
Stack Overflow Considered Harmful?
The Impact of Copy&Paste on Android Application Security

Felix Fischer, Konstantin Böttinger, Huang Xiao, Christian Stransky∗, Yasemin Acar∗, Michael Backes∗, Sascha Fahl∗
Fraunhofer Institute for Applied and Integrated Security; ∗CISPA, Saarland University

Abstract—Online programming discussion platforms such as
Stack Overflow serve as a rich source of information for software
developers. Available information include vibrant discussions
and oftentimes ready-to-use code snippets. Previous research
identified Stack Overflow as one of the most important in-
formation sources developers rely on. Anecdotes report that
software developers copy and paste code snippets from those
information sources for convenience reasons. Such behavior
results in a constant flow of community-provided code snippets
into production software. To date, the impact of this behaviour
on code security is unknown.

We answer this highly important question by quantifying
the proliferation of security-related code snippets from Stack
Overflow in Android applications available on Google Play.
Access to the rich source of information available on Stack
Overflow including ready-to-use code snippets provides huge
benefits for software developers. However, when it comes to
code security there are some caveats to bear in mind: Due
to the complex nature of code security, it is very difficult to
provide ready-to-use and secure solutions for every problem.
Hence, integrating a security-related code snippet from Stack
Overflow into production software requires caution and expertise.
Unsurprisingly, we observed insecure code snippets being copied
into Android applications millions of users install from Google
Play every day.

To quantitatively evaluate the extent of this observation, we
scanned Stack Overflow for code snippets and evaluated their
security score using a stochastic gradient descent classifier. In
order to identify code reuse in Android applications, we applied
state-of-the-art static analysis. Our results are alarming: 15.4%
of the 1.3 million Android applications we analyzed, contained
security-related code snippets from Stack Overflow. Out of these
97.9% contain at least one insecure code snippet.

I. INTRODUCTION

Discussion platforms for software developers have grown in

popularity. Especially inexperienced programmers treasure the

direct help from the community providing easy guide and most

often even ready-to-use code snippets. It is widely believed

that copying such code snippets into production software is

generally practiced not only by the novice but by large parts

of the developer community. Access to the rich source of

information given by public discussion platforms provides

quick solutions. This allows fast prototyping and an efficient

workflow. Further, the public discussions by sometimes ex-

perienced developers potentially promote distribution of best-

practices and may improve code quality on a large basis.

However, when it comes to code security, we often observe

the opposite. Android-related discussions on Stack Overflow

for example include an impressive conglomeration of oddities:

from requesting too many and unneeded permissions [1]

to implementing insecure X.509 certificate validation [2] to

misusing Android’s cryptographic API [3], a developer who is

seeking help can find solutions for almost any problem. While

such solutions oftentimes provide functional code snippets,

many of them threaten code security. Those insecure code

snippets commonly have a rather solid life-cycle: provided by

the community, copied and pasted by the developer, shipped

to the customer, and exploited by the attacker. To date it is

unknown to what extent software developers copy and paste

code snippets from information sources into production soft-

ware. Is this phenomenon limited to just occasional instances,

or is it rather a general and dangerous trend threatening code

security to a large extent?

We answer this highly important question by measuring

the frequency 1,161 insecure code snippets posted on Stack

Overflow were copied and pasted into 1,305,820 Android

applications available on Google Play. We demonstrate that

the proliferation of insecure code snippets within the Android

ecosystem, and thus the impact of insecure code snippets

posted on Stack Overflow, poses a major and dangerous

problem for Android application security.

Our Contributions

We investigate the extent security-related code snippets

posted on Stack Overflow were copied into Android appli-

cations available on Google Play. Our contributions can be

summarized as follows:

• We identified all Android posts on Stack Overflow,

extracted all (4,019) security-related code snippets and

analyzed their security using a robust machine learning

approach. As a result we provide a security analysis for

all security-related Android code snippets available on

Stack Overflow.

• We applied state-of-the-art static code analysis techniques

to detect extracted code snippets from Stack Overflow in

1.3 million Android applications.

• We found that 15.4% of all 1.3 million Android ap-

plications contained security-related code snippets from

Stack Overflow. Out of these 97.9% contain at least one

insecure code snippet.

• We designed and implemented a fully automated large-

scale processing pipeline for measuring the flow of

security-related code snippets from Stack Overflow into

Android applications.

• We make all data available on https://www.aisec.

fraunhofer.de/stackoverflow.

2017 IEEE Symposium on Security and Privacy

© 2017, Felix Fischer. Under license to IEEE.

DOI 10.1109/SP.2017.31

121

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 13:37:25 UTC from IEEE Xplore.  Restrictions apply. 



Stack Overflow Google Play Store

1

1

2 3 4

5

5

Fig. 1: Overall processing pipeline of code extraction (1), filtering (2), classification (3), program dependency graph generation

(4), and clone detection (5).

Our processing pipeline is fully automated and designed to

scale to extensive measurements of platforms other than Stack

Overflow and software repositories other than Google Play.

II. PROCESSING PIPELINE ARCHITECTURE

In this section, we discuss the architecture of our processing

pipeline. The individual steps of the processing pipeline are

described in detail in subsequent sections.

As depicted in Figure 1 the code originates in the Stack

Overflow database (on the left) and flows into Google Play

(on the right). To measure this flow we first crawl Stack

Overflow and extract every single code snippet in the database

(1). From this comprehensive snippet collection we filter those

that are security-related (2). We discuss steps (1) and (2) in

detail in Section III on code extraction and filtering. This

provides us with a set of security-related snippets. In order

to label each of them secure or insecure we define labeling

rules as described in Section IV and apply machine learning

classification (3) using support vector machines (cf. Section

V). Next, we generate an abstract representation of each

labeled code snippet (4) that allows us to detect their clones in

Google Play (5) (cf. Section VI). Each step is fully automated

and designed for large scale analysis. Only the training step for

supervised machine learning classification (3) requires manual

labeling of training data. However, this must be done only once

for a small fraction of snippets, classification of very large

sets of code snippets afterwards runs fully automated and is

therefore just a matter of processing power and time. As we

will show in the evaluation in Section VII-C our proposed

approach is time-efficient and yields decent results.

III. CODE EXTRACTION AND FILTERING

First, we crawl discussion threads from a developer discus-

sion platform for actual code snippets. Second, we extract all

security-related snippets. We begin this section by defining the

criteria for security-related code snippets and continue with

describing our implementation for Stack Overflow.

A. Security-related Code Snippets

On Android, security operations include but are not limited

to cryptographic operations, secure network communication

and transmission, validation via PKI-based mechanisms, as

well as authentication and access control. These operations

are supported by different APIs. We define code elements of

these APIs as an indicator for security-related code: A code

snippet is considered security-related iff it makes calls to one

of the following APIs: [4]

• Cryptography: Java Cryptography Architecture (JCA),

Java Cryptography Extension (JCE)

• Secure network communications: Java Secure Socket

Extension (JSSE), Java Generic Security Service (JGSS),

Simple Authentication and Security Layer (SASL)

• Public key infrastructure: X.509 and Certificate Revoca-

tion Lists (CRL) in java.security.cert, Java certification

path API, PKCS#11, OCSP

• Authentication and access control: Java Authentication

and Authorization Service (JAAS)

Additionally, we included code snippets with reference to

the following security libraries, which were specially designed

for Android: BouncyCastle (BC) is the default, pre-installed

cryptographic service provider on Android and is widely

used [3]. SpongyCastle1 (SC) gives a repackaged version of

BC which provides additional functionality. We looked for

code snippets containing both BC and SC API calls.

Furthermore, we extracted code snippets for the Apache

TLS/SSL package as part of the HttpClient library which

is one of the most used libraries on GitHub [5].

We also included code snippets that reference security

libraries specifically designed with usability in mind [6], e.g.

keyczar [7] and jasypt [8], which were designed to simplify

the safe use of cryptography for developers.

To contrast Android’s default providers and the usable

security libraries with a more inconvenient alternative, we

included GNU Crypto. Although this library also implements

a JCA provider, it is challenging to integrate into Android [9],

which makes it interesting to see whether it is being discussed

on Stack Overflow and used by developers.

Table I lists the considered security libraries and gives an

overview of their supported features.

1cf. https://rtyley.github.io/spongycastle/

122

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 13:37:25 UTC from IEEE Xplore.  Restrictions apply. 



T
L

S

S
y
m

m
et

ri
c

C
ry

p
to

g
ra

p
h
y

A
sy

m
m

et
ri

c
C

ry
p
to

g
ra

p
h
y

S
ec

u
re

R
an

d
o
m

N
u
m

b
er

G
en

er
at

io
n

M
es

sa
g
e

D
ig

es
ts

D
ig

it
al

S
ig

n
at

u
re

s

A
u
th

en
ti

ca
ti

o
n

U
sa

b
il

it
y

b
y

D
es

ig
n

Standard API
BouncyCastle
SpongyCastle
Apache TLS/SSL
keyczar
jasypt
GNU Crypto

= fully applies;
= does not apply at all

TABLE I: Cryptographic libraries and their supported features.

B. Finding Security-related Code Snippets on Stack Overflow

Code snippets on Stack Overflow are surrounded by

<code> tags and can therefore easily be separated from

accompanying text and extracted.

In order to decide which API is used by a code snippet,

we need Fully Qualified Names (FQN) (i.e. package names

in Java) of code elements in the snippet. Since Partially

Qualified Names (PQN) (i.e. class and method names)

are not unique, different APIs can contain classes (e.g.

android.util.Base64, java.util.Base64) and

methods (e.g. java.security.Cipher.getInstance,

java.security.Signature.getInstance) which

share the same name. FQNs allow us to distinguish non-unique

class and method names.

Code snippets posted on Stack Overflow are often incom-

plete or erroneous and therefore only PQNs are available.

Since disambiguating partial Java programs is an undecidable

problem [10], we used an oracle called JavaBaker [11] to

decide to which API a code element belongs. The oracle

consists of a user-defined set of APIs which is used to apply

a constraint-based approach to disambiguate types of given

code elements. Given a code snippet JavaBaker returns the

FQN for each element in the code, if it belongs to one of the

initially given libraries. The JavaBaker oracle has a precision

of 0.97 and a recall of 0.83 [11]. It is not restricted to specific

libraries. With JavaBaker, using the security libraries explained

in Section III-A, we were able to determine to which of

the given security APIs a type reference, method call, or

field access in a code snippet belongs. A code snippet is

therefore considered security-related if the returned result of

the oracle is not empty. We apply this to separate security-

related code snippets from Stack Overflow from snippets that

are not security-related.

Since the security APIs might contain packages whose

usage does not indicate implementation of security code (e. g.

util or math packages), our snippet filter includes a blacklist to

ignore those non-security-related packages. We compiled this

blacklist manually by inspecting each package individually.

Code snippets may contain sparsely used code elements.

For instance, an object can be declared and initialized, but not

used subsequently in the snippet. In this case, the oracle only

has the PQN of the element and the call to the constructor as

information to decide the FQN. This can lead to false positives

because the oracle has insufficient information to narrow down

possible candidates. To give an example, the oracle reported

java.security.auth.login.Configuration as

the FQN for a code element with type Configuration
whose true FQN was android.content.res.Con-
figuration. The related object only made a call to the

constructor, hence it was impossible to disambiguate the

given type Configuration. Luckily, these false positives

are easily detectable by filtering out snippets for which the

oracle reports the <init> method only or no methods at all.

We do not worry about true positives we might sort out this

way, as we are not interested in code snippets that contain

security elements which are not used after initialization.

C. Limitations

The main purpose of the the oracle-based filter is to decide

whether a given snippet is security-related. As it does this by

examining the snippet for utilization of the defined security

libraries, it might label a snippet as security-related, even

though it does not belong to a security context. This is the case

if an API element which is heavily used for security purposes

can also be used in a non-security context. For instance, in

a security context snippets would use hashing algorithms for

verifying data integrity. In a non-security context hashes may

be used for data management purposes only. In both cases the

snippet would reference elements of one of the given security

APIs which causes the filter to label the snippets as security-

related.

IV. CODE LABELING

Now that we have extracted security-related code snippets

(cf. Figure 1, (1) and (2)), we need to classify them as such.

Therefore, we first provide the label definition and labeling

rules and give details on the actual machine learning based

classification in Section V. We apply supervised learning and

therefore need to manually label a small fraction of extracted

code snippets to train the support vector machine. Therefore, a

pair of two reviewers inspected the set of 1,360 security-related

snippets extracted from answer posts from Stack Overflow. We

assume that answer snippets are more likely to be copied and

pasted as they are intended to solve a given problem. Question

snippets are not included in the training set as they might

introduce unpredictable noise, which would compromise the

classifier.

123

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 13:37:25 UTC from IEEE Xplore.  Restrictions apply. 



In case of conflicts, a third reviewer was consulted and

the conflict was resolved (by explaining the reasoning of the

reviews).

To better understand which topics were discussed (in combi-

nation with code snippets) on Stack Overflow, we categorized

each code snippet into one or multiple of the following cat-

egories: SSL/TLS, Symmetric cryptography, Asymmetric cryp-
tography, One way hash functions, (Secure) Random number
generation.

A. Security Labels

We checked whether or not code snippets were security risks

when pasted into Android application code and labeled them

either secure or insecure:

Secure
• Snippets that contain up-to-date and strong algorithms

for symmetric cryptography [12], [13], sufficiently large

keys for RSA or elliptic curve cryptography [14], [15] or

secure random number generation [3].

• Snippets that contain code that does not adhere to security

best practices, but does not result in easily exploitable

vulnerabilities either, e.g. usage of RSA with no or

PKCS1 padding [16], SHA1 or outdated versions of

SSL/TLS [12].

• Snippets that contain code whose security depended on

additional developer input, e.g. the symmetric cryptog-

raphy algorithm or key size is a parameter, which is

configurable by the developer.

Insecure
• Snippets that contained obviously insecure code, e.g.

using outdated algorithms or static initialization vectors

and keys for symmetric cryptography, weak RSA keys

for asymmetric cryptography, insecure random number

generation [3], or insecure SSL/TLS implementations [2].

This labeling is very conservative as it classifies only the

definitely vulnerable code snippets as insecure.

B. Labeling Rules

Code security was investigated for the category specific

parameters, which are introduced in this section. Based on

these parameters we state a security metric which provides the

rules for labeling the code snippets. Our stated security metric

does not intend to be an exhaustive metric for each security

category, but only considers security parameters which were

actually used in the snippets of our corpus. In the following,

we provide tables for each category which depict secure and

insecure parameters for quick lookup. Additionally, we give

details on parameters that were ambiguous or need further

explanation. We defined the following labeling rules for

security classification:

1) SSL/TLS: Table II illustrates the TLS parameters

we investigated [2]. The HostnameVerifier checks

whether a given certificate’s common name matches the

server’s hostname. TrustManager implementations

Parameter Secure Insecure

Hostname browser compatible, allow all
Verifier strict hosts [17]
Trust default, trust all [2],
Manager secure bad pinning [18], [17],

pinning validity only
Version >=TLSv1.1 [12] <TLSv1.1 [19], [12], [20], [21]
Cipher DHE RSA, ECDHE RC4,3DES,
Suite AES>=128, GCM AES-CBC

SHA>=256 [12] MD5, MD2 [12], [22]
OnReceived- cancel proceed
SSLError

TABLE II: Secure and insecure TLS parameters.

allow developers to implement custom certificate (chain)

validation strategies. Insecure hostname verifier or trust

manager implementations make an application vulnerable

to Man-In-The-Middle attacks. According to [2] we labeled

TrustManager and HostnameVerifier implementing

insecure validation strategies as insecure. TrustManagers
that implement public key or certificate pinning are

considered secure. However, we label pinning as insecure

if the pinset contains ambiguous values, e. g. serial number

of the certificate [18], [17]. We also investigated TLS

security of WebViews. Developers can implement their

own OnReceivedSSLError method to handle certificate

validation errors while loading content via HTTPS and can

ignore validation errors by proceeding the TLS handshake.

Parameter Secure Insecure

Cipher/Mode AES/GCM [12] RC2 [23], RC4 [24],
AES/CFB [12] DES [23], 3DES [25],

AES/CBC* AES/ECB [3],
AES/CBC** [22]

Blowfish [26], [27]
Key provider static [3],

generated bad derivation [3]
Initialization Vector provider zeroed [3],
(IV) generated static [3],

bad derivation [3],
Password Based >=1k iterations [13], <1k iterations [13],
Encryption (PBE) >=64-bit salt [13], <64-bit salt [13]

non-static salt [13] static salt [3]

TABLE III: Secure and insecure symmetric cryptography

parameters.

2) Symmetric Cryptography: We investigated snippets for

symmetric cryptography parameters as illustrated in Table III.

We labeled Ciphers and Modes of operation which are

known security best practices as secure. Ciphers and modes

with known practical attacks were labeled insecure. The AES

encryption mode CBC is depicted in both columns secure

and insecure because known padding oracle attacks are only

feasible in a client/server environment. If this encryption mode

is used in a different scenario, we consider it as secure [22].

We labeled cryptographic Keys and IV which were statically

assigned, zeroed or directly derived from text (such as pass-

words) as insecure [3].

124

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 13:37:25 UTC from IEEE Xplore.  Restrictions apply. 



Parameter Secure Insecure

Cipher/Mode RSA
RSA/ECB
RSA/None

Padding PKCS1*, PKCS1**
PKCS8,

OAEPWithSHA-256
AndMGF1Padding,

Key RSA >= 2048 bit RSA < 2048 bit [14]
ECC >= 224 bit ECC < 224 bit [15]

TABLE IV: Secure and insecure asymmetric cryptography

parameters.

3) Asymmetric Cryptography: We investigated snippets for

asymmetric cryptography parameters as illustrated in table

IV. The JCE API provides different Cipher and Mode
transformation strings for RSA which include the definition

of a block mode, e. g. RSA/ECB. However, these modes are

ignored by the underlying provider and have no implication

on security [28]. For RSA, we consider the used Padding
and Key length to evaluate security [14]. We distinguish

between a client/server and a non-client/server scenario. Only

in the first scenario PKCS1 padding is vulnerable to padding

oracle attacks and seen as a secure padding otherwise [16].

Secure and insecure key lengths for RSA and Eliptic curve

cryptography [14], [15] are shown in table IV.

Parameter Secure Insecure

PBKDF [PBKDF2](Hmac) [PBKDF2](Hmac)
>=SHA224 [29] MD2, MD5 [29]

Digital Signature >SHA1 MD2, MD5
Credentials >SHA1 MD2, MD5

TABLE V: Secure and insecure hash function parameters

4) One Way Hash Functions: We investigated snippets for

one way hash function parameters, as illustrated in Table V,

in the context of password-based key derivation, digital sig-

natures, and authentication/authorization. These were the only

categories where code snippets from our analysis corpus made

explicit use of hash functions. In the context of OAuth and

SASL (authentication and authorization), attacks are mainly

possible through flaws in website implementations [30]. There-

fore, we only analyzed which hashing schemes were used for

hashing credentials.

Parameter Secure Insecure

Type SecureRandom Random
Seeding nextBytes, setSeed->nextBytes,

nextBytes->setSeed setSeed with
static values [3]

TABLE VI: Secure and insecure parameters for (secure)

random number generation.

5) (Secure) Random Number Generation: We investigated

snippets for (secure) random number generation parameters

shown in table VI. The main problem which can lead to

security problems lies in provider specific implementation

and ambiguous documentation of manual seeds [31]. We

conclude that besides calling nextBytes only, which lets

SecureRandom seed itself, calling nextBytes followed

by setSeed is a secure sequence because SecureRandom
is still self-seeded. The latter call to setSeed just supple-

ments the seed and does not replace it [31]. Without calling

nextBytes first, a call to setSeed may completely replace

the seed. This behavior differs between several providers and is

often ill-described in official documentation [31]. Therefore,

we consider this call sequence as insecure if an insufficient

seed is given.

C. Limitations

Our code snippet reviews might be limited in multiple ways

in this step. Although we based our review decisions on widely

accepted best practices and previous research results and let

multiple reviewers review all snippets we cannot entirely elim-

inate incorrect labeling. The security of most code snippets

depends on input values (e. g. initialization parameters) that

were not given in all code snippets. Therefore, our results

might under- or overreport the prevalence of insecure APIs in

Android applications.

V. CODE CLASSIFICATION

In this section, we present our method for large-scale code

snippet classification, which corresponds to (3) in the overall

processing pipeline (cf. Figure 1).

Manual snippet analysis allows profound insight into se-

curity problems specifically raised from crowd-sourced code

snippets. Further, it allows the creation of a rich data set that

annotates crowd-sourced code snippets from Stack Overflow.

This opens the doors for machine learning based classification.

To the best of our knowledge, we are the first to contribute

such a data set to the machine learning community.

The security scoring of code snippets can be seen as a

classification problem, which we can effectively solve by

a variety of classifiers, e. g. feed-forward neural networks,

decision trees, support vector machines, and many more. By

manually labeling a subset of the collected snippets as secure

and insecure (cf. Section IV), we are able to produce a

training data set for binary classifiers. The trained model is

then applied to classify unknown code snippets. We apply the

binary classifier on all security-related snippets extracted by

the oracle-based filter to provide an automatic procedure of

security assessment.

It is arguable that machine learning based methods deliver

more benefits than rule-based methods on solving security

problems. Our binary classifier can efficiently extract dis-

criminative information from the data set, which might be

overlooked by rule based methods.

A. Support Vector Machine

We employ the binary classifier Support Vector Machine

(SVM) as our learning model. In our scenario, the labeled

training data set contains two classes, namely, insecure and

secure code snippets. The collected code snippets can be

125

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 13:37:25 UTC from IEEE Xplore.  Restrictions apply. 



+
+

+

+
+

-

-
-

-
-

-

1

‖w‖2
+1

−1

xi

Fig. 2: Illustration of SVM binary classifier. It maximizes a

margin 1
‖w‖2 to separate positive and negative samples in its

correct side. Note that a small portion of data samples are

allowed within the margin, which can be controlled by a set

of slack variables ξ.

regarded as documents. We argue that discriminative patterns

can be discovered by examining the tokens in code snippets.

These can be any combination of alphabets and symbols, e.g.,

while, return. Therefore, in our setting the learning problem

is a document classification problem with binary classes from

a set of tokens.

Given a training dataset of n samples X = {xi}ni=1, and

its corresponding labels {yi}ni=1 ∈ [+1,−1], a SVM classifier

learns a margin that maximally separates training samples into

two classes as illustrated in Figure 2. The objective function

can be formulated as follows,

minw,b,ξ
1
2w

Tw + C
∑n

i=1 ξi (1)

s.t. yi(w
Tφ(xi) + b) ≥ 1− ξi

ξi ≥ 0, i = 1, . . . , n

In (1) we note that minimizing w equals maximizing a margin.

SVM introduces a set of slack variables {ξi} to soften the

margin, such that a small portion of training samples are

allowed to be misclassified. Importantly, we also note that

the feature mapping φ(xi) defined over X can intrinsically

handle non-linear cases by the so called ’kernel trick’. For

more details, we refer to [32].

B. Feature Extraction

Since the learning problem of detecting the security level

of code snippets can be viewed as a document classification

problem, we employ a common feature extraction method

named tf-idf vectorizer [33]. The tf-idf vectorizer transforms

the whole set of code snippets into a numeric matrix. Each

of the code snippets is considered as a document, namely an

input data sample. We compute term frequency (tf ) and inverse

document frequency (idf ) with respect to the total number of

snippets.

For each snippet, the term frequency is computed by

counting each token within its document. For the inverse

document frequency, we compute the inverse of the number

of documents where each token appears in. Then the tf-idf
score is simply a multiplication of term frequency and inverse

document frequency. In the end, we maintain a vocabulary of

code tokens parsed from the snippets. This vocabulary will be

converted into a numeric vector of a fixed length containing

all possible tokens’ frequency in this snippet. Normally, tf-idf
vectorizer will form a high dimensional sparse data set with

many entries being set to zero, if all the individual tokens

are taken into account. Some tokens, e.g., randomly generated

numbers, variable and class names, only appear in particular

documents and therefore their document frequency is quite

low. Document frequency can be very high for other tokens,

e.g., common language terms such as return, public. The tf-
idf scores for these tokens will be automatically justified by

the inverse document frequency, such that their contribution

to the discriminative function will also be reweighed. Finally,

the sparse data set is then fed to SVM as the training data set.

We expect the tokens found in each snippet to represent an

encoding of how secure the code snippet will be.

VI. PDG GENERATION AND CODE DETECTION

Our processing pipeline has now filtered security-related

code snippets from Stack Overflow and classified them either

as secure or insecure (cf. Figure 1, (1) to (3)). Next, we aim to

detect these code snippets in compiled Android applications

from Google Play, (cf. Figure 1, (4) and (5)).

Snippets are given as source code and Android applications

are only available as high-level binaries (i. e. DEX files). To be

able to apply static code analysis, code snippets and Android

applications must be transformed into the same (intermediate)

representation (IR). In this section, we first describe this

transformation step (4) and then give a detailed explanation

of the method we apply (5).

A. Code Snippet Compiling

Commonly, static code analysis techniques require complete

programs or source code [10]. Most code snippets from Stack

Overflow however are not complete programs. They mostly

do not compile without error since required method or class

information is missing [11]. A snippet may be a subset

of a larger program which is not accessible or additional

dependencies (e. g. external libraries) might me unknown [10].

For incomplete code snippets creating a typed and com-

plete IR is difficult. To overcome this, we use Partial

Program Analysis (PPA) [10]. It was specifically designed

to create complete and typed abstract syntax trees (AST)

from source code of partial Java programs. PPA is able

to resolve syntactic ambiguities. For example, the statement

SSLSocketFactory.getDefault() does not allow to

decide if SSLSocketFactory is a class or field name. In

this case, SSLSocketFactory is a missing class and there-

fore getDefault() should be resolved to a static method

call. PPA is also able to disambiguate possible typing problems

which arise in case not all declared types are available. This

is done by reconstructing data types from snippets without

126

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 13:37:25 UTC from IEEE Xplore.  Restrictions apply. 



having access to source files, binaries or libraries. For data

types that cannot be resolved applying PPA, a generic data type

UNKNOWNP.UNKNOWN is used. This ensures that the created

AST remains complete.

To transform snippets and applications into the same IR,

we use WALA2. Since WALA operates on JVM bytecode,

we transform Android applications to JVM bytecode using

enjarify [34]. To be able to operate on Stack Overflow code

snippets, we modified WALA by integrating PPA. This allows

us to transform incomplete code snippets into WALA’s IR.

Before transformation, we make sure code snippets represent

a complete Java class by adding missing class and method

headers. Based on these snippets, we create the complete

and typed AST using PPA. We were able to successfully

process 1,293 answer (85.2%) and 1,668 question snippets

(66.6%). Snippets which could not be compiled mostly had

a too erroneous syntax and were therefore rejected by WALA.

Furthermore, a lot of snippets contained a mixture of Java code

and non-commented text (e. g code blocks were replaced with

’(...)’). We ignored those snippets for further analyses [11].

B. Code Snippets in Apps

Code snippet containment is given if an application contains

code that is very similar to the code snippet. However, a full

match is not necessary. Instead we use a detection algorithm

which is robust to fractional and non-malicious modifications3.

We base code snippet detection on finding similar Program

Dependency Graphs (PDG) which store data dependencies by

applying a modified approach of Crussel et al. [35]. They

create PDGs for each method and define the independent sub-

graphs of a PDG as the basic code features that are considered

for reuse detection. A method’s PDG may contain several data

independent subgraphs which are called semantic blocks. Code

similarity is defined on the amount of similar semantic blocks

that are shared among the compared code. Following this

approach provides robustness to high-level modifications and

trivial control-flow alterations, as well as non-malicious code

insertions/deletion, code reordering, constants modifications

and method restructurings as described in [35].

Although, this approach allows the detection of reused

code that has been subject to the defined modifications, we

consider some of the given robustness features as inappropriate

for our use case. It has several drawbacks when applied on

detecting reuse of code snippets in large Android applications.

Many snippets are quite small in terms of lines of code and

therefore result in small PDGs. In this scenario, different

code might result in identical PDGs. Therefore, we apply a

more strict approach which additionally compares constants

and method names that belong to a semantic block. This

is reasonable because constants are critical for initializing

Android security APIs. For instance cryptographic ciphers or

TLS sockets are selected by using a transformation String

(e. g. AES, TLS). Critical information like cryptographic keys,

2cf. http://wala.sourceforge.net
3Code obfuscation is not intended to be covered by our approach

key lengths, initialization vectors, passwords and salts can be

statically assigned in the code.
To be able to detect reused constants they must not have

been modified. Additionally, we compare method names that

are part of a semantic block and belong to APIs of our pre-

defined set of security libraries. This allows us to distinguish

security-related parts of the code, in case of different code

with identical semantic blocks and empty or identical constant

sets. Finally, we disallow class and method restructuring. This

is necessary because we have have to ensure that detected

semantic blocks are contained in classes and methods that

have the same structure as the snippet. We compare semantic

blocks, constants and method names on a per method base and

ensure (nested) class membership by analyzing path names of

all detected methods.
To avoid computational overhead, we limit the number of

classes to search for code snippets to classes that contain

security-related API calls as defined in Section III-B.
Finding subgraph isomorphisms in PDGs is NP-hard [36].

Therefore, we follow the approach of embedding graphs in

vector spaces in order to reduce the problem of finding similar

graphs to the problem of finding similar vectors [37]. We apply

the embedding algorithm provided by Crussel et al. [36] which

assigns a semantic vector to each semantic block. The semantic

vector stores information about nodes and edges, i. e. the over-

all structure of a semantic block. Nodes represent instructions,

edges represent data dependencies between instructions.
Each instruction type as provided by WALA’s IR has two

corresponding fields in the vector. One field stores node and

the other stores edge information. The count of nodes for each

instruction type (e. g. invokevirtual, getfield, new or return) in

the semantic block is stored in the related nodes field of the

instruction type in the vector. The maximum out node degree

for each instruction type is used to store information about

PDG edges. It holds the maximum count of outgoing edges

over all nodes in a semantic block for a given instruction type

and is stored in the related edges field of an instruction type

in the vector.
To decide if two semantic vectors are similar, we calculate

their Jaccard similarity [38], [39] which describes the simi-

larity ratio of two sets. Jaccard similarity for sets represented

as binary vectors X,Y is defined as Js(X,Y ) =
∑

i(Xi∧Yi)∑
i(Xi∨Yi)

.

However, since the semantic vector stores count information

of nodes and edges belonging to a semantic block, we define

Jaccard similarity as Js(X,Y ) =
∑

i min(Xi,Yi)∑
i max(Xi,Yi)

. Hence, two

statements of the same instruction type in the semantic block

represent different elements in the set representation of the

semantic block. This is also true for outgoing edges which

belong to the maximum out node degree. Therefore, two

outgoing edges of a single node are different elements in

the set representation. Furthermore, this definition ensures that

only elements of the same instruction type are compared.
PPA is able to create an IR of an incomplete code snippet

with an average correctness of 91% [10]. This gives us a

threshold for Jaccard similarity of 0.91. To decide if method

names and constants of a semantic block are contained in

127

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 13:37:25 UTC from IEEE Xplore.  Restrictions apply. 



another semantic block, we calculate their Jaccard contain-

ment. Jaccard containment depicts the containment ratio of an

arbitrary set X in another set Y and is defined as Jc(X,Y ) =
|X∧Y |
|X| . We calculate both Jaccard containment of two method

name and constant sets to evaluate whether all methods or

constants are contained. We rely on a Jaccard containment

value of 1.0 to satisfy the requirements of VI-B. We define

containment of a code snippet in an app iff the following holds

for each method in the snippet:

• For all given semantic blocks we find semantic blocks

that satisfy Jaccard similarity and are contained in a single

method contained in the callgraph of a given application.

• The method name set is fully contained in the same

method.

• The constants set is fully contained in the same method.

• They belong to the same (nested) class.

C. Exotic Case

Empty TrustManager implementations require special treat-

ment. They exclusively consist of overwritten methods (e. g.

cf. Listing 4). These methods are mostly empty which

means their PDG and methods and constants sets are also

empty. Therefore, our approach cannot distinguish these meth-

ods. To avoid false positives, the TrustManager’s methods

checkClientTrusted, checkServerTrusted and

getAcceptedIssuers receive special treatment. In case

an empty method has been detected in the call graph of an ap-

plication, we compare the method’s fully qualified name with

the method names given above. This way, we can successfully

identify empty TrustManager implementations without false

positives.

VII. EVALUATION

In this section we present a detailed evaluation of our

approach. We discuss benchmarks and numbers for each step

of our processing pipeline (cf. Figure 1). Further, we compare

our results with feedback from the Stack Overflow community,

provided in the respective code threads of copied insecure

snippets.

A. Evaluation of Code Extraction and Filtering

To systematically investigate the occurrence and quality of

Android related code snippets on Stack Overflow, we down-

loaded4 a dataset of all Stack Overflow posts in March 2016,

which gave us a dataset of 29,499,660 posts. We extracted all

posts which were tagged with the android tag - this resulted

in 818,572 question threads with 1,165,350 answers. Questions

in our data set had 1.4 answers on average. The oldest post

in the dataset was from August, 2008. 559,933 (68.4%) of the

questions and 744,166 (63.9%) of the answers contained at

least one code snippet. Posts had 1,639.4 views on average.

The most popular post in our dataset had 794,592 visitors.

With the oracle-based parser (as described in Section III) we

filtered the 818,572 questions and the 1,165,350 answer posts

4 archive.org offers the option to download an archive of all Stack Overflow
posts from their website, cf. https://archive.org/details/stackexchange

from Stack Overflow which revealed 2,504 (2,474 distinct)

security-related snippets from question posts and 1,517 (1,360

distinct) security-related code snippets from answer posts,

respectively. In summary, using the JavaBaker oracle, we

could successfully identify security-related snippets as shown

in Table VII.

The majority of snippets (2,841, i.e. 70.7%) were related

to the java.security API which implements access control,

generation/storage of public key pairs, message digest, sig-

nature and secure random number generation. Most snip-

pets were related to cryptographic key initialization, stor-

age (e. g. java.security.Key, java.security.KeyPairGenerator
or java.security.KeyStore – 44.9%) and message digests

(java.security.MessageDigest – 30.4%). This attunes to our

intuition, as almost all cryptographic implementations require

key management and hash functions are cryptographic primi-

tives.

Code containing Android’s cryptographic API was sec-

ond most prevalent and present in 1,286 (31.9%) code

snippets. 1,088 (84.6%) of these code snippets applied the

javax.crypto.Cipher API and hence, contained code for sym-

metric encryption/decryption. Interestingly, many snippets em-

ploy user-chosen raw keys for encryption (701 snippets with

SecretKeySpec) instead of generating secure random keys

by using the API (207 snippets with KeyGenerator). This

indicates that most of the keys are hard-coded into the snippet,

which states a high risk of key leakage if reused in an

application due to reverse engineering.

The TLS/SSL package javax.net.ssl was used in 28.9% of

the code snippets. The majority of these code snippets (545,

i.e. 46.7%), contained custom TrustManagers to implement

X.509 certificate validation. Optimistically, by implementing

a custom trust manager, developers might aim at higher

security by only trusting their own infrastructure. Practically,

we observe that custom trust managers basically ignore au-

thentication at all [2]. 17.1% of the code snippets contained

custom hostname verifiers. Apache’s SSL library was mainly

used for enabling deprecated hostname verifiers that turned off

effective hostname verification.

Code snippets containing code for BouncyCastle, Spongy-

Castle and SUN were rarely found. This could be due to the

fact that those libraries are mostly called directly by only

changing the security provider. Interestingly, nearly no (0.3%)

snippets contained code for the easy-to-use jasypt and keyzcar

libraries. Possible reasons could be their low popularity or

good usability. Similarly, the GNU cryptographic API was

rarely used. This might be due to the difficulty to integrate

it in an Android application [9].

B. Evaluation of Code Classification

Altogether, we classified 1,360 distinct security-related code

snippets to provide a training set for our the machine learn-

ing based classification model. We then applied the trained

classifier on the complete set of 3,834 distinct security-related

code snippets found in Android posts, including both questions

(64.53%) and answers (35.47%). The security classification

128

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 13:37:25 UTC from IEEE Xplore.  Restrictions apply. 



Namespace Snippets Namespace Snippets

javax.crypto 1,286 android.security 5
Cipher 1,088 com.sun.security 5
KeyGenerator 207 gnu.crypto 47
spec.SecretKeySpec 701 java.security 2,841
spec.PBEKeySpec 69 javax.security 44
spec.DESedeKeySpec 6 javax.xml.crypto 3
spec.DESKeySpec 21 org.bouncycastle 48
spec.IvParameterSpec 338 org.spongycastle 44
spec.RC2ParameterSpec 1 org.jasypt 11
Mac 85 org.apache.http.conn.ssl 241
Sealed 8 AllowAllHostnameVerifier 184

javax.net.ssl 1,166 StrictHostnameVerifier 51
TrustManager 545 BrowserCompatHostnameVerifier 8
HostnameVerifier 200 TrustSelfSignedStrategy 1
SSLSocket 533 SSLSocketFactory 105

org.keyczar 2

TABLE VII: Snippet counts per library.

results of the training set are presented first and are described

as follows:

The qualitative description of the snippets is divided into

the security categories TLS/SSL, symmetric cryptography,

asymmetric cryptography, random number generation, mes-

sage digests, digital signatures, authentication, and storage.

For each category, we describe why we consider the respective

code snippets to be insecure, what has been done wrong and

why it (supposedly) has been done wrong. Whenever possible,

we give counts for security mistakes and examples for the

security mistakes we found.

Second, we demonstrate the feasibility of our SVM

approach by discussing the overall quality of our classification

model regarding precision, recall, and accuracy. Finally, we

present the results for the large scale security classification

of all security-related code snippets found on Stack Overflow.

1) Labeling of Training Set: As described above, the

training set consists of code snippets that have been identified

by the oracle-based filter to include security-related properties

(cf. Section III). We classified a subset manually in order to

provide supervision for the SVM.

a) TLS/SSL: We found 431 (31.48%) of all snippets in

the training set to be TLS related, among these we rated

277 (20.23%) as insecure. In other words, almost one third

of security-related discussions seem to target communication

security and more than half of the related snippets would

introduce a potential risk in real-world applications. The ma-

jority of TLS snippets are insecure because of using a default

hostname verifier or overriding the default TrustManager of

java.net.ssl when initializing custom TLS sockets. Every sin-

gle custom TrustManager implementation we found consists

of empty methods that disable certificate validation checks

completely, while none of the custom TrustManager are used

to implement custom certificate pinning, which is the reason-

able and secure use case for creating custom TrustManagers.

This correlates to our assumption stated in Section VII-A.

An empty TrustManager is implemented by 156 snippets,

while 6 snippets use the AllowAllHostNameVerifier - and 2

implemented both. We found 42 snippets that override the

verification method of HostnameVerifier of java.net.ssl by

returning true unconditionally, which ultimately disables

hostname verification completely (cf. Listing 1). This change

to the HostnameVerifier implements the same behavior as

AllowAllHostNameVerifier.

We found several snippets that modify the list of supported

ciphers. In all cases, insecure ciphers were added to the list.

We assume this is caused by reasons of either legacy or

compatibility.

b) Symmetric Cryptography: We found 189 (13.80%) of

all snippets in the training set to be related to symmetric

cryptography, among these we rated 159 (11.61%) of the snip-

pets as insecure. For example, we found snippets containing

encryption/decryption methods with less than 5 lines of code,

implementing the minimum of code needed to accomplish an

encryption operation. These snippets were insecure by using

the cipher transformation string ”AES” which uses ECB as

default mode of operation (cf. Section IV-B2). Developers

might be unaware of this default behavior or of ECB being

insecure.

Another example are snippets that create raw keys and raw

IVs using empty byte arrays (i. e. byte arrays which consist

of zeros only), derive raw IVs directly from static strings, or

by using the array indexes as actual field values as shown

in Listing 2. Other snippets derive raw keys directly from

strings that were mostly simple and insecure passphrases,

e.g. ”ThisIsSecretEncryptionKey”, ”MyDifficultPassw”. We

also found snippets that initialized the IV using the secret key.

c) Asymmetric Cryptography: We found 59 (4.3%) of

all code snippets in the training set to include asymmetric

cryptography API calls, among these 13 (0.94%) of the

snippets were classified as insecure. Considering the

importance of public key cryptography in key distribution

and establishing secure communication channels, 4.3% is

quite low and corresponds to our assumption in Section

VII-A. All insecure snippets used weak key lengths which

varied between 256 and 1024 bits for RSA keys. Obviously,

recommendations from public authorities (e.g. the NIST)

regarding secure cryptographic parameters are not fully taken

into consideration.

d) (Secure) Random Number Generation: We found 30

(2.19%) of all code snippets in the training set to include

(secure) random number generation API calls, among these

29 (2.11%) of the snippets were classified as insecure.

All insecure snippets explicitly seeded the random number

generator with static strings (cf. Listing 3). Replacing

the random number generator’s seed this way and not

supplementing it results in low entropy [31].

e) Digital Signatures and Message Digests: Overall, 279

(20.37%) snippets contain digital signatures related API calls.

We classified none of them as insecure. This is a remarkable

and unexpected observation, especially compared to the high

number of insecure snippets in discussions regarding sym-

129

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 13:37:25 UTC from IEEE Xplore.  Restrictions apply. 



metric cryptography. To explain this we had a closer look

at the relevant code snippets: calls to the digital signatures

API are most often related to extracting existing signatures,

not to validate them or generate new ones. Such an interactive

query of existing signatures is not very error-prone regarding

security.

Further, we found 392 (28.63%) snippets to contain

message digest related API calls, among these 14 (1.02%)

were classified as insecure due to usage of weak hash

algorithms. Again, compared to the quantity of insecure

snippets of other categories this is quite a low percentage. In

generating a message digest the biggest pitfall is choosing

a weak hash function. We assume that state-of-the-art hash

functions are relatively established in the Stack Overflow

community.

f) Remaining: 19 (1.38%) of the snippets contained

authentication code, where one snippet was classified as

insecure. Eight (0.58%) contained secure storage code, where

three snippets were classified as insecure.

g) Not Security-Relevant: We classified 342 snippets as

not security-relevant as defined in III-C.

2) Model Evaluation of the SVM Code Classifier: Overall,

after removing some duplicates, the training data set consisted

of 1,360 samples, out of which 420 code snippets were

identified as insecure. As introduced in Section V-B, we use a

tf-idf vectorizer to convert code snippets into numeric vectors

for training.

To illustrate how our approach works, Figure 3 illustrates

the projection of our training samples in 2d space by a

common dimensionality reduction method, i.e., Principle Com-

ponent Analysis (PCA) [40]. We leverage a RBF (Radial Basis

Function) kernel function to tackle the non-linearity hidden

in the projected training samples. The RBF kernel is a well

known type of kernel to model non-linearity of data. It maps

the non-linear input data to a high dimensional linear feature

space, such that the data becomes linearly separable. We can

see that even in 2d space where some relevant information

might be lost, the SVM classifier produces a good class

boundary for both the secure (blue dots) and insecure (red

dots) code samples.

Next, we evaluate our SVM model quantitatively by cross

validating the training data set. First, we conduct a grid search

on SVM to estimate the optimal penalty term C (cf. (1)) with

respect to classification accuracy. Since the training data con-

tains very high dimensional features, we use a linear kernel for

SVM instead of RBF kernel in previous 2d demonstration. The

optimal parameter C is determined to be 0.644. We evaluate

the model on various training sizes with respect to precision,

recall and accuracy. A discussion on these evaluation metrics

can be found in [41]. In our setup, we consider insecure

samples as positive and secure ones as negative. Therefore,

the precision score measures how many predicted insecure

snippets are indeed insecure, the recall score evaluates how

insecure secure

Fig. 3: SVM with RBF kernel is trained on the training dataset,

where the high dimensional training samples are projected on

2-dimensional using PCA. Solid contour line represents the

classification boundary and dashed lines indicate the maximal

margin learned by SVM. Insecure code snippets are marked

as red circles, and secure ones are marked as blue circles.

many real insecure snippets are retrieved from all insecure

snippets, and finally the accuracy score measures an overall

classification performance taking both positive and negative

samples into account.

200 400 600 800 1000

Varing training sizes

0.4

0.5

0.6

0.7

0.8

0.9

A
v
g
.
c
ro
s
s
-v
a
li
d
a
ti
o
n
te
s
ti
n
g
s
c
o
re
s

Recall scores

Precision scores

Accuracy scores

Fig. 4: Binary SVM with linear kernel is trained over varying

training sizes. Cross validation is performed on each of these

subsets of the training data set and evaluated with respect to

precision, recall and accuracy scores.

In Figure 4, we report the learning curve of our model

with respect to varying training sizes. For each training size, a

subset of the training data set is classified by the model with a

50-repetition cross validation. In each repetition, we randomly

hold out 20% of the training samples as testing set, and train

on the remaining samples. Finally, we average the testing

scores on all repetitions and plot the mean scores with standard

deviation as the error bar. The results present a good precision

and accuracy on varying training sizes, as the mean scores

are approximately all above 0.8. The constantly developing

precision curve illustrates that our model performs very well

on detecting real insecure snippets instead of introducing too

many false positives, even on a small training size. On the

other hand, we see the recall curve is relatively poor on small

training size. However, it reaches nearly 0.75 when we have

more than 1, 000 training samples. Accuracy also improves

130

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 13:37:25 UTC from IEEE Xplore.  Restrictions apply. 



with increasing training samples. The variance of the accuracy

is canceled by combining both precision and recall.

For completeness, we conduct a 5-fold cross validation on

the whole training data set with optimal penalty term C =
0.644. We report the confusion matrix of the best fold in Table

VIII. Note that the test size for each fold is 272.

True/Predicted Secure (-1) Insecure (+1)

Secure (-1) 181 7
Insecure (+1) 19 65
Summary accuracy: 0.904 precision: 0.903

TABLE VIII: Confusion matrix

To conclude our model evaluation, we argue that our

SVM model could be improved by a more exhaustive feature

engineering phase and by increasing the size of the training

data set. In our experiment, we only remove comments in

code snippets as a preprocessing step. In practice, this will

be enhanced by applying a more complex token parser, e.g.,

static code parser, to generate better quality of features.

Moreover, we did not leverage control flow information,

which is considered informative of predicting security level,

to enhance the model. A possible refinement would be the

encoding of the relative position of each token in the snippet

into the features. However, this could double the size of input

feature dimension. Due to the complexity of model pruning

and the limit of the training sample size, we decided to leave

it for future work. Given the fact that the performance of

the SVM model already achieves a level of practicability,

we think that machine learning based approaches have the

potential to support security code analysis.

3) Large Scale Classification: We applied our SVM code

classifier on the complete set of 3,834 distinct security-related

snippets from Stack Overflow, including question and answer

snippets. Overall, we found 1,161 (30.28%) insecure snippets

and 2,673 (69.72%) secure snippets. Out of the 1,360 distinct

snippets found in answer posts, 420 (30.88%) snippets were

classified as insecure and and 940 (69.12%) as secure. For

the 2,474 distinct snippets we detected in questions posts,

741 (29.95%) snippets were classified as insecure and 1,733

(70.05%) as secure.

C. Evaluation of Code Detection

We applied our pipeline (cf. Section VI) to a large

corpus of free Android applications from Google Play.

Beginning in October 2015, we successfully downloaded

1,305,820 free Android applications from Google Play5. We

re-downloaded new versions until May 2016. The majority

of apps received their newest update within the last 12 months.

1) Apps with Copied and Pasted Code Snippets: Overall,

we detected copied and pasted snippets in 200,672 (15.4%)

apps. Of these apps, 198,347 (15.2%) contain a question

snippet and 40,786 (3.1%) apps contain an answer snippet.

5cf. https://play.google.com

An overwhelming amount of apps contain an insecure code

snippet: 196,403 (15%) apps contain at least one. The top

offending snippet has been found in 180,388 (13.81%) apps

and is presented in Listing 4. The remaining insecure snippets

were found in 43,941 (3,37%) distinct apps.

We found 506,922 (38.82%) apps that contain a secure

snippet. The most frequent secure snippet was detected in

408,011 (31.24%) apps while the remaining snippets were

contained in less then 73,839 (5.65%) apps. On average, an

insecure snippet is found in 4,539.96 apps, while a secure code

snippet is found in 10,719.83 apps.

To investigate insecure snippets that were detected by our

fully automated processing pipeline in detail, we performed

a manual post-analysis of the categories described in Section

IV. To be more precise, we examined all security-related

snippets that were detected in applications and sorted them

by category. In the following, we give counts for affected

applications for each security category. The given percentage

values are related to applications that contain a snippet from

Stack Overflow. Further, we discuss the most offending

snippets and estimate their practical exploitability.

2) SSL/TLS: The highest number of apps that implemented

an insecure code snippet used this snippet to handle TLS.

183,268 (14.03%) apps were affected by insecure TLS

handling through a copied and pasted insecure code snippet.

Conversely, only 441 (0.03%) of all apps contained a

secure code snippet related to TLS. For the large majority

of 182,659 (13.98%) apps with an insecure TLS snippet,

their code snippet matches a question code snippet on Stack

Overflow, while only 22,040 (1.68%) apps contain an insecure

TLS snippet that was present in an answer on Stack Overflow.

A high risk example in this category is given by the top

offending snippet as presented in Listing 4, which uses an

insecure custom TrustManager as described in Section VII-A.

Missing server verification enables Man-In-The-Middle

attacks by presenting malicious certificates during the TLS

handshake. This snippet is a real threat with high risk of

exploitation in the wild, as shown in [2].

3) Symmetric Cryptography: The second highest number

of insecure code snippets in the wild were used for symmetric

cryptography in 21,239 (1.62%) apps. 19,452 (1.48%) of

the apps with a code snippet that was related to symmetric

cryptography had integrated a secure snippet. With a count of

19,189 apps, slightly more apps contain an insecure question

snippet than an insecure answer snippet, which happened

in 15,125 apps. The insecure snippet with the highest copy

and paste count (found in 18,000 apps) within this category

proposes AES in ECB mode. According to [3] this is

vulnerable to chosen-plaintext attacks. Further, applications

that include snippets with hard-coded cryptographic keys can

most often be reverse-engineered without much effort. This

leads leads to key leakage and therefore states a high risk (at

least in the case where the key is not obfuscated).

131

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 13:37:25 UTC from IEEE Xplore.  Restrictions apply. 



4) Asymmetric Cryptography: We found only 114 (0.01%)

apps that contained an insecure code snippet related to

asymmetric cryptography, 698 (0.05%) apps contained a

secure asymmetric cryptography related snippet. 114 apps

with insecure snippets contain an insecure question snippet.

29 apps implemented a secure answer snippet, 688 a secure

question snippet.

5) Secure Random Number Generation: 8,228 (0.63%)

apps contain an insecure code snippet related to random

number generation, while 4,100 (0.31%) apps contained a

secure snippet. Most insecurities in this category come from

question snippets (this was true for 8,227 apps, while 7,991

apps contain an insecure answer snippet).

6) Hashes: For hash functions, the majority of apps

containing code snippets from Stack Overflow contained

secure code snippets: This was true in 4,012 (0.3%), 14 apps

contained an insecure one.

7) Signatures: 15 apps contained a secure signature related

snippet, while no insecure snippet was found in apps in this

category. All of those snippets could be found in questions

on Stack Overflow.

8) Not Security-Related: Some of the snippets that were

detected in apps could not be assigned to one of the categories

above because they were not security-related as described in

III-C. 498,046 (38.1%) apps contained a snippet that was not

security-related and therefore classified as secure.

The most frequent secure snippet found in 408,011 apps

was also not security-related. Therefore, considering security-

related snippets only, we can state that significantly more

Android applications contain an insecure snippet (196,403)

than a secure one (73,839) (cf. Section VII-C1).

9) Sensitive App Categories: The largest number of sensi-

tive apps that use insecure copied and pasted code snippets are

14,944 business apps, 4,707 shopping apps, and 4,243 finance

apps. We find this result rather surprising, as we would have

expected that security receives special consideration for these

types of applications. Especially, finance apps have access

to bank account information and therefore we would have

expected them to be developed with extra care. Security and

privacy is especially important in apps that handle medical

data, as leaked sensitive data can have a severe impact on

users. We found 2,000 medical and 4,222 health&fitness apps

that copied and pasted vulnerable Stack Overflow code. Apps

that are used for communication (3,745 apps) and social media

(4,459 apps) are also widely affected.

10) Download Counts: In order to prove that we did not

only inspect the long tail of unpopular apps provided by

Google Play we provide download counts for apps that contain

insecure snippets in Figure 6.

Fig. 5: Distributions of insecure snippets found in Apps

Fig. 6: Download counts for Apps with insecure snippets

D. Evaluation of Community Feedback

For those insecure snippets that we detected in Android

applications, we analyzed the community feedback on Stack

Overflow as this represents the current public evaluation of

posted code snippets. The available feedback mechanisms

allow a very general evaluation of code snippets, e. g. with

the presentation of view counters and the individual post

score which results from up-/down-votes by the community.

In addition to this, code snippets can be commented which is

used to provide a more detailed feedback.

We analyzed if the existing feedback system provided by

132

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 13:37:25 UTC from IEEE Xplore.  Restrictions apply. 



SO is capable of informing the user about insecure snippets

in an adequate way. At that, we analyze if the currently given

feedback by the community is preventing or contributing to

copy and paste of insecure code into Android applications.

1) Scoring: According to Stack Overflow, a question snip-

pet is supposed to be up-voted if it shows reasonable research

effort in order to motivate the community to reply to it.

Therefore, with a pure focus on security aspects we expect

insecure question snippets to be up-voted, as insecure code

snippets intuitively demand more community research than

secure ones. In contrast to question scores, answers are up-

voted (according to Stack Overflow) if they are estimated

useful. Regarding the score of insecure answer snippets we

expect a lower score as these do not provide a useful answer

considering security-related snippets.

The results in table IX show that the scoring of insecure

question snippets contradict to our assumption, because the

secure ones have a higher score. In other words, the com-

munity assigns a higher needed research effort to questions

with secure snippets. This is counter-intuitive from the security

perspective and therefore leads to the conclusion that question

scoring is not an adequate way of evaluating security. Of

course, the community estimates needed research effort on

the basis of a diversity of aspects, which outweigh security

considerations. However, regarding answers, the low scoring

of insecure snippets (as depicted in Table IX) correspond to

our expectations. Again, this positive correlation might be

caused by a variety of aspects, but from the security point

of view it reveals the desired community behavior. However,

aspects that are currently taken account for answer scoring are

likely to be weighted differently in the future.

Next, we additionally include security warnings in our eval-

uation. Here, the scoring for questions given by the community

are consistent with our intuition: Insecure questions including

a warning are assigned with a higher scoring (corresponding

to higher estimated research effort) than questions without

such a warning. However, the scoring estimation regarding

answer posts contradicts the desired community behavior: In-

secure answers with security warning are scored significantly

higher compared to the ones without warnings (cf. Table

IX). Therefore, the influence of warnings (in answers) on the

community score is highly questionable. A high scored answer

with assigned security warning might confuse the reader.

The following considerations try an explanation of this

result. Though a security warning should have a strong impact

on the evaluation, the author of the warning can down-vote the

score only once. On the one hand, this gives the community

the ability to review the warning and to further reduce the

score or to comment disagreement. On the other hand, the

results show that the scoring of insecure snippets is partly

contradicting and we did not find a single warning that has

been questioned in a subsequent comment. Acar et al. [42]

have shown that developers prefer functional snippets over

secure snippets when implementing security related tasks in

Android. This preference might also influence the scoring of

security-related snippets which can result into a score that

mostly considers functionality as the definition of a useful

answer.
When solely taking security considerations into account, we

conclude that the currently deployed feedback system is insuf-

ficient for providing reliable and precise security estimation to

the user.

Metadata Secure Insecure Insecure+Warning Insecure-Warning

Avg. Score Q/A 3.4/4.8 1.7/4.4 2.4/15.5 2.3/6.2
Avg. Viewcount Q/A 1467/4341 2254/8117 4081/16534 2812/10001

TABLE IX: Community feedback for security-related snippets

regarding questions (Q) and answers (A)

2) Impact on Copy and Paste: Next, we investigated if

view count, warnings, and score of insecure snippets have

an impact on the extent they are copied into applications.

We first ordered all snippets according to their detection

rate (the amount of applications that contained that snippet).

For the snippets that ranked highest and lowest on this list

(respectively 25% – we refer to these as top and bottom tier)

we extracted the corresponding metadata from Stack Overflow.

This allowed us to observe possible correlations between view

counts, warnings, and scoring to the actual copy and paste rate.
For both score and view count we found a positive correla-

tion: A higher score or view count corresponds to an increased

copy and paste count, as depicted in Table X. This yields for

both, questions and answers.
Interestingly, we see the opposite behavior with regard to

warnings: Snippets that have been commented with security

warnings are copied more often into applications than those

without. An exceptionally striking example for this observation

is the top offending snippet which was copied 180,388 times

despite of being commented with warnings (cf. Listing 4).

Metadata Questions Answers

Avg. Score (top/bottom tier) 1.87/1.27 7.21/6.37
Avg. Viewcount (top/bottom tier) 2,792/1,373 11,915/7805

TABLE X: Correlation of community feedback with copy and

paste count of insecure code snippets

E. Limitations
Besides the limitations of the intermediate steps discussed in

Sections III-C and IV-C, our processing pipeline does not fully

prove that copied snippets originate from Stack Overflow. To

illustrate this objection, there theoretically could exist a third

platform where snippets are copied and inserted to both, Stack

Overflow and Android applications. However, Stack Overflow

is the most popular platform for developer discussions6. Fur-

ther, [42] et al. showed that developers most often rely on

Stack Overflow when solving security-related programming

problems at hand. And finally, we found a positive correlation

of the snippets view counts with their detected presence in

applications (as discussed in Section VII-D2). Therefore, it is

very likely that snippets originate from Stack Overflow.

6cf. http://www.alexa.com/topsites

133

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 13:37:25 UTC from IEEE Xplore.  Restrictions apply. 



VIII. RELATED WORK

We focus on related work in four key areas, i.e. security

of mobile apps, developer studies, investigation of Stack

Overflow, and detection of code reusage in apps.

A. Security of Mobile Apps

Fahl et al. analyzed the security of TLS code in 13,500

popular, free Android applications [2]. They found that 8%

were vulnerable to Man-In-The-Middle attacks. In follow-up

work, they extended their investigation to iOS and found simi-

lar results: 20% of the analyzed apps were vulnerable to Man-

In-The-Middle attacks [17]. Oltrogge et al. [18] investigated

the applicability of public key pinning in Android applications

and came to the conclusion that pinning was not as widely

applicable as commonly believed. Egele et al. [3] investigated

the secure use of cryptography APIs in Android applications

and found more than 10,000 apps misusing cryptographic

primitives in insecure ways. Enck et al. [43] presented Taint-

Droid, a tool that applies dynamic taint tracking to reveal how

Android applications actually use permission-protected data.

They found a number of questionable privacy practices in

apps and suggested modifications of the Android permission

model and access control mechanism for inter-component

communication. Chin et al [44] characterized errors in inter-

application communications (intents) that can lead to inter-

ception of private data, service hijacking, and control-flow

attacks. Enck et al. [45] analyzed 1,100 Android applications

and reported widespread security problems, including the use

of fine-grained location information in potentially unexpected

ways, using device IDs for fingerprinting and tracking and

transmitting device and location in plaintext. Poeplau et

al. [46] reported that many apps load application code via

insecure channels allowing attackers to inject malicious code

into benign apps.

B. Developer Studies

The bulk of identified security issues are attributed to devel-

opers that are poorly skilled in security-related programming.

Core reasons for these issues were identified in a developer

study conducted by Fahl et al. [17]: developers that customized

TLS code disabled TLS functionality during testing and forgot

to re-enable it for production, and they did not understand the

security guarantees provided by and the security consequences

imposed by improper TLS use. Similar root causes were

reported by Georgiev et al. [47], showing that developers were

confused by the many parameters, options and defaults of TLS

APIs. Both papers explicitly mentioned Stack Overflow as a

platform that provides various solutions for ”circumventing”

TLS-related error messages by disabling TLS features. Acar

et al. [42] conducted a laboratory study to investigate the

impact of information sources on code security and found

that developers using Stack Overflow for looking up security-

related issues produced the most functional but also the most

insecure code, whereas participants using Android’s official

documentation produced more secure but less functional code.

C. Investigation of Stack Overflow

Treude et al. [48] report that developer discussion platforms

like Stack Overflow are very effective at code reviews and

conceptual questions. Vasilescu et al. [49] investigate the

interplay of Stack Overflow activity and development process

on GitHub. They conclude that knowledge of the GitHub

community flows into Stack Overflow. In turn, this knowledge

increases the number of commits of Stack Overflow users on

GitHub. Vasquez et al. [50] created an algorithm to link Stack

Overflow questions with Android classes detected in source

code. They found that Android developer question counts peak

on Stack Overflow immediately after APIs receive updates that

modify their behavior.

D. Detection of Code Reusage in Apps

Jiang et al. [39] compared the similarity of abstract syntax

trees to detect code duplicates in source code. Hanna et

al. [38] created k-gram streams from bytecode basic blocks.

Each k-gram defines a program feature. A code snippet and

an application is represented by the binary feature vector

that is created using universal hashing over k-grams. They

decide if a code snippet is contained in an app by dividing

the number of common features by the number of features

of the code snippet. While their approach works in benign

scenarios, it is not robust against trivial code modifications

(e. g. reordering of instructions or renaming of variables).

Crussell et al. [35], [36] detect code clones by searching for

subgraph isomophisms of program dependency graphs (PDG).

Their approach is able to detect code fragments that perform

similar computations through different syntactic variants [51]

and robust against trivial modifications, constant renaming

and method/class restructuring. Chen et al. [51] use Control

Flow Graphs (CFG) in combination with opcodes to detect

code clones in Android applications. They define a geometry

characteristic called centroid to embed a CFG into vector

space.

IX. COUNTERMEASURES

On the one hand, there is a significant amount of secure code

on Stack Overflow that finds its way into Android applications.

The question is how we can reinforce this flow that surely

is beneficial for the Android ecosystem. On the other hand,

we also observed a vast amount of highly insecure code

snippets. How can we prevent insecure code snippets from

being copied?

In Section VII-D we showed that the deployed scoring

system of Stack Overflow is not fine-grained enough to mirror

security concerns provided by the community. This suggests

a scoring system that is purely focused on security aspects.

However, a fine-grained scoring system will possibly also

include equitable aspects such as code stability, efficiency, or

audibility. This might impact the overall usability of Stack

Overflow and we fully understand the decision for just one

score for each post.

Instead of expanding (and maybe complicating) the scoring

system of posts, we propose another solution: Classification of

134

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 13:37:25 UTC from IEEE Xplore.  Restrictions apply. 



code snippets into secure and insecure is fully automated in our

approach, which allows us to implement a browser-plugin that

directly indicates security issues by real-time classification of

snippets. This includes both, snippets copied to the clipboard

and snippets parsed on the actually watched discussion thread.

Such a browser plugin is not limited to Stack Overflow, but

would work without much effort for any source of snippets in

the web. We are currently actively developing such a browser

plugin for Mozilla Firefox and Chrome.

X. CONCLUSION

We present, implement and evaluate the first systematic and

fully automated processing pipeline for measuring the flow

of secure and insecure code snippets from Stack Overflow

into Android applications available at Google Play. First, we

scanned public discussion threads for code snippets filtering

out the security-relevant subset using a robust oracle-based

approach. Next, we applied machine learning classification to

receive a security scoring for code snippets. By constructing

an abstract representation in form of a program dependency

graph for each snippet, we detect their presence in compiled

Android applications.

We evaluate the performance of our approach by searching

for security-related code snippets from Stack Overflow in

1,305,820 Android applications available at Google Play. We

show that 196,403 (15%) of the 1.3 million Android applica-

tions contain vulnerable code snippets that were very likely

copied from Stack Overflow (cf. Section VII-E). We detected

73,839 applications (cf. SectionVII-C8) using a secure code

snippet from Stack Overflow. By analyzing metadata, we

gain insight into developer behavior: From typical post up-

voting trends and popularity of insecure code to favoured

security libraries of specific domains (such as finance and

gaming) we are able to draw interesting new conclusions on

behavior of the Android developer community. We expect

that a future systematic investigation augmenting metadata

of security-related code snippets with metadata of affected

Android applications will serve as a rich source of new and

interesting research questions.

Answering the original research question whether Stack

Overflow should be considered harmful is difficult. Although

we cannot guarantee that code snippets we detected originate

from Stack Overflow with 100% certainty, the fact that Stack

Overflow is the most popular Q&A site for Android developers

and many of them heavily rely on the posted discussions and

solutions [42] suggests Stack Overflow’s significant responsi-

bility. Luckily, there is hope on the horizon. We presented

a fully automated solution to detect security-related code

snippets posted on Stack Overflow and analyze their security.

Stack Overflow could implement our or a similar approach

and either remove insecure code snippets entirely or add clear

security warnings to prevent developers from copying and

pasting those snippets into their applications. Identifying the

most effective way of dealing with insecure code snippets

and communicating risks to developers is an interesting and

challenging field of work for future usable security and privacy

researchers.

ACKNOWLEDGEMENTS

The authors would like to thank Siddharth Subrama-

nian for his strong support with JavaBaker and the anony-

mous reviewers for their helpful comments. This work

was supported in part by the German Ministry for Educa-

tion and Research (BMBF) through funding for the Center

for IT-Security, Privacy and Accountability (CISPA) (FKZ:

16KIS0344,16KIS0656)

REFERENCES

[1] A. Porter Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
Permissions Demystified,” in Proceedings of the 18th ACM Conference
on Computer and Communication Security. ACM, 2011.

[2] S. Fahl, M. Harbach, T. Muders, M. Smith, L. Baumgärtner, and
B. Freisleben, “Why Eve and Mallory love Android: An analysis of
Android SSL (in) security,” in Proc. 19th ACM Conference on Computer
and Communication Security (CCS’12). ACM, 2012.

[3] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An Em-
pirical Study of Cryptographic Misuse in Android Applications,” in
Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security. ACM, 2013.

[4] Oracle, “Java SE 8,” http://www.oracle.com/technetwork/java/javase/
tech/index-jsp-136007.html.

[5] A. Zhitnitsky, “Libraries on GitHub,” http://blog.takipi.com/
we-analyzed-60678-libraries-on-github-here-are-the-top-100, 2015.

[6] T. Duong and J. Rizzo, “Cryptography in the Web: The Case of
Cryptographic Design Flaws in ASP.NET,” in 2011 IEEE Symposium
on Security and Privacy, 2011.

[7] A. Dey and S. Weis, “Keyczar: A Cryptographic Toolkit,” 2008.
[8] jasypt, “Java Simplified Encryption,” http://www.jasypt.org, 2014.
[9] D. González, O. Esparza, J. L. Muñoz, J. Alins, and J. Mata, “Evaluation

of Cryptographic Capabilities for the Android Platform,” in Future
Network Systems and Security: First International Conference, FNSS
2015, Paris, France, June 11-13, 2015, Proceedings, 2015.

[10] B. Dagenais and L. Hendren, “Enabling Static Analysis for Partial Java
Programs,” in Proceedings of the 23rd ACM SIGPLAN Conference on
Object-oriented Programming Systems Languages and Applications, ser.
OOPSLA ’08, 2008.

[11] S. Subramanian, L. Inozemtseva, and R. Holmes, “Live API Documen-
tation,” in Proceedings of the 36th International Conference on Software
Engineering, ser. ICSE, 2014.

[12] Y. Sheffer and R. Holz, “Recommendations for Secure Use of Transport
Layer Security (TLS) and Datagram Transport Layer Security (DTLS),”
Tech. Rep., 2015.

[13] B. Kaliski, “PKCS #5: Password-Based cryptography specification ver-
sion 2.0,” Internet Engineering Task Force, RFC, 2000.

[14] J. Manger, “A Chosen Ciphertext Attack on RSA Optimal Asymmetric
Encryption Padding (OAEP) As Standardized in PKCS #1 V2.0,” in
Proceedings of the 21st Annual International Cryptology Conference on
Advances in Cryptology, ser. CRYPTO, 2001.

[15] E. Barker and A. Roginsky, “Transitions: Recommendation for Transi-
tioning the Use of Cryptographic Algorithms and Key Lengths,” http://
nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar1.pdf.

[16] D. Bleichenbacher, “Chosen Ciphertext Attacks Against Protocols Based
on the RSA Encryption Standard PKCS #1,” in Proceedings of the 18th
Annual International Cryptology Conference on Advances in Cryptology,
ser. CRYPTO ’98, 1998.

[17] S. Fahl, M. Harbach, H. Perl, M. Koetter, and M. Smith, “Rethinking
ssl development in an appified world,” in Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security, ser. CCS
’13. ACM, 2013, pp. 49–60.

[18] M. Oltrogge, Y. Acar, S. Dechand, M. Smith, and S. Fahl, “To Pin or Not
to Pin—Helping App Developers Bullet Proof Their TLS Connections,”
in Proc. 24th USENIX Security Symposium (SEC’15). USENIX
Association, 2015.

[19] S. Turner and T. Polk, “Prohibiting Secure Sockets Layer (SSL) Version
2.0,” 2011.

135

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 13:37:25 UTC from IEEE Xplore.  Restrictions apply. 



[20] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.3,”
Tech. Rep., 2016.

[21] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol
Version 1.2,” Tech. Rep., 2008.

[22] S. Vaudenay, “Security Flaws Induced by CBC Padding - Applications to
SSL, IPSEC, WTLS ...” in Proceedings of the International Conference
on the Theory and Applications of Cryptographic Techniques: Advances
in Cryptology, ser. EUROCRYPT ’02, 2002.

[23] J. Kelsey, B. Schneier, and D. Wagner, “Related-key Cryptanalysis of
3-WAY, Biham-DES, CAST, DES-X, NewDES, RC2, and TEA,” in
Proceedings of the First International Conference on Information and
Communication Security, ser. ICICS ’97, 1997.

[24] N. J. AlFardan, D. J. Bernstein, K. G. Paterson, B. Poettering, and J. C.
Schuldt, “On the Security of RC4 in TLS.” in Usenix Security, 2013.

[25] S. Lucks, “Attacking Triple Encryption,” in Fast Software Encryption:
5th International Workshop, FSE’ 98 Paris, France, March 23–25, 1998
Proceedings, S. Vaudenay, Ed., 1998.

[26] S. Vaudenay, “On the Weak Keys of Blowfish,” in Fast Software
Encryption, 1996.

[27] O. Kara and C. Manap, “A New Class of Weak Keys for Blowfish,” in
Fast Software Encryption, 2007.

[28] “Java Security and Related Topics,” http://armoredbarista.blogspot.de/
2012/09/rsaecb-how-block-operation-modes-and.html.

[29] D. Giry, “Keylength,” https://www.keylength.com/en/4/.

[30] SANS Institute, “Four Attacks on OAuth - How to Secure Your OAuth
Implementation,” https://www.sans.org/reading-room/whitepapers/
application/attacks-oauth-secure-oauth-implementation-33644.

[31] “Android Developers,” http://android-developers.blogspot.de/2013/02/
using-cryptography-to-store-credentials.html.

[32] B. Schölkopf, “Statistical Learning and Kernel Methods,” Microsoft
Research, Tech. Rep., 2000.

[33] H. C. Wu, R. W. P. Luk, K. F. Wong, and K. L. Kwok, “Interpreting
TF-IDF Term Weights As Making Relevance Decisions,” ACM Trans.
Inf. Syst., 2008.

[34] Google Inc., “Enjarify,” https://github.com/google/enjarify.

[35] J. Crussell, C. Gibler, and H. Chen, “Attack of the Clones: Detecting
Cloned Applications on Android Markets,” in ESORICS 2012: 17th
European Symposium on Research in Computer Security, Pisa, Italy,
September 10-12, 2012. Proceedings, 2012.

[36] ——, “AnDarwin: Scalable Detection of Semantically Similar An-
droid Applications,” in ESORICS 2013: 18th European Symposium on
Research in Computer Security, Egham, UK, September 9-13, 2013.
Proceedings, 2013.

[37] K. Riesen and H. Bunke, “Graph Classification Based on Vector Space
Embedding,” International Journal of Pattern Recognition and Artificial
Intelligence, 2009.

[38] S. Hanna, L. Huang, E. Wu, S. Li, C. Chen, and D. Song, “Jux-
tapp: A Scalable System for Detecting Code Reuse Among Android
Applications,” in Proceedings of the 9th International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment, ser.
DIMVA’12, 2013.

[39] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “DECKARD: Scalable
and Accurate Tree-Based Detection of Code Clones,” in Proceedings of
the 29th International Conference on Software Engineering, ser. ICSE
’07, 2007.

[40] L. I. Smith, “A Tutorial on Principal Components Analysis,” Cornell
University, USA, Tech. Rep., 2002.

[41] J. Makhoul, F. Kubala, R. Schwartz, and R. Weischedel, “Performance
Measures For Information Extraction,” in In Proceedings of DARPA
Broadcast News Workshop, 1999.

[42] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky,
“You Get Where You’re Looking For: The Impact of Information
Sources on Code Security,” IEEE Symposium on Security and Privacy
(SP), 2016.

[43] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and
A. N. Sheth, “TaintDroid: An Information-Flow Tracking System for
Realtime Privacy Monitoring on Smartphones,” in Proc. 9th Usenix Sym-
posium on Operating Systems Design and Implementation (OSDI’10).
USENIX Association, 2010.

[44] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing Inter-
application Communication in Android,” in Proceedings of the 9th
international conference on Mobile systems, applications, and services.
ACM, 2011.

[45] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A Study of
Android Application Security,” in Proceedings of the 20th USENIX
Conference on Security, Aug. 2011.

[46] S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel, and G. Vigna,
“Execute This! Analyzing Unsafe and Malicious Dynamic Code Loading
in Android Applications,” in Proc. 21st Annual Network and Distributed
System Security Symposium (NDSS’14). The Internet Society, 2014.

[47] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov, “The Most Dangerous Code in the World: Validating SSL
Certificates in Non-Browser Software,” in Proceedings of the 2012 ACM
Conference on Computer and Communications security. ACM Press,
Oct. 2012.

[48] C. Treude, O. Barzilay, and M.-A. Storey, “How Do Programmers
Ask and Answer Questions on the Web?: Nier track,” in Software
Engineering (ICSE), 2011 33rd International Conference on. IEEE,
2011.

[49] B. Vasilescu, V. Filkov, and A. Serebrenik, “StackOverflow and
GitHub: Associations Between Software Development and Crowd-
sourced Knowledge,” in Social Computing (SocialCom), 2013 Interna-
tional Conference on. IEEE, 2013.

[50] M. Linares-Vásquez, G. Bavota, M. Di Penta, R. Oliveto, and D. Poshy-
vanyk, “How Do API Changes Trigger Stack Overflow Discussions? A
Study on the Android SDK,” in proceedings of the 22nd International
Conference on Program Comprehension. ACM, 2014.

[51] K. Chen, P. Liu, and Y. Zhang, “Achieving Accuracy and Scalability
Simultaneously in Detecting Application Clones on Android Markets,”
in Proceedings of the 36th International Conference on Software Engi-
neering, ser. ICSE 2014. ACM, 2014.

APPENDIX

Listing 1: Empty HostnameVerifier - Accepts all hostnames

@Override
public boolean verify(String hostname, SSLSession

session) {
return true;

}

Listing 2: Sample of static IVs and Keys in Snippets

byte[] rawSecretKey = {0x00, 0x00, 0x00, 0x00, 0
x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
, 0x00, 0x00, 0x00, 0x00};

String iv = "00000000";
byte[] iv = new byte[] { 0x0, 0x1, 0x2, 0x3, 0x4,

0x5, 0x6, 0x7, 0x8, 0x9, 0xA, 0xB, 0xC, 0xD,
0xE, 0xF };

Listing 3: String used to replace the random number

generators seed

byte[] keyStart = "this is a key".getBytes();
SecureRandom sr =

SecureRandom.getInstance("SHA1PRNG");
sr.setSeed(keyStart);

Listing 4: Top offending snippet

TrustManager tm = new X509TrustManager() {
public void checkClientTrusted(

X509Certificate[] chain, String authType)
throws CertificateException { }

public void checkServerTrusted(
X509Certificate[] chain, String authType)
throws CertificateException { }

public X509Certificate[] getAcceptedIssuers()
{ return null; }

};

136

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 13:37:25 UTC from IEEE Xplore.  Restrictions apply. 


