1, {wh}h, {[[vi]]B}gi=1, l,

SKP
A, SK

QR
A ,PKP

B ,PK
QR
B ,PKFHE

B ;

coins;
{[bh]B}h, {[[[bh, . . . , bh]]]B}h,
{[[yij ]]B}i∈{1,...,n},j∈{1,...,k})
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Hence, we showed that

VA({Pi}ni=1, {wh}h, {[[vi]]B}gi=1, l,

SKP
A,PK

P
A, SK

QR
A ,PKQR

A ,

SKP
B ,PK

P
B , SK

QR
B ,PKQR

B ,

SKFHE
B ,PKFHE

B )

≡cSA({Pi}ni=1, {wh}h, {[[vi]]B}gi=1, l,

SKP
A, SK

QR
A ,PKP

B ,PK
QR
B ,PKFHE

B )

B’s view is

VB = ({vi}gi=1, l, c, n, k

PKP
A,PK

QR
A , SKP

B , SK
QR
B , SKFHE

B ;

coins;

{[[
n∑

i=1

yij ]]A}nj=1, argmax
j

{
n∑

i=1

yij}nj=1)

where c is the number inner nodes over all trees, n is the

number of trees, k is the number of classes, [[
∑n

i=1 yij ]]A is

the encrypted vote count per class and argmaxj{
∑n

i=1 yij}
is the result of the argmax protocol and hence the output of

B.

We simulate B by the simulator SB as follows:

1) Generate n random Paillier encryptions {[[ỹj ]]A}nj=1.

2) Generate a random value between v ← {1, . . . , n}.
3) Generate a random tape c̃oins of the required length,

which can be determined by c, n and k.

4) Output

H ′
0 = ({vi}gi=1, l, c, n, k

PKP
A,PK

QR
A , SKP

B , SK
QR
B , SKFHE

B ;

c̃oins;
{[[ỹj ]]A}nj=1, v)

Given that c̃oins and coins both are sampled from the same

distribution with the same length, we can conclude that H ′
0 ≡c

H ′
1, with H ′

1 below:

H ′
1 = ({vi}gi=1, l, c, n, k

PKP
A,PK

QR
A , SKP

B , SK
QR
B , SKFHE

B ;

coins;
{[[ỹj ]]A}nj=1, v)

Next, we show the indistinguishability of H ′
1 and VB by

giving a reduction to the semantic security of Paillier. To

this end, we assume that we have a distinguisher D that can

distinguish H ′ and VB . Specifically, given

({vi}gi=1, l, c, n, k

PKP
A,PK

QR
A , SKP

B , SK
QR
B , SKFHE

B ;

coins;
{[[yj ]]A}nj=1, v)

D outputs 1 if v = argmaxj{yj}nj=1 and 0 otherwise. Then,

we construct a reduction R as follows:

1) On input PK, pick uniformly at random x, y, z ← M ,

such that x �= y �= z.

2) Order the chosen values (w.l.o.g., we from here on

assume x < y < z).

3) Generate new keys PKQR
A , SKP

B , SK
QR
B , SKFHE

B .

4) Choose challenger messages m0 = x, m1 = z and give

them to the semantic security challenger.

5) Receive c from the challenger and

query the distinguisher D(∅, 0, 0, 2, 0,
PK,PKQR

A , SKP
B , SK

QR
B , SKFHE

B ; ∅; {[[y]]PK, c}, 2),
which returns b.

6) Return b to the challenger.

Since we simulate both cases perfectly to the distinguisher,

its success probability transfers exactly to our reduction in the

semantic security game. Since Paillier encryption is shown

to be semantically secure under the Decisional Composite

Residuosity Assumption, the distinguisher must have at most

negligible success probability.

Given the correctness of the protocol as well as the com-

putational indistinguishability of both simulators and views,

we can apply Theorem 3. We replace the ideal calls by our

provable secure building blocks. Theorem 3 then gives us the

security of our scheme in the semi-honest model.
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