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Abstract—The analysis of real-world protocols, in particular
key exchange protocols and protocols building on these proto-
cols, is a very complex, error-prone, and tedious task. Besides
the complexity of the protocols itself, one important reason for
this is that the security of the protocols has to be reduced to the
security of the underlying cryptographic primitives for every
protocol time and again.

We would therefore like to get rid of reduction proofs for
real-world key exchange protocols as much as possible and in
many cases altogether, also for higher-level protocols which use
the exchanged keys. So far some first steps have been taken in
this direction. But existing work is still quite limited, and, for
example, does not support Diffie-Hellman (DH) key exchange,
a prevalent cryptographic primitive for real-world protocols.

In this paper, building on work by Küsters and Tuengerthal,
we provide an ideal functionality in the universal composability
setting which supports several common cryptographic primi-
tives, including DH key exchange. This functionality helps to
avoid reduction proofs in the analysis of real-world protocols
and often eliminates them completely. We also propose a new
general ideal key exchange functionality which allows higher-
level protocols to use exchanged keys in an ideal way. As a
proof of concept, we apply our framework to three practical
DH key exchange protocols, namely ISO 9798-3, SIGMA, and
OPTLS.

Keywords-protocol security, universal composability, Diffie-
Hellman key exchange, reduction proofs, IITM model

I. INTRODUCTION

The analysis of security protocols, in particular real-world

security protocols is a very complex and challenging task,

which has gained a lot of attention in the past few years (see,

e.g., [1]–[12]). Several approaches for the analysis of such

protocols exist, ranging from manual to tool-supported ap-

proaches and from symbolic (Dolev-Yao-style) approaches,

which abstract from cryptographic details, to approaches

based on cryptographic games and those which perform

cryptographic reasoning on implementations directly. In this

work, our focus lies on cryptographic approaches.

All such approaches strive to achieve some kind of mod-

ularity in order to tame the complexity of the analysis (see,

e.g., [3], [9], [13], [14]). But security proofs are typically

still very complex, tedious, and error-prone. Besides the

complexity of the protocols itself, an important reason for

this is that for every protocol one has to carry out reduction

proofs from the security notions of the protocols to the

cryptographic primitives employed time and again. Even in

universal composability models [15]–[18], for which modu-

larity is the driving force, protocol designers typically have

to carry out (tedious, repetitive, and error-prone) reduction

proofs.

One important goal of this work is therefore to provide

a framework within the setting of universal composability

(cf. Section II) which gets rid of reduction proofs as much as

possible or ideally even altogether, and which is applicable

to a wide range of real-world security protocols. This should

lead to proofs that are shorter, without being imprecise, as

well as easier to understand and carry out. Being based in

the setting of universal composability, the framework should

also facilitate modular reasoning, allow for re-using existing

results, and of course provide security in arbitrary adversarial

environments (universal composition).

The main idea behind our framework, which builds on

and extends work by Küsters and Tuengerthal [11], [19] (see

below), is as follows. First recall that in models for universal

composability security properties are expressed by so-called

ideal functionalities, which perform their tasks in an ideal

secure way. A real protocol P ′ may use an ideal function-

ality F (or several such functionalities) as a subroutine to

perform its task. Typically one shows that P ′ (along with

F) realizes another (higher-level) ideal functionality, say

F ′. Composition theorems available in models for universal

composability then allow one to replace F by its realization

P , which then implies that P ′ using P realizes F ′. Now,

in our framework we provide an ideal functionality Fcrypto

which covers various cryptographic primitives, including

standard Diffie-Hellman (DH) key exchanges based on the

DDH assumption, symmetric/asymmetric encryption, key

derivation, MACing, and signing. We show that Fcrypto can

be realized by standard cryptographic assumptions, which is

a once and for all effort. In essentially all other approaches

for protocol analysis this kind of reduction to the crypto-

graphic assumptions of primitives has to be carried out time

and again in the analysis of every single protocol. In contrast,

in our framework one can prove the security of a protocol P
using Fcrypto without using any reduction proofs or hybrid

arguments (at least not for the primitives supported by

Fcrypto). In a last step, by composition theorems, Fcrypto can

be replaced by its realization so that the ideal cryptographic

primitives are replaced by their real counterparts.

All primitives provided by Fcrypto can be used with each
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other in an idealized way. For example, a protocol P using

Fcrypto can first exchange a key via an ideal Diffie-Hellman

key exchange where some messages are (ideally) signed

and then derive a MAC and a symmetric encryption key

from the DH key. Importantly, both keys can still be used in

an idealized way, i.e., one can perform ideal MACing and

encryption using these keys.

In addition to Fcrypto, our framework also provides new

functionalities for ideal key exchange that allow a higher

level protocol to still use a session key in an idealized way.

Altogether, when using these functionalities, the need

for reduction proofs is greatly reduced or such proofs are

avoided completely in many cases. Protocol designers can

argue on an intuitive information theoretic level while being

able to analyze a protocol in a very modular way with

universally composable security guarantees.

Contributions. More specifically, our contributions are as

follows.

- We extend the ideal functionality Fcrypto from [19] to

also support standard DH key exchange with two key

shares ga and gb. This is a crucial step as many real-

world protocols support Diffie-Hellman key exchanges

and thus could not have been analyzed before using

Fcrypto. Designing such an extension requires care in order

for the extension to, on the one hand, provide all expected

properties and, on the other hand, still be realizable under

standard cryptographic assumptions.

- Our functionality Fcrypto ensures that the adversary on the

network cannot interfere with higher level protocols while

they use Fcrypto to perform local computations. While this

is expected and natural for such an ideal functionality, it

previously was impossible to model this property. Lever-

aging fundamental results of recent work by Camenisch

et al. [20], who have introduced the concept of responsive

environments, we can now indeed provide this property

for Fcrypto, which further simplifies security proofs.

- We propose and prove a realization for Fcrypto based on

standard cryptographic assumptions. The proof is quite

involved, with several hybrid arguments, as Fcrypto allows

for a wide range of operations. But, as explained above,

due to the modularity of our framework this is a once and

for all effort.

- Inspired by an ideal functionality from [11], we propose

two new functionalities for both mutually and unilat-

erally authenticated key exchange with perfect forward

secrecy. Unlike most other key exchange functionalities,

which output the key, our functionalities allow higher-

level protocols to still use the exchanged key in an

ideal way, namely for idealized key derivation, symmetric

encryption, and MACing. Hence, as mentioned, one can

avoid reductions proofs also for the higher-level protocols,

such as secure channel protocols. Further discussion and

comparison with other key exchange functionalities is

provided in Section V.

- We illustrate the usefulness of our framework by showing

for three different real-world key exchange protocols that

they realize our key exchange functionalities with mutual

or unilateral authentication. Due to the use of Fcrypto,

none of the security proofs require any reductions, hybrid

arguments, or even probabilistic reasoning.

– We provide the first analyses of unaltered versions of

the ISO 9798-3 [21] and the SIGMA [22] key exchange

protocols in an universal composability model (see also

Section VII).

– We analyze the 1-RTT non-static mode of the OPTLS

key exchange protocol [23] and find a subtle bug

in the original reduction proof. We show that, under

the original security assumptions, a slight variation of

the protocol is a secure unilaterally authenticated and

universally composable key exchange protocol.

Structure of the Paper. In Section II, we briefly recall the

IITM model, which is the universal composability model we

use in this paper. Section III details the ideal functionality

Fcrypto, with a realization proposed and proven in Section IV.

Our ideal key exchange functionalities are presented in

Section V. The case studies are carried out in Section VI. We

further discuss advantages and limitations of our framework

along with related work in Section VII. We conclude in

Section VIII. Further details are provided in the appendix.

Full details with all proofs are provided in our technical

report [24].

II. THE IITM MODEL

In this section, we briefly recall the IITM model with

responsive environments from [20]. This is the model for

universal composability we use in this paper. This model

in turn is based on the IITM model proposed in [16], [25].

We provide a simplified and high level overview only as

the details of this model are not important to follow the

rest of the paper. In the IITM model, notions of universal

composability are defined based on a general computational

model. The model also comes with general composition

theorems.

Before we recall the IITM model, we first briefly recall

the general idea behind universal composability.

The General Idea Behind Universal Composability. In

universal composability models, one considers real and ideal

protocols. An ideal protocol, also called ideal functionality,

specifies the desired behavior of a protocol, and in particular,

its intended security properties. The real protocol, which is

the protocol one would like to analyze, is supposed to realize

the ideal protocol, i.e., it should be at least as secure as the

ideal protocol. More specifically, for every adversary on the

real protocol, called the real adversary, there should exist

an adversary on the ideal protocol, the ideal adversary (or

simulator), such that no environment can distinguish the real
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from the ideal setting. Now, since, by definition, there exists

no successful attack on the ideal protocol, attacks on the real

protocol cannot be successful either.

The General Computational Model. The general compu-

tational model of the IITM model is defined in terms of sys-

tems of interactive Turing machines. An interactive Turing

machine (machine, for short) is a probabilistic polynomial-

time Turing machine with named bidirectional tapes. The

names determine how different machines are connected in a

system of machines.

A system S of IITMs is of the form S = M1 | · · · |Mk |
!M ′

1 | · · · | !M ′
k′ where the Mi and M ′

j are machines. The

operator ‘ !’ indicates that in a run of a system an unbounded

number of (fresh) copies of a machine may be generated; for

machines without this operator there is at most one instance

of this machine in every run of the system. Systems in

which multiple copies of machines may be generated are

often needed, e.g., for multi-party protocols or for systems

describing the concurrent execution of multiple instances

of a protocol. In a run of a system S, at any time only

one machine is active and all other machines wait for

new input. A (copy of a) machine M can trigger another

(copy of a) machine M ′ by sending a message on a tape

that connects both machines. Identifiers, e.g., session and/or

party identifiers, contained in the message can be used to

address a specific copy of M ′.1 If a new identifier is used,

a fresh copy of M ′ will be generated (if M ′ is prefixed

with ‘ !’). The first machine to be triggered in a run of a

system is the so-called master machine. This machine is also

triggered if a machine does not produce output. In this paper,

the environment (see below) will always play the role of the

master machine. A run stops if the master machine does not

produce output or a machine outputs a message on a special

tape named decision. Such a message is considered to be

the overall output of the system. Systems will always have

polynomial runtime in the security parameter (and possibly

the length of auxiliary input).

Two systems P and Q are called indistinguishable (P ≡
Q) if the difference between the probability that P outputs

1 (on the decision tape) and the probability that Q outputs

1 is negligible in the security parameter η.

Types of Systems. We need the following terminology. For

a system S, the tapes of machines in S that do not have a

matching tape (belonging to another machine in S) are called

external. These tapes are grouped into I/O and network
tapes. We consider three different types of systems, model-

ing i) real and ideal protocols/functionalities, ii) adversaries
and simulators, and iii) environments: Protocol systems and

environmental systems are systems which have an I/O and

network interface, i.e., they may have I/O and network

1The IITM model contains a general addressing mechanisms. In this
paper, we use a specific instantiation of this mechanism as will be clear
from the subsequent sections.

tapes. Adversarial systems only have a network interface.

Environmental systems may contain a master machine and

may produce output on the decision tape.
Environmental systems and adversarial systems are called

responsive if they answer so-called restricting messages on

the network immediately. Restricting messages are of the

form (Respond, id ,m) where id and m are arbitrary bit

strings. When a responsive environment/adversary receives

such a message from a system Q on some network tape t,
it has to ensure that the next message that Q receives is

of the form (id ,m′), for some bit string m′, and that this

message is received on tape t (except for a negligible set

of runs). In this sense, responsive environments/adversaries

have to respond immediately to restricting messages, i.e.,

if an environment wants to continue its interaction with Q
it first has to send the expected response m′. Restricting

messages are useful for exchanging purely modeling related

information with the adversary without letting the adversary

interfere with the protocol in-between. For example, one can

use a restricting message to ask the adversary whether he

wants to corrupt a new protocol instance. Note that such

a request does not actually exist in reality and thus no real

adversary can abuse it to disrupt the protocol execution. Con-

sequently, in a security model, the adversary should also not

have this ability. Restricting messages allow us enforce this

very natural expectation. Overall, restricting messages are a

very convenient mechanism that adds extra expressivity to

universal composability models and that allows for a natural

modeling when adversaries and protocols have to exchange

meta information (see [20] for an in depth discussion). In

the rest of the paper, we always assume that environmental

and adversarial systems are responsive.

Notions of Simulation-Based Security. We can now define

strong simulatability; other equivalent security notions, such

as (dummy) UC, can be defined in a similar way.

Definition 1. Let P and F be protocol systems with the same
I/O interface, the real and the ideal protocol, respectively.
Then, P realizes F (P ≤R F) if there exists an adversarial
system S (a simulator or an ideal adversary) such that the
systems P and S |F have the same external interface and for
all environmental systems E , connecting only to the external
interface of P (and hence, S |F), it holds true that E | P ≡
E | S | F .2

Composition Theorems. The IITM model provides several

composition theorems. One theorem (see Theorem 1 below)

handles concurrent composition of a fixed number of proto-

col systems. Other theorems guarantee secure composition

of an unbounded number of copies of a protocol system.

Theorem 1. Let P1,P2,F1,F2 be protocol systems such
that P1 and P2 as well as F1 and F2 only connect via their

2Note that strong simulatability omits the adversary in the real world as
he can be subsumed by the environment.
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I/O interfaces with each other and Pi ≤R Fi, for i ∈ {1, 2}.
Then, P1 | P2 ≤R F1 | F2.

Other composition theorems provided by the IITM model

can be found in [11], [16]. These theorems allow one to

analyze a single session of a protocol in isolation in order

to conclude security of an unbounded number of sessions.

All composition theorems of the IITM can be combined

and applied iteratively to construct more and more complex

systems.

III. IDEAL FUNCTIONALITY FOR CRYPTOGRAPHIC

PRIMITIVES

We now present our ideal functionality Fcrypto for crypto-

graphic primitives. As already mentioned in the introduction,

a higher-level protocol P can use Fcrypto for its cryptographic

operations. Then, in order to show that P |Fcrypto ≤R F ,

i.e., that P (using Fcrypto for its cryptographic operations)

realizes some ideal functionality F (e.g., a key exchange

functionality), one can argue on a purely information theo-

retic level, without resorting to reductions or hybrid argu-

ments (at least for those primitives supported by Fcrypto). For

example, Fcrypto guarantees that only the (honest) owner of

a Diffie-Hellman key can get access to keys that are derived

from it, and only parties with access to these keys can, e.g.,

create a MAC with such keys. In all other cryptographic

approaches for security protocols, one has to reduce these

properties to the security assumptions for Diffie-Hellman

key exchange, key derivation, and MAC schemes. Once

P |Fcrypto ≤R F has been proven, using the composition

theorems of the IITM model one can replace Fcrypto with

its realization Pcrypto (see Section IV) by which the ideal

operations provided by Fcrypto are replaced by the real

counterparts.

As mentioned in the introduction, in [19] a first version

of Fcrypto was proposed, which, however, does not support

DH key exchange, a fundamental primitive for most real-

world key exchange protocols. We also improve Fcrypto in

various other ways in order to overcome shortcomings of

the previous version, as discussed below. Our extension of

Fcrypto, in particular the treatment of DH key exchange, is

non-trivial and needs care in order for it to be widely usable

and realizable. In the following, we first recall the version

of Fcrypto from [19] and then present our extension.

A. The ideal functionality Fcrypto

On a high level, the ideal functionality Fcrypto allows its

users to perform the following operations in an ideal way:

i) generate symmetric keys, including pre-shared keys, ii)

generate public/private keys, iii) derive symmetric keys from

other symmetric keys, iv) encrypt and decrypt messages

and ciphertexts, respectively (public-key encryption and both

unauthenticated and authenticated symmetric encryption are

supported), v) compute and verify MACs and digital sig-

natures, and vi) generate fresh nonces. All symmetric and

public keys can be part of plaintexts to be encrypted under

other symmetric and public keys. Derived keys can be used

just as freshly generated symmetric keys.

Formally, the ideal functionality Fcrypto is a machine with

n I/O tapes, representing different roles in a higher level

protocol, and a network tape for communicating with the

adversary. In runs of a system which contains Fcrypto there

will always be one instance of Fcrypto only. This instance

handles all requests.

A user of Fcrypto is identified by a tuple (pid , lsid , r),
where r is the role/tape which connects the user to Fcrypto,

pid is a party identifier (PID), and lsid is a local session

identifier (local SID). The local session ID is chosen and

managed by higher level protocols and not further inter-

preted by Fcrypto. For example, it could be some session

identifier that was established during a protocol run. All

messages on I/O tapes are prefixed with (pid , lsid ) so Fcrypto

can identify the user who sent/receives a message.

Users of Fcrypto, and its realization, do not get their

hands on the actual (private) keys but rather get pointers

to such keys which can then be used to perform several

cryptographic operations (see below).

The adversary can statically corrupt asymmetric (sign-

ing/encryption) keys,3 i.e., he can corrupt them before they

are used for the first time but not afterwards. The corruption

status of asymmetric keys determines whether operations

with these keys are performed ideally or without ideal

security guarantees. Similarly, the adversary can statically

corrupt symmetric keys when they are generated or, in

the case of pre-shared keys, when they are retrieved for

the first time. In the case of symmetric keys, the func-

tionality keeps track of whether a key might be known to

the adversary/environment (e.g., because it was explicitly

corrupted or because it was encrypted with a corrupted

key). For this purpose, Fcrypto maintains a set Keys of

all symmetric keys and a set Keysknown ⊆ Keys which

contains all keys that might be known to the environment.

The known/unknown status of symmetric keys is then used

to determine whether symmetric operations are performed

ideally or without ideal security guarantees. In the following,

we will call a key known if it is in Keysknown and unknown
if it is in Keys\Keysknown.

Symmetric keys in Fcrypto are equipped with a key type

that determines their usage. That is, a key k is of the form

(t, k′) where k′ is the actual bit string used in algorithms

while t is the key type. Keys of type pre-key are used

to derive other keys, keys of type unauthenc-key and

authenc-key are used for (un)authenticated encryption and

decryption, and keys of type mac-key are used to create and

verify MACs. This models the practice of using keys for a

single purpose only.

3In our extension of Fcrypto, corruption of asymmetric signing keys is
dynamic. That is, the adversary can corrupt signing keys at any point in
time.
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The ideal functionality Fcrypto is parameterized with a

leakage algorithm L that is used to determine the informa-

tion that is leaked when a plaintext x is encrypted ideally.

For example L(x, 1η) = 1|x| can be used to leak exactly

the length of x. We call such a leakage algorithm length
preserving. The adversary is supposed to provide algorithms

for authenticated and unauthenticated symmetric encryption,

MACing, public key encryption, and signing. The adversary

also provides the actual bit strings of all keys generated

by Fcrypto. The functionality Fcrypto ensures only that a new

unknown symmetric key k is fresh (i.e., k �∈ Keys) and

prevents key guessing of unknown keys when receiving a

new known key k (i.e., k �∈ Keys\Keysknown). Note that, as

the adversary provides the keys, he knows the actual value

of symmetric keys that are marked as unknown in Fcrypto.

This is not a contradiction as the known/unknown status

determines only whether operations are performed ideally;

of course, in the realization a key that is marked unknown

will indeed be unknown to the environment.

The functionality Fcrypto offers the following list of com-

mands to a user (pid , lsid , r) (see [19] for a detailed

definition of every command):

- Generating fresh, symmetric keys [(New, t)]. A user can

generate a new symmetric key of type t.
- Establishing pre-shared keys [(GetPSK, t,name)]. A

user can ask for a pointer to a pre-shared symmetric key of

type t, which can be used for modeling setup assumptions.

If another user creates a key with the same input name,

then this means that the two users share the created key.

- Store [(Store, t, k)]. A user can manually store a

(known) key k of type t in Fcrypto.

- Retrieve [(Retrieve, ptr)]. A user can retrieve the key

k a pointer ptr refers to, by which k is marked as known.

- Equality test [(Equal?, ptr , ptr ′)]. A user can test

whether two of her pointers refer to the same key (same

type and same bit string).

- Public key requests [(GetPubKeyPKE, p′) or (GetPub−
KeySig, p′)]. A user can ask for the public encryp-

tion/verification key, if any, of another party p′.
- Key derivation [(Derive, ptr , t′, s)]. A user can derive

a new symmetric key of type t′ from salt s and key k of

type pre-key to which ptr points.

- Encryption/decryption under symmetric keys [(Enc,
ptr , x) and (Dec, ptr , y)]. A user can encrypt a plaintext

x and decrypt a ciphertext y using a key k of type t ∈
{unauthenc-key, authenc-key} to which ptr points.

The plaintext x may contain (pointers to) symmetric keys.

As the result of the decryption of y, a user may learn

symmetric keys. The exact operations depend, among

others, on whether or not k is known. For example, if k is

unkown, encryption is ideal, i.e., a ciphertext is produced

which depends on L(x, 1η) only.

- Encryption and Decryption under public keys

[(PKEnc, p′, pk , x) and (PKDec, y)]. Asymmetric en-

cryption/decryption works just as symmetric encryp-

tion/decryption, with the main difference being that the

encryption command takes as input the PID p′ and the

public key pk of the intended recipient.

- Creating and verifying MACs [(Mac, ptr , x) and

(MacVerify, ptr , x, σ)]. A user can create a MAC for

or verify a MAC σ on a message x with key k of type

mac-key to which ptr points.

- Creating and verifying signatures [(Sign, x) and

(SigVerify, p′, pk , x, σ)]. A user can create or verify

a signature σ on a message x using his own private

signing key or the public verification key pk of party p′,
respectively.

- Generating fresh nonces [(NewNonce)]. A user can ask

for a fresh nonce that does not collide with any previously

generated nonces.

- Corruption status request. A user can ask whether

one of her symmetric keys, or a public key of some

party p′ was corrupted by the adversary. This is used for

modeling corruption: the environment can make sure that

the corruption status of a key is the same in the real and

ideal worlds.

B. Diffie-Hellman KE in Fcrypto

We now present our extension to Fcrypto that supports

Diffie-Hellman key exchange. On a high level, the extension

lets users generate secret Diffie-Hellman exponents (e) and

the corresponding public key shares (ge), called DH shares
in what follows. Exponents can be combined with arbitrary

DH shares, not necessarily generated by Fcrypto, to produce

a new symmetric key. If an exponent is combined with a DH

share created by Fcrypto, then the resulting key will only be

accessible by the owners of the two exponents that were used

to create the key. The resulting key can then be used to derive

other keys, e.g., for encryption or MACing. Whether or not

this key derivation is performed ideally depends on several

factors, such as whether any of the exponents is known to

the environment/adversary (see below). Furthermore, Fcrypto

guarantees that new exponents/DH shares are fresh, i.e., no

other user has access to the same exponent and no keys were

already created from the share.

Before we describe our extension in detail, we first have

to explain how we use restricting messages (cf. Section II).

There are many situations where Fcrypto needs to retrieve

some information from the adversary, such as cryptographic

algorithms or values of fresh keys. The adversary might

use such requests to interfere with the run of Fcrypto in an

unintended way by, e.g., never responding to some of the

requests. Importantly, such attacks do not relate to anything

in reality: Fcrypto models local computations that always suc-

ceed in reality. Our extension of Fcrypto leverages the power

of restricting messages to guarantee that an adversary cannot

interfere with local computations, while still being able to
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provide cryptographic values to Fcrypto. In the following, for

brevity, we will say that a message m is restricting when

we mean that the message (Respond,⊥,m) is sent on the

network. Recall from Section II that an environment has to

respond to such a message immediately. We will implicitly

assume that Fcrypto repeats these messages until an expected

response is received (e.g., when the response needs to be a

value within a certain range).

We can now detail our extension. Formally, we parame-

terize Fcrypto with a GroupGen(1η) algorithm that is used to

generate the Diffie-Hellman group. This algorithm takes as

input the current security parameter η, runs in polynomial

time in η (except with negligible probability), and outputs

a description (G,n, g) of a cyclic group G where |G| = n
and g is a generator of G. We require that it is possible

in polynomial time (in η) to check whether a bit string

encodes a group member of such a group, and that the group

operation is efficiently computable.

Diffie-Hellman exponents are modeled analogously to

keys in Fcrypto. That is, a user gets pointers to her exponents,

never the actual exponent, and can use these pointers to

perform Diffie-Hellman key exchange. However, users do
get the DH share ge belonging to an exponent e. The

actual values of exponents are stored in two sets, Exp
and Expknown ⊆ Exp. An exponent in Expknown is called

known, while an exponent in Exp\Expknown is called un-
known. The known/unknown status of exponents is used to

determine whether keys created from them are considered

known/unknown. Just as for keys, the environment provides

the actual values of exponents, even if they are considered

unknown. Of course, an exponent that is marked unknown

in Fcrypto will in fact be unknown to the environment in the

realization Pcrypto. Fcrypto prevents exponent collisions (i.e.,

if a new unknown exponent e is created, then e �∈ Exp)

and exponent guessing (i.e., if a new known exponent e is

created, then e �∈ Exp\Expknown). Additionally, Fcrypto also

maintains a set BlockedElements of blocked DH shares that

contains group elements h that may not be generated when

a new exponent e is created, i.e., ge �= h. In particular, this

set contains all DH shares that have been used to create a

Diffie-Hellman key (see Section III-C for an explanation).

We add another symmetric key type dh-key to Fcrypto

which represents Diffie-Hellman keys. Keys of this type

may only be generated via a new GenDHKey command (see

below) or be inserted into Fcrypto via the existing Store

command; they may not be created by any other commands.

These keys can be used to derive new symmetric keys of

arbitrary types, but they may not be used for encryption or

creating MACs directly. Furthermore, just as all other key

types, they can be encrypted as part of a plaintext.

Upon the first activation of Fcrypto, we now let Fcrypto exe-

cute GroupGen(1η) and store the generated group (G,n, g).
Then, Fcrypto sends both the group (G,n, g) and a request for

cryptographic algorithms to the adversary via a restricting

message. When this initialization is complete, Fcrypto either

continues to process the original message that activated it

(if the first message was received on an I/O tape) or returns

control to the adversary (if the first message was received

on a network tape).

Our extension of Fcrypto provides the following additional

commands to a user (pid , lsid , r) on the I/O interface:

- Get generated group [(GetDHGroup)]. The user can

request the group (G,n, g) that was generated by

Fcrypto during initialization. Fcrypto responds by sending

(DHGroup, (G,n, g)) to the user.

- Generate a fresh exponent [(GenExp)]. The user can re-

quest a pointer to a new unknown exponent e. This request

is forwarded to the adversary via a restricting message,

who is supposed to provide an exponent e ∈ {1, . . . , n}.
The functionality Fcrypto then ensures that this exponent

e is fresh, i.e., it does not collide with existing exponents

(e �∈ Exp), and that ge is not blocked from being generated

(i.e., ge �∈ BlockedElements). If the freshness check

fails, Fcrypto asks the adversary again for another e until

the check succeeds. Then, Fcrypto adds e to Exp, stores

a pointer ptr for user (pid , lsid , r) pointing to e, and

returns (ExpPointer, ptr , ge) to the user.

- Mark group element as used [(BlockGroupElement,
h)]. The user can instruct Fcrypto to manually block a

group element h from being generated during a GenExp

request. This is useful for higher level protocols to ensure

that, if they receive some DH share h, no future GenExp

request will output the same DH share even if h was

not originally created by Fcrypto. Upon receiving this

command, Fcrypto checks that h is a valid group element

and, if so, adds it to BlockedElements. In any case, Fcrypto

returns OK. See Section III-C for a discussion of this

command.

- Retrieve an exponent [(RetrieveExp, ptr)]. The user

can retrieve the exponent e a pointer ptr refers to. In this

case, Fcrypto adds e to Expknown and outputs (Exponent, e)
to the user.

- Store an exponent [(StoreExp, e)]. The user can also

insert a new (known) exponent e ∈ {1, . . . , n} into Fcrypto.

Upon receiving this request, Fcrypto prevents guessing of

unknown exponents by ensuring that e �∈ Exp\Expknown. If

the check succeeds, e is added to Expknown, a new pointer

ptr for this exponent is created, and (ExpPointer, ptr) is

returned to the user. If the check fails, (ExpPointer,⊥)
is returned to the user.

- Generate a new Diffie-Hellman key [(GenDHKey,
ptr , h)]. A user can ask Fcrypto to create a new key of

type dh-key from some group element h and the exponent

e to which ptr points. When receiving this request,

Fcrypto first ensures that h actually is a group element

and returns (Pointer,⊥) to the user otherwise. If the

check succeeds, Fcrypto adds h to the set BlockedElements
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to ensure that h will not be output by future GenExp

requests (cf. Section III-C for a discussion). Furthermore,

if h = ge, then e is marked as known, i.e., is added to

the set Expknown (cf. Section III-C). A new pointer ptr ′

to the DH key is created as follows:

First, Fcrypto checks whether a key has already been

generated by the group elements ge and h. If so, then the

pointer ptr ′ is set to this key. Otherwise, a new key is

generated as follows.

If h belongs to an unknown exponent (i.e., there exists

d ∈ Exp\Expknown such that h = gd) and e is marked

unknown, then the adversary is asked via a restricting

message to provide a fresh unknown key k ∈ G of

type dh-key. Formally, this is done by sending the re-

stricting message (ProvideDHKey, unknown, e, d) on the

network.4 The functionality Fcrypto ensures that k is fresh,

i.e., k �∈ Keys (and keeps asking for a new k if this is not

the case), and then sets the pointer ptr ′ to k.

If the checks regarding the exponents fail, i.e., there is

no d ∈ Exp\Expknown such that h = gd or e is marked

known, then the adversary is asked via a restricting

message to provide a known key k ∈ G of type dh-key.

Formally, this is done by sending the restricting message

(ProvideDHKey, known, e, h) on the network. The func-

tionality Fcrypto prevents key-guessing of unknown keys,

i.e., if k ∈ Keys\Keysknown, the functionality asks for

another key. The pointer ptr ′ is then set to k. Furthermore,

if there is no d ∈ Exp such that h = gd, then the exponent

e is marked known by adding it to Expknown even if it was

unknown before (we explain this in the remarks below).

In any case, Fcrypto records that ge and h have been

used to create a key k and returns (Pointer, ptr ′) to the

user.

In addition to these commands, we improve the overall

expressivity and usability of Fcrypto as follows:

- In [19], the adversary was allowed to corrupt a fresh

key generated via the New command. As this command

models a local computation performed by honest parties,

we remove this ability. Keys generated by this command

are now always uncorrupted and thus unknown.

- Every time Fcrypto adds a symmetric key k to Keysknown,

it sends a restricting message (AddedKnownKey, k) to the

adversary and waits for any response on the network

before continuing. This makes explicit that Fcrypto does

not provide any guarantees on the secrecy of actual values

or the status of keys. As the adversary is already asked

to provide unknown keys, there is no need to also leak

them. While this change is not necessary for realizing

Fcrypto (see Section IV), it reduces the burden imposed

4We note that it is important to tell the adversary the known/unknown
status for our realization as this determines whether our simulator responds

with ged or gc, c
$← {1, . . . , n}. Also note that the adversary knows the

actual values of e and d anyway, so there is no security loss by directly
sending these values on the network.

on simulators when using Fcrypto as part of a higher-level

protocol.

- As mentioned in Section III-A, the adversary may stat-

ically corrupt private keys. We now allow the adversary

to corrupt signing keys adaptively, i.e., these keys can be

corrupted by the adversary at any time.

- As mentioned above, our extension uses the power

of restricting messages to guarantee that the environ-

ment/adversary cannot interfere with a higher level pro-

tocol while using Fcrypto (for DH related and other oper-

ations) by defining all network messages to be restricting

if they are sent while some operation is in progress.

C. Remarks

The ideal functionality Fcrypto marks DH keys as unknown

only if they were generated from two unknown exponents.

In particular, if an unknown exponent e is used with a

group element h which was not created by Fcrypto, then

the resulting key is marked known and hence no security

guarantees are given for this key. Otherwise, Fcrypto would

not be realizable: In a realization of Fcrypto, an environment

might know the exponent d such that h = gd, in which case

it is trivial to compute the DH key ged. Hence, if Fcrypto used

such a key to derive other keys ideally, an environment could

easily distinguish Fcrypto and its realization Pcrypto.

We want to use the Decisional Diffie-Hellman (DDH)

assumption for realizing Fcrypto. However, Fcrypto provides

operations that are not covered by the DDH experiment. To

be more precise, the environment can use Fcrypto to compute

(ge)e=ge
2

and he (where e is a secret exponent stored in

Fcrypto and h is an arbitrary group element not generated by

Fcrypto). By the DDH assumption, we cannot guarantee that

the environment does not learn anything about e itself or

keys created with e in these cases. Indeed, if an adversary

is able to calculate the function fa(h)→ha or the function

f ′(ge)→g(e
2) (where a is one of the exponents from the

DDH experiment and h, ge are arbitrary group elements)

he can break the DDH assumption (see, e.g., [26], [27] for

details). Thus, we have to consider e to be known in these

cases.

The need for the BlockedElements set and the

BlockGroupElement command might seem surprising at

first: Typically, cryptographic libraries in real world pro-

tocols do not keep track of “seen” DH shares and then

block them from being generated. However, this set and the

corresponding command are necessary to lift an important

property from the realization Pcrypto to the case of the

idealization. In the realization, it happens with negligible

probability only that ge for some fresh exponent e equals

some DH share h which might already have been used to

create a key. However, Fcrypto allows the adversary to choose

the actual value of e, i.e., he might choose the exponent

such that ge = h. To get the same guarantees as or even

stronger guarantees than in the realization, Fcrypto uses the
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set BlockedElements to record all DH shares it has seen

so far. With this set Fcrypto makes sure that when creating

a new exponent the corresponding DH share is “fresh”,

i.e., does not belong to BlockedElements. The command

BlockGroupElement allows higher level protocols to notify

Fcrypto about DH shares they obtain such that Fcrypto can

add these shares to BlockedElements. For example, when a

responder in a DH-based key exchange protocol receives a

DH share h, she would first add this share to Fcrypto using

the command BlockGroupElement and then create her own

share. By this, Fcrypto can make sure that the responder’s

share is indeed fresh, and in particular, different from h.

The responder can then use the GenDHKey command to

derive a fresh DH key from h and her own DH share.

We note that the BlockedElements set does not exist in

Pcrypto while the BlockGroupElement command in fact

does nothing. Thus, after replacing Fcrypto with Pcrypto, every

call of the BlockGroupElement command can be omitted

entirely, yielding a natural protocol implementation.

While we opted for a definition of Fcrypto with a single

DH key type for simplicity, it is trivial to extend Fcrypto to

multiple DH key types to model two or more groups that

are used simultaneously. Such an extension uses one set Exp
and Expknown and separate pointers to exponents for every

DH key type. All results presented in the following carry

over to this setting.

IV. REALIZATION

In this section, we construct a realization Pcrypto of Fcrypto.

This realization, which we describe in Section IV-A in

detail, implements all operations of Fcrypto via common

cryptographic schemes in a natural and expected way. In

Section IV-B, we then prove that Pcrypto indeed realizes

Fcrypto under standard cryptographic assumptions. This proof

is quite involved and includes several reductions and hybrid

arguments, but due to the composition theorems this is a

once and for all effort. As mentioned in the introduction,

protocol designers can use Fcrypto for their security analysis

and then replace it with Pcrypto without re-doing any proofs.

A. Formal Definition of Pcrypto

Formally, the machine Pcrypto has the same network

and I/O interface as Fcrypto. It is parameterized with three

schemes Σauthenc,Σunauthenc,Σpub for (un-)authenticated sym-

metric and public key encryption, a MAC scheme ΣMAC,

an algorithm GroupGen(η) with the same properties as for

Fcrypto, and two families of pseudo-random functions (PRF)

F = {Fη}η∈N and F ′ = {F ′
η}η∈N that take as input a key

and a salt and output a key (see our technical report [24]

for formal definitions of these primitives). When activated

for the first time by some message m, Pcrypto initializes

itself by executing GroupGen and storing the result before

processing m. Just as Fcrypto, the machine Pcrypto keeps track

of symmetric key types and uses them to decide which

primitives may be excuted with a given key (the family

F is used for deriving keys from keys of type pre-key,

while F ′ is used for key derivation from keys of type

dh-key). The realization keeps track of the corruption status

of keys in order to answer corruption status requests from

the environment, but its behavior is independent of the cor-

ruption status otherwise. In particular, it does not maintain

the sets Keys,Keysknown,Exp,Expknown and does not include

any checks on freshness or key/exponent collisions.
We now give a detailed description of how each of the

DH related commands is implemented in Pcrypto; see [19]

for the remaining commands.

- Get generated group [(GetDHGroup)]. Outputs the

group description (G,n, g) that was generated during the

initialization of Pcrypto.

- Generate a fresh exponent [(GenExp)]. Pcrypto chooses

e
$← {1, . . . , n}, creates a pointer to e, and outputs

(ptr , ge) to the user.

- Mark group element as used [(BlockGroupElement,
h)]. Pcrypto returns OK.

- Retrieve an exponent [(RetrieveExp, ptr)]. Pcrypto out-

puts the exponent e to which ptr points.

- Store an exponent [(StoreExp, e)]. Pcrypto stores e ∈
{1, . . . , n}, creates a new pointer ptr for this exponent,

and returns ptr to the user.

- Generate a new Diffie-Hellman key [(GenDHKey,
ptr , h)]. Pcrypto ensures that h ∈ G and returns

(Pointer,⊥) to the user if this is not the case. Then,

Pcrypto calculates the key k := he where e is the exponent

to which ptr points to. A new pointer ptr ′ pointing to k
is created and returned to the user.

The realization Pcrypto also adopts all usability improvements

from Fcrypto described at the end of Section III-B.

B. Showing that Pcrypto realizes Fcrypto

In this section, we state and prove our core theorem,

namely, that Pcrypto realizes Fcrypto. We want to use standard

cryptographic assumptions for this, but these assumptions

provide security only in a certain context. For example,

standard assumptions for symmetric encryption do not pro-

vide any security guarantees in the presence of key cycles

where a key is (indirectly) encrypted by itself. This is why

reasonable higher level protocols generally avoid situations

that are not covered by cryptographic assumptions; in con-

trast, environments in universal composability models are

free to use Pcrypto and Fcrypto in any way they want and, in

particular, they may create settings where the assumptions

fail. In order to capture the expected use of Pcrypto/Fcrypto as

a subroutine of a reasonable higher level protocol, we thus

slightly restrict environments such that they expose certain

natural properties of higher level protocols. We note that this

approach is established in the literature (see, e.g., [28]). The

next paragraphs describe and discuss our restriction in more

detail.
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Recall that we want to use the DDH assumption in order

to prove Pcrypto ≤R Fcrypto. The general idea is that the sim-

ulator in the proof of this statement will provide gab when

asked for a known DH key, and gc (for c
$← {1, . . . , n})

in case of an unknown DH key. However, this leads to

the so-called commitment problem: Once the simulator has

committed to gc for an unknown key, neither a nor b may

become known; otherwise the environment could calculate

gab on its own and distinguish the real from the ideal world.

We note that the commitment problem is not specific to

our modeling of DH keys, but rather is a general issue in

universal composability models (see, e.g., [29]). To adress

this problem, we restrict the environment (the higher level

protocol that uses Fcrypto) to not cause the commitment

problem. That is, once an unknown exponent e has been

used to create an unknown DH key gc, the environment may

no longer manually retrieve e from Fcrypto, create a DH key

from e and the corresponding DH share ge (yielding ge
2

),

or use e with a DH share h where Fcrypto does not know

the secret exponent of h. Observe, however, that most real-

world protocols meant to achieve perfect forward secrecy

fulfill this restriction: In such protocols, an exponent e is

generated, used exactly once to generate a DH key, and then

deleted from memory. Hence, after a key was created, the

protocol will never access the exponent in any way, and thus,

also never cause the commitment problem. For example, this

holds true for all protocols analyzed in Section VI. It might

be possible to relax these restrictions, enabling an analysis

of protocols that re-use the same exponent, by using the non-

standard PRF-ODH assumption5 [5], [6] instead of the DDH

assumption. We want to explore a formulation of Fcrypto

based on this assumption in future work.

A similar commitment problem exists for encryption and

key derivation. However, again most real-world protocols do

not cause this problem (see also [19]). This leads us to the

following formal restriction of environments:

We say that an environment E does not cause the commit-
ment problem (is non-committing), if the following happens

with negligible probability only: i) in a run of E |Fcrypto, after

an unknown key k has been used to encrypt a message or

derive a new key, k becomes known later on in the run, i.e.,

is marked known by Fcrypto, and ii) in a run of E |Fcrypto,

after an unknown exponent e or the corresponding group

element ge has been used to create an unknown DH key k,

e becomes known later on in the run, i.e., is marked known

by Fcrypto.

Besides the commitment problem, we also have to take

care of key cycles. As mentioned, standard security def-

initions such as IND-CCA2, which we want to use for

5Informally, the PRF-ODH assumption states that, given a Diffie-Hellman
key gab which is used to key a pseudo random function f(gab, s), no ad-
versary that knows ga and gb can distinguish a challenge output of the PRF
from random, even when given access to an oracle O(h, s) := f((h)a, s)
(where h is a group element and s is a salt).

our realization, do not provide any security in this case.

Indeed, security in the presence of key cycles is usually not

required: real-world protocols generally do not encrypt keys

anymore once these keys have been used for the first time.

Obviously, such protocols also do not produce key cycles.

This observation leads to the following natural restriction of

environments:

An environment E is called used-order respecting if the

following happens with negligible probability only: in a run

of E |Fcrypto an unknown key k (i.e., k is marked unknown in

Fcrypto) which has been used for encryption or key derivation

at some point is encrypted itself by an unknown key k′ used

for the first time later than k.

We call an environment well-behaved if it is used-order

respecting and does not cause the commitment problem.

For such well-behaved environments, we can show that

Pcrypto ≤R Fcrypto if all cryptographic primitives fulfill the

standard cryptographic assumptions. As explained above,

many real world protocols fulfill the requirements of well-

behaved environments, and hence, if they are analyzed using

Fcrypto, one can replace Fcrypto with its realization afterwards.

In the following theorem, formally, instead of considering

a specific set of environments, we use a machine F∗ to man-

ually enforce the properties of well-behaved environments

for all environments. The machine F∗ is plugged between

the environment and the I/O interface of Pcrypto/Fcrypto and

forwards all messages while checking that the conditions of

well-behaved environments are fulfilled.6 If at some point

one of the conditions is violated, instead of forwarding the

current message, F∗ stops and blocks all future communi-

cation. We obtain the following theorem:

Theorem 2. Let Σunauth-enc, Σauth-enc, Σpub be encryption
schemes, Σmac be a MAC scheme, Σsig be a signature
scheme, GroupGen be an algorithm as above, F be a family
of pseudo-random functions, and F ′ be a family of pseudo-
random functions for GroupGen. Let Pcrypto be parameter-
ized with these algorithms. Let Fcrypto be parameterized with
GroupGen and a leakage algorithm L which leaks exactly
the length of a message. Then,

F∗ | Pcrypto ≤R F∗ | Fcrypto

if Σunauth-enc and Σpub are IND-CCA2 secure, Σauth-enc is
IND-CPA and INT-CTXT secure, Σmac and Σsig are UF-CMA
secure, GroupGen always outputs groups with n ≥ 2 and
such that the DDH assumption holds true for GroupGen.7

6Note that this can be done by observing the I/O traffic and asking Fcrypto

about the corruption status of keys.
7We refer the reader to our technical report [24] for the formal definitions

of these security notions. We have to require n ≥ 2 because the trivial group
which contains only the neutral element fulfills the DDH assumption, but
is not suitable for realizing Fcrypto. In particular, collisions of randomly
chosen exponents do not happen with a negligible probability if there is
only one element.
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As mentioned, the proof of this theorem is quite involved.

It consists of a series of hybrid systems where we replace

parts of Pcrypto with the ideal versions used in Fcrypto

and then show that no environment can distinguish these

replacements. Each of these steps involves several reductions

and hybrid arguments itself. In particular, some of these

reductions are intertwined with each other, as, e.g., the

security of symmetric encryption and key derivation rely on

each other. We provide a proof sketch in Appendix A; a full

proof with all details can be found in our technical report

[24].

V. IDEAL FUNCTIONALITIES FOR KEY EXCHANGE WITH

KEY USABILITY

In this section, we present our ideal functionalities for

key exchange, one functionality for mutual authentication,

denoted by FMA
key-use, and one for unilateral authentication,

FUA
key-use. These functionalities are of general interest and

should be widely applicable. In Section VI, we use them in

our case studies. In the following, we first present FMA
key-use

and then describe how FUA
key-use differs.

The functionality FMA
key-use. The ideal functionality FMA

key-use

is inspired by an ideal key exchange functionality from [11],

but has important differences, which among others makes it

more widely applicable (see the comparison at the end of

this section). In particular, neither unilateral authentication

nor perfect forward secrecy were considered in [11].

Similar to other exchange functionalities (e.g., [30]),

FMA
key-use guarantees that an uncorrupted instance that outputs

a session key is in a session with an instance of its intended

communication partner and only uncorrupted instances from

the same session will have access to the session key.

However, FMA
key-use (and also FUA

key-use) has several features that

distinguishes it from key exchange functionalities typically

considered in the literature.

First, FMA
key-use never directly outputs session keys to users.

Instead it provides a user with a pointer and allows the user

to perform ideal cryptographic operations with it (among

others, symmetric encryption, MACing, deriving new keys

from the session key which can then be used further). This

is an important feature as higher level protocols that use

FMA
key-use, such as secure channel protocols, can use the session

key still in an ideal way, which simplifies the analysis of

higher level protocols and avoids reduction proofs.

Second, unlike most other formulations of key exchange

functionalities in the literature, the above feature also makes

it possible to realize FMA
key-use by key exchange protocols that

use the session key during the key exchange. Most key

exchange functionalities simply output a session key that

was chosen uniformly at random, and thus, a realization

must ensure that the session key is indistinguishable from a

random one. However, this is not the case if the key was used

during the actual key exchange, e.g., to encrypt a message,

as then the environment can check whether the key that

is output after a successful key exchange can decrypt said

message. In contrast, our functionality does not output the

session key but only gives access to idealized cryptographic

operations. As long as a key exchange protocol ensures

separate domains of messages that are, e.g., encrypted with

the session key during and after the key establishment phase,

it can realize FMA
key-use.

Third, almost all formulations of functionalities (including

key exchange functionalities) in the universal composability

literature use so-called pre-established session IDs [11]:

users somehow, outside of the protocol, agree on a (global)

unique session ID and then use that session ID to access the

same ideal functionality. As argued in [11], this hinders the

faithful analysis of real-world protocols where such global

session IDs are not a priori available; session IDs are often

rather implicitly established during the protocol run. In fact,

as illustrated in [11], an insecure key establishment protocol

can be transformed into a secure one by assuming that global

session IDs have been established prior to the actual protocol

run. Therefore, FMA
key-use does not rely on pre-established

session IDs. Instead, just as Fcrypto, it uses local session IDs

that are chosen and managed by the higher level instances.

Local sessions (of an initiator and a responder) are combined

by the adversary/simulator into a global session sharing one

key during the protocol run.
Formally, FMA

key-use is a machine that has two I/O tapes

tI and tR (initiator and responder role), one network

tape, and two I/O tapes t′I and t′R that connect to

Fcrypto, which is used as a subroutine by FMA
key-use. FMA

key-use

is parameterized with a symmetric key type tkey ∈
{pre-key, unauthenc-key, authenc-key, mac-key} which

determines the type of the keys that are output after a suc-

cessful key exchange. Similarly to Fcrypto, FMA
key-use handles

all (local) sessions for all users. Messages from/to any I/O

tape are expected to be prefixed with (pid , lsid ) where

pid ∈ {0, 1}∗ is a party ID and lsid ∈ {0, 1}∗ is a local

session ID managed by the higher level protocol. Thus, a

user participating in a key exchange can be fully identified

by (pid , lsid , r), where r ∈ {I, R} specifies the role of that

user (and the tape she is using).
The functionality FMA

key-use maintains a mapping state :
{0, 1}∗ → {⊥, started, inSession, exchangeFinished,
sessionClosed, corrupted}, initially set to ⊥ for ev-

ery input which stores the current state for every user

(pid , lsid , r). The functionality also stores the PID of the

intended partner of a user (pid , lsid , r) via a mapping

partner : {0, 1}∗ → {0, 1}∗. The functionality provides the

following operations to higher level protocols:

- A user (pid , lsid , r) with state(pid , lsid , r) = ⊥ can

start a key exchange by sending m = (InitKE, pid ′,m′),
where pid ′ denotes the party ID of the intended partner

and m′ ∈ {0, 1}∗ is an arbitrary bit string which the

realization might use in the key exchange protocol. Upon

receiving this message, FMA
key-use sets state(pid , lsid , r) :=
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started, sets partner(pid , lsid , r) := pid ′, and forwards

(m, (pid , lsid , r)) to the adversary.

- A user (pid , lsid , r) with state(pid , lsid , r) =
exchangeFinished can use FMA

key-use to access symmetric

operations of the subroutine Fcrypto. To be more precise,

FMA
key-use forwards the commands New, Equal?, Enc,

Dec, Mac, MacVerify, and Derive to Fcrypto on tape

t′r, r ∈ {I, R}. Upon receiving a response of Fcrypto,

FMA
key-use forwards this response to the user while internally

keeping track of all pointers that the user has access to.

- A user (pid , lsid , r) with state(pid , lsid , r) =
exchangeFinished can close her session in

FMA
key-use by sending CloseSession, by which

she loses access to all of her keys. FMA
key-use sets

state(pid , lsid , r) := sessionClosed, notifies the

adversary with a restricting message (CloseSession,
(pid , lsid , r)),8 and, after receiving any response from

the adversary, returns OK to the user.

Corruption is modeled in such a way that the adversary may

corrupt instances before a key exchange and after they have

closed a session, but not while a session is active (see the

discussion below). More precisely:

- The adversary can send (Corrupt, (pid , lsid , r))
to corrupt a user where state(pid , lsid , r) ∈
{⊥, sessionClosed}. The user’s state is updated

accordingly.

- FMA
key-use forwards messages to/from corrupted users (in

role r) between the I/O tape tr and the network tape.

It does not give the adversary access to the subroutine

Fcrypto. This models perfect forward secrecy as the adver-

sary should not gain access to any keys after the session

is closed, even if he corrupts one of the parties.

- A user (pid , lsid , r) may at any time ask for its cor-

ruption status by sending Corrupt?. FMA
key-use answers

this request immediately without contacting the ad-

versary. However, if state(pid , lsid , r) = ⊥, FMA
key-use

first asks the adversary whether he wants to cor-

rupt the user by sending him the restricting message

(CorruptUser?, (pid , lsid , r)), expects a response b and,

if b = true, sets state(pid , lsid , r) := corrupted. In

any case, FMA
key-use then returns the corruption status of

(pid , lsid , r) to the user.

The adversary can also declare two local sessions to belong

to a global session and he decides when a user has success-

fully established a key:

- The adversary may send the message (GroupSession,
(pidI , lsidI), (pidR, lsidR)) to FMA

key-use if the

following holds true: state(pidI , lsidI , I) ∈
{started, corrupted}, state(pidR, lsidR, R) ∈
{started, corrupted}, and both users are not yet part

8This models that one can usually observe whether some session is still
active by monitoring the network of a party. Keeping this information secret
is typically not a goal of secure key exchange protocols.

of a global session. The functionality FMA
key-use then sets

the state of uncorrupted users to inSession and stores

that (pidI , lsidI , I) and (pidR, lsidR, R) are in the same

global session. It then uses the GetPSK command of

Fcrypto to get pointers to an unknown key k of type tkey

for the two users (if the received key is corrupted, then

FMA
key-use asks for another key until its gets an uncorrupted

one). Finally, it sends OK to the adversary. We note that,

while we allow the adversary to pair an uncorrupted user

with a corrupted one, the corrupted user will not get

access to the session key in Fcrypto (as already explained

above).

- The adversary may send (FinishKE, (pid , lsid , r)) where

state(pid , lsid , r) = inSession to complete the key

exchange for an uncorrupted user. This message is ac-

cepted only if the user (pid , lsid , r) is in a session with

its intended partner, i.e., he is in a session with a user

(pid ′, lsid ′, r′) such that pid ′ = partner(pid , lsid , r).
The functionality FMA

key-use then sets state(pid , lsid , r) :=
exchangeFinished and outputs (Established, ptr),
where ptr is the pointer to the previously established

session key k.

The functionality FUA
key-use. The functionality FUA

key-use is

similar but models unilateral authentication of the responder

only. That is, it gives an initiator the same guarantees

as FMA
key-use, while a responder may accept any connection

without authentication. More formally, FUA
key-use differes from

FMA
key-use as follows:

- Responders no longer indicate an intended session partner

when starting a key exchange.

- The adversary may instruct FUA
key-use to output a key

(FinishKE) for an uncorrupted instance of a responder

that has already started a key exchange even if that

instance is not yet part of a global session.

- If an honest responder instance is instructed to output

a session key, no checks regarding the identity of the

session partner are performed. Furthermore, unless the

responder is in a global session with an honest initiator,

the session key may be corrupted/marked known.

- Responder instances that have already output a key may

still be mapped into a global session if i) they are not

yet part of a global session and ii) their session key is

uncorrupted/unknown. Their session partner will receive

the same session key.

Discussion. The functionality FMA
key-use assumes that respon-

ders know the identity of the initiator at the start of the key

exchange. One could easily define a variant FMA
key-use

′
where

the responder learns the identity of the initiator only at the

end of the key exchange. Note, however, that an environment

for FMA
key-use is free to choose the expected identities of peers

of the responder instances anyway, so it can always choose

the identities at the start of a run appropriately.

The corruption model of both FMA
key-use and FUA

key-use requires
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the corruption status of instances to stay unchanged during

the key exchange. This is not strictly necessary for the

ideal functionalities themselves (we could easily define

them to model full dynamic corruption). But due to the

commitment problem realizations typically have to adopt the

same corruption model anyway. Therefore, we chose to also

restrict the corruption model of FMA
key-use/FUA

key-use as this makes

these functionalities easier to use by higher level protocols.

We note that this is not a strong restriction compared to

full adaptive corruption, as session keys from key exchange

protocols are usually very short lived, and hence, the window

for corruption is small.

While FMA
key-use/FUA

key-use are inspired by a functionality pro-

posed in [11], the functionalities differ in several important

aspects: As mentioned before, unilateral authentication is

not considered in [11]. Also, FMA
key-use/FUA

key-use model per-

fect forward secrecy, unlike the functionality in [11]. The

functionality in [11] supports only symmetric encryption as

an operation for higher-level protocols, and hence, is insuf-

ficient for modeling the cryptographic operations of most

higher-level protocols. Furthermore, most common ideal

functionalities for key exchange in the literature, including

the functionality of [11] but also, e.g., the one from the CK

model [30], impose overly strict security requirements. Thus,

there are some reasonable protocols that cannot realize these

functionalities. To be more precise, those functionalities

require that the views of both parties are identical when

the first party outputs its key. In other words, if, e.g., Alice

wants to talk to Bob and outputs a session key, then the

protocol must not only ensure that Alice’s session partner

is indeed Bob, but also that Bob believes he is talking to

Alice (even if Bob has not even finished his part of the

protocol yet). However, this is not the case in protocols such

as the SIGMA protocol family. While the initiator knows

that she is talking to her intended communication partner

when she outputs a key, the responder has not yet confirmed

the identity of the initiator, and thus their views may differ.

Even though these protocols cannot realize the functionality

in [11] and the like, the SIGMA protocol family is still

reasonable as this protocol family ensures that the responder

learns the correct identity of the initiator before outputting

her own session key (as we show in Section VI-B). By

relaxing the requirements on establishing a global session

and instead performing additional checks when a session

key is output, FMA
key-use allows for the analysis of a wider

variety of protocols.

VI. CASE STUDIES

In this section, we carry out several case studies to

illustrate the usefulness of our framework. We analyze one of

the ISO 9798-3 protocols [21] and the SIGMA protocol with

identity protection [22]. Both protocols are meant to provide

mutually authenticated key exchange. We also analyze one

mode of OPTLS [23] for unilaterally authenticated key

A BA, gx

B, gy, SIGB(g
x, gy, A)

SIGA(g
y, gx, B)

Figure 1. The ISO 9798-3 protocol for mutual authentication. At the end
of the protocol, users share a key gxy that is then used to derive a session
key.

exchange that served as the basis for the key exchange

protocol in TLS 1.3 draft-09 [31], and point out a subtle

bug in the original game-based proof.

We show that these protocols realize FMA
key-use and FUA

key-use,

respectively. In our modeling of these protocols, we use

Fcrypto to perform all cryptographic operations. By The-

orem 2, Fcrypto can then be replaced by its realization

Pcrypto so that the protocols use the actual cryptographic

primitives. Due to the use of Fcrypto, the proofs are quite

simple as they rely on high level information theoretic

arguments only; they do not need a single reduction, not even

any probabilistic reasoning. At the same time, we obtain

strong universal composability guarantees for the protocols.

Moreover, the use of local session IDs in our framework

allows for a faithful modeling of the protocols. As discussed

at the beginning of Section V, other universal composability

approaches impose pre-established (global) session IDs on

the protocols, and hence, modify the protocols quite severely.

A. ISO protocol

The ISO 9798-3 [21] protocol for mutual authentication

is depicted in Figure 1. It is based on Diffie-Hellman key

exchange and uses signatures to ensure mutual authentica-

tion.

The modeling of the ISO protocol in our framework is

straightforward. We use two machines MI and MR to model

the initiator and responder role, respectively. These machines

provide the same I/O interface as FMA
key-use and each one has

a network tape. They use Fcrypto as a subroutine to perform

all cryptographic operations. In every run of the protocol,

there is one instance of MI /MR per user (pid , lsid ), with

each instance executing the protocol according to Figure 1.

As soon as an instance receives some DH share, it uses

the BlockGroupElement command to ensure that Fcrypto

“knows” this share, and hence, fresh exponents do not

collide with it.9 At the end of the protocol, instances create

a DH key from gx and gy and use this to derive the session

key of type unauthenc-key.10 They then output a pointer to

that session key and subsequently provide the same interface

9As mentioned earlier, this operation can be omitted when Fcrypto is
replaced with its realization. The resulting protocol is a natural implemen-
tation of the ISO protocol.

10We could also have chosen any other symmetric key type supported
by FMA

key-use. The security proof is independent of this.
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as FMA
key-use, i.e., they allow a user to use Fcrypto to perform

(ideal) cryptographic operations with the session key.

Corruption of MI/MR is modeled analogously to FMA
key-use.

That is, protocol participants might be corrupted by the

adversary (by sending a special message) before the start

of the protocol run or after a session has been closed, but

not while a key exchange/session is active. While this is

more restricted than full adaptive corruption, it is still a

reasonable and meaningful modeling, as already discussed in

Section V. Besides directly being corrupted by the adversary,

an instance of MI/MR also considers itself corrupted (even

though not directly controlled by the adversary) if its own

signing key or the signing key of its intended peer is

corrupted. This models that no security guarantees, and in

particular no guarantees about authentication, can be given

if the adversary has access to the long term secrets. Please

refer to our technical report [24] for a detailed definition of

the corruption behavior.

The following theorem states that the ISO protocol is a

secure universally composable mutually authenticated key

exchange protocol. As mentioned before, our modeling

allows one to use session keys returned by this protocol

to be used by higher level protocol in an ideal way.

Theorem 3. Let MI and MR be machines modeling the
ISO protocol as described above, let Fcrypto and F ′

crypto be
two versions of the ideal crypto functionality with the same
parameters, and let FMA

key-use be the ideal functionality for
mutually authenticated key exchanges with parameter tkey =
unauthenc-key. Then the following holds true:

MI |MR | Fcrypto ≤R FMA
key-use | F ′

crypto.

As mentioned before, the proof of this theorem does

not require any reductions, not even probabilistic reasoning,

which greatly simplifies the overall proof. We note that we

directly show this theorem in the multi session setting. While

there exists a single session theorem for local session IDs

[11], in our case the analysis is already simple in the multi

session setting.

Proof: In the following, we say that a party pid is

corrupted if the signing key of party pid is corrupted. We call

an instance (pid , lsid , r) corrupted if it outputs true when

asked for its corruption status by the environment, and we

say that an instance (pid , lsid , r) is explicitly corrupted if

the adversary took control of this instance by sending the

special Corrupt message.

We have to define a simulator S and show that

E |MI |MR | Fcrypto ≡ E | S |FMA
key-use | F ′

crypto for all environ-

ments E ∈ EnvR(MI |MR | Fcrypto). The simulator S inter-

nally simulates the protocol MI |MR | Fcrypto and keeps the

corruption statuses of user instances in FMA
key-use and simulated

instances of MI/MR synchronized. When S has to initialize

Fcrypto, S first sends a message to F ′
crypto to initialize it and

receives a group (G,n, g) in response which is used for the

simulation of Fcrypto. S then asks the environment for the

cryptographic algorithms and forwards them to F ′
crypto.

If FMA
key-use indicates that a user (pid , lsid , r) has started

a key exchange, S does the same in its internal simulation.

If an uncorrupted initiator (pidI , lsidI , I) accepts a group

element gy and outputs a pointer to a session key, then S
instructs FMA

key-use to create a session from (pidI , lsidI , I) and

the instance (pidR, lsidR, R) that created the signature in the

second protocol message. The subroutine F ′
crypto of FMA

key-use

will then ask S to provide the value for the session key;

S provides the same value that is used in its simulation

as session key. Finally, S instructs FMA
key-use to output the

session key pointer for (pidI , lsidI , I). If an uncorrupted

instance (pidR, lsidR, R) outputs a pointer to a session key,

S instructs FMA
key-use to output the session key pointer for

(pidR, lsidR, R). While a session key is used, the simulator

may be asked by F ′
crypto to provide new unknown keys (e.g.,

when deriving keys). In this case, S simulates the same

operation in Fcrypto and forwards the keys to F ′
crypto. If S

is notified that some instance (pid , lsid , r) has closed its

session, S updates the internal simulation accordingly and

responds with OK. S uses the internal simulation to process

inputs/outputs for/from corrupted instances.

We now show that S is a good simulator. As explained

in Section III-B, due to the use of restricting messages, we

can conveniently assume that all operations performed by

Fcrypto are atomic, without any side effects on the machines

MI or MR. This simplifies the overall proof.

First, observe that S keeps the key sets of Fcrypto and

F ′
crypto “synchronized”, i.e., the set of keys of F ′

crypto is a

subset of all keys of Fcrypto and all keys in F ′
crypto have the

same known/unknown status in Fcrypto. This is easy to see,

as the simulator provides all unknown keys for F ′
crypto while

it is not possible for the environment to insert any known

keys. As both key sets are synchronized, F ′
crypto will accept

all keys that have been accepted by the internally simulated

Fcrypto and thus the environment cannot use the freshness

check on new keys to distinguish real from ideal world.

The following argument is split into four cases, for which

we argue that the simulation is perfect: Honest initiator

instances during key establishment, honest responder in-

stances during key establishment, honest instances after key

establishment, and corrupted instances.

Let (pidI , lsidI , I) be an uncorrupted instance of MI that

wants to establish a session with party pid ′. It is easy to

see that the simulator can perfectly simulate the behavior

of such an instance up to the point when it outputs a key

as the behavior does not depend on any data present in

F ′
crypto. In particular, honest instances will use Fcrypto only to

create/verify signatures, and exchange Diffie-Hellman keys;

both of these operations are unavailable in F ′
crypto and thus

can separately be simulated by S.

We have to argue that S finds an instance of a responder

that can be paired with (pidI , lsidI , I): If (pidI , lsidI , I)
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outputs a session key pointer, then it must have accepted

the second message of the ISO protocol and the signing

key of its intended partner pid ′ must still be uncorrupted

(otherwise, the protocol would block according to our

modeling of corruption). Hence, there is some instance

belonging to pid ′, say (pid ′, lsid ′, r ′), that has signed the

message m = (gx, gy, pidI), where x is the secret ex-

ponent of (pidI , lsidI , I) and y is the secret exponent of

(pid ′, lsid ′, r ′). This instance is uncorrupted: On the one

hand, it cannot be explicitly corrupted by the adversary

as the party pid ′ is still uncorrupted. On the other hand,

as (pid ′, lsid ′, r ′) considers pidI to be the partner of the

key exchange (which is acknowledged in the signature),

we know that (pid ′, lsid ′, r ′) also does not consider itself

corrupted due to corrupted signing keys. Next, we argue

that this instance is a responder, i.e., r ′ = R: If it were

an initiator, then the signed message m would imply that

this instance received and accepted the second protocol

message containing a message m′ = (gy, gx, pid ′) signed

by an uncorrupted instance of pidI , where x is the se-

cret exponent of the instance of pidI . However, as x/gx

is created ideally, there is only one honest instance that

would sign such a message, namely (pidI , lsidI , I), which

does not output any signatures before accepting the second

message. This implies r ′ = R. We still have to show that

(pid ′, lsid ′, r ′) was not yet assigned to a session by S:

The simulator pairs (honest) responder instances with those

(honest) initiator instances that accept the second message,

but as x/gx is unique, the only honest initiator instance that

accepts this message is (pidI , lsidI , I). Hence, we have that

(pid ′, lsid ′, r ′) is not yet part of a global session and can

be paired with (pidI , lsidI , I). Finally, observe that both

x/gx and y/gy have been created ideally (with x �= y)

and thus the key derived from them will be considered

unknown in Fcrypto. The simulator can provide the exact

same key from the simulation to F ′
crypto as the key sets are

synchronized. Note in particular that only (pidI , lsidI , I)
and (pid ′, lsid ′, r ′) can get a pointer to this key, which

matches the behavior of FMA
key-use.

The remaining cases are similar. We provide them in

Appendix B.

By Theorem 2, we can now replace Fcrypto by its real-

ization Pcrypto which yields that the ISO protocol (when

using the actual cryptographic operations) is a universally

composable mutual authenticated key exchange protocol.

Corollary 1. Let MI ,MR as defined above, let Fcrypto,
Pcrypto, and F∗ as in Theorem 2, in particular, we have
that Pcrypto ≤R Fcrypto and F∗ enforces well-behaved envi-
ronments. Then the following holds true:

F∗ |MI |MR | Pcrypto ≤R F∗ | FMA
key-use | Fcrypto.

Proof: This statement follows easily from Theorem 1,

Theorem 2, Theorem 3, and transitivity of the ≤R relation

A Bgx

gy, {B, SIGB(g
x, gy),MACkm

(B)}ke

{A, SIGA(g
y, gx),MACkm

(A)}ke

Figure 2. The SIGMA protocol with identity protection. The keys ke and
km are derived from gab, where ke is used to encrypt and km is used
to mac messages during the key exchange. Another key ks is also derived
from gab and used as session key.

as well as the fact that the machines MI and MR constitute

a well-behaved environment when combined with F∗ and

any another environment E : corrupted instances do not

have access to unknown keys, so they cannot violate the

well-behaved property. Uncorrupted instances during the

key usage phase are well-behaved due to F∗. Uncorrupted

instances during the key establishment phase can violate

the well-behaved property only by causing the commitment

problem for Diffie-Hellman keys, i.e., set an unknown ex-

ponent to known after it was used to create an unknown

key. This case does not occur as exponents are never

accessed/used after one key has been created with them.

B. SIGMA Protocol

The SIGMA protocol with identity protection [22] is

depicted in Figure 2. Unlike the ISO protocol, it uses the

exchanged DH key to derive three other keys, two of which

are used during the key exchange to ensure authentication

and confidentiality of party IDs, while the third is used as

session key.

We model the SIGMA protocol analogously to the ISO

protocol. We use unauthenticated encryption to encrypt

messages in the protocol; authenticated encryption is not

necessary. The following theorem states that the SIGMA

protocol is a secure universally composable mutually au-

thenticated key exchange protocol.

Theorem 4. Let MI and MR be the machines modeling the
SIGMA protocol, let Fcrypto and F ′

crypto be two versions of the
ideal crypto functionality with the same parameters, and let
FMA

key-use be the ideal functionality for mutually authenticated
key exchanges with parameter tkey = unauthenc-key. Then
the following holds true:

MI |MR | Fcrypto ≤R FMA
key-use | F ′

crypto.

We provide the proof of this theorem in our technical

report [24]. Again, it does not need any reductions or

probabilistic reasoning. Just as for the ISO protocol, by

Theorem IV-A we can replace Fcrypto by its realization

Pcrypto.

Corollary 2. Let MI ,MR as defined above, let Fcrypto,
Pcrypto, and F∗ as in Theorem 2, in particular, we have
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A Bchello, gx

shello, gy, {SIGB(g
y), sfin}ke

Figure 3. The 1-RTT non-static mode of OPTLS. Both chello and
shello are arbitrary bit strings that are exchanged during the protocol
(they can be used to negotiate parameters for a higher level protocol).
The message sfin is a MAC on the whole key exchange, i.e., sfin =
MACkm (chello, gx, shello, gy , SIGB(gy)). The keys ke (for encryption),
km (for MACing) and the session key ks are derived from the DH key
gxy as shown in Figure 4.

HKDFgxy

shello “0”

ke

HKDFgxy

chello “0”

km
HKDF

ε

ks

Figure 4. Key derivation in the 1-RTT non-static mode of OPTLS. HKDF
[32] is a key derivation function that takes as input a key (arrows on the
left), context information (upper left arrows), and a salt (upper right arrows).
It outputs a variable number of keys (bottom arrows).

that Pcrypto ≤R Fcrypto and F∗ enforces well-behaved envi-
ronments. Then the following holds true:

F∗ |MI |MR | Pcrypto ≤R F∗ | FMA
key-use | Fcrypto.

C. OPTLS

The OPTLS protocol family [23] specifies several key

exchange protocols with unilateral authentication. It was

built to meet the specific requirements of TLS 1.3 for key

exchange; a slightly modified version was included in draft-

09 of TLS 1.3 [31]. In Figure 3, we show the so-called

non-static mode of OPTLS. Unlike the ISO and SIGMA

protocols, OPTLS also specifies the exact key derivation

procedure, which we depict in Figure 4.

We model OPTLS in the same way as the ISO and

SIGMA protocols, but with the following changes: The

machines MI and MR execute the protocol from Figure 3 to

exchange a key. Instances of responders do not specify an

intended session partner at the beginning (as the protocol

does not authenticate the initiator to the responder) and

thus also do not consider themselves to be corrupted if

their session partner is corrupted. We use the optional bit

string m′, which is part of the InitKE message expected by

FUA
key-use, to provide instances of MI with the chello message,

and instances of MR with the shello message.

We model HKDF via the Derive command of Fcrypto.

As Fcrypto provides a single argument for key derivation, we

concatenate both context information and salt and use the

resulting string as salt for Fcrypto. This models that HKDF

should provide independent keys if either salt or context

information is changed. Another technical difference is that

HKDF outputs a variable number of keys, while Fcrypto

outputs a single key for every salt. It is easy to extend Fcrypto

to also support deriving multiple keys from a single salt and

then realize it with a secure variable length output PRF.

Nevertheless, for simplicity, we use the current formulation

of Fcrypto and instead call the Derive command twice to

obtain two keys. Formally, we use two different salts which

are obtained by prefixing the original salt with 0 or 1,

depending on whether the first or second key is derived.

Surprisingly, OPTLS does not realize FUA
key-use. To see this,

consider the following setting: an honest initiator outputs a

session key which was generated from its own DH share gx

and the responders DH share gy . The responder instance that

signed gy might have received a different group element, say

h �= gx, in the first protocol message. If h was not honestly

generated by Fcrypto, then y will be marked known after

the calculation of hy because the DDH assumption does not

guarantee that an attacker learns nothing from y in this case.

As y is marked known, the key gxy and all keys derived from

it will also be marked known. Thus, we have no security

guarantees for the MAC and an attacker can easily let the

initiator instance accept, even though there is no instance of

a responder that can be paired with it (the responder that

signed gy outputs a different session key).

We note that this is not a direct attack against the

protocol but rather shows that assuming hardness of DDH

and security of the PRF family is not sufficient to prove

the security of this protocol mode. Indeed, we found that

the original game-based security proof of this protocol

from [23] is flawed: In the proof, where the authors use

the same cryptographic assumptions, gxy is replaced by

gz, z
$← {1, . . . , n} during a hybrid argument (cf. game

2). The authors claim that this can be reduced to the DDH

assumption. But a simulator in the reduction to DDH would

have to simulate the game where gx of the initiator and

gy of the responder are replaced with the challenges from

the DDH game. Now, the simulator might have to calculate

hy (for some group element h) and derive keys from it,

if the responder received h in its first message. This is

impossible with just the DDH assumption as the simulator

neither knows y nor has an oracle to compute hy , i.e., he

cannot simulate the game faithfully.

To fix this problem both in the original paper and in

our setting, one can use stronger assumptions. For example,

one could use the PRF-ODH assumption [5], [6], where the

adversary additionally gets access to an oracle for calculating

keys derived from hy (where y is one of the secret exponents

and h is provided by the adversary). As mentioned earlier,

we leave a formulation of Fcrypto based on the PRF-ODH

assumption for future work. An alternative fix for this

problem (again for both settings) is to have gx signed as

well, i.e., signing (gx, gy) as in the SIGMA protocol. This
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allows for an analysis using the DDH assumption, as now

the signature guarantees that the responder paired gy with

gx only. The following theorem states that this variant is a

secure universally composable unilaterally authenticated key

exchange.

Theorem 5. Let MI and MR be machines modeling the
variant of the 1-RTT non-static mode of OPTLS that signs
both gx and gy . Let Fcrypto and F ′

crypto be two versions of the
ideal crypto functionality with the same parameters, and let
FUA

key-use be the ideal functionality for unilaterally authenti-
cated key exchanges with parameter tkey = unauthenc-key.
Then the following holds true:

MI |MR | Fcrypto ≤R FMA
key-use | F ′

crypto.

The proof of this theorem can be found in our technical

report [24]. Again, it does not need any reductions or

probabilistic reasoning. As before, we can again replace

Fcrypto by its realization Pcrypto.

Corollary 3. Let MI ,MR as defined above, let Fcrypto,
Pcrypto, and F∗ as in Theorem 2, in particular, we have
that Pcrypto ≤R Fcrypto and F∗ enforces well-behaved envi-
ronments. Then the following holds true:

F∗ |MI |MR | Pcrypto ≤R F∗ | FMA
key-use | Fcrypto.

VII. DISCUSSION AND RELATED WORK

There are several different approaches for analyz-

ing security protocols, mainly symbolic, game-based,

implementation-based, and universal composability ap-

proaches. All of these approaches have different advantages

and shortcomings; there is no silver bullet, as can be seen,

for example, by the fact that real-world protocols, such as

TLS, have been studied in the literature using all of these

approaches (often computer-aided), taking different views

and making use of the specific merits thereof (see, e.g., [1]–

[9]).

- Symbolic (Dolev-Yao-style) approaches abstract from low

level cryptographic details in order to offer a very high

degree of automation (see, e.g., [33]–[35]).

- Implementation-based analysis captures details of the

actual implementations of protocols, which is very desir-

able, but of course also makes the analysis more involved

(see, e.g., [36]–[39]).

- Game-based models are very expressive and flexible in

defining security properties of a protocol (see, e.g., [40]–

[42] and [43], [44] for tools). While they do not enjoy

built in modularity, efforts have been made to improve

the modularity provided by these models (see, e.g., [13],

[14]).

- Universal composability approaches come with modular-

ity built in and allow one to show that protocols are secure

in arbitrary (polynomially bounded) environments (see,

e.g. [15]–[18]). But due to the commitment problem, they

can be more limited in their corruption modeling. In some

cases, instead of allowing for full adaptive corruption,

one might have to model corruption in a more restricted,

but still reasonable way (see also the discussions in

Sections V and VI).

Our framework adds the feature of avoiding or limiting

the need for tedious and error-prone reductions, while at

the same time allowing to establish universally composable

security guarantees. In particular, proofs are simplified and

results can easily be re-used and built upon.

In the remainder of this section, we discuss closely

related work in more detail. The works [11], [19] have been

discussed in detail before already.

In [45], Canetti and Gajek abstract Diffie-Hellman key

exchange via an ideal key encapsulation functionality. There

are two key differences to our framework. First, unlike

Fcrypto and our key usability functionalities, the ideal key

encapsulation functionality does not allow a user/higher-

level protocol to use the exchanged key in an idealized way

or to use it with other primitives, which entails reductions

proofs. Second, a large class of protocols cannot be analyzed

with their key encapsulation functionality: in order to prove

the realization, they impose a very strong restriction on the

environment/higher-level protocols, namely, an initiator may

use her secret exponent a only with DH shares gb that have

been honestly generated by a responder. Many protocols, in-

cluding all case studies considered in this paper, do not fulfill

this requirement: If, for example, the responder is corrupted,

then the environment may sign arbitrary DH shares that were

not honestly generated. These DH shares will be accepted

by the initiator, which violates the requirement.

Our case studies have not yet been faithfully analyzed

in a universal composability setting (see [23], [41], [46]

for game-based analyses). Variants of the ISO 9798-3 and

SIGMA protocols have been analyzed in the UC model in

[30], [45], [46]. These variants assume that protocol partic-

ipants have already established a global, unique SID prior

to running the actual protocol, and then either use different

signing keys for every new session (which is unrealistic) or,

if they re-use the same key across different sessions, prefix

all signed messages with the SID. The latter is a so-called

joint-state realization, which, however, results in a protocol

that differs from the actual protocol. As illustrated in [11],

such modifications can potentially create a secure protocol

from an insecure one.

Moreover, the analysis of the (variant of the) SIGMA

protocol in [46] needed a modified version of the ideal

key exchange functionality Fke where initiators and respon-

ders cannot specify their intended peers. Our functionality

FMA
key-use is the first that allows for proving security of the

SIGMA protocol in a setting where the initiator and the

responder can specify their intended peers.
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VIII. CONCLUSION

In this paper, we have proposed an ideal functionality

Fcrypto that models various cryptographic primitives which

can be combined with each other and can be used in an

idealized way. Importantly, Fcrypto supports Diffie-Hellman

key exchange, a widely and extensively used primitive in

real-world protocols. We also provided new functionalities,

FMA
key-use and FUA

key-use, for ideal mutual and unilateral authen-

ticated key exchange which lift the properties of Fcrypto to

the next protocol level. Notably, these functionalities allow

for analyzing a wider range of key exchange protocols than

traditional formulations of ideal key exchange functionali-

ties.

Altogether, our approach gets rid of reductions and hy-

brid arguments for primitives that are supported by Fcrypto.

Instead, proofs rely on simpler information theoretic argu-

ments only, which facilitates proofs and makes it easier to

uncover subtle problems that otherwise might get lost in

sequences of reductions. At the same time, our approach

offers very high modularity and strong universal composable

security guarantees.

We have illustrated the usefulness of our framework in

three case studies. In the case of OPTLS, we uncovered a

subtle problem in the original reduction due to the simplicity

of Fcrypto, which makes very explicit in which cases security

can be guaranteed.

In future work, we will apply our framework to other

real world protocols and extend the framework to further

facilitate their cryptographic analysis.
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APPENDIX

A. Proof Sketch of Theorem 2

As mentioned before, one of the key ideas for the defini-

tion of the simulator S is to provide gc for unknown Diffie-

Hellman keys, where c is choosen uniformly at random

from {1, . . . , n}, and gab for known ones. The proof itself

consists of series of hybrid systems where we replace parts

of the realization with the version used in the ideal protocol

and then show that no environment can distinguish this

replacement with more than a negligible probability.

In the first step, one defines a hybrid system P1
crypto where

all asymmetric operations and nonce generation is handled

as in Fcrypto while all other operations are performed as in

Pcrypto. Because we did not modify any of these operations,

the original proof still holds, which reduced this step to the

security of the asymmetric operations.

Next, one defines a hybrid system P2
crypto where also

exponent handling is replaced with the ideal version. In

particular, P2
crypto prevents exponent guessing and collisions.

Any distinguishing environment on this system can be re-

duced to the DDH assumption: If the environment manages

to guess an exponent, or an unknown exponent is generated

that is not fresh, then this can be used by an attacker on

the DDH assumption to calculate the secret exponent a
from the experiment. We note that this reduction requires

a lot of attention to details and is more involved than

usual reductions to the DDH assumption. This is because

P2
crypto can be used by the environment to perform several

operations with a and ga that are not available in the DDH

experiment; an adversary must be able to simulate all of

these operations without actually knowing a.

In the the third hybrid system P3
crypto one replaces real with

ideal Diffie-Hellman key generation, however, without pre-

venting key collisions or key guessing. That is, the simulator

provides the Diffie-Hellman keys as described above. This

step requires a hybrid argument itself, as we have to replace

a polynomial number of unknown keys in the order of their

creation. We can then reduce the distinguishing advantage

of an environment for the r-th and r + 1-th hybrid system

to the DDH assumption. Importantly, we have to establish

a single negligible bound for the distinguishing advantage

that is independent of r, as the sum of polynomially many

different negligible functions is not necessarily negligible.

Just as in the previous step, the reduction in this step requires

a lot of care for details as there are several operations in the

hybrid systems that an adversary on the DDH assumption

has to simulate without knowing the secret exponents a and

b of the DDH experiment.

In the fourth hybrid system P4
crypto, symmetric encryption

and key derivation are replaced with their ideal versions,

and key guessing and key collision are prevented. Again,

this step requires a hybrid argument which is quite in-

volved as we have to consider symmetric encryption and

899

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 23:06:18 UTC from IEEE Xplore.  Restrictions apply. 



key derivation simultaneously: All symmetric keys can be

encrypted, thus the security of symmetric keys depends on

the security of the encryption scheme. However, Diffie-

Hellman keys and key derivation keys can be used to create

new symmetric keys, i.e., the security of the encryption

scheme in turn depends on the security of the key derivation

schemes. In the hybrid argument, we track the order in

which unknown keys are used for the first time. The r-th

hybrid system performs operations with the first r unknown

keys ideally, and all other operations as in the realization.

One can then reduce the distinguishing advantage of an

environment for the r-th and r + 1-th hybrid system to

the security games of the encryption and key derivation

schemes. Again, it is important to establish a negligible

bound for the distinguishing advantage that is independent

of r.

In the final step, we have to replace MACs with their ideal

versions. As this step is unaffected by our extension, just as

the first step, the original proof still holds, which reduced

this step to the security of the MAC scheme.

B. Postponed cases of the proof of Theorem 3

We still have to show that the simulation is perfect in case

of an uncorrupted instance of a responder during the key

establishment phase, in case of uncorrupted instances during

the key usage phase, and in case of corrupted instances.

Let (pidR, lsidR, R) be an uncorrupted instance of MR

that wants to establish a session with pid ′. We only have

to show that (pidR, lsidR, R) is already part of a global

session in FMA
key-use when it outputs a pointer to the session

key, as every action up to that point can be simulated

perfectly. Observe that, if (pidR, lsidR, R) outputs such a

pointer, then it has accepted the third protocol message

and pid ′ must still be uncorrupted. In other words, there

is an instance of pid ′, say (pid ′, lsid ′, r ′), that has signed

the message m = (gy, gx, pidR), where y is the secret

exponent of (pidR, lsidR, R) and x is the secret exponent

of (pid ′, lsid ′, r ′). This instance is uncorrupted by the same

argument as above. We now argue that this instance is

an initiator, i.e., r ′ = I: Suppose by contradiction that

r ′ = R, i.e., the message was signed by a responder

whose secret exponent is x and who has received the group

element gy . Recall that, when such an instance receives

gy , it first uses the BlockGroupElement command on gy .

Thus, afterwards no instance will be able to generate gy

via a GenExp command. Hence, the instance (pid ′, lsid ′, r ′)
cannot have received its first protocol message before the

instance (pidR, lsidR, R) has received its first protocol

message, as in this case (pidR, lsidR, R) would no longer

be able to create the exponent y. By the same argument,

(pid ′, lsid ′, r ′) also cannot have received its first protocol

message after (pidR, lsidR, R) has received its first protocol

message, as in this case (pid ′, lsid ′, r ′) would not be able

to create the secret exponent x. Of course, we also have that

(pidR, lsidR, R) �= (pid ′, lsid ′, r ′) as x �= y (gx is blocked

when gy is generated). Thus, we conclude that r ′ = I .

We still have to argue that (pidR, lsidR, R) is already in a

global session with (pid ′, lsid ′, r ′): As (pid ′, lsid ′, r ′) has

signed a message, it has already completed its part of the

key exchange and thus is in a session with some responder.

By the definition of S, this will be the honest instance of

a responder that signed the message m′ = (gx, gy, pid ′).
However, the instance (pidR, lsidR, R) is the only one

that would sign such a message as y/gy is unique, so

(pid ′, lsid ′, r ′) is in a session with (pidR, lsidR, R). Note

that both instances use the same unknown exponents x and

y to derive a session key, with x �= y, and they are never

paired with any other DH shares. Thus both instances will

output pointers to the same unknown session key.

Now consider an honest instance in the key usage phase.

As shown above, such an instance in the real world/internal

simulation will have a pointer to an unknown session key in

Fcrypto. Furthermore, no instance besides the two instances

in the same session will have access to this pointer as no

other instances have a pointer to x or y. Thus, instances in

the real world behave just like instances in the ideal world

that use F ′
crypto, i.e., the simulation is perfect also in this

case.

Finally consider a corrupted instance. The simulator has

full control over the I/O interface of such an instance. If the

instance was explicitly corrupted by the adversary (i.e., it is

under the control of the adversary) either before or after the

key exchange, the adversary gets access only to known keys

which do not exist in F ′
crypto. Thus, the simulator is able

to simulate the exact behavior of Fcrypto for such explicitly

corrupted instances. In the case of a corrupted instance that

was not explicitly corrupted by the adversary (i.e., where one

of the signing keys is corrupted), the simulator also has to

simulate unknown keys. However, these unknown keys will

never be inserted into/used in F ′
crypto as no honest instance

will complete a KE with a corrupted instance (as shown

above). Thus, the simulator can also easily simulate this

case.

We note that S is a responsive simulator as it fulfills the

runtime conditions and it responds immediately to restricting

messages as long as the environment does the same, which

happens with overwhelming probability. This concludes the

proof.
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