
Hijacking Bitcoin: Routing Attacks on Cryptocurrencies
https://btc-hijack.ethz.ch

Maria Apostolaki
ETH Zürich

apmaria@ethz.ch

Aviv Zohar
The Hebrew University

avivz@cs.huji.ac.il

Laurent Vanbever
ETH Zürich

lvanbever@ethz.ch

Abstract—As the most successful cryptocurrency to date,
Bitcoin constitutes a target of choice for attackers. While many
attack vectors have already been uncovered, one important vector
has been left out though: attacking the currency via the Internet
routing infrastructure itself. Indeed, by manipulating routing
advertisements (BGP hijacks) or by naturally intercepting traffic,
Autonomous Systems (ASes) can intercept and manipulate a large
fraction of Bitcoin traffic.

This paper presents the first taxonomy of routing attacks and
their impact on Bitcoin, considering both small-scale attacks,
targeting individual nodes, and large-scale attacks, targeting the
network as a whole. While challenging, we show that two key
properties make routing attacks practical: (i) the efficiency of
routing manipulation; and (ii) the significant centralization of
Bitcoin in terms of mining and routing. Specifically, we find that
any network attacker can hijack few (<100) BGP prefixes to
isolate ∼50% of the mining power—even when considering that
mining pools are heavily multi-homed. We also show that on-path
network attackers can considerably slow down block propagation
by interfering with few key Bitcoin messages.

We demonstrate the feasibility of each attack against the
deployed Bitcoin software. We also quantify their effectiveness on
the current Bitcoin topology using data collected from a Bitcoin
supernode combined with BGP routing data.

The potential damage to Bitcoin is worrying. By isolating parts
of the network or delaying block propagation, attackers can cause
a significant amount of mining power to be wasted, leading to
revenue losses and enabling a wide range of exploits such as
double spending. To prevent such effects in practice, we provide
both short and long-term countermeasures, some of which can
be deployed immediately.

I. INTRODUCTION

With more than 16 million bitcoins valued at ∼17 billion

USD and up to 300,000 daily transactions (March 2017),

Bitcoin is the most successful cryptocurrency to date. Re-

markably, Bitcoin has achieved this as an open and fully

decentralized system. Instead of relying on a central entity,

Bitcoin nodes build a large overlay network between them

and use consensus to agree on a set of transactions recorded

within Bitcoin’s core data structure: the blockchain. Anyone

is free to participate in the network which boasts more than

6,000 nodes [4] and can usually connect to any other node.

Given the amount of money at stake, Bitcoin is an obvi-

ous target for attackers. Indeed, numerous attacks have been

described targeting different aspects of the system including:

double spending [43], eclipsing [31], transaction malleabil-

ity [21], or attacks targeting mining [24], [44], [38] and mining

pools [23].

One important attack vector has been overlooked though:

attacking Bitcoin via the Internet infrastructure using routing
attacks. As Bitcoin connections are routed over the Internet—

in clear text and without integrity checks—any third-party

on the forwarding path can eavesdrop, drop, modify, inject,

or delay Bitcoin messages such as blocks or transactions.

Detecting such attackers is challenging as it requires infer-

ring the exact forwarding paths taken by the Bitcoin traffic

using measurements (e.g., traceroute) or routing data (BGP

announcements), both of which can be forged [41]. Even

ignoring detectability, mitigating network attacks is also hard

as it is essentially a human-driven process consisting of

filtering, routing around or disconnecting the attacker. As an

illustration, it took Youtube close to 3 hours to locate and

resolve rogue BGP announcements targeting its infrastructure

in 2008 [6]. More recent examples of routing attacks such as

[51] (resp. [52]) took 9 (resp. 2) hours to resolve in November

(resp. June) 2015.

One of the reasons why routing attacks have been over-

looked in Bitcoin is that they are often considered too chal-

lenging to be practical. Indeed, perturbing a vast peer-to-peer

network which uses random flooding is hard as an attacker

would have to intercept many connections to have any impact.

Yet, two key characteristics of the Internet’s infrastructure

make routing attacks against Bitcoin possible: (i) the efficiency
of routing manipulation (BGP hijacks); and (ii) the centraliza-
tion of Bitcoin from the routing perspective. First, individuals,

located anywhere on the Internet, can manipulate routing to

intercept all the connections to not only one, but many Bitcoin

nodes. As we show in this paper, these routing manipulations

are prevalent today and do divert Bitcoin traffic. Second, few

ASes host most of the nodes and mining power, while others

intercept a considerable fraction of the connections.

This work In this paper, we present the first taxonomy of

routing attacks on Bitcoin, a comprehensive study of their

impact, and a list of deployable countermeasures. We consider

two general attacks that AS-level attackers can perform. First,

we evaluate the ability of attackers to isolate a set of nodes

from the Bitcoin network, effectively partitioning it. Second,

we evaluate the impact of delaying block propagation by

manipulating a small number of key Bitcoin messages. For

both exploits, we consider node-level attacks along with more

challenging, but also more disruptive, network-wide attacks.

2017 IEEE Symposium on Security and Privacy

© 2017, Maria Apostolaki. Under license to IEEE.

DOI 10.1109/SP.2017.29

375

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 04:43:53 UTC from IEEE Xplore. Restrictions apply.

Partitioning attacks The goal of a partition attack is to

completely disconnect a set of nodes from the network. This

requires the attacker to divert and cut all the connections

between the set of nodes and the rest of the network.

We describe a complete attack procedure in which an at-

tacker can verifiably isolate a selected set of nodes using BGP

hijacks. Our procedure is practical and only requires basic

knowledge of the Bitcoin topology, namely the IP addresses of

the nodes the attacker wants to isolate. Due to the complexity

of the Bitcoin network (e.g. multi-homed pools, and secret

peering agreements between pools), the initial isolated set

might contain nodes that leak information from and to the rest

of the network. We explain how the attacker can identify and

remove these leakage points until the partition is complete.

Delay attacks The goal of a delay attack is to slow down the

propagation of blocks towards or from a given set of nodes.

Unlike partition attacks, which require a perfect cut, delay

attacks are effective even when a subset of the connections

are intercepted. As such, attackers can perform delay attacks

on connections they are naturally intercepting, making them

even harder to detect.

We again describe a complete attack procedure an attacker

can run on intercepted Bitcoin traffic so that the delivery of

blocks is delayed by up to 20 minutes. The procedure consists

of modifying few key Bitcoin messages while making sure that

the connections are not disrupted.

Practicality We showcase the practicality of each attack and

evaluate their network-wide impact using a comprehensive set

of measurements, simulations and experiments.

Regarding partitioning attacks, we show that hijacks are

effective in diverting Bitcoin traffic by performing a hijack in

the wild against our own nodes. We find that it takes less than

90 seconds to re-route all traffic flows through the attacker

once a hijack is initiated. We also show that any AS in the

Internet hijacking less than 100 prefixes can isolate up to 47%

of the mining power, and this, even when considering that

mining pools are multi-homed. Hijacks involving that many

prefixes are frequent and already divert Bitcoin traffic.

Regarding delay attacks, we show that an attacker inter-

cepting 50% of a node connections can leave it uninformed

of the most recent Bitcoin blocks ∼60% of the time. We also

show that intercepting a considerable percentage of Bitcoin

traffic is practical due to the centralization of Bitcoin at

the routing level: one AS, namely Hurricane Electric, can

naturally intercept more than 30% of all Bitcoin connections.

Impact on Bitcoin The damages caused to Bitcoin in case

of a successful routing attack can be substantial. By isolating

a part of the network or delaying the propagation of blocks,

attackers can force nodes to waste part of their mining power

as some of the blocks they create are discarded. Partitioning

also enables the attacker to filter transactions that clients try to

include in the blockchain. In both cases, miners lose potential

revenue from mining and render the network more susceptible

to double spending attacks as well as to selfish mining

attacks [24]. Nodes representing merchants, exchanges and

other large entities are thus unable to secure their transactions,

or may not be able to broadcast them to the network to begin

with. The resulting longer-term loss of trust in Bitcoin security

may trigger a loss of value for Bitcoin. Attackers may even

short Bitcoin and gain from the resulting devaluation [35].

Our work underscores the importance of proposed modi-

fications which argue for encrypting Bitcoin traffic [47] or

traffic exchanged among miners [34]. Yet, we stress that not all

routing attacks will be solved by such measures since attackers

can still disrupt connectivity and isolate nodes by dropping

Bitcoin packets instead of modifying them.

Contributions Our main contributions are:1

• The first comprehensive study of network attacks on Bitcoin

(Section III) ranging from attacks targeting a single node to

attacks affecting the network as a whole.

• A measurement study of the routing properties of Bitcoin

(Section VI). We show that Bitcoin is highly centralized:

few ASes host most of the nodes while others intercept a

considerable fraction of the connections.

• A thorough evaluation of the practicality of routing attacks

(partitioning and delay attacks). Our evaluation is based on

an extensive set of measurements, large-scale simulations

and experiments on the actual Bitcoin software and network.

• A comprehensive set of countermeasures (Section IX),

which can benefit even early adopters.

While our measurements are Bitcoin-specific, they carry

important lessons for other cryptocurrencies which rely on a

randomly structured peer-to-peer network atop of the Internet,

such as Ethereum [1], Litecoin [9], and ZCash [14], [45].

II. BACKGROUND

A. BGP

Protocol BGP [42] is the de-facto routing protocol that reg-

ulates how IP packets are forwarded in the Internet. Routes

associated with different IP prefixes are exchanged between

neighboring networks or Autonomous Systems (AS). For any

given IP prefix, one AS (the origin) is responsible for the

original route advertisement, which is then propagated AS-

by-AS until all ASes learn about it. Routers then set their

next hop and pick one of the available routes offered by their

neighbors (this is done independently for each destination).

In BGP, the validity of route announcements is not checked.

In effect, this means that any AS can inject forged information

on how to reach one or more IP prefixes, leading other ASes to

send traffic to the wrong location. These rogue advertisements,

known as BGP “hijacks”, are a very effective way for an

attacker to intercept traffic en route to a legitimate destination.

BGP hijack An attacker, who wishes to attract all the traffic

for a legitimate prefix p (say, 100.0.0.0/16) by hijacking could

either: (i) announce p; or (ii) announce a more-specific (longer)

1Our software, measurements and scripts can be found online at
https://btc-hijack.ethz.ch

376

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 04:43:53 UTC from IEEE Xplore. Restrictions apply.

prefix of p. In the first case, the attacker’s route will be in direct
competition with the legitimate route. As BGP routers prefer

shorter paths, the attacker will, on average, attract 50% of the

traffic [30]. In the second case, the attacker will attract all the

traffic (originated anywhere on the Internet) addressed to the

destination as Internet routers forward traffic according to the

longest-match entry. Note that traffic internal to an AS cannot

be diverted via hijacking as it does not get routed by BGP but

by internal routing protocols (e.g., OSPF).

For instance, in order to attract all traffic destined to p,
the attacker could advertise 100.0.0.0/17 and 100.0.128.0/17.

Routers in the entire Internet would then start forwarding any

traffic destined to the original /16 prefix according to the two

covering /17s originated by the adversary. Advertising more-

specific prefixes has its limits though as BGP operators will

often filter prefixes longer than /24 [33]. Yet, we show that

the vast majority of Bitcoin nodes is hosted in shorter prefixes

(Section VI) and is thus susceptible to hijacking.

By default, hijacking a prefix creates a black hole at the

attacker’s location. However, the attacker can turn a hijack

into an interception attack simply by making sure she leaves

at least one path untouched to the destination [41], [30].

B. Bitcoin

Transactions Transaction validation requires nodes to be

aware of the ownership of funds and the balance of each

Bitcoin address. All this information can be learned from

the Bitcoin blockchain: an authenticated data structure that

effectively forms a ledger of all accepted transactions. Bitcoin

main innovation lies in its ability to synchronize the blockchain

in an asynchronous way, with attackers possibly attempting

to disrupt the process. Synchronization is crucial: conflicting

transactions attempting to transfer the exact same bitcoins to

different destinations may otherwise be approved by miners

that are unaware of each other.

Block creation Bitcoin’s blockchain is comprised of blocks,

batches of transactions, that are appended to the ledger serially.

Each block contains a cryptographic hash of its predecessor,

which identifies its place in the chain, and a proof-of-work.

The proof-of-work serves to make block creation difficult and

reduces the conflicts in the system. Conflicts, which take

the form of blocks that extend the same parent, represent

alternative sets of accepted transactions. Nodes converge to

a single agreed version by selecting the chain containing the

highest amount of computational work as the valid version

(usually the longest chain). The proof-of-work also serves to

limit the ability of attackers to subvert the system: they cannot

easily create many blocks, which would potentially allow them

to create a longer alternative chain that will be adopted by

nodes and thus reverse the transfer of funds (double spend).

The difficulty of block creation is set so that one block is

created in the network every 10 minutes on average which

is designed to allow sufficient time for blocks to propagate

through the network. However, if delays are high compared to

the block creation rate, many forks occur in the chain as blocks

are created in parallel. In this case, the rate of discarded blocks

(known as the orphan rate or the fork rate) increases and the

security of the protocol deteriorates [20], [26], [49]. Newly

created blocks are propagated through the network using a

gossip protocol. In addition to the propagation of blocks, nodes

also propagate transactions between them that await inclusion

in the chain by whichever node creates the next block.

Network formation Bitcoin acts as a peer-to-peer network

with each node maintaining a list of IP addresses of potential

peers. The list is bootstrapped via a DNS server, and additional

addresses are exchanged between peers. By default, each node

randomly initiates 8 unencrypted TCP connections to peers in

different /16 prefixes. Nodes additionally accept connections

initiated by others (by default on port 8333). The total number

of connections nodes can make is 125 by default.

Nodes continually listen to block announcements which are

sent via INV messages containing the hash of the announced

block. If a node determines that it does not hold a newly

announced block, it sends a GETDATA message to a single
neighbor. The peer then responds by sending the requested

information in a BLOCK message. Blocks that are requested

and do not arrive within 20 minutes trigger the disconnection

of the peer and are requested from another. Transaction prop-

agation occurs with a similar sequence of INV, GETDATA,
and TX messages in which nodes announce, request, and share

transactions that have not yet been included in the blockchain.

Mining pools Mining pools represent groups of miners that

divide block creation rewards between them in order to lower

the high economic risk associated with infrequent (but high)

payments. They usually operate using the Stratum protocol

[15]. The pool server is connected to a bitcoind node that

acts as a gateway to the Bitcoin network. The node collects

recent information regarding newly transmitted transactions

and newly built blocks which are then used to construct a

new block template. The template header is then sent via the

Stratum server to the miners who attempt to complete it to

a valid block. This is done by trying different values of the

nonce field in the header. If the block is completed, the result

is sent back to the Stratum server, which then uses the gateway

node to publish the newly formed block to the network.

Multi-homing Mining pools often use multiple gateways

hosted by diffrent Internet Service Providers. We refer to the

number of different ISPs a pool has as its multi-homing degree.

III. ROUTING ATTACKS ON BITCOIN

In this section, we give an overview of the two routing

attacks we describe in this paper: (i) partitioning the Bitcoin

network (Section III-A); and (ii) delaying the propagation of

blocks. For each attack, we briefly describe its effectiveness

and challenges as well as its impact on the Bitcoin ecosystem

(Section III-B).

A. Partitioning the Bitcoin Network

In this attack, an AS-level adversary seeks to isolate a set of

nodes P from the rest of the network, effectively partitioning

377

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 04:43:53 UTC from IEEE Xplore. Restrictions apply.

AS3

AS1 AS7

AS4

A

Stratum
Stratum

B

C

D

E F

G

H

I

J

AS8

AS2

AS6

AS5

miners

mining
pool

hijacked connection by AS8
bitcoin connection

private pool traffic

stealth
connection

Fig. 1: Illustration of how an AS-level adversary (AS8) can

intercept Bitcoin traffic by hijacking prefixes to isolate the set

of nodes P = (A,B,C,D,E, F).

the Bitcoin network into two disjoint components. The actual

content of P depends on the attacker’s objectives and can

range from one or few merchant nodes, to a set of nodes

holding a considerable percentage of the total mining power.

Attack The attacker first diverts the traffic destined to nodes

in P by hijacking the most-specific prefixes hosting each

of the IP address. Once on-path, the attacker intercepts the

Bitcoin traffic (e.g., based on the TCP ports) and identifies

whether the corresponding connections cross the partition she

tries to create. If so, the attacker drops the packets. If not,

meaning the connections are contained within P , she monitors

the exchanged Bitcoin messages so as to detect “leakage

points”. Leakage points are nodes currently within P , which

maintain connections with nodes outside of P , that the attacker

cannot intercept, namely “stealth” connections. The attacker

can detect these nodes automatically and isolate them from

others in P (Section IV). Eventually, the attacker isolates the

maximal set of nodes in P that can be isolated.

Example We illustrate the partition attack on the simple

network in Fig. 1 that is composed of 8 ASes, some of which

host Bitcoin nodes. Two mining pools are depicted as a green

(left) and a red (right) region. Both pools are multi-homed and

have gateways in different ASes. For instance, the red (right)

pool has gateways hosted in AS4, AS5, and AS6. We denote

the initial Bitcoin connections with blue lines, and those that

have been diverted via hijacking with red lines. Dashed black

lines represent private connections within the pools. Any AS

on the path of a connection can intercept it.

Consider an attack by AS8 that is meant to isolate the set

of nodes P = (A,B,C,D,E, F). First, it hijacks the prefixes
advertised by AS1, AS2 and AS6, as they host nodes within

P , effectively attracting the traffic destined to them. Next, AS8

drops all connections crossing the partition: i.e., (A, J), (B, J)
and (F,G).
Observe that node F is within the isolated set P , but is

also a gateway of the red pool with which F most likely

A

B

C

AS2

AS1
AS8

BLOCK

INV

INV

GETDATA

20 min delay

Fig. 2: Illustration of how an AS-level adversary (AS8) which

naturally intercepts a part of the traffic can delay the delivery

of a block for 20 minutes to a victim node (C).

communicates. This connection may not be based on the

Bitcoin protocol and thus it cannot be intercepted (at least,

not easily). As such, even if the attacker drops all the Bitcoin

connections she intercepts, node F may still learn about trans-

actions and blocks produced on the other side and might leak

this information within P . Isolating P as such is infeasible.

However, AS8 can identify that node F is the leakage point

during the attack and exclude it from P , essentially isolating

I ′ = (A,B,C,D,E) instead. This I ′ is actually the maximum

subset of P that can be isolated from the Bitcoin network.

Practicality We extensively evaluate the practicality of iso-

lating sets of nodes of various sizes (Section VII). We briefly

summarize our findings. First, we performed a real BGP hijack

against our own Bitcoin nodes and show that it takes less than

2 minutes for an attacker to divert Bitcoin traffic. Second, we
estimated the number of prefixes to hijack so as to isolate

nodes with a given amount of mining power. We found that

hijacking only 39 prefixes is enough to isolate a specific

set of nodes which accounts for almost 50% of the overall

mining power. Through a longitudinal analysis spanning over

6 months, we found that much larger hijacks happen regularly

and that some of them have already impacted Bitcoin traffic.

Third, we show that, while effective, partitions do not last

long after the attack stops: the two components of the partition

quickly reconnect, owing to natural churn. Yet, it takes hours

for the two components to be densely connected again.

Impact The impact of a partitioning attack depends on the

number of isolated nodes and how much mining power they

have. Isolating a few nodes essentially constitutes a denial of

service attack and renders them vulnerable to 0-confirmation

double spends. Disconnecting a considerable amount of min-

ing power can lead to the creation of two different versions

of the blockchain. All blocks mined on the side with the least

mining power will be discarded and all included transactions

are likely to be reversed. Such an attack would cause revenue

loss for the miners on the side with least mining power and

a prominent risk of double spends. The side with the most

mining power would also suffer from an increased risk of

selfish mining attacks by adversaries with mining power.

378

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 04:43:53 UTC from IEEE Xplore. Restrictions apply.

B. Slowing down the Bitcoin network

In a delay attack, the attacker’s goal is to slow down the

propagation of new blocks sent to a set of Bitcoin nodes

without disrupting their connections. As with partitioning, the

attack can be targeted, aimed at selected nodes, or network-

wide, aimed at disrupting the ability of the entire network to

reach consensus [20]. Unlike partitioning attacks though, an

attacker can delay the overall propagation of blocks towards

a node even if she intercepts a subset of its connections.

Attack Delay attacks leverage three key aspects of the Bitcoin

protocol: (i) the asymmetry in the way Bitcoin nodes exchange

blocks using INV, GETDATA, and BLOCK messages (Sec-

tion II); (ii) the fact that these messages are not protected

against tampering (unencrypted, no secure integrity checks);

and (iii) the fact that a Bitcoin node waits for 20 minutes

after having requested a block from a peer before requesting

it again from another peer. These protocol features enable

an attacker intercepting even one direction of the victim’s

connection to delay the propagation of a block, as long as this

connection is traversed by either the actual BLOCK message

or the corresponding GETDATA.

Specifically, if the attacker intercepts the traffic from the

victim, she can modify the content of the GETDATA message

the victim uses to ask for blocks. By preserving the message

length and structure and by updating the TCP and Bitcoin

checksums, the modified message is accepted by the receiver

and the connection stays alive. If the attacker intercepts the

traffic towards a node, she can instead corrupt the content of

the BLOCK message such that the victim considers it invalid.

In both cases, the recipient of the blocks remains uninformed

for 20 minutes.

Example As an illustration, consider Fig. 2, and assume that

AS8 is the attacker and C, the victim. Suppose that A and B
both advertise a block (say, block X) to C via an INV message

and that, without loss of generality, the message from A arrives

at C first. C will then send a GETDATA message back to

A requesting block X and start a 20 minute timeout count.

By modifying the content of the GETDATA node A receives,

AS8 indirectly controls what node A will send to node C.

This way the attacker can delay the delivery of the block by

up to 20 minutes while avoiding detection and disconnection.

Alternatively, AS8 could modify the BLOCK message.

Practicality We verified the practicality of delay attacks by

implementing an interception software which we used against

our own Bitcoin nodes. We show that intercepting 50% of a

node connections is enough to keep the node uninformed for

63% of its uptime (Section VIII).

We also evaluated the impact that ASes, which are naturally

traversed by a lot of Bitcoin traffic, could have on the network

using a scalable event-driven simulator. We found that due to

the relatively high degree of multi-homing that pools employ,

only very powerful coalitions of network attackers (e.g., all

ASes based in the US) could perform a network-wide delay

attack. Such an attack is thus unlikely to occur in practice.

Impact Similarly to partitioning attacks, the impact of a delay

attack depends on the number and type (e.g., pool gateway)

of impacted nodes. At the node-level, delay attacks can keep

the victim eclipsed, essentially performing a denial of service

attack or rendering it vulnerable to 0-confirmation double

spends. If the node is a gateway of a pool, such attacks can

be used to engineer block races, and waste the mining power

of the pool. Network-wide attacks increase the fork rate and

render the network vulnerable to other exploits. If a sufficient

number of blocks are discarded, miners revenue is decreased

and the network is more vulnerable to double spending. A

slowdown of block transmission can be used to launch selfish

mining attacks by adversaries with mining power.

IV. PARTITIONING BITCOIN

In this section, we elaborate on partition attacks in which

an AS-level adversary seeks to isolate a set of nodes P . We

first describe which partitions are feasible by defining which

connections may cause information leakage (Section IV-A)

to the isolated set. We then discuss how an attacker may

better select a P that is feasible, if she has some view of the

Bitcoin topology (Section IV-B). Next, we walk through the

entire attack process, starting with the interception of Bitcoin

traffic, the detection of leakage points and the adaptation of

P until the partition is successfully created (Section IV-C). In

particular, we present an algorithm which, given a set of nodes

P , leads the attacker to isolate the maximal feasible subset.

Finally, we prove that our algorithm is correct (Section IV-D).

A. Characterizing feasible partitions

An attacker can isolate a set of nodes P from the network

if and only if all connections (a, b) where a ∈ P and b �∈ P
can be intercepted. We refer to such connections as vulnerable
and to connections that the attacker cannot intercept as stealth.

Vulnerable connections: A connection is vulnerable if: (i) an
attacker can divert it via a BGP hijack; and (ii) it uses the

Bitcoin protocol. The first requirement enables the attacker to

intercept the corresponding packets, while the second enables

her to identify and then drop or monitor these packets.

As an illustration, consider Fig. 3a, and assume that the

attacker, AS8, wants to isolate P = {A,B,C}. By hijacking

the prefixes pertaining to these nodes the attacker receives all

traffic from nodes A and B to node C, as well as the traffic

from nodeD to node A. The path the hijacked traffic follows is
depicted with red dashed lines and the original path with blue

lines. As all nodes communicate using the Bitcoin protocol,

their connections can easily be distinguished, as we explain in

Section IV-C. Here, AS8 can partition P from the rest of the

network by dropping the connection from node D to node A.

Stealth connections: A connection is stealth if the attacker

cannot intercept it. We distinguish three types of stealth

connections: (i) intra-AS; (ii) intra-pool; and (iii) pool-to-pool.

379

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 04:43:53 UTC from IEEE Xplore. Restrictions apply.

AS4

A

B

C

hijacked connection by AS8
bitcoin connection

AS8
desired
partition

D

E

AS2

AS1

(a) Feasible partition

A

B

C

hijacked connection by AS8

X

stealth connection

crossing the partition

bitcoin connection

desired
partition

AS1

AS4

AS8

D

E

AS2

(b) Infeasible partition because
of intra-AS connections

AS3

AS1

C

miners

mining
pool

B

A

D

AS8

B

hijacked connection by AS8
bitcoin connection

desired
partition

AStratum

stealth
connection E

F

AS2

(c) Infeasible partition because of intra-
pool connections

Fig. 3: Not all Bitcoin connections can be diverted by an attacker implying that some partitions cannot be formed.

intra-AS: An attacker cannot intercept connections within the

same AS using BGP hijack. Indeed, internal traffic does not get

routed by BGP, but by internal routing protocols (e.g., OSPF,

EIGRP). Thus, any intra-AS connection crossing the partition

border renders the partition infeasible. Such connections rep-

resent only 1.14% of all the possible connection nodes can

create (this percentage is calculated based on the topology we

inferred in Section VI).

As an illustration, consider Fig. 3b and assume that the

attacker, AS8, wants to isolate P = {A,B,C}. By hijacking

the corresponding BGP prefixes, AS8 can intercept the con-

nections running between nodes A and B to node C. However,

she does not intercept the intra-AS connection between A and

X . This means that node X will inform node A of the blocks

mined in the rest of the network, and node A will then relay

this information further within P . Thus, P = {A,B,C} is not

feasible. Yet, observe that isolating I = {B,C} is possible. In

the following, we explain how the attacker can detect that A
maintains a stealth connection leading outside of the partition

and dynamically adapt to isolate I instead.

intra-pool: Similarly to intra-AS connections, an attacker

might not be able to cut connections between gateways be-

longing to the same mining pool. This is because mining

pools might rely on proprietary or even encrypted protocols

for internal communication.

As an illustration, consider Fig. 3c and assume that the at-

tacker, AS8, wants to isolate P = {A,B,C,D}. By hijacking

the corresponding prefixes, she would intercept and cut all

Bitcoin connections between nodes A, B, C, D and nodes E,

F. However, nodes A and F would still be connected internally

as they belong to the same (green) pool. Again, observe that

while isolating P = {A,B,C,D} is not feasible, isolating

I = {B,C,D} from the rest of the network is possible.

pool-to-pool: Finally, an attacker cannot intercept (possi-

bly encrypted) private connections, corresponding to peering

agreements between mining pools. From the attacker’s point

of view, these connections can be treated as intra-pool connec-

tions and the corresponding pair of pools can be considered as

one larger pool. Note that such connections are different than

public initiatives to interconnect all pools, such as the Bitcoin

relays [13]. Unlike private peering agreements, relays cannot
act as bridges to the partition (see Appendix E).

B. Preparing for the attack

In light of these limitations the attacker can apply two

techniques to avoid having stealth connections crossing the

partition she creates. First, she can include in P either all or

none of the nodes of an AS, to avoid intra-AS connections

crossing the partition. This can be easily done as the mapping

from IPs to ASNs is publicly available [11]. Second, she can

include in P either all or none of the gateways of a pool, to

avoid intra-pool connections crossing the partition. Doing so

requires the attacker to know all the gateways of the mining

pools she wants to include in P . Inferring the gateways is

outside the scope of this paper, yet the attacker could use

techniques described in [36] and leverage her ability to inspect

the traffic of almost every node via hijacking (see Appendix

C). Even with the above measures, P may still contain leakage

points that the attacker will need to identify and exclude

(see below). Yet, these considerations increase the chances of

establishing the desired partition as well as reducing the time

required to achieve it.

C. Performing the attack

We now describe how a network adversary can successfully

perform a partitioning attack. The attack is composed of two

main phases: (i) diverting relevant Bitcoin traffic; and (ii)
enforcing the partition. In the former phase, the adversary

diverts relevant Bitcoin traffic using BGP hijacking. In the

latter phase, the attacker cuts all vulnerable connections that

cross the partition and excludes from P nodes which are

identified as leakage points. Leakage points are nodes that are

connected to the rest of the network via stealth connections.

Intercept Bitcoin traffic: The attacker starts by hijacking

all the prefixes pertaining to the Bitcoin nodes she wants to

isolate, i.e. all the prefixes covering the IP addresses of nodes

in P . As a result, she receives all the traffic destined to these

prefixes, which she splits into two packet streams: relevant and

380

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 04:43:53 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Partitioning algorithm.

Input: - P , a set of Bitcoin IP addresses to disconnect from the
rest of the Bitcoin network; and
- S = [pkt1, · · ·], an infinite packet stream of
diverted Bitcoin traffic resulting from the hijack of the
prefixes pertaining to P .

Output: False if there is no node ∈ P that can be verifiably
isolated;

1 enforce_partition(P, S):
2 begin
3 U ← ∅ ;
4 L← ∅ ;
5 while P \ (L ∪ U) �= ∅ do
6 for pkt ∈ S do
7 if pkt.ip_src ∈ P ∧ pkt.ip_src /∈ L then
8 last_seen[pkt.ip_dst] = now() ;
9 U ← U \ {pkt.ip_src} ;

10 detect_leakage(U, pkt) ;

11 else
12 drop(pkt) ;

13 for src ∈ P ∧ src /∈ L do
14 if last_seen[src] > now()− threshold then
15 U ← U ∪ {src}

16 return false ;

irrelevant. Relevant traffic includes any Bitcoin traffic destined

to nodes in P . This traffic should be further investigated.

Irrelevant traffic corresponds to the remaining traffic which

should be forwarded back to its legitimate destination.

To distinguish between relevant and irrelevant traffic, the

attacker applies a simple filter matching on the IP addresses,

the transport protocol and ports used, as well as certain bits

of the TCP payload. Specifically, the attacker first classifies

as irrelevant all non-TCP traffic as well as all traffic with

destination IPs which are not included in P . In contrast,

the attacker classifies as relevant all traffic with destination

or source TCP port the default Bitcoin port (8333). Finally,

she classifies as relevant all packets which have a Bitcoin

header in the TCP payload. Any remaining traffic is considered

irrelevant.

Partitioning algorithm: Next, the attacker processes the

relevant traffic according to Algorithms 1 and 2. We start by

presenting their goal before describing them in more details.

The high-level goal of the algorithms is to isolate as many

nodes in P as possible. To do so, the algorithms identify

L, the nodes that are leakage points, and disconnect them

from the other nodes in P . Also, the algorithms maintain a

set of verifiably isolated nodes P ′ = P \ {U ∪ L}, where
U corresponds to the nodes that cannot be monitored (e.g.,

because they never send packets). In particular, Algorithm 2

is in charge of identifying L, while Algorithm 1 is in charge

of identifying U and performing the isolation itself.

We now describe how the algorithms work. Algorithm 1

starts by initializing L and U to ∅. For every received packet,

the algorithm first decides whether the packet belongs to a

Algorithm 2: Leakage detection algorithm.

Input: - U , a set of Bitcoin IP addresses the attacker cannot
monitor; and
- pkt, a (parsed) diverted Bitcoin packet.

1 detect_leakage(U, pkt):
2 begin
3 if contains_block(pkt) ∨ contains_inv(pkt) then
4 if hash(pkt) ∈ Blocks(¬(P \ L)) then
5 L← L ∪ {pkt.ip_src} ;
6 drop(pkt) ;

connection internal to P \ L or to one between a node in

P \ L and an external node based on the source IP address.

If the source IP is in P \L, the packet belongs to an internal

connection and it is given to Algorithm 2 to investigate if

the corresponding node acts as a leakage point (Algorithm 1,

Line 10). Otherwise, the packet belongs to a connection that

crosses the partition and is dropped (Algorithm 1, Line 12).

Given a packet originated from P \ L, Algorithm 2 checks

whether the sender of the packet is advertising information

from outside of P \L. Particularly, the attacker checks whether
the packet contains an INV message with the hash of a block

mined outside of P \ L (or the block itself). If it does so,

the sender must have a path of stealth connections to a node

outside of P \L from which the block was transmitted. Thus

the sender is a leakage point and is added to L (Algorithm 2,

Line 5). The actual packet is also dropped to prevent this

information from spreading.

To detect whether a node in P \ L is a leakage point, an

attacker should be able to intercept at least one of that node’s

connections. Specifically, the node should have a vulnerable

connection to another node within P \ L, so that the attacker

can monitor the blocks it advertises. To keep track of the

nodes that the attacker cannot monitor, Algorithm 1 maintains

a set U which contains the nodes she has not received any

packets from for a predefined time threshold. (Algorithm 1,

Line 15). Whenever one of these nodes manages to a establish

a connection that the attacker intercepts, it is removed from

U (Algorithm 1, Line 9).

Example: We now show how the algorithms work on the

example of Fig. 3b in which the attacker, AS8, aims to isolate

P = {A,B,C}. By hijacking the prefixes corresponding to

these nodes, the attacker intercepts the connections (B,C) and
(A,C) and feeds the relevant packets to the algorithms. Recall

that the partition is bridged by a stealth (intra-AS) connection

between nodes A and X which cannot be intercepted by the

attacker. When a block outside P is mined, nodeX will inform

A which then will advertise the block to C. The attacker will

catch this advertisement and will conclude that node A is a

leakage point. After that, the attacker will drop the packet and

will add A to L. As such, all future packets from A to other

nodes within P \ L = {A,B} will be dropped. Observe that

the partition isolating P \L = {B,C} is indeed the maximum

feasible subset of P .

381

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 04:43:53 UTC from IEEE Xplore. Restrictions apply.

D. Correctness of the partitioning algorithm

We now prove the properties of Algorithm 1.

Theorem 1. Given P , a set of nodes to disconnect from the
Bitcoin network, there exists a unique maximal subset I ⊆
P that can be isolated. Given the assumption that Bitcoin
nodes advertise blocks that they receive to all their peers,
Algorithm 1 isolates all nodes in I , and maintains a set P ′ =
P \ {U ∪ L} ⊆ I that contains all nodes in I that have a
monitored connection and are thus known to be isolated.

Proof. Consider the set of nodes S ⊆ P that has a path of

stealth connections to some nodes not in P . Clearly, nodes

in S cannot be isolated from the rest of the network by the

attacker. Let I = P \ S. Notice that I is the maximal set in

P that can be disconnected by an attacker. Now, notice that

every node in S is placed in sets L or U by the algorithm: if

the node has a monitored connection and is caught advertising

external blocks it is placed in L (Algorithm 2 Line 5). If it is

not monitored then it is placed in U (Algorithm 1, Line 15).

Notice also that the entire set I is isolated from the network.

If some node has no stealth connection outside, and was

removed solely for the lack of monitoring, it is still having

all its packets from outside of P \ L dropped – Algorithm 1

Line 12).

V. DELAYING BLOCK PROPAGATION

While partitioning attacks (Section IV) are particularly

effective and can be performed by any AS, they require full

control over the victim’s traffic and are also highly visible.

In this section, we explore delay attacks, which can cause

relatively severe delays in block propagation, even when an

attacker intercepts only one of the victim’s connections, and

wishes the attack to remain relatively undetectable.

In this attack, the adversary delays the delivery of a block

by modifying the content of specific messages. This is possible

due to the lack of encryption and of secure integrity checks of

Bitcoin messages. In addition to these, the attacker leverages

the fact that nodes send block requests to the first peer that

advertised each block and wait 20 minutes for its delivery,

before requesting it from another peer.

The first known attack leveraging this 20 minutes time-

out [28] mandates the adversary to be connected to the victim

and to be the first to advertise a new block. After a successful

block delay, the connection is lost. In contrast, network-based

delay attacks are more effective for at least three reasons: (i) an
attacker can act on existing connections, namely she does not

need to connect to the victim which is very often not possible

(e.g, nodes behind a NAT); (ii) an attacker does not have to be

informed about recently mined blocks by the victim’s peers to

eclipse it; and (iii) the connection that was used for the attack

is not necessarily lost, prolonging the attack.

Particularly, the effectiveness of the delay attack depends

on the direction and fraction of the victim’s traffic the attacker

intercepts. Intuitively, as Bitcoin clients request blocks from

one peer at a time, the probability that the attacker will

GET DATA
Block #42

INV
Block #42 INV

Block #42

GET DATA

Block #30

GET DATA
Tx #123GET DATA

Block #42

Block #42

up to

20 min

victimattacker

Block #30
ignored

(a) � Attacker � victim

GET DATA
Block #42

INV
Block #42 INV

Block #42

20 min

Block #42
Block #4@!

DISCONNECT/

TIMEOUT

wrong
checksum!

victimattacker

(b) � Attacker � victim

Fig. 4: An attacker can perform different delay attacks depend-

ing on the direction of traffic she intercepts. When on the path

from the victim, it can modify the GETDATA message (a),

while it can modify the BLOCK message when intercepting

the opposite path (b).

intercept such a connection increases proportionally with the

fraction of the connections she intercepts. In addition, Bitcoin

connections are bi-directional TCP connections, meaning the

attacker may intercept one direction (e.g., if the victim is

multi-homed), both, or none at all. Depending on the direction

she intercepts, the attacker fiddles with different messages.

In the following, we explain the mechanism that is used to

perform the attack if the attacker intercepts traffic from the

victim (Section V-A) or to the victim node (Section V-B).

While in both cases the attacker does delay block propagation

for 20 minutes, the former attack is more effective.

A. The attacker intercepts outgoing traffic

Once a node receives a notification that a new block is

available via an INV message, it issues a download request

to its sender using a GETDATA message. As an illustration

in Fig. 4a the victim requests Block 42 from the first of its

peers that advertised the block. Since the attacker intercepts

the traffic from the victim to this peer, she can modify this

GETDATA message to request an older block, instead of the

original one. In Fig. 4a for example, the attacker replaces the

hash corresponding to block 42 with that of block 30. The

advantage of doing so, over just dropping the packet, is that

the length of the message is left unchanged. Notice that if

the packet was dropped the attacker would need to intercept

both directions of the connection and update the TCP sequence

numbers of all following packets to ensure that the connection

is not dropped. If the block is not delivered, the victim node

will disconnect after 20 minutes. To avoid a disconnection,

the attacker can use another GETDATA, sent within the 20

minute window, to perform the reverse operation. Specifically,

she modifies the hash back to the original one, requested

by the victim. Since the GETDATA message for blocks and

transactions have the same structure, the attacker is more likely

to use the latter as these are much more common. In Fig. 4a

for example, she changes the hash of the transaction (Tx #123)

382

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 04:43:53 UTC from IEEE Xplore. Restrictions apply.

to the hash of block 42. Since the block is delivered within the

timeout neither of the nodes disconnects or has any indication

of the attack (e.g., an error in the log files).

B. The attacker intercepts incoming traffic

We now describe the mechanism an attacker would use

if she intercepts traffic towards the victim, i.e. she can see

messages received by the victim, but not the messages that

it sends. This attack is less effective compared to the attack

working in the opposite direction, as it will eventually result in

the connection being dropped 20 minutes after the first delayed

block (similarly to [28]). In this case, the attack focuses on

the BLOCK messages rather than on the GETDATA. A naive

attack would be for the attacker to simply drop any BLOCK
message she sees. As Bitcoin relies on TCP though, doing

so would quickly kill the TCP connection. A better, yet still

simple approach is for the attacker to corrupt the contents of

a BLOCK message while preserving the length of the packet

(see Fig. 4b). This simple operation causes the BLOCK to be

discarded when it reaches the victim, because of a checksum

mismatch. Surprisingly though, we discovered (and verified)

that the victim will not request the block again, be it from the

same or any other peer. After the 20 minute timeout elapses,

the victim simply disconnects because its requested block did

not arrive on time.

An alternative for the adversary is to replace the hash of the

most recent Block with a hash of an older one in all the INV
messages the victim receives. This attack however would fail

if the attacker intercepts only a fraction of the connections, as

the victim will be informed via other connections. As such,

this practice is only useful when the attacker hijacks and thus

intercepts all the traffic directed to the victim.

VI. HOW VULNERABLE IS BITCOIN TO ROUTING

ATTACKS? A COMPREHENSIVE MEASUREMENT ANALYSIS

Evaluating the impact of routing attacks requires a good

understanding of the routing characteristics of the Bitcoin

network. In this section, we explain the datasets and the

techniques used to infer a combined Internet and Bitcoin

topology (Section VI-A). We then discuss our key findings and

their impact on the effectiveness of the two routing attacks we

consider (Section VI-B).

A. Methodology and datasets

Our study is based on three key datasets: (i) the IP addresses

used by Bitcoin nodes and gateways of pools; (ii) the portion

of mining power each pool possesses; (iii) the forwarding path

taken between any two IPs. While we collected these datasets

over a period of 6 months, starting from October 2015 through

March 2016, we focus on the results from a 10 day period

starting from November 5th 2015, as the results of our analysis

do not change much through time.

Bitcoin IPs We started by collecting the IPs of regular

nodes (which host no mining power) along with the IPs of

the gateways the pools use to connect to the network. We

gathered this dataset by combining information collected by

two Bitcoin supernodes with publicly available data regarding

mining pools. One supernode was connected to ∼2000 Bitcoin

nodes per day, collecting block propagation information, while

the other was crawling the Bitcoin network, collecting the
∼6,000 IPs of active nodes each day.

We inferred which of these IPs act as the gateway of a pool

in two steps. First, we used block propagation information

(gathered by the first supernode), considering that the gateways

of a pool are most likely the first to propagate the blocks this

pool mines. Particularly, we assigned IPs to pools based on

the timing of the INV messages received by the supernode.

We considered a given IP to belong to a gateway of a pool

if: (i) it relayed blocks of that pool more than once during

the 10 day period; and (ii) it frequently was the first to relay

a block of that pool (at least half as many times as the most

frequent node for that pool). Second, we also considered as

extra gateways the IPs of the stratum servers used by each

mining pool. Indeed, previous studies [36] noted that stratum

servers tend to be co-located in the same prefix as the pool’s

gateway. Since the URLs of the stratum servers are public

(Section II), we simply resolved the DNS name (found on the

pools websites or by directly connecting to them) and add the

corresponding IPs to our IP-to-pool dataset.

Mining power To infer the mining power attached to pools,

we tracked how many blocks each pool mined during the

10 days interval [2] and simply assigned them a proportional

share of the total mining power.

AS-level topology and forwarding paths We used the AS-

level topologies provided by CAIDA [5] to infer the for-

warding paths taken between any two ASes. An AS-level

topology is a directed graph in which a node corresponds

to an AS and a link represents an inter-domain connection

between two neighboring ASes. Links are labeled with the

business relationship linking the two ASes (customer, peer or

provider). We computed the actual forwarding paths following

the routing tree algorithm described in [30] which takes into

account the business relationships between ASes.

Mapping Bitcoin nodes to ASes We finally inferred the

most-specific prefix and the AS hosting each Bitcoin node

by processing more than 2.5 million BGP routes (covering all

Internet prefixes) advertised on 182 BGP sessions maintained

by 3 RIPE BGP collectors [10] (rrc00, rrc01 and rrc03). The

mapping is done by associating each prefix to the origin AS

advertising it and by validating the stability of that origin AS

over time (to avoid having the mapping polluted by hijacks).

B. Findings

We now discuss the key characteristics of the Bitcoin

network from the Internet routing perspective. We explain

which of them constitute enablers or hindrances for an AS-

level attacker.

A few ASes host most of the Bitcoin nodes Fig. 5a depicts

the cumulative fraction of Bitcoin nodes as a function of the

number of hosting ASes. We see that only 13 (resp. 50) ASes

383

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 04:43:53 UTC from IEEE Xplore. Restrictions apply.

1 10 100 1222
0

20

40

60

80

100

of ASes

cu
m

. %
 o

f b
itc

oi
n

no
de

s

(a) Only 13 ASes host 30%
of the entire network, while 50
ASes host 50% of the Bitcoin
network.

1 10 100 1222
0

20

40

60

80

100

of ASes

cu
m

. %
 c

on
ne

ct
io

ns
 in

te
rc

ep
te

d

(b) Few ASes intercept large
percentages of Bitcoin traffic: 3
of them intercept 60% of all
possible Bitcoin connections.

Fig. 5: Bitcoin is heavily centralized from a routing viewpoint.

host 30% (resp. 50%) of the entire Bitcoin network. These

ASes pertain to broadband providers such as Comcast (US),

Verizon (US) or Chinanet (CN) as well as to cloud providers

such as Hetzner (DE), OVH (FR) and Amazon (US). We

observe the same kind of concentration when considering the

distribution of Bitcoin nodes per IP prefix: only 63 prefixes

(0.012% of the Internet) host 20% of the network.

Regarding delay attacks, this high concentration makes

Bitcoin traffic more easy to intercept and therefore more

vulnerable. With few ASes hosting many nodes, any AS on-

path (including the host ASes) is likely to intercept many

connections at once, making delay attacks more disruptive.

Regarding partition attacks, the effect of the concentration is a

bit more nuanced. Indeed, high concentration reduces the total

number of feasible partitions because of intra-AS connections

that cannot be intercepted (Section IV-A). At the same time,

tough, the remaining feasible partitions are much easier to

achieve since they require fewer hijacked prefixes (Section IV).

A few ASes naturally intercept the majority of the Bit-
coin traffic Large transit providers (i.e., Tier-1s) tend to be

traversed by a large fraction of all the Bitcoin connections.

Fig. 5b depicts the cumulative percentage of connections that

can be intercepted by an increasing number of ASes (e.g.,
by colluding with each other). We see that only three ASes,

namely Hurricane Electric, Level3, and Telianet, can together

intercept more than 60% of all possible Bitcoin connections,
with Hurricane alone being on path for 32% of all connections.

Regarding delay attacks, these few ASes could act as

powerful delay attackers. Regarding partition attacks, this ob-

servation does not have any direct implication as partitioning

requires a full cut to be effective (Section IV).

>90% of Bitcoin nodes are vulnerable to BGP hijacks
93% of all prefixes hosting Bitcoin nodes are shorter than

/24, making them vulnerable to a global IP hijack using

more-specific announcements. Indeed, prefixes strictly longer

than /24 (i.e., /25 or longer) are filtered by default by many

ISPs. Observe that the remaining 7% hosted in /24s are not
necessarily safe. These can still be hijacked by another AS

performing a shortest-path attack, i.e., the attacker, who will

advertise a /24 just like the victim’s provider will attract traffic

from all ASes that are closer to her in terms of number of hops.

While this finding does not have a direct impact on delay

attacks, it clearly helps partition attackers as they can divert

almost all Bitcoin traffic to their infrastructure (modulo stealth

connections, see Section IV).

Mining pools tend to be distributed and multi-homed
Mining pools have a complex infrastructure compared to

regular nodes. We found that all pools use at least two ASes

to connect to the Bitcoin network, while larger pools such as

Antpool, F2Pools, GHash.IO, Kano use up to 5 ASes.

Pool multi-homing makes both network attacks more chal-

lenging and is one of the main precaution measures node

owners can use against routing attacks. While harder, routing

attacks are still possible in the presence of multi-homing as

we illustrate in Section VIII.

Bitcoin routing properties are stable over time While nu-

merous nodes continuously join and leave the Bitcoin network,

the routing properties highlighted in this section are stable. As

validation, we ran our analysis daily over a 4 month period.

We found that the same IPs were present on average for 15.2

consecutive days (excluding IPs that were seen only once).

Moreover, 50 ASes hosted each day 49.5% of Bitcoin clients

(standard deviation: 1.2%) while 24.7% of Bitcoin nodes are

found daily in just 100 prefixes (standard deviation: 1.77%).

VII. PARTITIONING BITCOIN: EVALUATION

In this section, we evaluate the practicality and effectiveness

of partitioning attacks by considering four different aspects of

the attack. First, we show that diverting Bitcoin traffic using

BGP hijacks works in practice by performing an actual hijack

targeting our own Bitcoin nodes (Section VII-A). Second, we
show that hijacking fewer than 100 prefixes is enough to

isolate a large amount of the mining power due to Bitcoin’s

centralization (Section VII-B). Third, we show that much

larger hijacks already happen in the Internet today, some

already diverting Bitcoin traffic (Section VII-C). Fourth, we
show that Bitcoin quickly recovers from a partition attack once

it has stopped (Section VII-D).

A. How long does it take to divert traffic with a hijack?

We hijacked and isolated our own Bitcoin nodes which were

connected to the live network via our own public IP prefixes.

In the following, we describe our methodology as well as our

findings with regard to the time it takes for a partition to be

established.

Methodology We built our own virtual AS with full BGP

connectivity using Transit Portal (TP) [46]. TP provides virtual

ASes with BGP connectivity to the rest of the Internet by

proxying their BGP announcements via multiple worldwide

deployments, essentially acting as a multi-homed provider to

the virtual AS. In our experiment, we used the Amsterdam
TP deployment as provider and advertised 184.164.232.0/22 to

it. Our virtual AS hosted six bitcoin nodes (v/Satoshi:0.13.0/).

Each node had a public IP in 184.164.232.0/22 (.1 to .6

addresses) and could therefore accept connections from any

other Bitcoin node in the Internet.

384

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 04:43:53 UTC from IEEE Xplore. Restrictions apply.

Seconds from hijack until traffic is received

C
D

F
 #

 C
on

ne
ct

io
ns

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80

Fig. 6: Intercepting Bitcoin traffic using BGP hijack is fast

and effective: all the traffic was flowing through the attacker

within 90 seconds. Results computed while performing an

actual BGP hijack against our own Bitcoin nodes.

We performed a partition attack against our 6 nodes using

BGP hijacking. For this, we used Cornell, another TP

deployment, as the malicious AS. Specifically, we advertised

the prefix 184.164.235.0/24 via the Cornell TP. This ad-

vertisement is a more-specific prefix with respect to the an-

nouncement coming from the Amsterdam TP and covers all

the IPs of our nodes. Thus, after the new prefix announcement

is propagated throughout the Internet, Bitcoin traffic directed

to any of our nodes will transit via Cornell instead of

Amsterdam. To mimic an interception attack (Section II),

we configured the Cornell TP to forward traffic back to

our AS. As such, connections to our nodes stayed up during

the hijack even though they experienced a higher delay.

We performed the attacks 30 times and measured the time

elapsed from announcement of the most specific prefix until

all traffic towards our nodes was sent via the Cornell TP.

Diverting Bitcoin traffic via BGP is fast (takes <2 minutes)
The results of our experiment are shown in Fig. 6. The

main insight is that the attacker received the hijacked traffic

very quickly. After only 20 seconds, more than 50% of the

connections are diverted. Within 1.5 minutes, all traffic was

transiting via the malicious AS. Thus, attacked nodes are

effectively isolated almost as soon as the hijack starts.

We took great care to ensure that our experiments did not

negatively impact the actual Bitcoin network. We discuss the

ethical considerations behind our experiments in Appendix F.

B. How many prefixes must be hijacked to isolate mining
power?

Having shown that hijacking prefixes is an efficient way

to divert Bitcoin traffic, we now study the practicality of

isolating a specific set of nodes P . We focus on isolating sets

holding mining power because they are: (i) more challenging

to perform (as mining pools tend to be multi-homed); and (ii)
more disruptive as successfully partitioning mining power can

lead to the creation of parallel branches in the blockchain.

To that end, we first estimate the number of prefixes the

attacker needs to hijack to isolate a specific set of nodes as

a function of the mining power they hold. In the following

subsection, we evaluate how practical a hijack of that many

Isolated
mining power

min. # pfxes
to hijack

median # pfxes
to hijack

feasible
partitions

8% 32 70 14

30% 83 83 1

40% 37 80 8

47% 39 39 1

TABLE I: Hijacking <100 prefixes is enough to feasibly

partition ∼50% of the mining power. Complete table in Ap-

pendix B.

prefixes is with respect to the hijacks that frequently take place

in the Internet.

Methodology As described in Section IV, not all sets of nodes

can be isolated as some connections cannot be intercepted. We

therefore only determine the number of prefixes required to

isolate sets P that are feasible in the topology we inferred in

Section VI. In particular, we only consider the sets of nodes

that contain: (i) either all nodes of an AS or none of them; and

(ii) either the entire mining pool, namely all of its gateways or

none of them. With these restrictions, we essentially avoid the

possibility of having any leakage point within P , that is caused

by an intra-AS or intra-pool stealth connection. However, we

cannot account for secret peering agreements that may or may

not exist between pools. Such agreements are inherently kept

private and their existence is difficult to ascertain.

Hijacking <100 prefixes is enough to isolate ∼50% of
Bitcoin mining power In Table I we show the number of

different feasible sets of nodes we found containing the same

amount of mining power (4th and 1st column, respectively).

We also include the minimum and median number of the

prefixes the attacker would need to hijack to isolate each

portion of mining power (2nd and 3rd column, respectively).

As predicted by the centralization of the Bitcoin network

(Section VI), the number of prefixes an attacker needs to hijack

to create a feasible partition is small: hijacking less than 100

prefixes is enough to isolate up to 47% of the mining power. As

we will describe next, hijack events involving similar numbers

of prefixes happen regularly in the Internet. Notice that the

number of prefixes is not proportional to the isolated mining

power. For example, there is a set of nodes representing 47%

of mining power that can be isolated by hijacking 39 prefixes,

while isolating 30% of the mining power belonging to different

pools would require 83 prefixes. Indeed, an attacker can isolate

additional mining power with the same number of hijacked

prefixes when several pools in the isolated set are hosted in

the same ASes.

C. How many hijacks happen today? Do they impact Bitcoin?

Having an estimate of the number of prefixes that need to

be hijacked to partition the entire network, we now look at

how common such hijacks are over a 6-months window, from

October 2015 to March 2016. We show that BGP hijacks are

not only prevalent, but also end up diverting Bitcoin traffic.

385

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 04:43:53 UTC from IEEE Xplore. Restrictions apply.

10
/1

5

11
/1

5

12
/1

5

01
/1

6

02
/1

6

03
/1

6

0

50k

100k

150k

200k

100

1k

10k

30k

month

of

 h
ija

ck
 e

ve
nt

s

m
ax

 #
 p

fx
es

 h
ija

ck
ed

 a
t o

nc
e

(lo
g)

(a) Each month sees at least
100,000 hijacks, some of which
involve thousands of prefixes.

10
/1

5

11
/1

5

12
/1

5

01
/1

6

02
/1

6

03
/1

6

0

100

200

300

447

month

di

st
in

ct
 B

itc
oi

n
no

de
s

hi
ja

ck
ed

(b) Each month, traffic for at
least 100 distinct Bitcoin nodes
end up diverted by hijacks.

Fig. 7: Routing manipulation (BGP hijacks) are prevalent

today and do impact Bitcoin traffic.

Methodology We detected BGP hijacks by processing 4
billion BGP updates advertised during this period on 182 BGP

sessions maintained by 3 RIPE BGP collectors [10] (rrc00,

rrc01 and rrc03). We consider an update for a prefix p as

a hijack if the origin AS differs from the origin AS seen

during the previous month. To avoid false positives, we do

not consider prefixes which have seen multiple origin ASes

during the previous month. We count only a single hijack per

prefix and origin pair each day: if AS X hijacks the prefix p
twice in one day, we consider both as part of a single hijack.

Large BGP hijacks are frequent in today’s Internet, and
already end up diverting Bitcoin traffic Fig. 7 summarizes

our results. We see that there are hundreds of thousands of

hijack events each month (Fig. 7a). While most of these hijacks

involve a single IP prefix, large hijacks involving between 300

and 30,000 prefixes are also seen every month (right axis).

Fig 7b depicts the number of Bitcoin nodes for which traffic

was diverted in these hijacks. Each month, at least 100 Bitcoin

nodes are victim of hijacks2. As an illustration, 447 distinct

nodes (∼7.8% of the Bitcoin network) ended up hijacked at

least once in November 2015.

D. How long do the effects of a partition attack last?

Having investigated the methodology and the relative cost

of creating a partition, we now explore how quickly the

Bitcoin network recovers from a partition attack. We found

out that while the two components quickly reconnect, they

stay sparsely connected for a very long time. We first describe

the experimental set-up. Next, we explain why partitions are

not persistent in practice and briefly hint on how an attacker

could prolong their lifetime.

Methodology We build a testbed composed of 1050 Bitcoin

clients running the default bitcoind core (v0.12.1) in testnet

mode. Each node runs in a virtual machine connected to

a virtual switch and is configured with a different random

IP address. Nodes automatically connect to other nodes in

the testbed. We enforced a 50%–50% partition, by installing

drop rules on the switch which discard any packet belonging

2The actual hijack attempt may have been aimed at other services in the same
IP range, still, these nodes were affected and their traffic was re-routed.

0%
13%
18%

28%

> < attack (30 min)

0 2 4 6 8 10
0

10

20

30

40

50

60

time (hours)

%
 o

f c
on

ne
ct

io
ns

cr
os

si
ng

 p
ar

tit
io

n

Fig. 8: Bitcoin heals slowly after large partition attacks. After

10h, only half as many connections cross the partition. Healing

is even slower if the attacker is naturally on-path for 13%,

18%, 28% of the connections.

to a connection crossing the partition. Observe that a 50%–

50% split is the easiest partition to recover from, as after the

attack the chance that a new connection would bridge the two

halves is maximal. We measure the partition recovery time by

recording the percentage of connections going from one side

to the other in 30 minute intervals.

Bitcoin TCP connections are kept alive for extended periods.

As such, new connections are mostly formed when nodes

reconnect or leave the network (churn). To simulate churn

realistically, we collected the lists of all reachable Bitcoin

nodes [3], every 5 minutes, from February 10 to March 10

2016. For every node i connected in the network on the

first day, we measured ti as the elapsed time until its first

disappearance. To determine the probability of a node to

reboot, we randomly associated every node in our testbed

with a type ti and assumed this node reboots after a period of

time determined by an exponential distribution with parameter

λ = 1
ti
. The time for next reboot is again drawn according to

the same distribution. This method produces churn with statis-

tics matching the empirical ones. We repeat each measurement

at least 5 times and report the median value found.

Bitcoin quickly recovers from a partition attack, yet it
takes hours for the network to be densely connected
again We measured how long it takes for the partition to heal

by measuring how many connections cross it, before, during

and after its formation (Fig. 8). We consider two different

attack scenarios: (i) the adversary does not intercept any

bitcoin traffic before or after the attack; and (ii) the adversary

intercepts some connections naturally.

Case 1: The adversary intercepts no traffic after the attack.
It takes 2 hours until one fifth of the initial number of

connections crossing the partition are established, while after

10 hours only half of the connections have been re-established.

The slow recovery is due to the fact that nodes on both sides

do not actively change their connections unless they or their

neighbors disconnect.

Case 2: The adversary intercepts some traffic after the
attack. If an AS-level adversary is naturally on-path for some

of the connections, she can significantly prolong the partition’s

lifetime. To do so, the attacker would just continue to drop

386

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 04:43:53 UTC from IEEE Xplore. Restrictions apply.

packets on connections she naturally intercepts. We measured

the effect of such attacks for attackers that are on-path for 14%,

18%, and 28% of the connections, respectively (Fig. 8). We

see that an AS-adversary who is initially on-path for 28% of

the connections can prolong the already slow recovery of the

partition by 58%. Many other ways to increase the persistence

of a partition exist. Due to space constraints, we discuss some

of them in Appendix D.

Despite the long healing time, the orphan rate of the network

returned to normal even with 1% of all connections crossing

the partition. This fact shows that partitions need to be perfect

in order to affect the network significantly.

VIII. DELAYING BLOCK PROPAGATION: EVALUATION

In this section, we evaluate the impact and practicality of

delay attacks through a set of experiments both at the node-

level and at the network-wide level. We start by demonstrating

that delay attacks against a single node work in practice

by implementing a working prototype of an interception

software that we then use to delay our own Bitcoin nodes

(Section VIII-A). We then evaluate the impact of network-

wide delay attacks by implementing a scalable event-driven

Bitcoin simulator. In constrast to partitioning attacks, and to

targeted delay attacks, we show that Bitcoin is well-protected

against network-wide delay attacks, even when considering

large coalitions of ASes as attackers (Section VIII-B).

A. How severely can an attacker delay a single node?

Methodology We implemented a prototype of our interception

software on top of Scapy [12], a Python-based packet ma-

nipulation library. Our prototype follows the methodology of

Section V and is efficient both in terms of state maintained and

processing time. Our implementation indeed maintains only

32B of memory (hash size) for each peer of the victim node.

Regarding processing time, our implementation leverages pre-

recompiled regular expressions to efficiently identify critical

packets (such as those with BLOCK messages) which are

then processed in parallel by dedicated threads. Observe that

the primitives required for the interception software are also

supported by recent programmable data-planes [19] opening

up the possibility of performing the attack entirely on network

devices.

We used our prototype to attack one of our own Bitcoin

nodes (v/Satoshi:0.12.0/, running on Ubuntu 14.04). The pro-

totype ran on a machine acting as a gateway to the victim node.

Using this setup, we measured the effectiveness of an attacker

in delaying the delivery of blocks, by varying the percentage

of connections she intercepted. To that end, we measured the

fraction of time during which the victim was uninformed of

the most recently mined block. We considered our victim node

to be uninformed when its view of the main chain is shorter

than that of a reference node. The reference node was another

Bitcoin client running the same software and the same number

of peers as the victim, but without any attacker.

% intercepted connections 50% 80% 100%

% time victim node is uniformed 63.21% 81.38% 85.45%

% total vulnerable Bitcoin nodes 67.9% 38.9% 21.7%

TABLE II: 67.9% of Bitcoin nodes are vulnerable to an

interception of 50% of their connections by an AS other than
their direct provider. Such interception can cause the node to

lag behind a reference node 63.21% of the time.

Delay attackers intercepting 50% of a node’s connection
can waste 63% of its mining power Table II illustrates

the percentage of the victim’s uptime, during which it was

uniformed of the last mined block, considering that the attacker

intercepts 100%, 80%, and 50% of its connections. Each value

is the average over an attack period of ∼200 hours. To further

evaluate the practicality of the attack, the table also depicts the

fraction of Bitcoin nodes for which there is an AS, in addition
to their direct provider, that intercepts 100%, 80%, and 50%

of its connections.

Our results reflect the major strength of the attack, which

is its effectiveness even when the adversary intercepts only

a fraction of the victim’s connections. Particularly, we see

that an attacker can waste 63% of a node’s mining power by

intercepting half of its connections. Observe that, even when

the attacker is intercepting all of the victim’s connections, the

victim eventually gets each block after a delay of 20 minutes.

Regarding the amount of vulnerable nodes to this attack in

the Bitcoin topology, we found that, for 67.9% of the nodes,

there is at least one AS other than their provider that intercepts
more than 50% of their connections. For 21.7% of the nodes

there is in fact an AS (other than their provider) that intercepts

all their connections to other nodes. In short, 21.7% of the

nodes can be isolated by an AS that is not even their provider.

B. Can powerful attackers delay the entire Bitcoin network?

Having shown that delay attacks against a single node

are practical, we now quantify the network-wide effects of

delaying block propagation.

Unlike partitioning attacks, we show that network-wide de-

lay attacks (that do not utilize active hijacking) are unlikely to

happen in practice. Indeed, only extremely powerful attackers

such as a coalition grouping all ASes based in the US could

significantly delay the Bitcoin network as a whole, increasing

the orphan rate to more than 30% from the normal 1%. We

also investigate how this effect changes as a function of the

degree of multi-homing that pools adopt.

Methodology Unlike partition attacks, the impact of delay

attacks on the network is difficult to ascertain. One would

need to actually slow down the network to fully evaluate

the cascading effect of delaying blocks. We therefore built a

realistic event-driven simulator following the principles in [39]

and used it to evaluate such effects.

Our simulator models the entire Bitcoin network and the

impact of a delay attack considering the worst-case scenario

387

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 04:43:53 UTC from IEEE Xplore. Restrictions apply.

Coalition Realistic topology Multihoming degree of pools

(Section VI) 1 3 5 7

US 23.78 38.46 18.18 6.29 4.20

DE 4.20 18.88 2.10 1.40 1.40

CN 4.90 34.27 1.40 0.70 0.70

TABLE III: Orphan rate (%) achieved by different network-

wide level delay attacks performed by coalitions of all the

ASes in a country, and considering either the topology inferred

in Section VI or synthetic topologies with various degrees of

pool multi-homing. The normal orphan rate is ∼1%.

for the attacker. Specifically, it assumes that the communica-

tion between gateways of the same pool cannot be intercepted.

Also, pools act as relay networks in that they propagate all

blocks that they receive via all their gateways. Moreover, the

simulator assumes that the delay attacker is only effective if

she intercepts the traffic from a node that receives a block

(essentially if she is able to perform the attack depicted in

Fig. 4a). We provide further details on our simulator and how

we evaluated it in Appendix A.

We ran our simulator on realistic topologies as well as on

synthetic ones with higher or lower degrees of multi-homing.

The realistic topology was inferred as described in Section VI.

The synthetic ones were created by adding more gateways to

the pools in the realistic topology until all pools reached the

predefined degree of multi-homing.

Due to pools multi-homing, Bitcoin (as a whole) is not
vulnerable to delay attackers, even powerful ones Our

results are summarized in Table III. We see that multi-homed

pools considerably increase the robustness of the Bitcoin

network against delay attacks. In essence, multi-homed pools

act as protected relays for the whole network. Indeed, multi-

homed pools have better chances of learning about blocks via

at least one gateway and can also more efficiently propagate

them to the rest of the network via the same gateways.

If we consider the current level of multi-homing, only

powerful attackers such as a coalition containing all US-based
ASes could effectively disrupt the network by increasing the

fork rate to 23% (as comparison, the baseline fork rate is 1%).

In contrast, other powerful attackers such as all China-based

or all Germany-based ASes can only increase the fork rate to

5%. As such coalitions are unlikely to form in practice, we

conclude that network-wide delay attacks do not constitute a

threat for Bitcoin.

Even a small degree of multi-homing is enough to protect
Bitcoin from powerful attackers. If all mining pools were

single-homed, large coalitions could substantially harm the

currency. The US for instance, could increase the fork rate

to 38% while China and Germany could increase it to 34%

and 18% respectively. Yet, the fork rate drops dramatically

as the average multi-homing degree increases. This is a good

news for mining pools as it shows that even a small increase

in their connectivity helps tremendously in protecting them

against delay attacks.

IX. COUNTERMEASURES

In this section, we present a set of countermeasures against

routing attacks. We start by presenting measures that do not

require any protocol change and can be partially deployed

in such a way that early adopters can benefit from higher

protection (Section IX-A). We then describe longer-term sug-

gestions for both detecting and preventing routing attacks

(Section IX-B).

A. Short-term measures

Increase the diversity of node connections The more con-

nected an AS is, the harder it is to attack it. We therefore

encourage Bitcoin node owners to ensure they are multi-

homed. Observe that even single-homed Bitcoin nodes could

benefit from extra connectivity by using one or more VPN

services through encrypted tunnels so that Bitcoin traffic to

and from the node go through multiple and distinct ASes.

Attackers that wish to deny connectivity through the tunnel

would need to either know both associated IP addresses or,

alternatively, disrupt all encrypted traffic to and from nodes—

making the attack highly noticeable.

Select Bitcoin peers while taking routing into account
Bitcoin nodes randomly establish 8 outgoing connections.

While randomness is important to avoid biased decisions,

Bitcoin nodes should establish a few extra connections taking

routing into consideration. For this, nodes could either issue a

traceroute to each of their peers and analyze how often

the same AS appears in the path or, alternatively, tap into the

BGP feed of their network and select their peers based on the

AS-PATH. In both cases, if the same AS appears in all paths,

extra random connections should be established.

Monitor round-trip time (RTT) The RTT towards hijacked

destinations increases during the attack. By monitoring the

RTT towards its peers, a node could detect sudden changes and

establish extra random connections as a protection mechanism.

Monitor additional statistics Nodes should deploy anomaly

detection mechanisms to recognize sudden changes in: the

distribution of connections, the time elapsed between a request

and the corresponding answer, the simultaneous disconnec-

tions of peers, and other lower-level connection anomalies.

Again, anomalies should spur the establishment of extra ran-

dom connections.

Embrace churn Nodes should allow the natural churn of the

network to refresh their connections. A node with disabled

incoming connections or even one that is behind a NAT or

a firewall will never receive a random incoming connection

from the rest of the network. If the node is hijacked for a few

minutes and isolated from a part of the network, it will only

reconnect to the other part upon reboot or when one of its

outgoing connections fails.

388

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 04:43:53 UTC from IEEE Xplore. Restrictions apply.

Use gateways in different ASes While inferring the topology

we noticed that many pools were using gateways in the same

AS. Hosting these gateways in different ASes would make

them even more robust to routing attacks.

Prefer peers hosted in the same AS and in /24 prefixes As

the traffic of nodes hosted in /24 prefixes can only partially

be diverted (Section II). Hosting all nodes in such prefixes

would prevent partition attacks at the cost of (∼1%) increase

of the total number of Internet prefixes. Alternatively, nodes

could connect to a peer hosted in a /24 prefix which belongs

to their provider. By doing so they maintain a stealth (intra-

AS) connection with a node that is at least partially protected

against hijack.

B. Longer-term measures

Encrypt Bitcoin Communication and/or adopt MAC While

encrypting Bitcoin connections would not prevent adversaries

from dropping packets, it would prevent them from eavesdrop-

ping connections and modifying key messages. Alternatively,

using a Message Authentication Code (MAC) to validate that

the content of each message has not been changed would make

delay attacks much more difficult.

Use distinct control and data channels A key problem of

Bitcoin is that its traffic is easily identifiable by filtering on

the default port (8333). Assuming encrypted connections, the

two ends could negotiate a set of random TCP ports upon

connecting to each other using the well-known port and use

them to establish the actual TCP connection, on which they

will exchange Bitcoin data. This would force the AS-level

adversary to look at all the traffic, which would be too costly.

A simpler (but poorer) solution would be for Bitcoin clients

to use randomized TCP port (encoded in clear with the ADDR
message) as it will force the AS-level adversary to maintain

state to keep track of these ports. Although a node can already

run on a non-default port, such a node will receive fewer

incoming connections (if any) as the default client strongly

prefers peers that run on the default port.

Use UDP heartbeats A TCP connection between two Bitcoin

nodes may take different forward and backward paths due to

asymmetric routing, making AS-level adversaries more power-

ful (as they only need to see one direction, see Section V). In

addition to TCP connections, Bitcoin clients could periodically

send UDP messages with corroborating data (e.g., with several

recent block headers). These UDP messages can be used as a

heartbeat that will allow nodes to discover that their connection

was partially intercepted. As UDP messages do not rely on

return traffic, this would enable node to realize that they are

out-of-sync and establish new connections.

Request a block on multiple connections Bitcoin clients

could ask multiple peers for pieces of the block. This measure

would prevent misbehaving nodes from deliberately delaying

the delivery of a block, simply because in such a case the

client will only miss one fraction of the block, which it can

request from one of its other peers.

X. RELATED WORK

AS-level adversaries The concept of AS-level adversaries has
been studied before in the context of Tor [25], [37], [22],

[50], [53]. These works also illustrated the problems caused

by centralization and routing attacks on a distributed system

running atop the Internet. Yet, Tor and Bitcoin differ vastly in

their behavior with one routing messages in an Onion-like

fashion, while the other uses random connections to flood

messages throughout the entire network. Although random

graphs are usually robust to attacks, this paper shows that it

is not the case when the network is centralized at the routing-

level.

Bitcoin attacks The security of Bitcoin from network-based

attacks has been relatively less explored compared to other

attack scenarios. While eclipsing attacks [31], [27] have a

similar impact than delay attacks when performed against a

single node, they disrupt the victim’s connections and assume

that the attacker is directly connected to the victim (Section V).

For more information about Bitcoin attacks, we refer the reader

to a recent comprehensive survey on the Bitcoin protocol [18].

BGP security issues Measuring and detecting routing at-

tacks has seen extensive research, both considering BGP

hijacks [48], [54], [55] and interception attacks [16]. Similarly,

there has been much work on proposing secure routing proto-

cols that can prevent the above attacks [17], [29], [32], [40].

In contrast, our work is the first one to show the consequences
of these attacks on cryptocurrencies.

XI. CONCLUSIONS

This paper presented the first analysis of the vulnerabilities

of the Bitcoin system from a networking viewpoint. Based on

real-world data, we showed that Bitcoin is heavily centralized.

Leveraging this fact, we then demonstrated and quantified

the disruptive impact that AS-level adversaries can have on

the currency. We showed that attackers can partition the

Bitcoin network by hijacking less than 100 prefixes. We also

showed how AS-level adversaries can significantly delay the

propagation of blocks while remaining undetected. Although

these attacks are worrying, we also explained how to counter

them with both short-term and long-term measures, some of

which are easily deployable today.

ACKNOWLEDGMENTS

We would like to thank Christian Decker for sharing Bitcoin

data with us as well as for his valuable comments in the

beginning of the project. We would also like to thank David

Gugelmann for his support in one of our experiments. Finally,

we are grateful to Tobias Bühler, Edgar Costa Molero, and

Thomas Holterbach from ETH Zürich as well as Eleftherios

Kokoris Kogias from EPFL for their helpful feedback on early

drafts of this paper. Aviv Zohar is supported by the Israel

Science Foundation (grant 616/13) and by a grant from the

Hebrew University Cybersecurity Center.

389

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 04:43:53 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] “A Next-Generation Smart Contract and Decentralized Application
Platform ,” https://github.com/ethereum/wiki/wiki/White-Paper.

[2] “Bitcoin Blockchain Statistics,” https://blockchain.info/.

[3] “bitnodes,” https://bitnodes.21.co/.

[4] “Bitnodes. Estimating the size of Bitcoin network,” https://bitnodes.21.
co/.

[5] “CAIDA Macroscopic Internet Topology Data Kit.” https://www.caida.
org/data/internet-topology-data-kit/.

[6] “Dyn Research. Pakistan hijacks YouTube.” http://research.dyn.com/
2008/02/pakistan-hijacks-youtube-1/.

[7] “FALCON,” http://www.falcon-net.org/.

[8] “FIBRE,” http://bitcoinfibre.org/.

[9] “Litecoin ,” https://litecoin.org.

[10] “RIPE RIS Raw Data,” https://www.ripe.net/data-tools/stats/ris/
ris-raw-data.

[11] “Routeviews Prefix to AS mappings Dataset (pfx2as) for IPv4 and IPv6.”
https://www.caida.org/data/routing/routeviews-prefix2as.xml.

[12] “Scapy.” http://www.secdev.org/projects/scapy/.

[13] “The Relay Network,” http://bitcoinrelaynetwork.org/.

[14] “ZCash,” https://z.cash/.

[15] A. M. Antonopoulos, “The bitcoin network,” in Mastering Bitcoin.
O’Reilly Media, Inc., 2013, ch. 6.

[16] H. Ballani, P. Francis, and X. Zhang, “A Study of Prefix Hijacking and
Interception in the Internet,” ser. SIGCOMM ’07. New York, NY, USA:
ACM, 2007, pp. 265–276.

[17] A. Boldyreva and R. Lychev, “Provable Security of S-BGP and Other
Path Vector Protocols: Model, Analysis and Extensions,” ser. CCS ’12.
New York, NY, USA: ACM, 2012, pp. 541–552.

[18] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W.
Felten, “Sok: Research perspectives and challenges for bitcoin and
cryptocurrencies,” in Security and Privacy (SP), 2015 IEEE Symposium
on. IEEE, 2015, pp. 104–121.

[19] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

[20] C. Decker and R. Wattenhofer, “Information propagation in the bitcoin
network,” in Peer-to-Peer Computing (P2P), 2013 IEEE Thirteenth
International Conference on. IEEE, 2013, pp. 1–10.

[21] ——, Bitcoin Transaction Malleability and MtGox. Cham: Springer
International Publishing, 2014, pp. 313–326. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-11212-1_18

[22] M. Edman and P. Syverson, “As-awareness in tor path selection,” in
Proceedings of the 16th ACM Conference on Computer and Communi-
cations Security, ser. CCS ’09, 2009.

[23] I. Eyal, “The miner’s dilemma,” in 2015 IEEE Symposium on Security
and Privacy. IEEE, 2015, pp. 89–103.

[24] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is
vulnerable,” in Financial Cryptography and Data Security. Springer,
2014, pp. 436–454.

[25] N. Feamster and R. Dingledine, “Location diversity in anonymity
networks,” in WPES, Washington, DC, USA, October 2004.

[26] J. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone protocol:
Analysis and applications,” in Advances in Cryptology-EUROCRYPT
2015. Springer, 2015, pp. 281–310.

[27] A. Gervais, G. O. Karama, V. Capkun, and S. Capkun, “Is bitcoin a
decentralized currency?” IEEE security & privacy, vol. 12, no. 3, pp.
54–60, 2014.

[28] A. Gervais, H. Ritzdorf, G. O. Karame, and S. Capkun, “Tampering with
the delivery of blocks and transactions in bitcoin,” in Proceedings of
the 22Nd ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’15. New York, NY, USA: ACM, 2015, pp. 692–705.

[29] P. Gill, M. Schapira, and S. Goldberg, “Let the Market Drive Deploy-
ment: A Strategy for Transitioning to BGP Security,” ser. SIGCOMM
’11. New York, NY, USA: ACM, 2011, pp. 14–25.

[30] S. Goldberg, M. Schapira, P. Hummon, and J. Rexford, “How Secure
Are Secure Interdomain Routing Protocols,” in SIGCOMM, 2010.

[31] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse attacks on
bitcoin’s peer-to-peer network,” in 24th USENIX Security Symposium
(USENIX Security 15), 2015, pp. 129–144.

[32] Y.-C. Hu, A. Perrig, and M. Sirbu, “SPV: Secure Path Vector Routing
for Securing BGP,” ser. SIGCOMM ’04. New York, NY, USA: ACM,
2004, pp. 179–192.

[33] J. Karlin, S. Forrest, and J. Rexford, “Pretty Good BGP: Improving BGP
by Cautiously Adopting Routes,” in Proceedings of the Proceedings
of the 2006 IEEE International Conference on Network Protocols, ser.
ICNP ’06. Washington, DC, USA: IEEE Computer Society, 2006, pp.
290–299.

[34] E. K. Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford,
“Enhancing bitcoin security and performance with strong consistency
via collective signing,” in 25th USENIX Security Symposium (USENIX
Security 16). Austin, TX: USENIX Association, 2016, pp. 279–296.

[35] J. A. Kroll, I. C. Davey, and E. W. Felten, “The economics of bitcoin
mining, or bitcoin in the presence of adversaries.” Citeseer.

[36] A. Miller, J. Litton, A. Pachulski, N. Gupta, D. Levin, N. Spring, and
B. Bhattacharjee, “Discovering bitcoin’s public topology and influential
nodes.”

[37] S. J. Murdoch and P. Zieliński, “Sampled traffic analysis by Internet-
exchange-level adversaries,” in Privacy Enhancing Technologies: 7th
International Symposium, PET 2007, N. Borisov and P. Golle, Eds.
Springer-Verlag, LNCS 4776, 2007, pp. 167–183.

[38] K. Nayak, S. Kumar, A. Miller, and E. Shi, “Stubborn mining: Gen-
eralizing selfish mining and combining with an eclipse attack,” IACR
Cryptology ePrint Archive, vol. 2015, p. 796, 2015.

[39] T. Neudecker, P. Andelfinger, and H. Hartenstein, “A simulation model
for analysis of attacks on the bitcoin peer-to-peer network,” in IFIP/IEEE
International Symposium on Internet Management. IEEE, 2015, pp.
1327–1332.

[40] P. v. Oorschot, T. Wan, and E. Kranakis, “On interdomain routing
security and pretty secure bgp (psbgp),” ACM Trans. Inf. Syst. Secur.,
vol. 10, no. 3, Jul. 2007.

[41] A. Pilosov and T. Kapela, “Stealing The Internet. An Internet-Scale Man
In The Middle Attack.” DEFCON 16.

[42] Y. Rekhter and T. Li, A Border Gateway Protocol 4 (BGP-4), IETF,
Mar. 1995, rFC 1771.

[43] M. Rosenfeld, “Analysis of hashrate-based double spending,” arXiv
preprint arXiv:1402.2009, 2014.

[44] A. Sapirshtein, Y. Sompolinsky, and A. Zohar, “Optimal selfish mining
strategies in bitcoin,” CoRR, vol. abs/1507.06183, 2015.

[45] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and
M. Virza, “Zerocash: Decentralized anonymous payments from bitcoin,”
in 2014 IEEE Symposium on Security and Privacy. IEEE, 2014, pp.
459–474.

[46] B. Schlinker, K. Zarifis, I. Cunha, N. Feamster, and E. Katz-Bassett,
“Peering: An as for us,” in Proceedings of the 13th ACM Workshop
on Hot Topics in Networks, ser. HotNets-XIII. New York, NY, USA:
ACM, 2014, pp. 18:1–18:7.

[47] J. Schnelli, “BIP 151: Peer-to-Peer Communication Encryption,” Mar.
2016, https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki.

[48] X. Shi, Y. Xiang, Z. Wang, X. Yin, and J. Wu, “Detecting prefix
hijackings in the Internet with Argus,” ser. IMC ’12. New York, NY,
USA: ACM, 2012, pp. 15–28.

[49] Y. Sompolinsky and A. Zohar, “Secure high-rate transaction processing
in bitcoin,” in Financial Cryptography and Data Security. Springer,
2015, pp. 507–527.

[50] Y. Sun, A. Edmundson, L. Vanbever, O. Li, J. Rexford, M. Chiang, and
P. Mittal, “RAPTOR: Routing attacks on privacy in TOR.” in USENIX
Security, 2015.

[51] A. Tonk, “Large scale BGP hijack out of India,” 2015, http://www.
bgpmon.net/large-scale-bgp-hijack-out-of-india/.

[52] ——, “Massive route leak causes Internet slowdown,” 2015, http://www.
bgpmon.net/massive-route-leak-cause-internet-slowdown/.

[53] L. Vanbever, O. Li, J. Rexford, and P. Mittal, “Anonymity on quicksand:
Using BGP to compromise TOR,” in ACM HotNets, 2014.

[54] Z. Zhang, Y. Zhang, Y. C. Hu, and Z. M. Mao, “Practical defenses
against BGP prefix hijacking,” ser. CoNEXT ’07. New York, NY,
USA: ACM, 2007.

[55] Z. Zhang, Y. Zhang, Y. C. Hu, Z. M. Mao, and R. Bush, “iSPY:
Detecting IP prefix hijacking on my own,” IEEE/ACM Trans. Netw.,
vol. 18, no. 6, pp. 1815–1828, Dec. 2010.

390

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 04:43:53 UTC from IEEE Xplore. Restrictions apply.

APPENDIX

A. Bitcoin event-driven simulation

In this section, we provide more details on the simulator we

used in Section VIII-B.

Inputs The simulator takes as input a realistic topology and

some synthetic topologies with higher or lower degree of

multi-homing. Each of the topologies includes the list of IP

addresses running Bitcoin nodes, the IPs of the gateways and

the hash rate associated with each mining pool, along with the

forwarding paths among all pairs of IPs. The realistic topology

was inferred as described in Section VI. The synthetic ones

were created by adding more gateways to the pools in the

realistic topology until they all reached the predefined degree

of multi-homing.

Model The simulator models each Bitcoin node as an inde-

pendent thread which reacts to events according to the Bitcoin

protocol. Whenever a node communicates with another, the

simulator adds a delay which is proportional to the number of

ASes present on the forwarding path between the two nodes.

Each nodes initializes 8 connections following the default

client implementation. Blocks are generated at intervals drawn

from an exponential distribution, with an expected rate of one

block every 10 minutes. The probability that a specific pool

succeeds in mining a block directly depends on its mining

power. We consider that the gateways of a pool form a clique

and communicate with each other with links of zero delay

which an attacker cannot intercept. Concretely, this means that

whenever a block is produced by a pool, it is simultaneously

propagated from all the gateways of this pool. Although this

choice makes the attacker less effective, we assume that this

is the default behavior of a benign pool.

Attack In the simulation, an AS can effectively delay the

delivery of a block between two nodes if and only if she

intercepts the traffic from the potential recipient to the sender,

essentially if she is able to perform the attack depicted in

Fig. 4a. An adversary that intercepts the opposite direction

is considered unable to delay blocks, during the simulation.

Although this choice makes the attacker less effective, it avoids

a dependency between the orphan rate and time. Indeed, these

attackers lose their power through time, as the connections

they intercept are dropped after the first effective block delay,

and possibly replaced with connections that are not intercepted

by the attacker.

Validation We verified our simulator by comparing the orphan

rate as well as the median propagation delay computed with

those of the real network. We found that both of them are

within the limits of the actual Bitcoin network [20].

Methodology We evaluated the impact of delay attacks con-

sidering the three most powerful country-based coalition (US,

China and Germany) as measured by the percentage of traffic

all their ASes3 see.

3We map an AS to a country based on the country it is registered in.

Isolated
mining power

Minimum
prefixes

Median
prefixes

Feasible
Partitions

6% 2 86 20

7% 7 72 23

8% 32 69 14

30% 83 83 1

39% 32 51 11

40% 37 80 8

41% 44 55 3

45% 34 41 5

46% 78 78 1

47% 39 39 1

TABLE IV: This table lists all partitions that can be created

based on our inferred topology. The leftmost column indicates

the portion of mining power contained within the isolated set

and the rightmost the number of different combinations of

pools that could form it.

We run the simulation 20 times for each set of parameters

and consider a new random Bitcoin topology during each

run. In each run, 144 blocks are created, which is equivalent

to a day’s worth of block production (assuming an average

creation rate of one block per 10 minutes). We evaluated the

impact of delay attacks by measuring the orphan rate, different

adversaries can cause.

B. Possible Partitions

Table IV shows a complete list of all the possible sets

of nodes P with the mining power that can be isolated. A

summary of it was included and discussed in Section VII.

C. Inferring pool gateways

We summarize here two ways hijacking can be used to

reveal the gateways of pools.

1) The attacker may hijack the pool’s stratum servers to

discover connections that they establish and thus reveal

the gateways they connect to. Connections between the

pool’s stratum server and its gateways are done via

bitcoind’s RPC access, and can be easily distinguished.

2) The attacker may hijack the relay network to discover

the connections used by large mining pools. The relay

network has indeed a public set of six IPs that pools

connect to. By hijacking these, one may learn the IPs

of various gateways. Specifically, it will not be hard to

identify a pool by observing the blocks each publishes to

the relay network.

D. Increase partition persistence

Our observations in Section VII-D reveal concrete ways for

the attacker to make her partition lasts longer. Intuitively, the

attacker needs to suppress the effect of churn in order to keep

the victim nodes isolated. The following three observations

help in this regard:

391

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 04:43:53 UTC from IEEE Xplore. Restrictions apply.

Observation 1: A smaller set of nodes will be easier to
isolate for extended periods. The smaller the set of nodes is,

the more time will pass before any isolated node restarts.

Similarly, if the set of nodes is small, external nodes will

connect to the isolated set with lower probability.

Observation 2: All incoming connection slots can be oc-
cupied by connections from attacker nodes. Bitcoin nodes

typically limit the number of incoming connections they

accept. The attacker may use several nodes to aggressively

connect to the isolated nodes, and maintain these connections

even after BGP routing is restored. Connections initiated by

external nodes would then be rejected by the isolated nodes

(as all slots of connections remain occupied).

Observation 3: Outgoing connections can be biased via a
traditional eclipse attack [31]. Once an isolated node reboots,

it will try to establish connections to nodes in its peer lists.

These can be biased to contain attacker nodes, other isolated

nodes, and IP addresses that do not actually lead to Bitcoin

nodes. This is done by aggressively advertising these IPs to

the victim nodes. The connections they form upon rebooting

will then be biased towards those that maintain the partition.

E. Frequently Asked Questions

Can bitcoin relays bridge the partition? While Bitcoin

relays [13] improve Bitcoin performance, they do not improve

Bitcoin security against routing attacks. Indeed, as the IPs of

the relays are publicly available, relays are also vulnerable to

both hijacking and passive attacks. As such, they can neither

bridge the partition, nor act as a protected relay when an

actual network attack takes place. Note that routing attacks

are completely different from DDoS attacks, which relays are

most likely protected against. Routing attacks are much more

complicated to deal with as they constitute a human-driven

process depending highly on the provider of the victim rather

than the victim itself. As an illustration, the mitigation of a

hijack could include the provider of the attacker disconnecting

her or her announcements being filtered globally, after the

hijack has been detected by the provider of the victim.

Can NATed nodes bridge a partition? All nodes behind a

NAT act as a simple node that doesn’t accept connections.

Indeed, by hijacking the corresponding public IP, the attacker

receives traffic destined to all of them. In Section IV, we

explained why simple nodes cannot bridge the partition, the

same applies for NATed nodes.

Can Bitcoin routing alternatives solve the attacks presented
in this paper? Similar to the Bitcoin relays, existing proposals

could indeed speed up the transmission of blocks by tackling

with natural limitation of the current Internet such as delay

and packet loss. For instance, FIBRE [8] uses Forward Error

Correction (FEC) and compression to speed up the block

transmission. In parallel, Falcon [7], uses a technique called

cut-through routing to achieve fast block transmission in the

presence of increased network delays. However, neither of the

aforementioned approaches address routing attacks in the form

of BGP hijacks or traffic eavesdropping.

F. Ethical considerations

Although we performed both of the attacks we describe

against nodes that were connected to the Bitcoin network

we did not disturb their normal operations. Regarding the

hijack experiment, we advertised and hijacked a prefix that was

assigned to us by the Transit Portal (TP) project [46]. No other

traffic was influenced by our announcements. Also, the isolated

nodes were experimental nodes we ran ourselves. Actual

Bitcoin nodes that happened to be connected to these were

not affected, they just had one of their connections occupied

(as if they were connected to a supernode). Regarding the

delay experiment, the victims were again our own Bitcoin

clients. While they were indeed connected to nodes in the real

network, those were not affected as we only modified packets

towards our victim nodes.

392

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 04:43:53 UTC from IEEE Xplore. Restrictions apply.

