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Abstract—The Trusted Platform Module (TPM) is an inter-
national standard for a security chip that can be used for the
management of cryptographic keys and for remote attestation.
The specification of the most recent TPM 2.0 interfaces for
direct anonymous attestation unfortunately has a number of
severe shortcomings. First of all, they do not allow for security
proofs (indeed, the published proofs are incorrect). Second, they
provide a Diffie-Hellman oracle w.r.t. the secret key of the TPM,
weakening the security and preventing forward anonymity of
attestations. Fixes to these problems have been proposed, but
they create new issues: they enable a fraudulent TPM to encode
information into an attestation signature, which could be used
to break anonymity or to leak the secret key. Furthermore,
all proposed ways to remove the Diffie-Hellman oracle either
strongly limit the functionality of the TPM or would require
significant changes to the TPM 2.0 interfaces. In this paper we
provide a better specification of the TPM 2.0 interfaces that
addresses these problems and requires only minimal changes to
the current TPM 2.0 commands. We then show how to use the
revised interfaces to build q-SDH- and LRSW-based anonymous
attestation schemes, and prove their security. We finally discuss
how to obtain other schemes addressing different use cases such
as key-binding for U-Prove and e-cash.

1. INTRODUCTION

The amount of devices connected to the Internet grows

rapidly and securing these devices and our electronic infras-

tructure becomes increasingly difficult, in particular because

a large fraction of devices cannot be managed by security

professional nor can they be protected by firewalls. One

approach to achieve better security is to equip these devices

with a root of trust, such as a Trusted Platform Module (TPM),

a Trusted Execution Environment (TEE), and Software Guard

Extensions (SGX), and then have that root of trust attest to the

state of the device or to computations made. When doing such

attestations, it is crucial that they be privacy-protecting. On the

one hand, to protect the privacy of users of such devices, and

on the other hand, to minimize the information available to

attackers. Realizing this, the Trusted Computing Group (TCG)

has developed a protocol called direct anonymous attestation

(DAA) [1] and included it in their TPM 1.2 specification [2].

The protocol allows a device to authenticate as a genuine

device (i.e., that it is certified by the manufacturer) and attest

to messages without the different attestations being linkable

to each other and has since been implemented in millions of

chips.
Later, Brickell and Li [3] proposed a scheme called

Enhanced-privacy ID (EPID) that is based on elliptic curves

and adds signature-based revocation which is a revocation

capability based on a previous signature of a platform. This

scheme has become Intel’s recommendation for attestation

of a trusted system, has been incorporated in Intel chipsets

and processors, and is recommended by Intel to serve as the

industry standard for authentication in the Internet of Things.

Being based on elliptic curves, EPID is much more efficient

than the original RSA-based DAA scheme. Therefore, the

TCG has revised the specification of the TPM and switched

to elliptic curve-based attestation schemes [4], [5]. The design

idea of this new specification is rather beautiful: the TPM only

executes a simple core protocol that can be extended to build

different attestation schemes. Essentially, the core protocol is

a Schnorr proof of knowledge of a discrete logarithm [6], the

discrete logarithm being the secret key stored and protected

inside the TPM. Chen and Li [5] describe how to extend this

proof of knowledge to DAA schemes, one based on the q-

SDH assumption [14] and one based on the LRSW assumption

[15]. The idea here is that the host in which the TPM is

embedded extends the protocol messages output by the TPM

into messages of the DAA protocol. They further show how

to extend it to realize device-bound U-Prove [7], so that the

U-Prove user secret key is the one stored inside the TPM.

Unfortunately, the core protocol as specified has severe

shortcomings. First, the random oracle based security proof

for attestation unforgeability by Chen and Li is flawed [8] and

indeed it seems impossible to prove that a host cannot attest

to a message without involving the TPM. Second, the core

protocol can be abused as a Diffie-Hellman oracle w.r.t. the

secret key tsk inside the TPM. It was shown that such an

oracle weakens the security, as it leaks a lot of information

about tsk [26]. Further, the presence of the oracle prevents

forward anonymity, as an attacker compromising a host can

identify the attestations stemming from this host.

These issues were all pointed out in the literature before

and fixes have been proposed [8]–[10]. However, the proposed

fixes either introduce new problems or are hard to realize. Xi

et al. [8] propose a change to the TPM specification that allows

one to prove the unforgeability of TPM-based attestations.

This change introduces a subliminal channel though, i.e., a

subverted TPM could now embed information into the values

it produces and thereby into the final attestation. This covert

channel could be used to break anonymity of the platform and

its user, or to leak the secret key held in the TPM. The pro-

posed fixes to remove the static Diffie-Hellman oracle [8]–[10]

either require substantial changes to the TPM to the extend that

they are not implementable, or restrict the functionality of the

TPM too much, excluding some major DAA schemes from
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being supported. For instance, it was priorly proposed to have

the host prove in zero knowledge that a new base is safe to

use for the TPM, who then needs to verify that proof. This

does not only take a heavy toll on the resources of the TPM

but also excludes signature-based revocation, thus not meeting

the requirements of the TCG. We refer to Sec. 3 for a detailed

discussion of the existing proposals and their shortcomings.

Our Contributions. In this paper we provide a new specifi-

cation of the DAA-related interfaces of the TPM that requires

only minimal changes to the current TPM 2.0 commands. It

is the first one that addresses all the issues discussed and that

can easily be implemented on a TPM. We then show what

kind of proof of knowledge statements can be proven with

the help of our new TPM interfaces and how to build secure

DAA schemes with them. Our specification supports both

LRSW-based and q-SDH-based direct anonymous attestation,

signature-based revocation, and extensions to attributes. Our

LRSW-based scheme has a new way to issue credentials that

is much more efficient than prior ones that aimed to avoid

a DH-oracle in the TPM interfaces. To achieve this, we use

a slight modification of the LRSW assumption (which we

prove to hold in the generic group model). Avoiding this

modification would be possible, but requires a second round

of communication with the issuer.

We further show how to extend the DAA schemes to support

attributes and signature-based revocation and give security

proofs for all of that. For space reasons, we give only sketches

in this extended abstract and refer to the full version of this

paper for the detailed proofs. The TPM interfaces that we give

can also be used to realize other schemes, such as device-

bound U-Prove [7] and e-cash [11], for which it is beneficial

that a secret key be kept securely inside a TPM.

To make the construction of such schemes easier, we give

for the first time a thorough characterization of statements that

can be proven with a TPM w.r.t. a secret key inside the TPM.

We provide a generic protocol that orchestrates our new TPM

interfaces and allows one to generate TPM-based proofs for

a wide class of statements. We further prove the security of

such generated TPM-based proofs. This facilitates the use of

the TPM interfaces for protocol designers who can simply use

our generic proof protocol to devise more complex protocols.

Some of the changes to the TPM 2.0 interfaces we propose

have already been adopted by the TCG and will appear in

the forthcoming revision of the TPM 2.0 specifications. The

remaining changes are currently under review by the TPM

working group. Furthermore, the authors are in discussion

with the other bodies standardizing DAA protocols to adopt

our changes and schemes, in particular ISO w.r.t. to ISO/IEC

20008-2, Intel for EPID, and with the FIDO alliance for their

specification of anonymous attestation [34], so that all of

these standards will define provably secure protocols that are

compatible with each other.

Outline. We start by presenting the necessary preliminaries

in Sec. 2. In Sec. 3, we describe the current TPM 2.0

commands and their inherent security issues and also discuss

how previous work aims to overcome these problems. Sec. 4

then presents our proposed changes to the TPM 2.0 specifi-

cation and our generic proof protocol to create TPM-based

attestations. How to build direct anonymous attestation with

signature-based revocation and attributes is described in Sec. 5.

We discuss forward anonymity separately in Sec. 6, show

other applications of the revised TPM interfaces in Sec. 7,

and conclude in Sec. 8.

2. BUILDING BLOCKS AND ASSUMPTIONS

This section introduces the notation for signature proofs of

knowledge and the complexity assumptions required for our

schemes. Here we also present the new generalized version of

the LRSW assumption.

2.1 Bilinear Maps

Let G1, G2, and GT be groups of prime order p. A bilinear

map e : G1 × G2 → GT must satisfy bilinearity, i.e.,

e(gx1 , g
y
2 ) = e(g1, g2)

xy for all x, y ∈ Zq; non-degeneracy, i.e.,

for all generators g1 ∈ G1 and g2 ∈ G2, e(g1, g2) generates

GT ; and efficiency, i.e., there exists an efficient algorithm

G(1τ ) that outputs the bilinear group (p,G1,G2,GT , e, g1, g2)
and an efficient algorithm to compute e(a, b) for any a ∈ G1,

b ∈ G2.

Galbraith et al. [12] distinguish three types of pairings:

Type-1, in which G1 = G2; Type-2, in which G1 �= G2 and

there exists an efficient isomorphism ψ : G2 → G1; and Type-

3, in which G1 �= G2 and no such isomorphism exists. Type-

3 pairings currently allow for the most efficient operations

in G1 given a security level using Barreto-Naehrig curves

with a high embedding degree [13]. Therefore it is desirable

to describe a cryptographic scheme in a Type-3 setting, i.e.,

without assuming G1 = G2 or the existence of an efficient

isomorphism from G2 to G1.

2.2 Complexity Assumptions

We recall some existing complexity assumptions and intro-

duce a variation of one of them (which we prove to hold in

the generic group model). Let G(1τ ) generate random groups

G1 = 〈g1〉, G2 = 〈g2〉, GT = 〈e(g1, g2)〉, all of prime order

p where p has bith length τ , with bilinear map e.

Recall the q-SDH assumption [14] and the LRSW assump-

tion [15] in a bilinear group.

Assumption 1 (q-SDH). Define the advantage of A as:

Adv(A) = Pr
[
(G1,G2,GT , e, q)← G(1τ ), x←$

Z
∗
p,

(c, h)← A(g1, gx1 , g(x
2)

1 , . . . , g
(xq)
1 , g2, g

x
2 ) : h = g

1
x+c

1

]
.

No PPT adversary has Adv(A) non-negligible in τ .

Assumption 2 (LRSW). Let X = gx2 and Y = gy2 , and let
OX,Y (·) be an oracle that, on input a value m ∈ Zp, outputs
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a triple (a, ay, ax+xym) for a randomly chosen a. Define the
advantage of A as follows:

Adv(A) = Pr
[
(G1,G2,GT , e, q)← G(1τ ), (x, y)←$

Z
2
p,

X ← gx2 , Y ← gy2 , (a, b, c,m)← AOX,Y (·)(X,Y ) :

m �∈ Q ∧ a ∈ G1 ∧ a �= 1G1
∧ b = ay ∧ c = ax+xym

]
.

No PPT adversary has Adv(A) non-negligible in τ .

We introduce a generalized version of the LRSW assump-

tion where we split the oracle OX,Y into one that first gives

the values a and b, the two elements that do not depend on the

message, and one that later provides c upon input of m. That

is, after receiving a, b, the adversary may specify a message

m to receive c = ax+xym.

Assumption 3 (Generalized LRSW). Let X = gx2 and Y =
gy2 , and let Oa,b

X (·) return (a, b) with a ←$
G1 and b ← ay .

Let Oc
X,Y (·) on input (a, b,m), with (a, b) generated by Oa,b

X,Y ,
output c = ax+xym. It ignores queries with input (a, b) not
generated by Oa,b

X,Y or inputs (a, b) that were queried before.
Define the advantage of A as follows.

Adv(A) = Pr
[
(G1,G2,GT , e, q)← G(1τ ), (x, y)←$

Z
2
p,

X ← gx2 , Y ← gy2 , (a, b, c,m)← AOa,b
X (·),Oc

X,Y (·)(X,Y ) :

m �∈ Q ∧ a ∈ G1 ∧ a �= 1G1
∧ b = ay ∧ c = ax+xym

]

No PPT adversary has Adv(A) non-negligible in τ .

Note that our assumption implies the LRSW assumption,

but the contrary is not true. In our assumption, the adversary

may let m depend on (a, b). Intuitively, it is clear that this

does not give any meaningful advantage, as a is random in

G1. We formalize this intuition and prove that Assumption 3

holds in Shoup’s generic group model [16] in the full version

of this paper.

2.3 Proof Protocols

For zero-knowledge proofs of knowledge of discrete loga-

rithms and statements about them, we will follow the notation

introduced by Camenisch and Stadler [19] and formally de-

fined by Camenisch, Kiayias, and Yung [20]. For instance,

PK{(a) : y = ga} denotes a “zero-knowledge Proof of
Knowledge of integer a such that y = ga holds.” SPK{. . .}(m)
denotes a signature proof of knowledge on m, that is a non-

interactive transformation of a zero-knowledge proof PK with

the Fiat-Shamir heuristic [21] in the random oracle model [22].

(S)PK protocols have three moves: In the first move the

prover sends to the verifier what is often referred to as a

commitment message or t-values. In the second move, the

verifier sends a random challenge c to which the prover

responds with the so-called s-values.

When describing our protocols at a high-level, we use

the following, more abstract notation. By NIZK{(w) :
statement(w)}(ctxt) we denote any non-interactive zero-

knowledge proof that is bound to a certain context ctxt and

proves knowledge of a witness w such that the statement

statement(w) is true.

3. RELATED WORK & CURRENT TPM 2.0 SPECIFICATION

We now summarize the specification of current TPM 2.0

DAA interfaces and discuss its inherent security and privacy

issues and how existing work aims to overcome them.

TPM 2.0 Interface and SPKs. For realizing DAA, and

signature proofs of knowledge of a TPM secret key in gen-

eral, the TPM 2.0 specification offers four main commands

TPM.Create, TPM.Hash, TPM.Commit, and TPM.Sign. Calling

TPM.Create triggers the creation of a secret key tsk ∈ Zp and

a public key tpk ← ḡtsk , where ḡ and Zp are fixed parameters.

Roughly, for signing a message m via a signature proof of

knowledge (SPK) of tsk w.r.t. a basename bsnL, the host first

invokes TPM.Commit on input a group element g and basename

bsnL upon which the TPM outputs (commitId , E,K,L) with

K ← HG1
(bsnL)

tsk , and the t-values of the SPK, denoted

E ← gr and L ← HG1(bsnL)
r. The TPM also internally

stores (commitId , r). The host then calls TPM.Hash to obtain

a hash c on the message (m, (E,L)). If the TPM wants to

sign this message, it marks c as safe to sign. The proof gets

completed by invoking the TPM.Sign command on input a

safe-to-sign hash c and a reference commitId to the random-

ness r upon which the TPM outputs s← r + c · tsk .

Due to this generic interface, the TPM 2.0 can be used to

construct multiple DAA schemes. Chen and Li [5] show that

the TPM 2.0 supports both LRSW-based DAA [23] and q-

SDH-based DAA [3], whereas the TPM 1.2 only supported

the original RSA-based DAA scheme [1]. Unfortunately, the

current TPM 2.0 interfaces have some drawbacks: the signa-

ture proofs of knowledge the TPM makes cannot be proven to

be unforgeable and there exists a static Diffie-Hellman oracle

leaking information about the TPM key.

3.1 Unforgeability Flaw for TPM 2.0-based SPKs

The SPKs that are created via the TPM commands should

be unforgeable, i.e., a host must not be able to compute an

SPK on message m without calling TPM.Sign on a hash

c that was previously cleared via a TPM.Hash call on m.

Chen and Li [5] aim to prove this property, but the proof

is incorrect, as pointed out by Xi et al. [8]. In the proof,

the authors simulate the TPM without knowing its secret key

tsk . To simulate an SPK on message m, the authors use the

standard approach of randomly choosing the c, s values, and

then derive the t-values E,L in TPM.Commit based on c, s,

and tpk . For the reduction to go through, one must ensure

that the randomly chosen c becomes the hash value of (m, t)
(via TPM.Hash and modeling the hash as random oracle), and

then let TPM.Sign respond with s whenever that c is given as

input. However, given that an adversary has arbitrary access to

the TPM interfaces, it can query TPM.Hash on many different

messages (m1, t), . . . , (mn, t) containing the same t value.

The reduction does not know which of these queries the

adversary will later use to complete the signature, and thus

only has a 1/n chance to correctly simulate the proof.
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Unforgeability Fix Breaks Privacy. This problem is inherent

in the current TPM interface, but could be solved by a simple

modification to the TPM.Sign method as proposed by Xi et

al. [8]: when signing, the TPM first chooses a nonce nt and

computes c′ ← H(nt, c) and s ← r + c′ · tsk . This allows

to prove the unforgeability of TPM generated SPKs, as the

reduction can now program the random oracle on c′ only when

the TPM.Sign query is made.

However, this would also introduce a subliminal channel

for the TPM, as nt would be part of the final signature

and a subverted TPM can embed arbitrary information in

that nonce, breaking the anonymity without a host noticing.

Recent revelations of subverted cryptographic standards and

tampered hardware indicate that such attacks are very realistic.

We propose changes to the TPM that provably prevent such

subliminal challenges and at the same time allow to prove the

unforgeability of the SPKs, as we will show in Sec. 4.

3.2 Static Diffie-Hellman Oracle

Another problem in the TPM 2.0 interface is the static

Diffie-Hellman (DH) oracle, as pointed out by Acar et al. [25].

For any chosen point g ∈ G1, the host can learn gtsk by

calling (commitId , E,K,L) ← TPM.Commit(g, bsn), s ←
TPM.Sign(commitId , c) and computing gtsk ← (gs ·E−1)1/c.

This leaks a lot of information about tsk , Brown and Gal-

lant [26] and Cheon [27] show that the existence of such an

oracle makes finding the discrete log much easier. The reason

is that the oracle can be used to compute a q-SDH sequence

gtsk , gtsk
2
, . . . , gtsk

q
for very large q, which in turn allows

to recover tsk faster than had one been given only ḡtsk . On

Barreto-Naehrig (BN) curves [13], one third of the security

strength can be lost due to a static DH oracle. For example,

a 256 bit BN curve, which should offer 128 bits of security,

only offers 85 bits of security with a static DH oracle.

The static DH oracle also prevents forward anonymity.

Forward anonymity guarantees that signatures made by an

honest platform remain anonymous, even when the host later

becomes corrupted. In existing schemes, even anonymous

signatures contain a pair (gi, Ui,k) where gi is a random

generator and Ui,k = gtskk
i . With a static DH oracle, a host

upon becoming corrupt can use the TPM to compute U ′i = gtski

for all previous signatures, test whether U ′i = Ui,k, breaking

the anonymity of these signatures.

Cleared Generators for LRSW-based Schemes. Xi et al. [8]

propose an approach to remove the static DH oracle while

preserving the support for the both LRSW- and q-SDH-based

DAA schemes. They introduce a new TPM.Bind command that

takes as input two group elements P and K and a proof πP ←
SPK{α : P = ḡα ∧ K = tpkα}. The TPM verifies the proof

and, if correct, stores P as cleared generator. The TPM.Commit
interface will then only accept such cleared generators as input

for g. This removes the static DH oracle because the proof πP

shows that P tsk = K is already known. A similar approach

was also used in the recent LRSW-DAA scheme by Camenisch

et al. [9].

However, this approach has two crucial problems. First, it

is very hard to implement this functionality on a TPM. The

TPM stores only a small number of root keys due to the very

limited amount of storage available. For all other keys, the

TPM creates a “key blob” that contains the public part of the

key in the clear and the private part of the key encrypted with

one of the root keys. The TPM would have to similarly store

an authenticated list of generators which have been cleared via

the TPM.Bind interface. However, this would be a new type

of key structure, which is a significant change to the current

TPM 2.0 specification.

Second, this interface does not support signature-based
revocation, which is an important extension to anonymous sig-

natures. This type of revocation was introduced in EPID [28]

and allows one to revoke a platform given a signature from

that platform. Roughly, for signature-based revocation, every

signature includes a pair (B, nym) where B ←$
G1 and

nym← Btsk . The signature revocation list SRL contains tuples

{(Bi, nymi)} from signatures of the platforms that are revoked.

When signing, the TPM must also prove that it is not the

producer of any of these revoked signatures. To do so, it proves

πSRL,i ← SPK∗{(tsk) : nym = Btsk ∧ nymi �= Btsk
i } for each

tuple in SRL. Using the changes proposed by Xi et al. [8], a

host cannot input the generators Bi to the TPM anymore as

it is not able to produce proofs πBi
that are required in the

TPM.Bind interface.

Random Generators via Hashing. Another approach to

remove the static DH oracle is to determine the base g by

hashing. That is, instead of inputing g in TPM.Commit, the

host provides a basename bsnE upon which the TPM derives

g ← HG1
(bsnE). By assuming that the hash function is a

random oracle, g is now enforced to be a random instead of

a chosen generator which avoids the static DH oracle, as the

host can no longer create the large q-SDH sequences that are

the basis of the static DH attacks.

Interestingly, this approach was included in the revision

from TPM 1.2 to TPM 2.0 to avoid another static DH oracle

that was present in the earlier standard. In TPM 1.2, the

TPM.Commit interface received a generator j instead of bsnL

and directly computed K ← jtsk and L ← jr, whereas

TPM 2.0 now receives bsnL and first derives j ← HG1(bsnL).
While applying the same idea on g would solve the prob-

lem, it would also significantly limit the functionality of the

TPM interface. Recall that TPM 2.0 was designed to support

both, LRSW- and q-SDH-based DAA schemes. While q-SDH

schemes could be easily ported to these new interfaces, no

current LRSW-based scheme would be supported. All existing

LRSW-based schemes require the TPM to prove knowledge of

d = btsk for a generator b← ay chosen by the DAA issuer. As

the issuer must be privy of the discrete logarithm y, it cannot

produce a basename bsnE such that b = HG1(bsnE) holds at

the same time.

Another protocol that would, in its current forms, not be

compatible with this change is the aforementioned signature-

based revocation [28], which needs the TPM to use basenames
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Bi defined in the revocation list SRL. Camenisch et al. [10]

recently proposed to use B ← HG1(bsn) instead of B ←$
G

1to avoid the DH oracle, i.e., the TPM gets bsn as input and

the SRL has the form {(bsni, nymi)}. However, the authors

did not detail how the TPM interfaces have to be changed

to support this approach. In fact, their protocol is not easily

instantiable, as their proposed computations by the TPM for

generating the proofs πSRL,i would require the TPM to keep

state, which in turn would require new TPM commands.

Our Approach. In this work we follow the idea of using

hash-based generators but thoroughly describe the necessary

changes to the TPM 2.0 specification and, in addition, are

very conscious to optimize our solutions. Most importantly,

our proposed modifications do not require any new TPM

commands, but modify the existing ones only slightly. To

demonstrate the flexibility of our TPM interface we present a

generic protocol that allows to create a wide class of signature

proofs of knowledge using these TPM commands. The existing

LRSW-based DAA and signature-based revocation protocols

cannot be used with our interface due to the aforementioned

issues. We therefore also propose new protocols for signature-

based revocation and LRSW-based DAA that are compatible

with the proposed TPM interfaces and provably secure.

4. THE REVISED TPM 2.0 INTERFACE

This section introduces new TPM 2.0 interfaces for creating

signature proofs of knowledge. The TPM creates keys with

the TPM.Create command. Messages can be signed by first

calling TPM.Commit, followed by a TPM.Hash and a TPM.Sign
command. We first discuss our proposed modifications to these

commands and how they address the problems mentioned

in Sec. 3. Indeed, we are able to do that by making only

minor modifications to the commands. The description of our

revised TPM interfaces is presented in Fig. 1. We again use a

simplified notation and refer for the full specification of our

TPM 2.0 interfaces to the full version of this paper.

Avoiding a Subliminal Channel. To solve the unforgeability

problem discussed in Sec. 3, a nonce to which the TPM

contributed needs to be included in the computation of the

Fiat-Shamir challenge c′. Thereby, a malicious TPM must not

be able to alter the distribution of the signature proofs of

knowledge, as this would break the privacy, which is the key

goal of anonymous attestation. For this reason, the nonce needs

to be computed jointly at random by the TPM and the host. In

TPM.Commit, the TPM chooses a nonce nt and commits to that

nonce by computing n̄t ← H(“nonce”,nt). The host picks

another nonce nh, and gives that as input to TPM.Sign. The

TPM must use nt⊕nh in the Fiat-Shamir hash. An honest host

takes nh uniformly at random, which guarantees that nt ⊕ n
his uniform random, preventing a malicious TPM from hiding

messages in the nonce.

Avoiding the DH Oracle. The TPM.Commit command is

changed to prevent a static Diffie-Hellman oracle. The oracle

exists in the current TPM 2.0 interface because therein a host

can pass any value g to the TPM and obtain gtsk . Our revised

TPM prevents this as it will only use a generator g̃ that is

either g̃ ← HG1
(bsnE) for some bsnE it receives, or set to

g̃ ← ḡ if bsnE = ⊥ where ḡ denotes the fixed generator used

within the TPMs.

Clearly, the host can no longer abuse this interface to learn

information about the TPM secret key tsk . If g̃ = ḡ, the

host receives tpk which it already knows. If g̃ = HG1
(bsnE)

and we model the hash function as a random oracle, the host

receives a random element raised to power tsk , which does not

give the host useful information. More precisely, the proof of

Lemma 2 shows that we can simulate a TPM without knowing

tsk , which proves that the TPM does not leak information

on tsk . Although our changes limit the generators that the

host can choose, Sec. 5.2 shows that we can still build DAA

schemes based on q-SDH and LRSW on top of this interface,

including support for signature-based revocation.

4.1 Zero-knowledge Proofs with the TPM

We now describe how our proposed TPM interfaces can be

used to create a wide class of signature proofs of knowledge.

To demonstrate the flexibility of our interface we propose a

generic proof protocol Prove that orchestrates the underlying

TPM commands. We then show that proofs generated by Prove
are unforgeable, device-bound and remain zero-knowledge

even if the TPM is subverted. Thus, protocol designers can

use our Prove protocol as generic building block for more

complex protocols instead of having to use the TPM command

and proving these security properties from scratch. Our DAA

protocols presented in Sec. 5 use exactly that approach.

A Generic Prove Protocol. Using the proposed TPM inter-

faces, a host can create signature proofs of knowledge of the

following structure:

SPK∗{(γ · (tsk + hsk), α1, . . . , αl) :

y1 = (ĝδ)γ·(tsk+hsk) ·
∏
i

bi
αi ∧

y2 = HG1
(bsnL)

γ·(tsk+hsk) ·
∏
i

b′i
αi ∧

y3 =
∏
i

b′′i
αi}(mh,mt) , (1)

for values δ, hsk , tsk , and γ in Zp, strings bsnL,mh,mt ∈
{0, 1}∗, group elements y1, y2, y3, ĝ, and set {(αi, bi, b

′
i, b
′′
i )}i,

with αi ∈ Zp. Either y1, ĝ, and all bi’s are in G1 or they are

all in GT . All b′i values and y2 must be in G1. If bsnL = ⊥,

the second equation proving a representation of y2 is omitted

from the proof. We could also lift this part of the proof to GT

but as we do not require such proofs, we omit this to simplify

the presentation. The values y3 and b′′i must either all be in

G1, in G2, or in GT .

In addition we require that the TPM works with a cleared

generator, meaning either ĝ = g̃ or ĝ = e(g̃, ĝ2) with g̃
denoting the cleared generator being either ḡ, i.e., the fixed

generator or it is HG1
(bsnE) for some bsnE .
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Session system parameters: G1 = 〈ḡ〉 of prime order q, nonce bit

length ln, random oracles H : {0, 1}∗ → Zp and HG1 : {0, 1}∗ →
G1. Initialize Committed← ∅ and commitId ← 0.

Init. On input TPM.Create():

• If this is the first invocation of TPM.Create, choose a fresh

secret key tsk ←$
Zp and compute public key tpk ← ḡtsk .

• Store tsk and output tpk .

Hash. On input TPM.Hash(mt,mh):

• If mt �= ⊥, the TPM checks whether it wants to attest to mt.

• Compute c← H(“TPM ”,mt,mh).
• Mark c as “safe to sign” and output c.

Commit. On input TPM.Commit(bsnE , bsnL):

• If bsnE �= ⊥, set g̃ ← HG1
(bsnE), otherwise set g̃ ← ḡ.

• Choose r ←$
Zp, nt ←$ {0, 1}ln and store (commitId , r,nt) in

Committed.

• Set n̄t ← H(“nonce”,nt), E ← g̃r, and K,L← ⊥.

• If bsnL �= ⊥, set j ← HG1(bsnL), K ← jtsk and L← jr.

• Output (commitId , n̄t, E,K,L) and increment commitId .

Sign. On input TPM.Sign(commitId , c,nh):

• Retrieve record (commitId , r,nt) and remove it from

Committed, output an error if no such record was found.

• If c is safe to sign, set c′ ← H(“FS”,nt ⊕ nh, c) and

s← r + c′ · tsk and output (nt, s).

Fig. 1. Our proposed modified TPM 2.0 interface (changes w.r.t. the current specification are highlighted in blue).

Variable Type Explanation

TPM: tsk Zp secret key held inside the TPM (in DAA part of the platform secret key)

tpk G1 public key corresponding to tsk , i.e., tpk = ḡtsk

ḡ G1 fixed generator in all TPMs

g̃ G1 cleared generator created in TPM.Commit, with g̃ ← HG1(bsnE) if bsnE �= ⊥ and g̃ ← ḡ else

Prove: hsk Zp secret key held by the host (in DAA part of the platform secret key), set hsk = 1 if not needed

y1 G1 or GT see SPK (1), if y1 ∈ GT then ĝ2 is a mandatory input

bsnE {0, 1}∗ or ⊥ basename for generator g̃ ← HG1(bsnE), if bsnE = ⊥ then g̃ ← ḡ
δ Zp see SPK (1), set δ = 1 if not needed

ĝ2 G2 if y1 ∈ GT , or ⊥ if ĝ2 �= ⊥, it moves proof to GT by setting ĝ ← e(g̃, ĝ2); if ĝ2 = ⊥ then ĝ ← g̃
γ Zp see SPK (1), set γ = 1 if not needed

bsnL {0, 1}∗ or ⊥ basename for generator j ← HG1
(bsnL) if bsnL �= ⊥

y3 G1, G2, GT , or ⊥ see SPK (1), set y3 = ⊥ if not needed

αi Zp see SPK (1), input given as part of {(αi, bi, b
′
i, b
′′
i )}i

bi same group as y1 see SPK (1), set bi = 1G if αi is not needed in the first equation of (1)

b′i G1 see SPK (1), set b′i = 1G1
if αi is not needed in the second equation (1)

b′′i same group as y3 see SPK (1), set b′′i = 1G if αi is not needed in the third equation (1)

mh {0, 1}∗ or ⊥ message that the host adds to an attestation

mt {0, 1}∗ or ⊥ message the TPM attests to

Fig. 2. Overview of variables used within the TPM and in our Prove protocol.

The protocol allows the host to add a key hsk to the witness

for tsk because, as we will see in the later sections, this can

improve the privacy of DAA schemes. Note that we could

trivially generalize the proof statement (1) to include additional

terms that do not contain γ · (tsk + hsk) as witness, but for

ease of presentation we omit these additional terms.

The host can add any message mh to the proof. It also

chooses mt, but this is a value the TPM attests to and will be

checked by the TPM.

The host can create such a proof using the Prove protocol

described in Fig. 3. We assume a perfectly secure channel

between the host and TPM, i.e., the adversary does not notice

the host calling TPM commands. Note that before starting the

proof, the host may not know y2, as it does not know tsk ,

but learns this value during the proof because it is given as

output of the Prove protocol. How to verify such proofs using

the VerSPK algorithm is shown in Fig. 3 as well. Note that

verification does not require any participation of the TPM.

Fig. 2 gives a brief overview of the required parameters and

their respective types and conditions.

The completeness of these proofs can easily be verified.

The proof is sound as we can extract a valid witness using the

standard rewinding technique.

Example for Using Prove. We now give a simple example to

show how the Prove protocol must be invoked and give some

intuition on how the final proof is assembled by our protocol.

Suppose we want to prove:

SPK∗{(tsk + hsk) : d′ = (HG1
(bsnE)

δ)(tsk+hsk) ∧
nym = HG1

(bsnL)
(tsk+hsk)}(mh,mt),

where the TPM holds tsk and the host knows hsk . The host

will add hsk to the witness for tsk , which is the first input to

Prove. The second argument is the left hand side of the first

equation, which is d′. The generator for the witness tsk +hsk
is (HG1(bsnE)

δ), which is passed on to the Prove protocol by

giving bsnE and δ as the next arguments. The protocol has

the option to move the proof to GT by passing a value ĝ2,

but as this proof takes place in G1, we enter ĝ2 = ⊥. We can

prove knowledge of γ · (tsk + hsk), but as we want to use

witness tsk + hsk , we pass γ = 1. In the second equation,

we use HG1(bsnL) as generator, so we give argument bsnL.
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Prove(hsk , y1, bsnE , δ, ĝ2, γ, bsnL, y3,

{(αi, bi, b
′
i, b
′′
i )}i,mh,mt) :

• If bsnE �= ⊥, set g̃ ← HG1
(bsnE), otherwise set g̃ ← ḡ.

• If ĝ2 �= ⊥, set ĝ ← e(g̃, ĝ2), otherwise set ĝ ← g̃.

• If bsnL �= ⊥, set j ← HG1(bsnL).
• Call TPM.Commit(bsnE , bsnL)→ (commitId , n̄t, E,K,L).

• Take rhsk ←$
Zp, set E′ ← (E · g̃rhsk )γ·δ . If bsnL �= ⊥, set

K ′ ← (K · jhsk )γ and L′ ← (L · jrhsk )γ .

• If bsnL �= ⊥, set y2 ← K ′ ·∏i b
′
i
αi .

• Take {rαi}li=1 ←$
Z
l
p. Set t1 ← E′ ·∏i b

rαi
i if bi ∈ G1, or

t1 ← e(E′, ĝ2) ·
∏

i b
rαi
i if bi ∈ GT .

• If bsnL �= ⊥, set t2 ← L′
∏

i b
′
i
rαi and t2 ← ⊥ else.

• If y3 �= ⊥, set t3 ←
∏

i b
′′
i
rαi and t3 ← ⊥ else.

• Set m′h ← (mh, y1, ĝ
δ, {(bi, b′i, b′′i )}, t1, y2, bsnL, t2, y3, t3).

• Call TPM.Hash(mt,m
′
h)→ c.

• Take nh ←$ {0, 1}ln .

• Call TPM.Sign(commitId , c,nh)→ (nt, s).
• Check that n̄t = H(“nonce”, nt) and set n ← nh ⊕ nt,
c′ ← H(“FS”, n, c).

• Set s′ ← γ · (s+ rhsk + c′ · hsk) and sαi
← rαi

+ c′ · αi for

i = 1, . . . , l.
• Check (ĝδ)s

′
= E′ · (y1/(

∏
i b

αi
i )c

′
and if bsnE �= ⊥, check

js
′
= L′ ·K ′c′ .

• Set proof π ← (c′,n, s′, {sαi}) and output (y2, π).

VerSPK(π, y1, ĝ
δ, y2, bsnL, y3, {(αi, bi, b

′
i, b
′′
i )}i,mh,mt) :

• Parse π as (c′,n, s′, {sαi}).
• Set t1 ← y−c′

1 · (ĝδ)s′ ·∏i bi
sαi .

• If bsnL �= ⊥, set t2 ← y−c′
2 · HG1(bsnL)

s′ ·∏i b
′
i
sαi , and

t2 ← ⊥ else.

• If y3 �= ⊥, set t3 ← y−c′
3 ·∏i b

′′
i
sαi and t3 ← ⊥ else.

• Output 1 if c′ = H(“FS”,n,H(“TPM ”,mt, (mh, y1, ĝ
δ,

{(bi, b′i, b′′i )}, t1, y2, bsnL, t2, y3, t3))), and 0 otherwise.

Fig. 3. Prove protocol and VerSPK algorithm to create and verify zero-
knowledge proofs via the TPM interfaces from Fig. 1.

Since our proof omits the third equation, we set y3 ← ⊥.

The protocol supports an additional list of witnesses with

generators in the three equations, but since this equation only

uses witness tsk+hsk , we pass an empty list as next argument.

Finally, we specify mt, the message the TPM attests to, and

mh, the additional data added by the host. Therefore, we call

Prove(hsk , d′, bsnE , δ,⊥, 1, bsnL,⊥, ∅,mh,mt).

The protocol calls TPM.Commit with basenames bsnE and

bsnL to receive E = HG1
(bsnE)

rtsk and L = HG1
(bsnL)

rtsk

for some rtsk , and K = HG1
(bsnL)

tsk , along with n̄t =
H(“nonce”, nt), that commits the TPM to TPM nonce nt. The

host must change the generator for the first proof equation

to HG1(bsnL)
δ instead of HG1(bsnL), and add randomness

to both values to prevent a malicious TPM from altering

the distribution of the resulting proof. It sets t1 ← Eδ ·
(HG1

(bsnE)
δ)rhsk = (HG1

(bsnE)
δ)rtsk+rtsk , and t2 ← L ·

HG1(bsnL)
rhsk = HG1(bsnE)

rtsk+rtsk . Next, it hashes the t-
values along with the proof parameters and messages mt and

mh using TPM.Hash. The TPM inspects mt and returns c,
which can only be passed to TPM.Sign if the TPM agrees to

signing mt. The host now calls TPM.Sign with c and a fresh

host nonce nh, upon which it receives nt and s = rtsk+c′ ·tsk .

The host checks whether nt matches the committed TPM

nonce, and computes the joint nonce n ← nh ⊕ nt and Fiat-

Shamir challenge c′ ← H(“FS”, n, c). The host must now add

its randomness and hsk to the s-value, which it does by setting

s′ ← s+rhsk +c′ ·hsk . Finally, it checks whether the resulting

proof is valid, to make sure that the TPM contributions did

not invalidate the proof. The resulting proof consists of nonce

n , Fiat-Shamir challenge c′, and s-value s′.

4.1.1 Security of Prove

We now show that proofs generated by our generic Prove
protocol specified in Fig. 3 and using the TPM interfaces as

described in Fig. 1 are unforgeable, device-bound and remain

zero-knowledge even if the TPM is subverted.

Zero-knowledge of SPKs with a Corrupt TPM. An SPK

created with the Prove protocol is zero knowledge in the

random oracle model, even when the TPM is corrupt. That

is, we prove the absence of any subliminal channel that a

malicious TPM could use to break the privacy of the platform.

In Sec. 5 we show that this allows one to devise DAA schemes

that guarantee privacy even when the TPM is malicious.

Lemma 1 (Privacy of SPKs with a TPM). The signature
proofs of knowledge generated by Prove as defined in Fig. 1,
are zero-knowledge, even when the TPM is corrupt.

Proof (sketch). A corrupt TPM may block the creation of the

proof, but if it succeeds, it is zero knowledge. The TPM is

involved in proving knowledge of γ · (tsk + hsk). The host

changes the r-value to γ · (rtsk + rhsk ), with rhsk chosen by

the host. It takes rhsk ←$
Zp, so rtsk + rhsk is uniform in

Zp regardless of how the TPM chooses rtsk . Since γ �= 0,

γ · (rtsk + rhsk ) is still uniform in Zp.

The TPM also chooses a nonce nt. It must first commit to

this nonce with n̄t = H(“nonce”,nt). The host then chooses

a nonce nh uniformly at random in {0, 1}ln , and the TPM

must work with n = nh ⊕ nt, and show that it computed this

correctly. Clearly, n is uniform if nh is uniform.

Since we know the distribution of every part of the zero-

knowledge proof, even when the TPM is corrupt, we can

simulate proofs of an honest host with a corrupt TPM.

Unforgeability of SPKs with an Honest TPM. We now show

that proofs generated by Prove are unforgeable with respect

to mt, i.e., if the TPM is honest, a corrupt host cannot create

a SPK for message mt that the TPM did not approve to sign.

We consider a corrupt host with oracle access to an honest

TPM. The TPM executes TPM.Create, outputting tpk ← ḡtsk .

The corrupt host cannot create SPKs of structure (1) where tsk
is protected by the TPM and γ and hsk are known and the

TPM never signed mt. We require the host to output γ and

hsk along with his forgery. In a protocol, this means that these
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values must be fixed (e.g., γ always equals 1) or extractable

from some proof of knowledge for this lemma to be applicable.

Lemma 2 (Unforgeability of SPKs with a TPM). The sig-
nature proofs of knowledge generated by Prove as defined
in Fig. 1, are unforgeable w.r.t. mt. More precisely, the host
cannot forge a signature proof of knowledge with the structure
of (1) with a witness γ · (tsk + hsk) for known γ, hsk if the
TPM never signed mt, under the DL assumption in the random
oracle model.

Proof (sketch). We show that if an adversary A that has access

to the TPM interfaces can forge SPK’s, we can derive an

adversary B that can solve the discrete logarithm problem.

Note that it is crucial that we allow the adversary A to get

full, unconstrained access to the TPM interfaces instead of

giving him only indirect access via the Prove protocol, as this

correctly models the power a corrupt host will have.

Our reduction B receives a DL instance tpk = ḡtsk and is

challenged to find tsk . To do so, we simulate the TPM and

the hash function towards A based on tpk , ḡ as follows:

Hash queries: For queries bsni to HG1 , take ri ←$
Zp and

return HG1
(bsni) = ḡri and store (hash,HG1

(bsni), ri).
Queries to H and TPM.Hash are handled normally.

Commit query TPM.Commit(bsnE , bsnL): Take (si, c
′
i) ←$

Z
2
p. If bsnE �= ⊥, compute HG1

(bsnE), look up

the record (hash,HG1(bsnE), rE), and set E ← ḡs ·
tpk−c′i·rE . If bsnE = ⊥, set E ← ḡs · tpk−c′i .

If bsnL �= ⊥, compute HG1
(bsnL), look up the

record (hash,HG1
(bsnL), rL), and set K ← tpkrL =

HG1
(bsnL)

tsk , and L← ḡs · tpk−c′i·rL . If bsnL = ⊥, set

K ← ⊥ and L← ⊥.

Pick n̄t uniform in the range of H, store

(commitId , n̄t, si, c
′
i), increment commitId , and

output (commitId , n̄t, E,K,L).
Sign query TPM.Sign(commitId , c,nh): Look up and re-

move record (commitId , n̄t, si, c
′
i), and output an error

if no such record was found. Check that c was marked

safe-to-sign in a TPM.Hash query. Pick nt ←$ {0, 1}ln and

program the random oracle such that H(“nonce”,nt) =
n̄t. Program the random oracle such that H(“FS”,nt ⊕
nh, c) = c′i. Since the nonce nt is fresh and gets only used

once, the probability that the random oracle is already

defined on that input is negligible. Finally, we output

(nt, si).

When A, after having interacted with these oracles, outputs

a SPK forgery, i.e., a valid proof with TPM message mt that

the TPM never agreed to sign in TPM.Hash, along with values

γ, hsk such that the proof uses γ · (tsk + hsk) as witness,

we either have a collision in H which occurs with negligible

probability, or we can rewind to extract γ ·(tsk+hsk), allowing

us to compute tsk . B then outputs tsk , solving the DL problem.

Device Boundedness of SPKs with an Honest TPM. Finally,

we show that proofs generated via Prove are device bound,

i.e., the host cannot create more SPKs than the amount of

sign queries the TPM answered. Again, the TPM holds tsk
with tpk = ḡtsk created by TPM.Create.

Lemma 3 (Device Boundedness of SPKs with a TPM). The
signature proofs of knowledge generated by Prove as defined
in Fig. 1, are device bound. That is, the host cannot create
more signature proofs of knowledge with the structure of (1)
with a witnesses γ · (tsk + hsk), where tsk is protected by the
TPM and the host knows γ and hsk , than the amount of sign
queries the TPM answered, under the DL assumption in the
random oracle model.

Proof (sketch). Our reduction receives a DL instance tpk =
ḡtsk and must compute tsk . The simulation works exactly as

in the proof of Lemma 2. If the host made n sign queries and

outputs n+ 1 SPKs and corresponding values γ and hsk , we

look at every c′ value of the proofs. If there are two distinct

SPKs with the same c′ value, there must be a collision in H,

which occurs with negligible probability. If all c′ values are

distinct, one of them must be different from the c′ values as

created by the TPM. That means the random oracle is not

programmed here and we can rewind that proof to extract

γ · (tsk+hsk). Since we also have hsk and γ we can compute

tsk , which solves the DL problem.

4.1.2 Proofs Without TPM Contribution

To be able to prove security of our DAA schemes, we must

distinguish proofs to which the TPM contributed and proofs

that the host created by itself. One way to achieve this is by

using different prefixes in the Fiat-Shamir hash computation.

Proofs with TPM contribution have a Fiat-Shamir hash c′ ←
H(“FS”,n,H(“TPM ”,mt,mh)). Proofs without TPM con-

tribution will use c′ ← H(“FS”,n,H(“NoTPM ”,mt,mh)).
We denote TPM contributed proofs by SPK∗, and proofs

without TPM contribution SPK.

5. PROVABLY SECURE DAA SCHEMES

We now show how to use the proposed TPM interfaces to

build provably secure direct anonymous attestation protocols.

We start by describing the desired functional and security

properties (Sec. 5.1) and then present two DAA protocols,

based on the q-SDH assumption and the LRSW assumption

(Sec. 5.2), and argue their security (Sec. 5.3). We refer to

Appendix A for the formal definition of DAA in the form of

an ideal functionality and to the full version of this paper for

the detailed security proof.

5.1 Definition & Security Model

In a DAA scheme, we have four main entities: a number

of TPMs, a number of hosts, an issuer, and a number of

verifiers. The scheme comprises a JOIN and SIGN protocol,

and VERIFY and LINK algorithms.

JOIN: A TPM and a host together form a platform which

performs the join protocol with the issuer who decides if the

platform is allowed to become a member. The membership

credential of the platform then also certifies a number of

attributes attrs = (a1, . . . , aL) given by the issuer. These
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attributes might include more information about the platform,

such as the vendor or model, or other information, such as an

expiration date of the credential.

SIGN: Once being a member, the TPM and host together can

sign messages m with respect to basename bsn resulting in

a signature σ. If a platform signs with a fresh basename,

the signature must be anonymous and unlinkable to previous

signatures. When signing, the platform can also selectively

disclose attributes from its membership credential. For in-

stance, reveal that the signature was created by a TPM of

a certain manufacturer, or the expiration date of the creden-

tial. We describe the disclosure using a tuple (D, I) where

D ⊆ {1, . . . , L} indicates which attributes are disclosed, and

I = (a1, . . . , aL) specifies the desired attribute values.

VERIFY: Any verifier can check that a signature σ on message

m stems from a legitimate platform via a deterministic verify

algorithm. More precisely, verification gets as input a tuple

(m, bsn, σ, (D, I),RL,SRL) and outputs 1 if σ is a valid

signatures on message m w.r.t. basename bsn and stems from

a platform that has a membership credential satisfying the

predicate defined via (D, I), and 0 otherwise.

The inputs RL and SRL are revocation lists and we support

two types of revocation, private-key-based revocation and

signature-based revocation. The first is based on the exposure

of a corrupt platform’s secret key (or private key) and allows

one to recognize and thus reject all signatures generated with

this key. That is, the revocation list RL contains the secret

keys of the revoked TPMs. The second type, signature-based

revocation, has been proposed by Brickell and Li [28], [29]

in their Enhanced Privacy ID (EPID) protocol. It allows one

to revoke a platform based on a previous signature from

that platform, i.e., here the revocation list SRL contains the

signatures of the revoked TPMs.

LINK: By default, signatures created by an DAA scheme do

not leak any information about the identity of the signer. Only

when the platform signs repeatedly with the same basename

bsn , it will be clear that the resulting signatures were created

by the same platform, which can be publicly tested via the

deterministic LINK algorithm. More precisely, on input two

signatures (σ,m, (D, I),SRL), (σ′,m′, (D′, I ′),SRL′), and a

basename bsn , the algorithm outputs 1 if both signatures are

valid and were created by the same platform, and 0 otherwise.

We now describe the desired security properties of DAA

schemes in an informal manner. The detailed definition in

form of an ideal functionality in the Universal Composability

framework [30] is given in Appendix A, and closely follows

the recent formal models of Camenisch et al. [9], [24].

Unforgeability. The adversary can only sign in the name of

corrupt TPMs. More precisely, if n corrupt and unrevoked

TPMs joined with attributes fulfilling attribute disclosure

(D, I), the adversary can create at most n unlinkable sig-

natures for the same basename bsn and attribute disclosure

(D, I). In particular, this means that when the issuer and all

unrevoked TPMs are honest, no adversary can create a valid

signature on a message m w.r.t. basename bsn and attribute

disclosure (D, I) when no platform that joined with those

attributes signed m w.r.t. bsn and (D, I).

Non-Frameability. No adversary can create a signature on a

message m w.r.t. basename bsn that links to a signature created

by an honest platform, when this honest platform never signed

m w.r.t. bsn . We require this property to hold even when the

issuer is corrupt.

(Strong) Privacy. An adversary that is given two signatures

σ1 and σ2 w.r.t. two different basenames bsn1 �= bsn2,

respectively, cannot distinguish whether both signatures were

created by one honest platform, or whether two different

honest platforms created the signatures. This property must

also hold when the issuer is corrupt.

So far, privacy was conditioned on the honesty of the entire

platform, i.e., both the TPM and the host have to be honest.

In fact, the previous DAA schemes crucially rely on the

honesty of the TPM, and the newly revised TPM interfaces

even introduced a subliminal channel that allows a malicious

TPM to always encode some identifying information into his

signature contribution (see Sec. 3.1). The latter forestalls any

privacy in the presence of a corrupt TPM, even if the DAA

protocol built on top of the TPM interfaces would allow for

better privacy.

In this work we have proposed TPM interfaces that

avoid such subliminal channels and we consequently aim

for stronger privacy guarantees for DAA as well. That is,

the aforementioned indistinguishability of two signatures σ1

and σ2 must hold whenever the host is honest, regardless

of the corruption state of the TPM. Our notion of strong
privacy lies between the classical privacy notion (relying also

on the honesty of the TPM) and optimal privacy that was

recently introduced by Camenisch et al. [24]. We discuss the

differences between these notions, and to [24] in particular, in

Appendix A.

5.2 DAA Protocols

We start by presenting the high-level idea of both DAA

protocols using our revised TPM 2.0 interfaces, and then

describe the concrete instantiations based on the q-SDH and

the LRSW assumption.

Both protocols roughly follow the common structure of

previous DAA protocols: the platform, consisting of a TPM

and a host, generates a secret key gsk that gets blindly certified

by a trusted issuer in a membership credential cred . When

attributes attrs = a1, . . . aL are used, the credential also

certifies attrs . After that join procedure, the platform can use

the key gsk to sign attestations and basenames and prove that

it has a valid credential on the underlying key, which certifies

the trusted origin of the attestation. The overview of the DAA

protocol is depicted in Fig. 4.
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JOIN : TPM � HOST(ipk) � ISSUER(isk , attrs = (a1, . . . , aL))

�JOIN

n ←$ {0, 1}τ� n
Request TPM key�TPM.Createtsk ←$

Zp, tpk ← ḡtsk

Store tsk �tpk
Orchestrate generation of proof πtpk by

the TPM using the Prove protocol

�TPM.Commit/TPM.Sign,n

tpk ′ ← g̃tsk (optional bridging to a different generator g̃)
πtpk ← SPK∗{tsk : tpk = ḡtsk ∧ tpk ′ = g̃tsk}(“join”,n)

�tpk ′, πtpk Choose host key and generate gpk :

hsk ←$
Zp, gpk ← tpk ′ · g̃hsk

πgpk ← SPK{hsk : gpk/tpk ′ = g̃hsk}(“join”,n)
�tpk , tpk ′, gpk , πtpk , πgpk

Verify πtpk , πgpk , and sign gpk together

with attributes attrs = (a1, . . . , aL):
cred ← PBSign(isk , (gpk , attrs))

�cred , attrs
Verify cred w.r.t. gpk , attrs, ipk
Store (hsk , cred , attrs)

SIGN : TPM(tsk) � HOST((hsk , cred , attrs),

(ipk ,m, bsn, (D, I),RL,SRL))

• The host verifies that its attributes attrs fulfill the predi-

cate (D, I), i.e., it parses I as (a′1, . . . , a
′
L) and attrs as

(a1, . . . , aL) and checks that ai = a′i for every i ∈ D.

• The host and TPM jointly generate the pseudonym

nym ← HG(1||bsn)gsk and proof πcred of a membership

credential on gsk = tsk + hsk and attrs:

πcred ← NIZK∗{(gsk , cred) : nym = HG1
(1||bsn)gsk ∧

1 = PBVf(ipk , cred ′, gsk , attrs)}(“sign”, (D, I),m,SRL)

• For each tuple (bsni, nymi) ∈ SRL, the host and TPM

jointly create non-revocation proofs πSRL,i:

πSRL,i ← SPK∗{gsk : HG1(1||bsni)
gsk �= nymi ∧

nym = HG1
(1||bsn)gsk}(“sign”).

• The host outputs σ ← (nym, πcred , {πSRL,i}).

VERIFY(ipk , σ,m, bsn, (D, I),RL,SRL) :

• Parse σ = (nym, πcred , {πSRL,i}).
• Verify πcred , {πSRL,i} w.r.t. ipk ,m, bsn, (D, I),SRL.

• For every gsk i ∈ RL, check that HG1
(1||bsn)gski �= nym.

• Output 1 if all proofs are correct, and 0 otherwise.

LINK(ipk , bsn, (σ,m, (D, I),SRL), (σ′,m′, (D′, I ′),SRL′)) :
• Get f ← VERIFY(ipk , σ,m, bsn, (D, I),RL,SRL),

and f ′ ← VERIFY(ipk , σ′,m′, bsn, (D′, I ′),RL′,SRL′),
with RL = RL′ = ∅.

• Continue if f = f ′ = 1, else abort with output ⊥.

• Parse σ = (nym, πcred , {πSRL,i}), σ′ = (nym′, π′cred , {π′SRL,i}).
• If nym = nym′, output 1, and 0 otherwise.

Fig. 4. High-level overview of the DAA protocols.

Split-Keys for Strong Privacy. In contrast to existing

schemes, we do not set gsk = tsk because solely relying

on the secret key tsk of the TPM would not allow for the

strong privacy property we are aiming for. Instead, we partially

follow the approach of Camenisch et al. [24] and let the host

contribute to the platform’s secret key. That is, we split the

key as gsk = tsk + hsk , where hsk is the contribution of

the host to the platform secret key. As in previous work, the

platform secret key gsk gets blindly signed by the issuer using

a partially blind signature PBSign that certifies the secret key

by signing the platform’s public key gpk = g̃gsk .

Note that to allow for algorithmic agility, we derive the plat-

form’s key from a generator g̃, which can either be a cleared

generator created with TPM.Commit as g̃ ← HG1
(0||str) for

some string str, or g̃ ← ḡ, i.e. being the standard generator

fixed in all TPMs. When using a cleared generator, the input to

the hash function will be prepended with a 0-bit to ensure that

the same generator will not be used in a signature (where we

will prepend a 1-bit when creating generators), as this would

break the unlinkability between joining and signing otherwise.

We now have to ensure that gsk is derived from a key tsk
held inside a real TPM. To this end, the TPM first has to prove

in πtpk that its contribution tpk ′ = g̃tsk is based on the same

secret key tsk as the actual TPM public key tpk = ḡtsk . The

host then forwards tpk , tpk ′ and πtpk along with a proof πgpk

that it correctly derived gpk from the TPM’s contribution tpk ′

to the issuer.

Each TPM is equipped by the manufacturer with an endorse-

ment key. This key allows the issuer to verify the authenticity

of the TPM provided values in the JOIN protocol. As this
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is the standard procedure in all DAA protocols, we omit the

details how this authentication is done and implicitly assume

that the value tpk in the JOIN protocol is authenticated with

the endorsement key.

After having obtained a membership credential on the joint

secret key gsk (and possibly a set of attributes attrs), the

attestation signatures are then computed jointly by the host

and TPM.

Signature-Based Revocation. We also want to support

signature-based revocation introduced in the EPID protocol

by Brickell and Li [28], [29] as it allows one to revoke

TPMs without assuming that a secret key held inside the TPM

becomes publicly available upon corruption, which improves

the standard private-key-based revocation in DAA.

Roughly, for signature-based revocation, a platform would

extend its signatures by additional values (B, nym) where B
is a random generator for G1 and nym ← Bgsk . The sig-

nature revocation list SRL contains tuples {(Bi, nymi)} from

signatures of the platforms that are revoked. Thus, a platform

must also show that it is not among that list by proving

πSRL,i ← SPK∗{(gsk) : nym = Bgsk ∧ nymi �= Bgsk
i }.

Any TPM interface that supports such proofs would raise Bi

to the secret key and inevitably provide a static DH oracle.

Camenisch et al. [10] recently addressed this issue and

proposed a q-SDH-based DAA scheme with signature-based

revocation that avoids this issue. Instead of giving the gener-

ator as direct input, it uses Bi ← HG1
(1||bsni) computed by

the TPM, i.e., the TPM gets 1||bsni as input and the SRL has

the form {(1||bsni, nymi)}. For every (1||bsni, nymi) ∈ SRL,

the platform shows that HG1(1||bsni)
gsk �= nymi by taking a

random γ, setting Ci = (HG1
(1||bsni)/nymi)

γ , and proving

π′SRL,i ← SPK∗{(γ · gsk , γ) :
1 = HG1(1||bsn)γ·gsk (

1

nym
)γ ∧

Ci = HG1
(1||bsni)

γ·gsk (
1

nymi

)γ}(“sign”).

While the proposed scheme successfully removes the static

DH oracle and is provably secure in the UC model, their proto-

col makes different calls to the TPM to prove non-revocation,

and requires the TPM to maintain state (bsn, nym) that it used

in the signing procedure to later create the non-revocation

proofs. Extra TPM commands would be required to implement

this exact behavior in a TPM. In this work, we use the

same core idea but slightly change the communication, such

that we can leverage the flexible TPM.Commit and TPM.Sign
commands and avoid introducing new TPM commands. In

addition, we give the TPM all the input it requires to create the

non-revocation proof, such that it does not need to keep any

state between signing and creating the non-revocation proof.

More precisely, we can construct the non-revocation proof

based on our revised TPM interface using the Prove protocol.

The host obtains Ci and constructs πSRL,i ← (Ci, π
′
SRL,i) by

running

(Ci, π
′
SRL,i)← Prove(hsk , 1G1

, 1||bsn, 1,⊥, γ, 1||bsni,⊥,
{(γ, 1/nym, 1/nymi,⊥)}, “sign”,⊥),

To verify πSRL,i in the VERIFY algorithm, one parses

πSRL,i = (Ci, π
′
SRL,i), checks that Ci �= 1G1

, and verifies π′SRL,i
w.r.t. (Ci, 1||bsni, nymi, nym), where (1||bsni, nymi) ∈ SRL.

Note that since signature-based revocation is independent

of the concrete PBSign scheme used for the membership

credential, the above proof instantiation and the revocation

checks in VERIFY are the same for the q-SDH-based and

LRSW-based schemes.

Concrete Instantiations. The description of the JOIN and

SIGN protocols and the VERIFY and LINK algorithms are

given in Fig. 4, using an abstract NIZK proof statement for

πcred , and a generic partially-blind signature scheme PBSign
for obtaining the membership credential. The concrete in-

stantiation for this proof depends on the instantiation used

for the PBSign scheme. In the following two sections we

describe how PBSign and πcred can be instantiated with a q-

SDH-based scheme (BBS+ signature [18]) and a LRSW-based

scheme (CL-signature [17]) respectively. The latter uses a

novel way to blindly issue CL signatures, which is significantly

more efficient than previous approaches and is of independent

interest.

For both concrete instantiations we assume the availability

of system parameters consisting of a security parameter τ , a

bilinear group G1,G2,GT of prime order p with generators g1
of G1 and g2 of G2 and bilinear map e, generated w.r.t τ , and

with ḡ denoting the fixed generator used by the TPMs. Note

that we will not repeat the parts of the DAA protocol that are

independent of the PBSign instantiation, such as the signature-

based revocation, the revocation checks within VERIFY, and

the LINK protocol.

5.2.1 q-SDH-based DAA Instantiation

Our q-SDH-based scheme is most similar to the scheme

by Camenisch et al. [10], which in turn propose a provably

secure version of the scheme by Brickell and Li [3], which

is standardized as mechanism 3 in ISO/IEC 20008-2 [31]. In

addition, their and our scheme support membership creden-

tials with selective attribute disclosure, similar to DAA with

Attributes as proposed by Chen and Urian [32].

We now show how to instantiate PBSign and the affected

proofs with q-SDH-based BBS+ signatures yielding a prov-

ably secure q-SDH-based DAA scheme ΠqSDH−DAA using the

revised TPM 2.0 interfaces proposed in Sec. 4.

SETUP: The issuer generates its key pair (ipk , isk) as follows:

• Choose (h0, . . . , hL) ←$
G

L+1
1 , x ←$

Zp, set X ← gx2 and

X ′ ← gx1 , and prove πipk ←$ SPK{x : X = gx2 ∧ X ′ =
gx1}(“setup”).

• Set ipk ← (h0, . . . , hL, X,X ′, πipk ), and isk ← x.

Protocol participants, when retrieving ipk , will verify πipk .

JOIN: Here we show how the host obtains the proof πtpk

from the TPM and how the issuer computes the membership

credential using the BBS+ signature scheme. For this scheme,
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we set g̃ = ḡ, so tpk = tpk ′ and we can simplify πtpk to

πtpk ← SPK∗{tsk : tpk = ḡtsk}(“join”,n).
• The host obtains πtpk by calling

(∗, πtpk )← Prove(0, tpk ,⊥, 1,⊥, 1,⊥,⊥, ∅,⊥, (“join”,n)).
• The issuer computes the membership credential cred ←
PBSign(isk , gpk , attrs) on the joint public key gpk and

a set of attributes attrs = (a1, . . . , aL) with isk = x as

follows: It chooses a random (e, s) ∈ Z
2
p, and derives

A← (g1 · hs
0 · gpk ·

L∏
i=1

hai
i )

1
e+x .

That is, the issuer creates a standard BBS+ signature on the

message (gsk , a1, . . . , aL), where gsk = tsk+hsk is blindly

signed in form of gpk = ḡgsk . It sets cred ← (A, e, s).
• The host upon receiving (cred , attrs) from the issuer,

computes b ← g1 · hs
0 · gpk ·

∏L
i=1 h

ai
i , and checks that

e(A,Xge2) = e(b, g2). Finally, it sets cred ′ ← ((A, e, s), b).

SIGN: A platform holding a membership credential cred ′ =
((A, e, s), b) on platform key gsk and attributes attrs can sign

message m w.r.t. basename bsn , attribute disclosure (D, I),
and signature-based revocation list SRL. As shown in Fig. 4,

each signature σ contains a proof of a membership credential

πcred w.r.t. the pseudonym nym = HG1(1||bsn)gsk , which are

computed as follows:

• The host first randomizes the BBS+ credential ((A, e, s), b):
Choose r1 ←$

Z
∗
p, r2 ←$

Zp, r3 ← 1
r1

, set A′ ← Ar1 , Ā ←
A′−e · br1(= A′x), b′ ← br1 · h−r2

0 , and s′ ← s − r2 · r3.

The host and TPM then jointly compute the following proof

π′cred . We denote by D̄ = {1, . . . , L}\D the indices of

attributes that are not disclosed.

π′cred ← SPK∗{(gsk , {ai}i∈D̄, e, r2, r3, s
′) :

g−1
1

∏
i∈D

hi
−ai = b′−r3hs′

0 ḡ
gsk

∏
i∈D̄

hi
ai ∧

nym = HG1
(1||bsn)gsk ∧

Ā/b′ = A′−e · hr2
0 }((“sign”, (D, I),SRL),m)

This proof and pseudonym are computed by running

(nym, π′cred)← Prove(hsk , d,⊥, 1,⊥, 1, 1||bsn,
Ā/b′, S, (“sign”, (D, I),SRL),m),

with d ← g−1
1

∏
i∈D h−ai

i and the set

of all witnesses for the proof: S ←
{(−e, 1G1 , 1G1 , A

′), (r2, 1G1 , 1G1 , h0), (−r3, b′, 1G1 , 1G1),
(s′, h0, 1G1 , 1G1)} ∪ {(ai, hi, 1G1 , 1G1)}i∈D̄. The host then

sets πcred ← (Ā, A′, b′, π′cred).

VERIFY: To verify πcred = (Ā, A′, b′, π′cred) w.r.t.

(ipk , σ,m, bsn, (D, I),RL,SRL) and nym, parse ipk =
(h0, . . . , hL, X,X ′, πipk ), check that A′ �= 1G1

and

e(A′, X) = e(Ā, g2), and verify π′cred with respect to mes-

sage m, basename bsn , attribute disclosure (D, I), signature

revocation list SRL, randomized credential (Ā, A′, b′), and

pseudonym nym.

5.2.2 LRSW-based DAA Instantiation

We now demonstrate that an LRSW-based DAA scheme

can be built on top of the new TPM interface. Our scheme

is similar to the scheme by Chen, Page, and Smart [23],

standardized as mechanism 4 of ISO/IEC 20008-2 [31], but

includes the fixes to flaws pointed out by Bernhard et al. [33]

and Camenisch et al. [9].

Note, for the sake of efficiency we do not include attributes

in this scheme. Selective attribute disclosure can be supported

using the extension by Chen and Urian [32], but it comes with

a significant loss in efficiency. When attributes are required,

the q-SDH-based scheme should be used.

A New Approach to Issue CL-Signatures. The main differ-

ence to the schemes by Bernhard et al. [33] and Camenisch

et al. [9] is the way we prevent a static DH oracle when

the membership credentials are generated. In LRSW-based

schemes, cred is a CL-signature (a, b, c, d) on gsk , where for

blind signing the issuer chooses α←$
Z
∗
p and sets

a← ḡα, b← ay, c← ax · gpkα·xy, d← gpkα·y,

with (x, y) denoting the issuer’s signing key and gpk = ḡgsk

the platform public key. The DH oracle arises as the TPM

must later prove knowledge of d = bgsk , and b is a value

chosen by the issuer.

The schemes by Bernhard et al. [33] and Camenisch et

al. [9] avoid such an oracle by letting the issuer prove

π ←$ SPK{(α · y) : b = ḡα·y ∧ d = gpkα·y}. Thus, the issuer

proves that it correctly computed d = bgsk , which shows the

TPM that it can use b as a generator without forming a static

DH oracle (as the issuer already knows d). The TPM must

therefore verify π, store (b, d) along with its key, and only

use these values in the subsequent SPKs.

While allowing for a security proof under the standard DL

assumption, realizing this approach would require significant

changes to the TPM interface to verify and store the additional

key material. Further, the TPM 2.0 specification aimed to

provide a generic interface for a number of protocols, and

adding LRSW-DAA specific changes would thwart this effort.

Our goal is to keep the TPM protocol as generic and simple

as possible, and we propose a novel and more elegant solution

that avoids the DH oracle without requiring the TPM to verify

a zero-knowledge proof. For the sake of simplicity we assume

gsk = tsk for the exposition of our core idea, and only include

the split-key approach gsk = tsk + hsk in the full protocol

specification.

The issuer chooses a random nonce n and we derive b ←
HG1(0||n). The TPM receives n , derives b and sends d = bgsk

to the issuer. Note that d does not leak information about

gsk when we model HG1
as a random oracle. The issuer then

completes the credential by computing

a← b1/y, c← (a · d)x.
It is easy to see that the values (a, b, c, d) derived in that

way, form a standard CL signature on gsk as in the existing

schemes. Note that we now use HG1 in both the join protocol
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and to create pseudonyms while signing. We prefix the hash

computation with a bit to distinguish these cases, to prevent

losing privacy when signing with a basename bsn equal to

nonce n .

This new blind issuance protocol is provably secure under

the generalized LRSW assumption as introduced in Sec. 2,

which we prove as one step in our full security proof in the

full version of this paper. We need the generalized LRSW

assumption, as the issuer already commits to values a and b
before getting the d value and computing c based on d. One

can easily modify the issuance scheme to be secure under the

standard LRSW assumption though, one needs to prepend one

extra round between the TPM and the issuer before running

the issuance as described above. Therein, the issuer sends a

nonce n ′ to the TPM, and the TPM responds with a proof

π ← SPK∗{gsk : gpk = ḡgsk }(n ′). The issuer verifies π
and then continues with the issuance as described above. In

the security proof this allows to extract gsk from π and we

can obtain the full signature (a, b, c) on gsk from the LRSW

oracle. Note that this extra round can be implemented with

our revised TPM interface as well, but slightly reduces the

efficiency of the overall JOIN protocol.

We now describe how this new issuance protocol is used

in the LRSW-based instantiation of our DAA protocol. We

denote the DAA protocol given in Fig. 4 instantiated with the

LRSW-based membership credential and the proofs described

below as ΠLRSW−DAA.

SETUP: The issuer generates its key pair (ipk , isk) as follows:

• Choose x, y ←$
Z
∗
p, set X ← gx2 , Y ← gy2 , and compute

πipk ←$ SPK{(x, y) : X = gx2 ∧ Y = gy2}(“setup”).
• Set ipk ← (X,Y, πipk ), and isk ← (x, y).

When first getting the issuer public key, protocol participants

will check Y �= 1G2
and verify πipk .

JOIN: Opposed to the q-SDH-based protocol, we make use of

the flexibility for the generator of the platform’s key. That is,

instead of using ḡ we will use g̃ = HG1(0||n) which will also

serve as the b-value in the improved issuance of CL credentials

as described above.

• First, upon receiving n from the issuer, the host and TPM

create gpk , tpk ′, πtpk , πgpk based on g̃ = b = HG1
(0||n).

Recall that the TPM authenticates only the value tpk = ḡtsk ,

so the TPM must prove that tpk ′ = g̃tsk uses the same tsk
as in its authenticated public key tpk :

πtpk ← SPK∗{tsk : tpk = ḡtsk ∧ tpk ′ = g̃tsk}(“join”,n)
The TPM’s key contribution tpk ′ and the proof πtpk are

created via the Prove protocol for the following input:

(tpk ′, πtpk )← Prove(0, tpk ,⊥, 1,⊥, 1, (0||n),
⊥, ∅,⊥, (“join”,n))

The host then picks a key hsk , computes gpk = tpk ′ ·
g̃hsk and πgpk (as described in Fig. 4) and finally sends

tpk , tpk ′, πtpk , πgpk , gpk to the issuer.

• Then, the issuer blindly completes the CL signature on

gsk = tsk + hsk as described above: the issuer computes

a ← g̃1/y , c ← (a · gpk)x, and sets cred ← (a, c). Note

that gpk = g̃gsk = bgsk , so we can use this as the d-value

of the credential.

• The host upon receiving cred = (a, c) from the issuer

verifies that a �= 1G1
, e(a, Y ) = e(g̃, g2), and e(c, g2) =

e(a ·gpk , X). Finally, the host sets cred ′ = (a, g̃, c, gpk ,n).

SIGN: We now describe how to instantiate the membership

proof πcred for such CL signatures with our TPM methods.

• The host retrieves the join record (hsk , cred ′) and random-

izes the CL credential cred ′ = (a, g̃, c, gpk ,n) by r ←$
Z
∗
p

and setting a′ ← ar, g̃′ ← g̃r, c′ ← cr, gpk ′ ← gpkr.

• The host and TPM then jointly compute nym ←
HG1

(1||bsn)gsk for gsk = tsk + hsk and prove knowledge

of a CL credential on gsk by creating:

π′cred ← SPK∗{(gsk) : gpk ′ = g̃′gsk ∧
nym = HG1(1||bsn)gsk}((“sign”,SRL),m)

This proof and pseudonym nym are computed by

(nym, π′cred)← Prove(hsk , gpk ′, (0||n), r,⊥, 1, (1||bsn),
⊥, ∅, (“sign”,SRL),m).

Finally, the host sets πcred ← (a′, g̃′, c′, gpk ′, π′cred).

VERIFY: To verify πcred = (a′, g̃′, c′, gpk ′, π′cred) w.r.t.

(ipk , σ,m, bsn, (D, I),RL,SRL) and nym, parse ipk =
(X,Y, πipk ), check that a′ �= 1G1

, e(a′, Y ) = e(g̃′, g2), and

e(c′, g2) = e(a′ · gpk ′, X), and verify π′cred with respect to

(m, bsn,SRL, g̃′, gpk ′, nym).

5.3 Security Properties of our Schemes

In this section we informally discuss the security of our

DAA schemes. For the formal security proof we refer to the

full version of this paper.

Theorem 1 (Informal). Protocol ΠLRSW−DAA is a secure
anonymous attestation scheme under the Generalized LRSW
and Decisional Diffie-Hellman assumptions in the random
oracle model.

Theorem 2 (Informal). Protocol ΠqSDH−DAA is a secure
anonymous attestation scheme under the q-SDH and De-
cisional Diffie-Hellman assumptions in the random oracle
model.

The proofs of these two theorems are quite similar. In the

following we give a proof sketch that treats both schemes at

the same time, pointing out the differences when they arise.

Proof (Sketch). For each of the properties stated in Sec-

tion 5.1, we argue why our schemes satisfy them. The actual

security proof is structured quite differently as there we

prove that an environment cannot distinguish between the

interactions with the real world parties and with the ideal

specification with a simulator. Nevertheless, the arguments

presented here also appear in the full formal proof.
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Unforgeability. First, we argue that the adversary cannot use

a credential from a platform with an honest TPM. In both our

schemes, signatures are signature proofs of knowledge of the

platform secret key tsk + hsk , as defined in (1). This means

that from Lemma 2 we can directly conclude that the adversary

cannot use the credential of a platform with an honest TPM.

Second, the adversary cannot use a revoked credential on

the key gsk by a corrupt platform. For private-key based

revocation, the platform proves that nym = HG1(1||bsn)gsk
is correctly constructed, and the revocation check will reject

signatures with that pseudonym. If signature-based revocation

is used, a pair (bsni, nymi = HG1
(1||bsn)gsk ) is included in

SRL. In proof π′SRL,i, the adversary must prove that his gsk
is different than the one used in nymi, which contradicts the

soundness of the zero knowledge proof.

It remains to show that the adversary cannot create signa-

tures using a forged credential. For ΠqSDH−DAA, this clearly

breaks the existential unforgeability of the BBS+ signature

scheme, which is proven under the q-SDH assumption. For

ΠLRSW−DAA, we have to show that credentials are unforgeable

under the generalized LRSW assumption. For this, we simulate

the issuer with a generalized LRSW instance. When the join

protocol starts, the issuer asks Oa,b
X for (a, b). It chooses a

fresh nonce n and programs the random oracle HG1(0||n) = b.
When it receives proofs πtpk , πgpk it extracts tsk and hsk and

sets gsk = tsk+hsk . It then calls Oc
X,Y on gsk to complete the

credential. Now, when the adversary creates a signature with

a forged credential, we can extract a credential (a∗, b∗, c∗) on

the fresh gsk∗ breaking the generalized LRSW assumption.

Non-Frameability. An honest platform cannot be framed,

under the Discrete Logarithm (DL) assumption (which is

implied by the assumptions we make). The host sets gpk and g̃
based on given the DL instance, and must simulate πgpk as it

does not know hsk such that gpk = tpk · g̃hsk . When signing,

the host also simulates the zero-knowledge proofs. Now, if

an adversary creates a signature that links to a signature of

the honest platform, it must prove knowledge of the discrete

logarithm of gsk . We rewind to extract and break the DL

assumption.

Strong Privacy. Our DAA schemes fulfill strong privacy,

meaning that privacy is guaranteed as long as the host is

honest, i.e., even when the TPM involved in the generation of

an attestation is malicious. By Lemma 1, the proofs created

together with a (malicious) TPM are zero knowledge. This

means we can simulate these proofs without the adversary

noticing the difference. Further, note that a platform key gsk =
tsk + hsk is uniformly distributed over Zp as the host picks

hsk uniformly at random from Zp. To prove that signatures

are unlinkable, we let honest hosts pick a fresh key gsk every

time they sign with a new basename. This is indistinguishable

using a hybrid argument, where in the i-th hop, we use a fresh

key for bsni. Every hop is indistinguishable from the previous

one under the Decisional Diffie-Hellman (DDH) assumption.

In a nutshell, the latter is proved as follows. Upon receiving

a DDH instance (α, β, γ), program the random oracle so that

HG1(1||bsni) ← β. The host sets α as the gpk value and

simulates proof πgpk . When signing, the host simulates the

proof of knowledge and sets nym ← γ. If the DDH instance

is a DDH tuple, the same key was used to sign, and if it is

not a DDH tuple, a fresh key was used.

Signatures are now done using a fresh key for each base-

name and the proofs are simulated, therefore no adversary can

possibly break the anonymity of signatures.

6. DAA WITH FORWARD ANONYMITY

An important reason to remove the DH oracle in the TPM

interfaces is that such an oracle prevents forward anonymity.

As Xi et al. [8] point out, a host that becomes corrupted can

test whether signatures were generated by the embedded TPM

using the DH oracle.

Modeling the property of forward anonymity requires one

to consider adaptive corruptions, i.e., a signature made by

a host should remain anonymous even when at some later

point the host becomes corrupted. A property-based notion

for this was formally introduced by Xi et al. [8]. However,

extending our ideal specification to also provide this property

is nontrivial. First, to enable forward anonymity, the DAA

scheme must allow one to create signatures w.r.t. no basename,

i.e., bsn = ⊥ and forward anonymity only holds for such

signatures. Otherwise, a host that becomes corrupt could

trivially link previous signatures generated for some basename

bsn �= ⊥, by simply requesting a new signature w.r.t. bsn
and test for relation via the link algorithm. This means we

would have to remove signature-based revocation from our

security model. Second, our formal security proof considers

static corruptions, whereas forward anonymity is inherently

about dynamic corruptions. Indeed, realizing a scheme secure

w.r.t. dynamic corruptions would be much less efficient than

the scheme we present in this paper.

Despite this, the TPM interfaces we define allow one

to build a DAA scheme with forward anonymity (however,

the other security properties hold only in presence of static

corruptions). That is, if we remove signature-based revocation

from our DAA protocols, they fulfill the notion of forward

security by Xi et al. For LRSW-based DAA, signing with

bsn = ⊥ means that nym is omitted from the signature and

proof πcred . For q-SDH-based DAA, if bsn = ⊥ then nym is

replaced by jgsk , where j is taken uniformly at random from

G1 by the TPM, as in the q-SDH-based scheme by Brickell

and Li [3].

Proving the resulting scheme to be forward anonymous

would work as follows. The forward anonymity game consid-

ers a corrupt issuer. This means A can instruct platforms to

join, and A runs the issuer side of the protocol. A can request

complete signatures from joined platforms. Next, A submits

the identities of two platforms and a message. The challenger

chooses one of the two platforms at random and returns a

signature on the given message with basename bsn = ⊥ on

behalf of the chosen platform. The game now models the fact

that the host becomes corrupted by giving A access to the
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TPM commands of the platforms, and A’s task is to find out

which of the two platforms created the signature.

For both schemes, we can prove forward anonymity un-

der the DDH assumption, using a similar proof strategy as

for strong privacy. First, the challenger answers all oracles

correctly. Next, we modify the game slightly. The challenge

signature is now computed under a fresh key, instead of the

key of one of the two platforms that A submitted. In this

modified game, no adversary can win with probability better

than 1
2 , as the bit that A has to guess is independent of A’s

view. This means A can only have non-negligible advantage

by distinguishing the two games. As argued in the strong

privacy proof in Sect. 5.3, the modification in the games is

unnoticeable under the DDH assumption. showing that our

protocols without signature-based revocation satisfy forward

anonymity under the DDH assumption.

7. OTHER USES OF OUR TPM INTERFACES

In many protocols, the user would like to store his keys

in secure hardware rather than on a normal computer. This

way, the keys are secure and some security is preserved as

long as the trusted hardware is not compromised, even when

the computer is compromised. This section shows that due

to the generic design of our TPM interface, it can be used

to secure the keys of other cryptographic protocols. As an

example, we consider U-Prove and e-cash with keys stored

in a TPM, such that an attacker cannot use a user’s U-Prove

credential or e-cash wallet without access to the TPM. We

discuss these constructions here only informally, i.e., without

providing a security proof, as a formal treatment would require

a new security model and a detailed proof, which is beyond

the scope of this paper. For ease of presentation, we place the

full key in the TPM, although we could split the key over the

TPM and host as in our DAA schemes.

7.1 Device Bound U-Prove

U-Prove [7] is an attribute-based credential system where

credential issuance and credential presentation are unlinkable.

In the issuance protocol, the user receives a credential with

public key h = (g0g
x1
1 . . . gxn

n gxd

d )α, where x1, . . . , xn are

the attribute values of the user, and xd is the device secret.

The device secret makes sure that a secure device must be

present to use the credential. To show the credential, the user

must prove knowledge of x1, . . . , xn, xd, and α such that

g0 = gx1
1 . . . gxn

n gxd

d ·h−1/α, with the help of the secure device.

Our proposed changes for TPM 2.0 allow the TPM

to be used as secure device for U-Prove. The value

xd will be the TPM secret key, and generator gd must

be the generator ḡ known to the TPM. Then, the

credential presentation proof SPK∗{(x1, . . . , xn, xd, α) :
g0 = gx1

1 . . . gxn
n gxd

d · h−1/α} can be constructed by

computing (nym, π) ← Prove(0, g0,⊥, 1,⊥, 1,⊥,⊥,
{(a1, g1,⊥,⊥), . . . , (an, gn,⊥,⊥), (1/α, h,⊥,⊥)},⊥,⊥).
By Lemma 3, such proofs can only be made with a

contribution from the TPM, so one’s credentials cannot be

stolen, unless the attacker can access the TPM.

7.2 Compact E-Cash
Compact E-Cash [11] allows users to withdraw coins from

a bank, and later anonymously spend the coins. The protocol

assumes that every user has a key pair (skU , pkU = gskU ) with

which it can authenticate towards the bank. To withdraw 2l

coins, the user first authenticates towards the bank by proving

knowledge of skU . The user picks wallet secrets s, l, where

the bank adds randomness to s, and the bank places signature

σ on committed values skU , s, and l, using a CL signature.

The result of the withdraw protocol is a wallet (skU , s, t, σ, J),
where J is an l-bit counter.

To spend a coin at merchant M , the user computes R ←
H(pkM , info), where the merchant provides info. Next, the

user computes a coin serial number S ← g
1

s+J+1 and value

T ← pkU · g R
t+J+1 which is used to detect double spending of

coins. Finally, it proves

SPK{(J, skU , s, t, σ) : 0 ≤ J < 2l ∧ S = g
1

s+J+1 ∧
T ← pkU · g R

t+J+1 ∧ Ver(pkB , (skU , s, t), σ) = 1}
We can instantiate Compact E-Cash such that users can

securely store their secret key skU inside a TPM, using a

trick similar as in our LRSW-based DAA scheme. To create

its keys, the bank picks secret key (x, y, z1, z2, z3)←$
Z
5
p and

sets public key X ← gx2 , Y ← gy2 , Z1 ← gz12 , Z2 ← gz22 , and

Z3 ← gz32 . The withdrawal of coins start by the bank picking a

fresh nonce n , and sending n , b← H(n), a← b1/y , Ai ← azi

and Bi ← bzi for i = 1, 2, 3 to the user. The user authenticates

by proving pkU = gskU
1 ∧ d = bskU , as in our LRSW-based

DAA scheme. In addition, it picks s′, t, and r, and commits to

them using generators B1, B2, and B3: C ← Bs′
1 Bt

2B
r
3 . The

user sends C with a proof of knowledge of (s′, t, r) to the

bank. The bank now adds randomness to s′′ to s′ by setting

C ′ ← C ·Bs′′
1 and signs skU , s = s′+ s′′, t, and r, by setting

c← (a · d ·C ′y)x = ax+xy(m+z1s+z2t+z3r). The user now has

signature σ = (a,A1, A2, A3, b, B1, B2, B3, c, d).
To spend a coin, the user must compute R, S, and T ,

and prove that everything is correctly computed, as described

above. The TPM holding skU is only involved in proving that

σ is a valid CL signature on (skU , s, t, r). It randomizes the

signature by taking ρ ← Z
∗
p and setting a′ ← aρ, A′i ←

Aρ
i , b

′ ← bρ, B′i ← Bρ
i , c

′ ← cρ. To prove this randomized

signature signs (skU , s, t, r), the user creates the following

proof:

SPK∗{(skU , s, t, r) : e(c′, g2)/e(a′, X) =

e(b′, X)skU e(B′1, X)se(B′2, X)te(B′3, X)r}.
This proof can be created with the TPM using

(∗, π) ← Prove(0, e(c′, g2)/e(a′, X),n, ρ,X, 1,⊥,⊥,
{(s, e(B′1, X),⊥,⊥), (t, e(B′2, X),⊥,⊥)},⊥,⊥). Now, by

Lemma 3, a wallet can only be used if the attacker has access

to the TPM holding skU .

8. CONCLUSION

The TPM is a widely deployed security chip that can be

embedded in platforms such that the platform can, among
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other things, anonymously attest to a remote verifier that

it is in a secure state. Unfortunately, the current TPM 2.0

specification for DAA contains several flaws: it contains a

static DH oracle towards the host and attestations built on

top of this interface cannot be proven to be unforgeable. Fixes

proposed in the literature are either impossible to implement

within the constraints of the TPM, limit the functionality of

the TPM interface, or open a subliminal channel that allows a

malicious TPM to embed information in attestations, harming

the privacy of the host.

We presented a revised TPM 2.0 interface and a Prove
protocol for the host that allows the platform to create provably

secure signature proofs of knowledge. The interface does not

contain a DH oracle, and a corrupt TPM cannot break the

zero-knowledge property of the resulting proofs.

Using the Prove protocol, we constructed two provably

secure DAA schemes, one based on the LRSW assumption

and one on the q-SDH assumption, including DAA extensions

featuring signature-based revocation and attributes. Further-

more, we have shown that our TPM interface supports DAA

schemes with forward anonymity and can be used to protect

keys for other cryptographic schemes, such as e-cash and U-

Prove. These latter applications were only shown informally,

it remains future work to formally treat these applications.

The Trusted Computing Group has already adopted some of

our proposed changes and is currently reviewing the remaining

ones. It is our aim to bring these improvements to all the

existing attestation standards, such as EPID, ISO/IEC 20008-

2, and FIDO attestation, such that all implementations are

provably secure and can make use of TPMs.
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APPENDIX A

FORMAL SECURITY MODEL

This section introduces our formal security model of DAA,

which is based on the definition by Camenisch et al. [9], [10],

[24]. At the end of this section we also compare the captured

privacy guarantees in the presence of subverted TPM with

the existing privacy notions, and to optimal privacy [24] in

particular.

A1 Universal Composability

Our security definition has the form of an ideal functionality

Fpdaa+ in the Universal Composability (UC) framework [30].

In UC, an environment E gives inputs to the protocol parties

and receives their outputs. In the real world, honest parties ex-

ecute the protocol, over a network controlled by an adversary

A, who can also communicate freely with the environment

E . In the ideal world, honest parties forward their inputs to

the ideal functionality F. The ideal functionality internally

performs the defined task and generates outputs for the honest

parties. As F performs the task at hand in an ideal fashion,

i.e., F is secure by construction.

Informally, a protocol Π is said to securely realize an ideal

functionality F if the real world is as secure as the ideal

world. To prove that statement one has to show that for every

adversary A attacking the real world, there exists an ideal

world attacker or simulator S that performs an equivalent

attack on the ideal world. More precisely, Π securely realizes

F if for every adversary A, there exists a simulator S such

that no environment E can distinguish the real world (with Π
and A) from the ideal world (with F and S).

A2 Session Identifiers and Input/Output

In the UC model, different instances of the protocol are

distinguished with session identifiers. Here we use session

identifiers of the form sid = (I, sid′) for some issuer I
and a unique string sid ′. To allow several sub-sessions for

the join and sign related interfaces we use unique sub-session

identifiers jsid and ssid .

Every party can give different inputs to the protocol. We

distinguish these by adding different labels to these inputs,

e.g., the host can give an input labeled with JOIN to request

to join, and an input labeled with SIGN to start signing a

message. Outputs are labeled in a similar way.

A3 Ideal Functionality Fpdaa+

This section formally introduces our ideal DAA function-

ality Fpdaa+, which defines DAA with attributes, signature-

based revocation, and strong privacy. It is based on Fpdaa

and F l
daa+ by Camenisch et al. [10], [24]. We now give an

informal overview of the interfaces of Fpdaa+, and present the

full definition in Fig. 5.

Setup. The SETUP interface on input sid = (I, sid′) initiates

a new session for the issuer I and expects the adversary

to provide algorithms (ukgen, sig, ver, link, identify) that will

be used inside the functionality. ukgen creates a new key

gsk and a tracing trapdoor τ that allows Fpdaa+ to trace

signatures generated with gsk . sig, ver, and link are used

by Fpdaa+ to create, verify, and link signatures, respectively.

Finally, identify allows to verify whether a signature belongs

to a certain tracing trapdoor. This allows Fpdaa+ to perform

multiple consistency checks and enforce the desired non-

frameability and unforgeability properties.

Note that the ver and link algorithms assist the functionality

only for signatures that are not generated by Fpdaa+ itself. For

signatures generated by the functionality, Fpdaa+ will enforce

correct verification and linkage using its internal records.

While ukgen and sig are probabilistic algorithms, the other

ones are required to be deterministic. The link algorithm also

has to be symmetric, i.e., for all inputs it must hold that

link(σ,m, σ′,m′, bsn)↔ link(σ′,m′, σ,m, bsn).

Join. A host Hj can request to join with a TPMMi using the

JOIN interface. The issuer is asked to approve the join request,

and choose the platform’s attributes. Fpdaa+ is parametrized

by L and {Ai}0<i≤L, that offer support for attributes. L is

the amount of attributes every credential contains and Ai

the set from which the i-th attribute is taken. When the

issuer approves with attributes attrs ∈ A1 × . . . × AL,

the functionality stores an internal membership record for

Mi,Hj , attrs in Members indicating that from now on that

platform is allowed to create attestations.

If the host is corrupt, the adversary must provide Fpdaa+

with a tracing trapdoor τ . This value is stored along in

the membership record and allows the functionality to check

via the identify function whether signatures were created

by this platform. Fpdaa+ uses these checks to ensure non-

frameability and unforgeability whenever it creates or veri-

fies signatures. To ensure that the adversary cannot provide

bad trapdoors that would break the completeness or non-

frameability properties, Fpdaa+ checks the legitimacy of τ
via the “macro” function CheckTtdCorrupt. This function

checks that for all previously generated or verified signatures

for which Fpdaa+ has already seen another matching tracing

trapdoor τ ′ �= τ , the new trapdoor τ is not identified as a

matching key as well. CheckTtdCorrupt is defined as follows:

CheckTtdCorrupt(τ) = � ∃(σ,m, bsn) :

(
(
〈σ,m, bsn, ∗, ∗〉 ∈ Signed ∨

〈σ,m, bsn, ∗, 1〉 ∈ VerResults
)
∧

∃τ ′ :
(
τ �= τ ′ ∧ (〈∗, ∗, τ ′〉 ∈ Members ∨
〈∗, ∗, ∗, ∗, τ ′〉 ∈ DomainKeys) ∧

identify(σ,m, bsn, τ) = identify(σ,m, bsn, τ ′) = 1
))

Sign. After joining, a host Hj can use the SIGN interface to

request a signature on a message m with respect to basename

bsn while proving a certain predicate p holds for his attributes

and proving that he is not revoked by signature revocation list

SRL. The signature will only be created when the TPM Mi
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explicitly agrees to signing m, a join record forMi,Hj , attrs
in Members exists such that attrs satisfy p (if the issuer is

honest), and the platform is not revoked by SRL.

When a platform wants to sign message m w.r.t. a fresh

basename bsn , Fpdaa+ generates a new key gsk (and tracing

trapdoor τ ) via ukgen and then signs m with that key. The

functionality also stores the fresh key (gsk , τ) together with

bsn in DomainKeys, and reuses the same key when the

platform wishes to sign repeatedly under the same base-

name. Using fresh keys for every signature naturally enforces

the desired privacy guarantees: the signature algorithm does

not receive any identifying information as input, and thus

the created signatures are guaranteed to be anonymous (or

pseudonymous in case bsn is reused).

To guarantee non-frameability and completeness,

our functionality further checks that every freshly

generated key, tracing trapdoor and signature does not

falsely match with any existing signature or key. More

precisely, Fpdaa+ first uses the CheckTtdHonest macro

to verify whether the new key does not match to any

existing signature. CheckTtdHonest is defined as follows:

CheckTtdHonest(τ) =

∀〈σ,m, bsn,M,H〉 ∈ Signed : identify(σ,m, bsn, τ) = 0 ∧
∀〈σ,m, bsn, ∗, 1〉 ∈ VerResults : identify(σ,m, bsn, τ) = 0

Likewise, before outputting σ, the functionality checks that

no one else already has a key which would match this newly

generated signature.

Finally, for ensuring unforgeability, the signed message,

basename, attribute predicate, signature revocation list, and

platform identity are stored in Signed, which will be used

when verifying signatures.

Verify. Signatures can be verified by any party using

the VERIFY interface. Fpdaa+ uses its internal Signed,

Members, and DomainKeys records to enforce unforgeabil-

ity and non-frameability. It uses the tracing trapdoors τ stored

in Members and DomainKeys to find out which platform

created this signature. If no match is found and the issuer is

honest, the signature is a forgery and rejected by Fpdaa+. If

the signature to be verified matches the tracing trapdoor of

some platform with an honest host, but the signing records do

not show that they signed this message w.r.t. the basename,

attribute predicate, and signature revocation list, Fpdaa+ again

considers this to be a forgery and rejects. If the platform has

an honest TPM, only checks on the message and basename

are made. If the records do not reveal any issues with the

signature, Fpdaa+ uses the ver algorithm to obtain the final

result.

The verify interface also supports verifier-local revocation.

The verifier can input a revocation list RL containing tracing

trapdoors, and signatures matching any of those trapdoors are

no longer accepted.

Link. Using the LINK interface, any party can check whether

two signatures (σ, σ′) on messages (m,m′) respectively, gen-

erated with the same basename bsn originate from the same

platform or not. Fpdaa+ again uses the tracing trapdoors

τ stored in Members and DomainKeys to check which

platforms created the two signatures. If they are the same,

Fpdaa+ outputs that they are linked. If it finds a platform that

signed one, but not the other, it outputs that they are unlinked,

which prevents framing of platforms with an honest host.

Conventions. The full definition of Fpdaa+ is presented in

Fig. 5. We use a number of conventions to simplify the defini-

tion of Fpdaa+. First, we require that identify(σ,m, bsn, τ) =
0 if σ or τ is ⊥. Second, whenever we need approval from the

adversary to proceed, Fpdaa+ sends an output to the adversary

and waits for a response. This means that in that join or

sign session, no other inputs are accepted except the expected

response from the adversary. Third, if any check that Fpdaa+

makes fails, the sub-session is invalidated and ⊥ is output to

the caller.

A4 Comparison of Fpdaa+ with Previous Definitions

Our functionality Fpdaa+ is based on previous UC-based

DAA functionalities F l
daa [9], F l

daa+ [10] which extends F l
daa

with attributes and signature-based revocation, and Fpdaa [24],

which strengthens the privacy guarantees of F l
daa. We now

show how our functionality compares to these other DAA

functionalities.

Attributes and Signature-based Revocation. Our function-

ality Fpdaa+ supports adding attributes to the membership

credentials, and selectively disclosing attributes when signing,

as well as signature-based revocation. Fpdaa+ can be seen as

Fpdaa extended with attributes and signature based revocations,

in the same way that F l
daa+ adds these features to F l

daa.

Realistic TPM Interfaces. Contrary to the approach of

F l
daa+, in our definition Fpdaa+ the TPM is agnostic of

attributes, predicates or the SRL. That is, when signing it

neither explicitly sees or approves the attributes or SRL. This

reflects that the actual TPM interfaces do not provide any such

outputs or approvals either, and in fact, there is no practical

reason to do so and would only make the TPM interfaces more

complicated. Thus, we opted for adapting the functionality

accordingly.

Similarly, the previous UC-based definitions [9], [10], [24]

let the TPM approve both the message and basename for which

the hosts requests as signature. In this definition, the TPM is

only responsible for approving the message being signed, but

does no longer receive (and approve) the basename. Again,

this is done to better capture the actual TPM interfaces that

provide such checks only for the message.

The resulting unforgeability and non-frameability guaran-

tees are as follows. No adversary can sign a message m w.r.t.

basename bsn , attribute predicate p, and signature revocation

list SRL, if the host did not sign exactly that. If the TPM

is honest but the host is corrupt, the unforgeability is a bit

weaker, as the TPM only checks the message. Therefore,

if the TPM signed message m, the adversary is allowed to
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1) Issuer Setup. On input (SETUP, sid) from issuer I.

• Verify that sid = (I, sid′).
• Output (SETUP, sid) to A and wait for input

(ALG, sid , sig, ver, link, identify, ukgen) from A.

• Check that ver, link, and identify are deterministic.

• Store (sid , sig, ver, link, identify, ukgen) and output

(SETUPDONE, sid) to I.

Join

2) Join Request. On input (JOIN, sid , jsid ,Mi) from host

Hj .

• Output (JOINSTART, sid , jsid ,Mi,Hj) to A and wait for

input (JOINSTART, sid , jsid) from A.

• Create a join session record 〈jsid ,Mi,Hj ,⊥, status〉 with

status ← delivered .

• Abort if I is honest and a record 〈Mi, ∗, ∗〉 ∈ Members
already exists.

• Output (JOINPROCEED, sid , jsid ,Mi) to I.

3) I Join Proceed. On input (JOINPROCEED, sid , jsid , attrs)
from I, with attrs ∈ A1 × . . .× AL.

• Output (JOINCOMPLETE, sid , jsid) to A and wait for input

(JOINCOMPLETE, sid , jsid , τ) from A.

• Update the session record 〈jsid ,Mi,Hj , status〉 with

status = delivered to complete .

• If Hj is honest, set τ ← ⊥.

• Else, verify that the provided tracing trapdoor τ is eligible by

checking CheckTtdCorrupt(τ) = 1.

• Insert 〈Mi,Hj , τ, attrs〉 into Members and output

(JOINED, sid , jsid , attrs) to Hj .

Sign

4) Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn, p,
SRL) from Hj with p ∈ P.

• If Hj is honest and no entry 〈Mi,Hj , ∗, attrs〉 with

p(attrs) = 1 exists in Members, abort.

• If Hj is corrupt, set σ ← ⊥. If Hj is honest, generate the

signature for a fresh or established key:

– Retrieve (gsk , τ) from 〈Mi,Hj , bsn, gsk , τ〉 ∈
DomainKeys. If no such entry exists, set (gsk , τ) ←
ukgen(), check CheckTtdHonest(τ) = 1, and store

〈Mi,Hj , bsn, gsk , τ〉 in DomainKeys.

– Compute signature σ ← sig(gsk ,m, bsn, p,SRL), check

ver(σ,m, bsn, p,SRL) = 1.

– Check identify(σ,m, bsn, τ) = 1 and that there is no

(M′,H′) �= (Mi,Hj) with tracing trapdoor τ ′ registered in

Members or DomainKeys with identify(σ,m, bsn, τ ′) = 1.

• Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, p,SRL, σ,
status〉 with status ← request .

• Output (SIGNPROCEED, sid , ssid ,m) to Mi when it is

honest, and (SIGNPROCEED, sid , ssid ,m, bsn,SRL, σ) when

Mi is corrupt.

5) Sign Proceed. On input (SIGNPROCEED, sid , ssid) from

Mi.

• Look up record 〈ssid ,Mi,Hj ,m, bsn, p,SRL, σ, status〉 with

status = request and update it to status ← complete.

• If I is honest, check that 〈Mi,Hj , ∗, attrs〉 with p(attrs) = 1
exists in Members.

• For every (σ′,m′, bsn ′) ∈ SRL, find all (τi,M′
i,H′j)

from 〈M′
i,H′j , τi, ∗〉 ∈ Members and 〈M′

i,H′j , τi〉 ∈
DomainKeys where identify(σ′,m′, bsn ′, ∗, τi) = 1.

– Check that there are no two distinct τ values matching σ′.
– Check that no pair (τi,Mi,Hj) was found.

• Store 〈σ,m, bsn,Mi,Hj , p,SRL〉 in Signed and output

(SIGNATURE, sid , ssid , σ) to Hj .

Verify & Link
6) Verify. On input (VERIFY, sid ,m, bsn, σ, p,RL,SRL) from

some party V .

• Retrieve all tuples (τi,Mi,Hj) from 〈Mi,Hj , τi, ∗〉 ∈
Members and 〈Mi,Hj , ∗, ∗, τi〉 ∈ DomainKeys where

identify(σ,m, bsn, τi) = 1. Set f ← 0 if at least one of the

following conditions hold:

– More than one τi was found.

– I is honest and no pair (τi,Mi,Hj) was found for which an

entry 〈Mi,Hj , ∗, attrs〉 ∈ Members exists with p(attrs) =
1.

– Mi is honest but no entry 〈∗,m, bsn,Mi,Hj , ∗, ∗〉 ∈
Signed exists.

– Hj is honest but no entry 〈∗,m, bsn,Mi,Hj , p,SRL〉 ∈
Signed exists.

– There is a τ ′ ∈ RL where identify(σ,m, bsn, τ ′) = 1 and no

pair (τi,Mi,Hj) for an honest Hj was found.

– For some matching τi and (σ′,m′, bsn ′) ∈ SRL,

identify(σ′,m′, bsn ′, τi) = 1.

• If f �= 0, set f ← ver(σ,m, bsn, p,SRL).
• Add 〈σ,m, bsn,RL, f〉 to VerResults and output

(VERIFIED, sid , f) to V .

7) Link. On input (LINK, sid , σ,m, p,SRL, σ′,m′, p′,SRL′, bsn)
from a party V .

• Output ⊥ to V if at least one signature (σ,m, bsn, p,SRL) or

(σ′,m′, bsn, p′,SRL′) is not valid (verified via the VERIFY
interface with RL = ∅).

• For each τi in Members and DomainKeys compute bi ←
identify(σ,m, bsn, τi) and b′i ← identify(σ′,m′, bsn, τi) and

do the following:

– Set f ← 0 if bi �= b′i for some i.
– Set f ← 1 if bi = b′i = 1 for some i.

• If f is not defined yet, set f ← link(σ,m, σ′,m′, bsn).
• Output (LINK, sid , f) to V .

Fig. 5. Our ideal DAA functionality with strong privacy Fpdaa+
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create signatures on m w.r.t. any p and SRL that hold for the

platform (i.e., the platform has the attributes to fulfill p and

is not revoked by SRL). The TPM does not explicitly approve

bsn , but we force the (possibly corrupt) host to choose one

bsn when signing, and signatures can only be valid if the

message-basename combination was signed. Because the TPM

does not explicitly approve the basename, our unforgeability

with an honest TPM and corrupt host is slightly weaker than

previous UC-based definitions [9], [10], [24] where the TPM

must explicitly approve the basename.

When the host is honest but the TPM is corrupt, our

definition also assures unforgeability and non-frameability like

Fpdaa, which provides stronger guarantees than [9] and [10],

where both properties are not ensured when the TPM is

corrupt.

Strong Privacy (vs. Optimal Privacy). Previous DAA

schemes and definitions condition their privacy property on the

honesty of the entire platform, i.e., as soon as either the TPM

or host is corrupt, no privacy is guaranteed anymore. Whereas

the honesty of the host is indeed necessary (a corrupt host can

always break privacy by outputting identifying information),

relying on the honesty of the TPM as well is an unnecessarily

strong assumption. In fact, it even contradicts the original goal

of DAA, namely to provide anonymous attestations without

having to trust the hardware. This mismatch was recently

discussed by Camenisch et al. [24] who propose the notion

of DAA with optimal privacy which must hold even in the

presence of corrupted or subverted TPMs. In contrast to

F l
daa and F l

daa+ where the adversary provides the signature

whenever the host or TPM are corrupt, the functionality with

optimal privacy Fpdaa outputs anonymous signatures as long

as the host is honest. As the signatures are given directly to

the host, the adversary learns nothing about them, even if the

TPM is corrupt.

Unfortunately, the authors also show that optimal privacy

cannot be achieved using constructions where the TPM and

host together create a Fiat-Shamir proof of knowledge, which

rules out the most efficient DAA schemes. The DAA protocol

with optimal privacy proposed in [24] comes with a significant

re-design, shifting most of the computations from the TPM

to the host and would also require new operations to be

implemented on the TPM.

The goal of this work is to obtain the best privacy properties

with as minimal changes to the existing TPM and DAA

specifications as possible. We therefore relax their notion of

optimal privacy, and show how this can be achieved with

modest modifications to the current DAA specifications and

using our proposed TPM interfaces. Roughly, our new privacy

notion – which we term strong privacy – allows the TPM to see

the anonymous signature that is generated by the functionality

and consequently also condition its behavior on the signature

value. Thus, while the actual signature shown to the TPM

is still guaranteed to be anonymous, the TPM can influence

the final distribution of the signatures by blocking certain

signature values (a signature is only output to the host when

corrupt TPM F l
daa, F l

daa+ Fpdaa+ (this work) Fpdaa

standard - - +
isolated - + ++

Fig. 6. Comparison of privacy guarantees for an honest host in the presence of
a corrupt TPM (either corrupt in the standard UC or isolated model of [24]).

the TPM explicitly approved it). A TPM performing such a

“blocking attack” to alter the signature distribution can clearly

be noticed by the host though, and thus, this attack has rather

limited impact in practice.

The main reason why exposing the signature value to the

TPM reduces the privacy guarantees stems from the way UC

models corruption: In the standard UC corruption model, the

adversary is allowed to see all inputs to the party he corrupts.

That is, he will see the signatures given for approval to the

TPM and can later re-identify the platform from the signature.

However, as Camenisch et al. [24] argue, in case of the TPM

this standard UC corruption model gives the adversary much

more power than in reality. In the real world, the TPM is

embedded inside a host who controls all communication with

the outside world, i.e., the adversary cannot communicate

directly with the TPM but only via the (honest) host. To model

such subversion more accurately, [24] introduces isolated
corruptions, where the adversary can specify the code that

the isolated, yet subverted TPM will run, but cannot directly

interact with the isolated TPM.

Applying this concept of isolated corruptions to our notion

of strong privacy then yields significantly stronger privacy

guarantees than with the standard corruption model: In signing

the adversary no longer sees the signature which is only given

to the isolated corrupt TPM. That is, when considering isolated

TPM corruptions, the only difference to the optimal privacy

notion of [24] is the aforementioned “blocking attack” which

allows a corrupt TPM to influence the signature distribution,

but with the risk of being caught by the host. Thus, w.r.t.

isolated corruption, our notion of strong privacy is almost

equivalent to optimal privacy, yet allows for significantly more

efficient instantiation. An overview of the different privacy

guarantees of this and the previous works is given in Fig. 6.
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