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Abstract—Recent large-scale deployments of differen-
tially private algorithms employ the local model for
privacy (sometimes called PRAM or randomized response),
where data are randomized on each individual’s device
before being sent to a server that computes approximate,
aggregate statistics. The server need not be trusted for
privacy, leaving data control in users’ hands.

For an important class of convex optimization prob-
lems (including logistic regression, support vector ma-
chines, and the Euclidean median), the best known locally
differentially-private algorithms are highly interactive,
requiring as many rounds of back and forth as there are
users in the protocol.

We ask: how much interaction is necessary to optimize
convex functions in the local DP model? Existing lower
bounds either do not apply to convex optimization, or say
nothing about interaction.

We provide new algorithms which are either nonin-
teractive or use relatively few rounds of interaction. We
also show lower bounds on the accuracy of an important
class of noninteractive algorithms, suggesting a separation
between what is possible with and without interaction.

Keywords-Differential privacy, local differential privacy,
convex optimization, oracle complexity.

I. INTRODUCTION

Each of us generates vast quantities of data as we

interact with modern networked devices. Accurate ag-

gregate statistics about those data can generate valuable

benefits to society—higher quality healthcare, more

efficient systems and lower power consumption, among

others. However, those data are highly sensitive, paint-

ing detailed pictures of our lives. Private data analysis,

broadly, seeks to enable the benefits of learning from

these data without exposing individual-level informa-

tion. Differential privacy [17] is a rigorous privacy

criterion for data analysis that provides meaningful

guarantees regardless of what an adversary knows ahead

of time about individuals’ data [25]. Differential privacy

is now widely studied and algorithms satisfying the

criterion are increasingly deployed [1, 2, 19].

There are two well-studied models for implementing

differentially-private algorithms. In the central model,

raw data are collected at a central server where they

are processed by a differentially-private algorithm. In

the local model [20] (dubbed LDP and illustrated in

Figure 1), each individual applies a differentially-private

algorithm locally to their data and shares only the

output of the algorithm—called a report or response—

with a server that aggregates users’ reports. The local

model allows individuals to retain control of their data

since privacy guarantees are enforced directly by their

devices. However, it entails a different set of algorithmic

techniques from the central model. In principle, one

could also use cryptographic techniques such as secure

function evaluation to simulate central model algo-

rithms in a local model, but such algorithms currently

impose bandwidth and liveness constraints that make

them impractical for large deployments. For example,

Google [19] now collects certain usage statistics from

users’ devices subject to local differential privacy; those

algorithms are run by hundreds of millions of users.

A long line of work studies what is achievable by

LDP algorithms, and tight upper and lower bounds

known on the achievable accuracy for many problems;

see Sec. I-C. For a large class of optimization problems,

however, the algorithms that achieve the upper bound

are highly interactive—the server exhanges messages

back and forth in sequence with each user in the system

(see Figure 1). Implementing interactive protocols for

private data collection is difficult, because network

latency introduces delays and because the server must

be live throughout the protocol. Consequently, existing

large-scale deployments [19] are limited to noninterac-

tive algorithms.

The question naturally arises: how much power is

lost by restricting to noninteractive protocols? Ka-

siviswanathan et al. [26] studied the role of interaction

in locally private algorithms, exhibiting a problem that

can be solved using a linear (in the dimension) amount

of data by a 2-round protocol but for any noninteractive

protocol requires an exponential-sized data set. The

problem they study is somewhat unatural, based on

learning parity functions; their results say little about the

computations commonly carried out in machine learning
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or statistical analysis.

Contributions. This paper initiates the study of inter-

action in local differential privacy (LDP) for important

and natural learning problems. Specifically, we focus on

convex optimization, which encompasses the calculation

of descriptive statistics, such as the median, as well as

more sophisticated computations, such as fitting linear

or logistic regression models, training support vector

machines and sparse regression. Tight upper and lower

bounds are known for the accuracy of LDP convex

optimization [14]. However, the upper bounds are highly

interactive, requiring as many rounds of back and forth

as there are users in the protocol.

We provide new algorithms for noninteractive

LDP optimization of convex Lipschitz functions over

a bounded parameter space. These algorithms im-

prove considerably over naı̈ve approaches. For one-

dimensional problems (e.g., median), our algorithms

attain the same optimal error bounds as interactive

solutions. For higher-dimensional problems, our algo-

rithms’ error guarantees are worse than the bounds

for interactive algorithms, since our guarantees decay

exponentially as the dimension increases (instead of

polynomially).

We provide evidence that this exponential dependence

is necessary. We show lower bounds on the error of

a natural class of nonadaptive optimization algorithms,

which includes the noninteractive LDP variants of first-

order methods such as gradient descent. This lower

bound applies even to nonprivate algorithms. It demon-

strates that the adaptivity of first- and second-order

methods is necessary to get a polynomial dependence

on the dimension.

We also consider algorithms that use interaction only

sparingly. We show that carefully tuned LDP variants of

Users

zi s

…
…

Q1

Qi

Qn

Server

Analysts

z1

zn

d1

di

dn

random string

Figure 1. The local model for differential privacy. Each individual
i runs a (possibly different) DP algorithm Qi to randomize her data.
In the noninteractive variant (without the dashed arrows), the server
sends a single message to all users at the start of the protocol. In the
interactive variant (with the dashed arrows), the server sends several
messages, each to a subset of users. Each such message, together with
responses from users, counts as a round of interaction.

classical first-order methods can return accurate answers

with relatively few rounds of interaction. Geometric

properties of the loss functions being optimized—

smoothness and strong convexity—play a strong role in

how quickly the error drops with the number of rounds

of interaction.

Finally, we consider a specific problem—linear

regression—and show a simple noninteractive protocol

that achieves optimal error.

A. Background

Differential privacy. In an LDP algorithm, there are n
participants, each with a private input di from a universe

D of possible values. A protocol proceeds in T rounds.

In each round, the server sends a message, called a

query, to a subset of the players, requesting that they

run a particular algorithm. Based on the queries, each

player i in the subset selects an algorithm Qi, runs it,

and sends the output back to the server.

Definition 1 ([20, 17]). An algorithm Qi is ε-locally
differentially private (LDP) if for all pairs d, d′ ∈ D,
and for all events E in the output space of Q, we have

Pr[Q(d) ∈ E] ≤ eε Pr[Q(d′) ∈ E] .

A multi-player protocol is ε-LDP if for all possible
inputs and runs of the protocol, the transcript of player
i’s interactions with the server is ε-LDP (for all settings
of the remaining data points). 1 In all the protocols we
discuss, each user responds to only a single query over
the course of the protocol.

Convex Optimization. We consider algorithms for con-

vex risk minimization. A particular problem is specified

by a convex, closed and bounded constraint set C in R
p

and a function � : C × D → R which is convex in its

first argument, that is, for all d ∈ D, �(·; d) is convex.

We call p the dimension of the problem. A data set

D = d1, ..., dn ∈ Dn defines a loss (or empirical risk)

function: L̂(θ;D) = 1
n

∑n
i=1 �(θ; di). For example,

finding the median of a data set D ∈ [0, 1]n corresponds

to minimizing the loss L̂(θ,D) =
∑

i |θ − di|. For

standard linear regression, each data point is a pair

di = (xi, yi) ∈ R
p × R and we seek to minimize

L̂(θ,D) =
∑

i(yi − 〈θ, xi〉)2. Support vector machines

correspond to minimizing L̂(θ,D) =
∑

i(yi · 〈θ, xi〉)+,

where (x)+ denotes max(x, 0).
When the inputs are drawn i.i.d. from an underlying

distribution P on D, one can also seek to minimize the

1In Appendix C, we give an algorithm for linear regression that
satisfies an “approximate” variant of this definition, called (ε, δ)-
differential privacy [16]. All our lower bounds apply to both variants.
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population risk, or generalization error, defined as the

expected error on a fresh example from the distribution:

LP(θ) = ED∼P [�(θ;D)] . We drop the subscript P
when it is clear from the context.

We state the error of our algorithms in terms of their

excess (empirical or population) risk. Given an output

θpriv ∈ C, we define two variants of excess risk.

Empirical: errD(θpriv) = L̂(θpriv;D)−min
θ∈C

L̂(θ;D)

Population: errP(θpriv) = LP(θpriv)−min
θ∈C

LP(θ) .

The empirical error measures how well our output does

on the data set at hand. The population error assumes

the data is drawn from some distribution, and measures

how well our algorithm does on unseen examples from

the same distribution. The measures are closely related,

but not the same (roughly, algorithms that “overfit” may

have low empirical error but high population error).

We consider additional restrictions on the loss func-

tion �. Ignoring the second argument for a moment,

we say a function � : C → R is L-Lipschitz if for

all θ, θ′ ∈ C, |�(θ) − �(θ′)| ≤ L‖θ − θ′‖2 . (Unless

otherwise specified, we work with the �2 norm on R
p.)

We say � is Δ-strongly convex if, for every θ, θ′ ∈ C
and for every subgradient ∇�(θ) ∈ ∂�(θ), we have

�(θ′) ≥ 〈∇�(θ), θ′ − θ〉 + 1
2Δ

2‖θ′ − θ‖22. We say �
is β-smooth if it is differentiable and has β-Lipschitz

gradients, that is ‖∇�(θ)−∇�(θ′)‖2 ≤ β‖θ − θ′‖2 .
Nonprivate methods for optimizing convex functions

generally use first- or second-order methods, which gain

information about the loss funcion by evaluating the

gradient, and possibly the Hessian (matrix of second

derivatives) at a sequence of points in C. Examples of

such methods include gradient descent, cutting plane

algorithms, Frank-Wolfe, and Newton-Raphson.

“Typical” Setting. In what follows, we assume C ⊂ R
p

is a convex set (‖C‖2 ≤ 1) and � : C×D → R is convex

and 1-Lipschitz for each setting of its second argument.

For this setting, Duchi et al. [14] gave an n-round

algorithm with expected population risk O
(√

p
ε2n

)
,

where n is the number of users. Their algorithm is a

LDP version of stochastic gradient descent where, at

round i, the server sends the current estimate θi to player

i, who returns a noisy gradient Q(∇�(θi; di)) (where

Q adds carefully calibrated noise). They also showed

that error bound is tight, using an information theoretic

argument. The lower bound applies even to linear loss

functions—in particular, the bound shows that assuming

smoothness does not change the achievable error.

B. Summary of Results

Noninteractive Algorithms for General Convex Op-
timization.

Theorem 2 (Theorem 10, informal). For the typical
setting above, there is an ε-LDP algorithm A such
that for all distributions P on D, with high probability,

errP(A(D)) = Õ

(( √
p

ε2n

)1/(p+1)
)
, where Õ(·) hides

log(n) factors.

For one-dimensional convex optimization, our proto-

col nearly matches the lower bound of Ω(1/
√
ε2n). The

dependence on the dimension is exponential, however.

To achieve a given level of error α, one requires

n ≥ Ω̃(cpε−2α−(p+1)) data points.

Our one-dimensional algorithm is based on a novel

reduction of the general one-dimensional convex op-

timization to the median problem (a special case),

followed by a noninteractive local algorithm for the

median that uses a tree-based technique for simultane-

ously approximating 1D range queries (that arises in

[22, 18, 12]). For higher dimensions, we reduce to the

one-dimensional case by optimizing, in parallel, over

a collection of roughly 1/αp−1 random lines passing

through the center of C.

As a comparison point, the most straightforward ap-

proach to noninteractive LDP optimization is to evaluate

the loss function at all points in a suitably defined set

(a “net”) for C, and then output the one with smallest

loss. This approach incurs error Õ
((

p
ε2n

)1/(p+2)
)

(or

alternatively, requires a sample of size 4pε−2α−(p+2)

for error α). Our technique saves a factor of 1/α in the

sample complexity, which is significant for small α.

Bounds on Adaptivity for General Convex Optimiza-
tion. We show that for a natural class of LDP methods,

the exponential dependence on p in our methods is nec-

essary. We start from the observation that methods for

general convex optimization, private or not, generally

access the loss function by approximating the gradient

at a sequence of adaptively chosen points. We model

such algorithms by imagining an oracle to which the

algorithm makes queries. The oracle is neighborhood-
based (usually called local2) if, on query θ ∈ C, it

returns information about the values of the loss function

in an infinitesimal neighborhood of θ (a subgradient or

Hessian, for example).

We study, for the first time, the adaptivity of such

algorithms: suppose that the algorithm submits queries

2This use of “local” is completely different from its use in “local
differential privacy”. We use “neighborhood-based” for clarity.
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in batches to the oracle, with the choice of points in a

batch depending only on query answers from previous

batches. A nonadaptive algorithm uses only one batch

(and corresponds to a nointeractive LDP protocol). We

show that for every noninteractive neighborhood-based

oracle algorithm requires (1/α)Ω(p) queries in the worst

case to obtain error α for optimizing Lipschitz convex

functions:

Theorem 3 (Theorem 13, informal). There exists C > 0
such that for every sufficiently small α > 0 and every
(not necessarily private) neighborhood-based oracle
O·(·), every C log(1/α)-round randomized algorithm
for optimization of Lipschitz convex functions requires
2Ω(p) queries to succeed with high probability. Fur-
thermore, nonadaptive algorithms require (1/α)Ω(p)

queries.

This is the first lower bound to demonstrate that the

adaptivity of first-order methods such as gradient de-

scent and the cutting-plane method is in fact necessary

to get a polynomial dependence on the dimension. It

also demonstrates that fundamentally new techniques

would be necessary to get noninteractive LDP algo-

rithms with polynomial dependence on the dimension.

Previous bounds on oracle optimization [3, 34, 33, 37]

used information-theoretic arguments that do not distin-

guish between adaptive and nonadaptive algorithms (in

particular, the instances that arise in those proofs are

easy to solve nonadaptively).

Algorithms with Limited Adaptivity. Although the

design of accurate noninteractive algorithms for high-

dimensional optimization remains challenging, we show

that LDP algorithms with limited interaction can achieve

low error, demonstrating that the n rounds of interaction

of previous algorithms (where n is the number of users)

are not necessary. These algorithms are noisy, “batch

stochastic” versions of two classic first-order methods—

gradient descent and the cutting plane method—where

in each round many users are queried to get high-

accuracy estimates of the gradient at a particular point.

We show:

1) In the “typical” setting (optimizing 1-Lipschitz

functions over a bounded set) then for every

T , there is an ε-LDP algorithm A(·) such

that for every D ∈ Dn, E[errD(A(D))] =

O
(
min

(√
T
nε2 +

(
1− 1

e

)T/p
, 1√

T
+
√

p
ε2n

))
.

In particular, this algorithm achieves optimal error

O(
√
p/ε2n) for T = nε2/p (due to the second

term). On the other hand, the first term reaches

the optimal error when T = O(p log(ε2n/p)).
2) When the function is 1-Lipschitz, β-smooth and

Assumptions Method Additive Error

(big-Oh expression)

1-Lipschitz GD
1√
T
+
√

p
nε2

1-Lipschitz CP

√
T
nε2 + 2

(
1− 1

e

)T/p
Δ-strongly convex GD

1
ΔT + p

nε2Δ

β-smooth GD
1
T 2 +

pT 2

nε2β

β-smooth, GD
β
2e
−ΔT/β + pT 2

nε2
Δ-strongly convex

Figure 2. Upper bounds on achievable error for optimization of 1-
Lipschitz convex functions in the local model as a function of the
number T of rounds of interaction, the number n of users, and the
dimension p of the parameter vector. Methods: GD = gradient descent,
CP = cutting plane.

Δ-strongly convex, there is an ε-LDP algorithm

A(·) that for every D ∈ Dn,

E[errD(A(D))] = O
(

β
2 e

−ΔT/β + pT 2

nε2

)
. Our

algorithm requires both smoothness and strong

convexity to achieve this bound, and our anal-

ysis requires a new analysis of batch stochastic

gradient descent under these conditions. The role

of smoothness is surprising: without restrictions

on interaction, assuming strong convexity helps

with accuracy, but adding smoothness does not.

However, smoothness is known to accelerate the

convergence of gradient descent, and that translates

into a much better dependency on T in our con-

text.3

Note. We state all our results in expectation, but they

also extend to high probability guarantee using the idea

of Bassily et al. [7, Appendix D].

Case Study: Linear Regression Our work also raises

the question of what can be achieved for specific

problems. In Appendix C-A, we study the accuracy of

noninteractive LDP protocols for ordinary least squares

regression, where each input d is a pair (x, y) with

3One can show that if the loss function is 1-Lipschitz and β-
smooth, then the ε-LDP algorithm version of batch stochastic gradient
descent can be tuned (using Lan’s analysis [29]), so that for every

D ∈ Dn, E[errD(A(D))] = O
(

1
T2 + pT2

nε2β

)
. This achieves op-

timal error O(
√

p/ε2n) for T = (nε2/p)1/4, which is quadratically
faster than the case when the function is 1-Lipschitz. Similarly, one
can also show (using [40]) that if the loss function is 1-Lipschitz
and Δ-strongly convex, then ε-LDP batch SGD satisfies, for every

D ∈ Dn, E[errD(A(D))] = O
(

1
ΔT

+ p
nε2Δ

)
. For constant Δ,

this achieves very low error O(p/ε2n) when T = (nε2/p)—the
same number of rounds, but much lower error than, what one gets
from Lipschitz continuity alone.
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x ∈ Bp(0, 1) (the p-dimensional ball of radius 1)

and y ∈ R, and �(θ; (x, y)) = (y − 〈x, θ〉)2 for

θ ∈ Bp(0, 1). We also show that the lower bound

of
√
p/ε2n applies to this special case (regardless of

interaction) and that a natural noninteractive algorithm

in Appendix C-B, which computes noisy versions of

the Hessian and gradient at 0, achieves this error rate.

There are nonprivate algorithms with population risk

only 1/
√
n (e.g., [39])—thus, our bound shows that

privacy imposes a dimension-dependent cost.

The Relation to SQ Learning Kasiviswanathan et
al. [26] showed a general equivalence between local

differential privacy and statistical query learning [27]:

for distributional problems, the two models are equiva-

lent, in terms of both sample and time complexity, up

to polynomial factors in the dimension and the desired

accuracy. The main open problem we aim to solve is

whether there exist noninteractive LDP algorithms for

convex optimization with sample complexity polyno-

mial in p and α. Equivalently, one can ask if there exist

SQ algorithms with similar scaling. Our lower bound

sheds light on this, showing that such algorithms would

have to use the SQ oracle in some other way than to

simulate first- or second-order methods (which is the

current state of the art, e.g., [21]).

C. Related Work

Local differential privacy was defined by Dwork et
al. [17] in the paper that introduced differential privacy.

Local privacy was implicitly studied in previous works

under different names, like γ-amplification [4, 20] and

randomized response [46].

Two of the most widely studied problems in local

differential privacy are the problem of finding heavy

hitters [6, 19, 23, 32] and private local learning [26].

The heavy hitters problem represents a very simple

computation (counting elements frequencies), and ex-

isting algorithms are all noninteractive. The closely

related “heavy hitters over sets” problems is more

complex; the state-of-the-art algorithm uses two rounds

of interaction [36], though it’s unclear whether the extra

round is necessary. Algorithms developed for the heavy

hitters problem are not directly relevant here, since it is

unclear how they can be applied to optimization.

Kasiviswanathan et al. [26] initiated the study of

private local learning. They showed that every LDP

learning algorithm can be simulated in the statistical

query model when the data is sampled i.i.d. from a

known distribution (see “SQ Learning” above).

In terms of lower bounds, Beimel et al. [8] studied

the lower bound on the squared error of distributed

protocols for the sample mean estimation of the data.

This was generalized by Duchi et al. [14], who gave

a general framework for translating lower bounds on

statistical estimation to the local privacy model. While

the lower bounds in Duchi et al. [14, 6] are optimal, they

did not consider the round complexity of the algorithms.
In the optimization literature (independent of work

on privacy), several works establish lower bounds on

the oracle complexity—the number of queries made

by a neighborhood-based algorithm. (In contrast, we

consider the number of rounds of adaptivity in these

queries.) This line of work was started by Nemirovski

et al. [33]. Their analysis was simplified by Nes-

terov [34] under additional restrictions on the aglo-

rithm. Recently, Agarwal et al. [3] and Raginsky and

Rakhlin [37] extended the study of lower bounds to

the stochastic gradient-based methods, and provided a

more structured, information-theoretic approach to these

lower bounds. None of these works distinguish between

adaptive and nonadaptive methods.
Differentially private convex optimization has also

been studied extensively in the central model, starting

with the work of Chaudhuri et al. [13] and later in

[47, 24, 28, 41, 44, 42, 7, 43]. Noisy variants of first-

order methods play an important role in several of those

works, starting with Williams and McSherry [47].

II. NONINTERACTIVE PRIVATE LEARNING

This section is devoted to our noninteractive LDP

algorithms for private learning. In order to better un-

derstand our main result (Theorem 10), we start by an-

alyzing a simple mechanism called the net mechanism,

for which it is easy to establish the following claim.

Claim 4. For every 1-Lipschitz loss function � : C ×D
and every distribution P on D, when D ∼ Pn, the net
mechanism Anet is ε-LDP and satisfies

E D∼Pn

coins of Anet

(errP(Anet(D))) = O

(( p

ε2n

)1/(p+2)
)
(1)

with high probability. Moreover, this is tight in the worst
case. In particular, to achieve a given error α, the
algorithm requires sample complexity n = Ω

(
Cp

ε2αp+2

)
for a constant C > 0 (roughly 4).

The net mechanism, Anet, to optimizes a loss func-

tion L on C works in three steps: (i) construct an

appropriately fine net for C; (ii) approximately evaluate

L at all points in the net; and (iii) report the minimizer

of the observed values. We defer the proof of Claim 4

to Appendix B.
Having established what one can achieve by the

basic net mechanism, we now give our noninteractive
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algorithm. For the ease of presentation, we describe our

main algorithm through a series of increasing generality.

We start by describing and analyzing an algorithm for

one-dimensional median problem, 1D-MEDIAN (Fig-

ure 3). We then use 1D-MEDIAN to describe an al-

gorithm for one-dimensional convex Lipschitz function,

1D-GENERAL (Figure 4). Finally, we present our main

algorithm, HIGHD-MEDIAN, in Figure 5 that uses 1D-

GENERAL as a black-box.

For the proof of our main result of this section (The-

orem 10), we require our algorithm for 1D-MEDIAN

and 1D-GENERAL to satisfy a stronger property known

as uniform approximation. We first formally define

uniform approximation.

Definition 5. (Uniform approximation). Given real-
valued functions f and g on the same domain C, we
say f uniformly approximates g with error α (denoted
‖f − g‖∞ ≤ α) if |f(θ)− g(θ)| ≤ α for all θ ∈ C.

Following our plan mentioned at the start of this

section, we first show the following result (Theorem 6)

for 1D-MEDIAN. Using Theorem 6, we give an uni-

form convergence for one-dimensional convex functions

(Theorem 9). Finally, we use Theorem 9 to give our

main result of this section (Theorem 10) for general

convex function in high dimension.

Theorem 6. For every distribution P on [0, 1], with
probability 1 − γ over D ∼ Pn and f̂ ←
1D-MEDIAN(D), where 1D-MEDIAN is the algorithm
presented in Figure 3, we have

∥∥∥f̂ −medP
∥∥∥
∞
≤ O

(
log2(ε2n)

√
log(ε2n/γ)

ε
√
n

)
,

(2)

and medP(θ) is the expected loss Ed∼P |θ − d| for the
median problem. In particular, to achieve error α with
probability 1 − γ, the algorithm requires sample size
n = Õ(log(1/γ)/ε2α2). Moreover, f̂ is ε-LDP.

When ‖f̂ − LP‖∞ ≤ α, the minimizer θpriv of f̂
satisfies errP(θpriv) ≤ α, so this algorithm suffices for

approximate computation of the median.

Our algorithm for one-dimensional median (1D-

MEDIAN) presented in Figure 3, is based on the tree-

based algorithm for simultaneously approximating the

number of points in every subinterval of a range (as in,

e.g., [12, 18, 22]).

Proof: The privacy proof follows from the fact that

R is an ε-LDP randomizer [6] and that differential pri-

vacy is preserved under arbitrary post-processing [15].

Input. Let the input dataset be D = (d1, · · · , dn) ∈
Dn, where every di is sampled i.i.d. from the distri-

bution P . Let � : [0, 1]×D → R be the loss function

defined as �i(D) := |θ − di|. Let ζ = 1/ε
√
n,

w = 1/ζ , h = logw. Let B := {θ1, · · · , θw} be

the set of points in the ζ-net, and ε′ = ε/h.

User side computation. Every user i constructs

binary trees Ti over w leaves as follows:

1) Label the leaves of the binary tree over w leaves

as integers from [1, w], and the intermediate

nodes n as pairs (a, b) such that a ∈ [1, w] is the

left most leaf and b ∈ [1, w] is the right most

leaf of the subtree rooted at n.

2) For every leaf node j ∈ [1, w] of Ti, its entry,

uj := 1 for j := min {s : θs > dj}, else

uj := 0. The entry on intermediate node (a, b)
is
∑

a≤j≤b uj .

3) Let vi be the corresponding vector that stores

the entries of the nodes of Ti. Send the server

a binary tree T̂i with corresponding vectors

v̂i(j) = R(vi(j)), where R(·) is the ε′-basic

randomizer of Bassily and Smith [6] for all

j ∈ [1, 2w].

Server side computation. On receiving T̂i from all

user i ∈ [n], it performs the following steps:

1) Constructs a binary tree T with nodes labeled

appropriated by vectors v, where v(j) :=∑n
i=1 v̂i(j) for all j ∈ [1, 2w].

2) For every j ∈ [w], construct a maximal dyadic

partition of the interval [1, · · · , j] and that of

[j + 1, · · · , w]. Call the nodes corresponding

to the intervals in the binary tree as the set

N left
j and N right

j , respectively. Compute x̂(j) =
1
n

∣∣∣∑n∈N left
j

v(k)−∑
n∈N right

j
v(k)

∣∣∣.
3) Define a function ĝ : [0, 1] → [0, 1] such that

ĝ(y) = x̂(θ) where θ = argminz∈B |z − y|.
Define f̂ : [0, 1] → [0, 1] as follows: f̂(x) =∫ x

0
ĝ(t)dt

Output. The server outputs f̂ .

Figure 3. 1-Dimensional Private Non-interactive Median (1D-
MEDIAN)

Now we turn our attention to prove equation (2).

Before we analyze the algorithm, let us fix some no-

tations. Let x̃ be the vector that the server would have

computed if there were no R(·) in Step (3) of the user

side computation in Figure 3.

We define a function g̃ : [0, 1] → [0, 1] using the
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vector x̃ similar to the definition of the function ĝ(·),
i.e., g̃(y) = x̃(θ) where θ = argminz∈B |z − y|.

In what follows, we first prove that for all θ ∈ B,

‖ĝ(θ)− g̃(θ)‖∞ ≤ O

(
log2(ε2n)

√
log(ε2n/γ)

ε
√
n

)
(3)

Our analysis uses the observation that, every level of

the binary tree T (i.e., the corresponding entries of the

vector v) can be seen as a noisy histogram (over the data

universe B) of the user’s data and, by the definition of

the vector x̂, the vector x̂ succinctly stores the estimates

of ∇medP at different net points.

Let γ′ = γ/h. Since the data universe has size w =
ε
√
n, we can use Theorem 2.3 of Bassily and Smith [6]

to estimate the �∞-error in estimating ∇medP at every

level k ∈ [h]. Bassily and Smith [6, Theorem 2.3] gives

that, with probability 1− γ′, the �∞ error in estimating

∇medP is at most O

(
1
ε

√
log(w/γ′)

n

)
for every level

k ∈ [h]. Using union bound over all the levels, we have

max
θ∈B

|ĝ(θ)− g̃(θ)| = O

(
h

ε′

√
log(w/γ′)

n

)
By substituting ε′ = ε/h, h = logw, and setting w =
ε
√
n, we get equation (3).

We now return to proving Theorem 6. From the

definition of f̂ and equation (3), we have the following

set of inequalities for all x ∈ [0, 1]:

|f̂(x)−medP(x)| =
∫ x

0

∣∣ĝ(θ)−∇medP(θ)
∣∣ dθ

≤
�x/ζ	−1∑

t=1

∫ (t+1)ζ

tζ

∣∣(ĝ(θ)−∇medP(θ))
∣∣ dθ

≤

⎛⎝�x/ζ	∑
t=1

αζ

⎞⎠+ ζ(∇med(1)−∇med(0))

≤ α+ 2ζ = O
(
log2(ε2n)

√
log(ε2n/γ)/

(
ε
√
n
))

,

where α denotes the left-hand side in Equation (3). The

last inequality follows from the fact that the summation

is over at most w = 1/ζ net points and that med is

1-Lipschitz. This completes the proof of Theorem 6.

We now proceed to the general one-dimensional

convex function. We first state the following key lemma.

Lemma 7. Let f : [0, 1] → [0, 1] be a convex 1-
Lipschitz function. Then there exists a distribution Q
such that

∀θ ∈ [0, 1], f(θ) = Ey∼Q[|θ − y|] + c

Input. A dataset D = (d1, · · · , dn) ∈ Dn with every

entry di sampled i.i.d. from the distribution P and a

loss function � : [0, 1]×D → R.

User side computation. Every user i (for �i(θ) :=
�(θ; di)) performs the following steps:

1) Samples a median function medi as defined

in Corollary 8.

2) Run its end of 1D-MEDIAN algorithm (Figure

3) with medi and di to send T̂i to the server.

Server side computation. On receiving T̂i from all

user i ∈ [n], the server invokes its end of the 1D-

MEDIAN algorithm (Figure 3) and gets f̂ as its output.

Output. The server outputs f̂ .

Figure 4. 1-Dimensional Private Convex Optimization (1D-
GENERAL)

Proof: We first define the randomized algorithm Z
whose output is the distribution Q. The algorithm Z
does the following.

1) Uniformly sample a u ∈ [−1, 1].
2) Output y ∈ [0, 1] such that u = ∇f(y).

The above distribution is well defined because f(·) is

1-Lipschitz. Now, let Q be the output distribution of

the algorithm Z. Let g(θ) = Ey∼Q[|y − θ|]. Then the

following is easy to see

∇g(θ) = Ey∼Q[1y≤θ]− Ey∼Q[1y>θ]

=
(∇f(θ)− (−1))− (1−∇f(θ))

2
= ∇f(θ),

where 1[·] is the indicator random variable. Since the

gradient of the function f(·) matches the gradient of

the median function at every θ, the two function can

differ by at most a constant. This completes the proof

of Lemma 7.

Since the optimal solution does not change under a

translation by a scalar, we have the following as a direct

corollary of Lemma 7.

Corollary 8. For every 1-Lipschitz loss function � :
[0, 1] × D → R, there is a randomized algorithm
Z : D → [0, 1] (given by Lemma 7), such that for
every distribution P on D, the distribution Q on [0, 1]
obtained by running Z on a single draw from P satisfies

LP(θ) = medQ(θ) for all θ ∈ [0, 1], (4)

where LP(θ) is the population risk Ed∼P [�(θ, d)].

Theorem 6 and Corollary 8 now directly gives us the

following result:

64

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 18,2024 at 04:42:01 UTC from IEEE Xplore.  Restrictions apply. 



Theorem 9. Let � : [0, 1] × D → R be a 1-Lipschitz
loss function such that �( 12 , d) = 0 for all d ∈ D. For
every distribution P on P , with probability 1− γ over
D ∼ Pn and f̂ ← 1D-GENERAL(D, �), where 1D-

GENERAL(·, ·) is the algorithm presented in Figure 4,
we have∥∥∥f̂ − LP

∥∥∥
∞
≤ O

(
log(ε2n)

√
log(ε2n/γ)

ε
√
n

)
,

and LP(θ) is the population risk ED∼P(�(θ,D)). In
particular, to achieve error α with probability 1−γ, the
algorithm requires sample size n = Õ(log(1/γ)/ε2α2).

The above theorem basically shows that we can

uniformly approximate any 1-Lipschitz convex function

defined over R. This observation is crucial for our

algorithm in the high dimensional case.

Since an optimization problem is invariant under an

affine transformation, without any loss of generality, we

can assume that �(0p, d) = 0 in the high dimensional

case. Our main result of this section is as follows.

Theorem 10. Let C ⊆ R
p be contained in the unit

ball, and let � : C × D → R be a 1-Lipschitz loss
function such that �(0p, d) = 0 for all d ∈ D. For every
distribution P on D, with probability 1 − γ over D ∼
Pn and θpriv ← HIGHD-GENERAL(D, �) for HIGHD-

GENERAL(·, ·) presented in Figure 3, we have

errP(θpriv) ≤ O

⎛⎝(√
p log3(ε2n) log2(1/γ)

ε2n

) 1
(p+1)

⎞⎠ .

In particular, to achieve error α with probability 1− γ,
the algorithm requires sample size n = Ω̃( cp

ε2αp+1 ).

Proof: Let us define the function f̂ as follows. On

input θ, we perform two steps to compute the value of

f̂(θ). We first find a point θ′ and the direction uj such

that θ′ is parallel to uj and θ′ is closest to θ in Euclidean

distance. We then compute the function f̂ j(θ′).
Let γ′ = γ/k. Fix a j ∈ [k]. From Theorem 6, we

have with probability 1−γ′ for all θ on a ζ-net defined

on the line parallel to the line uj ,

|f̂ j(θ)− LP(θ)| = O

(
log(ε2n/k)

ε

√
k log(ε2n/kγ′)

n

)
.

This implies that, with probability 1 − γ over the

random coins of the algorithm and the local randomizer

of 1D-GENERAL,

‖f̂ − LP‖∞ = O

(
log(ε2n/k)

ε

√
k log(ε2n/γ)

n

)
.

Input. A dataset D = (d1, · · · , dn) ∈ Dn such that di
is chosen i.i.d. from the distribution P , and a loss function
� : C×D → R, where C is a convex set and � is 1-Lipschitz
function.

Preprocessing step. The algorithm chooses k ran-
dom directions, u1, · · · ,uk. Then it defines k sets
as follows: For j ∈ [k], define the set Sj ={
(j − 1)

⌊
n
k

⌋
, · · · , j

⌊
n
k

⌋
− 1

}
. If j = k, then Sj =

Sj ∪
{
j�n

k
�, · · · , n

}
.

User side computation. Every user i s.t. {i ∈ Sj} invokes

1D-GENERAL on its side with input (di,ui) to send T̂i to
the server.
Server side computation.: On receiving T̂i from all user
i ∈ [n], the server performs the following steps:

1) For 1 ≤ j ≤ k, invokes its end of the 1D-GENERAL

algorithm (Figure 4) with
{
T̂i

}
i∈Sj

to get f̂ j .

2) Compute θj := argminθ‖uj
f̂ j and then compute

θpriv := argminj f̂
j(θj).

Output. The server outputs θpriv.

Figure 5. Private Non-interactive Optimization (HIGHD-GENERAL)

As before, when ‖f̂−LP‖∞ ≤ α, the minimizer θpriv
of f̂ satisfies errP(θpriv) ≤ α, so bounding the value of

α suffices to approximately compute LP .

In order to complete the proof we need to find

the value of k. Let us denote by θ∗ the true minima

of LP(·). From here on, we drop the subscript P
when clear from the context. Let Bp(θ∗, α) be the

p-dimensional ball of radius α (to be chosen later)

centered at θ∗. Now in order to complete the proof, we

need the size of k such that there is at least one line u∗

that intersects Bp(θ∗, α). From the Lipschitz property,

L(θ)− L(θ∗) ≤ ‖θ − θ∗‖2 ≤ α if ‖θ − θ∗‖2 ≤ α. Let

Qi be the spherical cap4 formed by a line ui picked by

the algorithm. Let S(X ) denote the surface area of the

convex body X . Let Good be the event that the line ui

intersects the ball Bp(θ
∗, α). Using [11, Lemma 2.35],

we have Pr [Good] = S(Qi)/S(C).We first prove the

following claim.

Claim 11. Let Good, C,Qi be as defined above. Let α
be the contact angle5 of the spherical cap. If α is small,
then

Pr[Good] ≥
√

2

πp
sinp−1(α) ≥

√
2

πp

(
α√
2

)p−1

.

4A spherical cap is the region of a sphere which lies above (or
below) a given plane [5]. In this section, the spherical cap Qi is
defined by the plane whose normal is the line ui and is the region
of the sphere which does not include the center of the sphere.

5The angle between the normal to the sphere at the bottom of the
cap and the base plane is called the contact angle.

65

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 18,2024 at 04:42:01 UTC from IEEE Xplore.  Restrictions apply. 



Proof: Using the sine rule, we have α cos(α/2) =
sinα Using the fact that sin2 α + cos2 α = 1 and

cosα = 2 cos2(α/2) − 1, rearranging the expression

gives us

α√
2
=

√
1− cos2 α

1 + cosα
=
√
1− cosα. (5)

In particular, this implies that cosα = 1 − α2

2 .
Therefore,

Pr[Good] ≥
√

2

πp
sinp−1(α)

=

√
2

πp

(
1−

(
1− α2

2

)2
)1/(p−1)

≥
√

2

πp

αp−1

2(p−1)/2
.

This completes the proof of Claim 11.

If we set k = O
(

2(p−1)/2 log(1/γ)
αp−1

√
πp
2

)
,

then Claim 11 implies that there exists an j ∈ [k] such

that, with probability 1 − γ, uj intersects Bp(θ
∗, α).

Substituting this value of k in equation (5), we get

‖f̂ − LP‖∞ = O

⎛⎝ log(1/γ)

ε

√
log3(ε2n)

√
p2p−2

nαp−1

⎞⎠ .

Setting α = O

(( √
p

ε2n log3(ε2n) log2(1/γ)
)1/(p+1)

)
,

we get ‖f̂ − LP‖∞ ≤ α. This completes the proof

of Theorem 10.

In particular, to achieve a given error α, the theorem

states that the algorithm HIGHD-GENERAL requires

sample complexity n = Ω̃( cp

ε2αp+1 ) for a constant c > 0
(roughly 2).

III. ROUND COMPLEXITY OF ADAPTIVE

ALGORITHMS USING NEIGHBORHOOD ORACLES

In this section, we show that, for a natural class of

algorithms, the exponential dependence on the dimen-

sion is essential. We first define the basic model and

then state our result. We assume that an algorithm has

an access to a special kind of oracle which we call

a neighborhood-based oracle and can make queries in

batches, where queries in a particular batch may depend

on the queries and response from previous batches.

Neighborhood-based oracles. We assume that the al-

gorithm has access to an oracle OF (·) for a convex

function F : C → [0, 1], where C ⊆ R
p is a convex set

over which the function is defined. We say the oracle is

neighborhood-based (also called local, see the footnote

on page 3) if, given θ ∈ C, the oracle outputs a value

that depends on the function F (·) and the infinitesimal

neighborhood of the query point θ. For example, one

such query can be to compute the h-th order gradient,

∇hF (θ), at the point θ.

Query model. We assume that the algorithm is random-

ized and can make at most q queries in T batches, where

batch-i consists of qi queries such that
∑T

i=1 qi = q.

We call any such algorithms that makes at most q
queries in T -batches a (q, T )-adaptive algorithm if, for

all 1 ≤ i ≤ T − 1, the queries in the (i + 1)-th batch

depends only on the queries made and the responses

received during the first i batches. When T = 1, we

call such algorithm a q-nonadaptive algorithm. Note

that our query model does not assume the queries made

in a particular batch are independent, i.e., queries in a

single batch may have non-trivial correlation.

Our first claim shows that there exists a distribution

over convex function defined on a convex set C ⊆ R
p,

such that for a function F chosen from this distribution,

any q-nonadaptive algorithm can outputs a θ∗ such that

F (θ∗)−minθ∈C F (θ) ≤ α/21 with probability at most

qαp. That is, to get a constant success probability, any

non-adaptive algorithm has to make number of queries

exponential in the dimension of the underlying convex

set. More precisely, we show the following.

Theorem 12. Let Bp(0p, 1) denote a unit ball centered
around the origin. There exists a distribution F of
convex functions from Bp(0p, 1) to [0, 1] such that, for
F ∼ F , the following holds:

1) Let OF (·) be a neighborhood based oracle for F
as defined above. Then the output θ∗ of any q-
nonadaptive and randomized algorithm, with ora-
cle access to OF (·), satisfies

Pr

[∣∣∣∣F (θ∗)− min
θ∈Bp(0p,1)

F (θ)

∣∣∣∣ ≤ α/21

]
≤ qαp.

2) There exists a (poly(log(1/α)), 2)-adaptive algo-
rithm that can compute θ∗ with probability at least
2/3, such that

∣∣F (θ∗)−minθ∈Bp(0p,1) F (θ)
∣∣ ≤ α.

Remark 1. We first note the implication of this result in
the model of local-differential privacy. Theorem 12 rules
out any nonadaptive algorithms, including non-private
algorithms, that just uses gradient information. This in
particular implies that there exists a convex function
for which no local-differentially private algorithm, with
access to neighborhood oracle, can output a θpriv such
that errD(θpriv) ≤ α with high probability. In other
words, it shows that adaptivity is necessary for gradient
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based methods to achieve polynomial dependence on the
dimension.

The idea behind of our proof is as follows. Recall

that we need to construct a distribution of functions

F such that a function sampled from F is hard to

optimized using only non-adaptive queries. We define

a distribution F that satisfies the following properties:

(i) the minimum of any function sampled from F lies

in a uniformly at random chosen p-dimensional ball B
of radius α, (ii) any algorithm that makes neighborhood

queries does not learn anything about the optimum point

unless it queries a point inside the ball B, and (iii) if an

algorithm queries a point inside the ball, it learns the

optimum value. Once we have such a distribution of

function, we are basically done because the probability

with which any query point is a point inside a small

p-dimensional ball depends on the volume of B and the

volume of B decays exponentially with p.
We now return to proving Theorem 12.

Proof of Theorem 12: Let C := {c1, · · · , cN}
be the centers of N balls that forms an α-packing of

Bp(0p, 1). That is,

∀i ∈ [N ] and θ such that ‖θ − ci‖2 ≤ α, θ ∈ Bp(0p, 1)

∀i �= j ∈ [N ], ‖ci − cj‖2 ≥ 2α.

Pick a point c ∈ C uniformly at random. Pick two points

ĉ ∈ Bp(0
p, 1) and c̃ ∈ Bp(0

p, 1) such that α/6 ≤
‖c−ĉ‖2 ≤ α/3, α/6 ≤ ‖c−c̃‖2 ≤ α/3, and ‖c̃−ĉ‖2 ≥
2α/3. Define the following functions:

F0(θ) := max

{
‖θ − c‖2,

1

3
‖θ − ĉ‖2 +

1

3

}
F1(θ) := max

{
‖θ − c‖2,

1

3
‖θ − c̃‖2 +

1

3

}
The function F is chosen by flipping a uniform coin

b and setting F (θ) := Fb(θ). Since all three functions

f, f0, and f1 are convex function and point-wise max-

imum of two convex functions is a convex function,

both F0 and F1 are convex functions. Similarly, it is

easy to verify that the function F (θ) is 1-Lipschitz.

Moreover, ∇F (θ) = 1 for all θ ∈ Bp(0p, 1)\Bp(c, α)
and ∇F (θ) = 1/3 for all θ ∈ Bp(c, α).

We first enumerate some key properties of F0(·). The

same properties holds for F1(·) as well. Let θ∗ :=
argminθ∈Bp(c,α) F (θ). First note that F (ĉ) = F0(ĉ)
if b = 0. That is the minimum of the function F is

θ∗ = ĉ when b = 0. Similarly, θ∗ = c̃ when b = 1.
We fix a notation that we use very often in this proof.

For a function G, let

disc(G; θ) :=

∣∣∣∣G(θ)− min
θ∈Bp(0p,1)

G(θ)

∣∣∣∣ .

When b = 0, for all θ ∈ Bp(0p, 1) such that

disc(F0; θ) ≤ α/21, we have ‖θ − ĉ‖2 ≤ α/7. This is

because of the construction of f0 and that the minimum

of F0 occurs at θ = ĉ. That is, for all such θ,

‖c− θ‖2 ≥ ‖c− ĉ‖2 − ‖θ − ĉ‖2 ≥
α

6
− α

7
> 0

‖c̃− θ‖2 ≥ ‖c̃− ĉ‖2 − ‖θ − ĉ‖2 ≥
2α

3
− α

7
>

α

2
.

Moreover, since ‖θ−ĉ‖2 ≤ α/7, we have ‖θ−c‖2 ≤
α/3 + α/7 < α. Therefore, all θ such that disc(F0; θ),
we have θ ∈ Bp(c, α). Similarly, when b = 1, for all

ζ ∈ Bp(0p, 1) such that disc(F1; θ) ≤ α/21, we have

ζ ∈ Bp(c, α), ‖c − ζ‖2 > 0, and ‖ĉ − θ‖2 > α/2.

The second and higher order derivative of the func-

tion F is identically zero and the ∇F (θ) = 1 for

all θ ∈ Bp(0p, 1)\Bp(c, α) and ∇F = 1/3 for all

θ ∈ Bp(c, α).
This implies that in order to output whether θ∗ = ĉ or

θ∗ = c̃, at least one of the queries of any q-nonadaptive

algorithm has to be a point inside the ball Bp(c, α).
Now fix a query i. Since the ratio of the volume of

ball Bp(c, α) to the volume of Bp(0p, 1) is αp, the

probability that the query i is a point inside the ball

is αp. By a union bound, the probability that any query

lands in the ball is at most qαp, as desired.

To prove the second part of the claim, we show that

there is an efficient adaptive algorithm Adaptive that

outputs θ∗ such that disc(F ; θ∗) ≤ α. Adaptive makes

two batches of queries:

1) In the first batch, Adaptive randomly picks a point

θ ∈ Bp(0p, 1) and queries for the gradient ∇F (θ).
2) Let g be the direction of the gradient returned.

In the second batch, Adaptive randomly picks

poly(log(1/α)) points in Bp(0p, 1) along the di-

rection of g and makes gradient queries at all these

points in the second round.

By Chernoff bound, with probability at least 2/3, a

query in the second batch is a point that lies in

Bp(c, α). This allows the algorithm to output θ∗ such

that disc(F ; θ∗) ≤ α. This completes the proof.

In the view of Theorem 12, a natural question arises

is whether, is it always possible to output a θ∗ using

constant round of adaptivity and neighborhood oracles

for a function F sampled from any arbitrary distribution

F of functions defined over a convex set C, such that

disc(F, θ∗) ≤ α? Our next result shows that this is not

true in general. That is, there exists a distribution of

functions from Bp(0p, 1) to [0, 1], such that, for F (·)
sampled from that distribution, no (poly(p), O(1))-
adaptive (and randomized) algorithm with access to

OF can output a θ∗ such that disc(F, θ∗) ≤ α with
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a constant probability. More formally, we have the

following theorem.

Theorem 13. Let Bp(0p, 1) denotes a unit ball centered
around the origin. There exists a distribution F of
convex functions from a unit ball Bp(0p, 1) to [0, 1]
such that, for F ∼ F , the following holds. Let OF (·) be
a neighborhood based oracle for F as defined above.
For every α > 0, there exists a T := T (α), with
T (α) = Θ(log(1/α), such that the output θ∗ of any
(q, T )-adaptive and randomized algorithm with oracle
access to OF (·), satisfies

Pr

[∣∣∣∣F (θ∗)− min
θ∈Bp(0p,1)

F (θ)

∣∣∣∣ ≤ α

]
≤ (T + 1)q2−p

1− 3−p
.

Proof: Let B0 = Bp(0p, 1) and r0 = 1. Recursively

for all level of recursion, i = {1, · · · , T}, define the

following:

1) Define an packing Vi of the ball Bi−1 with balls

of radius ri :=
1
2

(
7
18

)i−1
.

2) Pick a random ball from the packing Vi with

center c(i). Set this ball as Bi for the next level

of recursion.

3) Randomly pick c
(i)
0 , c

(i)
1 ∈ Bi such that (i) balls of

radius ri/6 with centers c
(i)
0 and c

(i)
1 lies in Bi are

disjoint, (ii) ri/12 ≤ ‖c(i)−c(i)0 ‖2, ‖c(i)−c
(i)
1 ‖2 ≤

ri/6 and (iii) ‖c(i)0 − c
(i)
1 ‖2 ≥ ri/3.

4) If all the conditions in step 3 are not satisfied, go

back to step 2 and repeat.

We define two functions at every level of the recur-

sion as follows:

f
(i)
0 :=

(
4

7

)i

‖θ − c
(i)
0 ‖2 +

⎛⎝1

3
+

ri
3

i−1∑
j=1

(
4

7

)j
⎞⎠

f
(i)
1 :=

(
4

7

)i

‖θ − c
(i)
1 ‖2 +

⎛⎝1

3
+

ri
3

i−1∑
j=1

(
4

7

)j
⎞⎠ .

Set f(θ) = ‖θ − c(1)‖2. Now pick T random bits

b1, · · · , bT and set the function as follows:

F (θ) := max

{
f(θ),

{
f
(i)
bi

(θ)
}T

i=1

}
. (6)

Claim 14. The function F (·) is convex.

Proof: First note that the two functions defined in

every levels of recursion are convex. Further, f(·) is

convex. Since point-wise maximum of convex functions

is convex, the claim follows.

We now return to the proof of Theorem 13. Without

loss of generality, let us assume that all the random

bits b1, · · · , bT are 0. We can make this assumption

because the functions at the same level sets are defined

analogously. We first prove the following structural

property of our function. The claim basically says that

in a small ball around the points chosen in step 3 above

in any level of recursion, F (·) is defined by only the

functions at the lower level of recursion.

Claim 15. Let i be any index in [T ]. Then for every
θ in the ball of radius ri+1 := 1

2

(
7
18

)i
around c

(i)
0 ,

F (θ) = maxi≤j≤T

{
f
(j)
0 (θ)

}
.

Proof: We prove the claim by induction.

Base case. When i = 1, then we have for all θ ∈ B2,

f(θ) = ‖θ − c(1)‖2 ∈ [1/12, 5/18]. However, by

construction, f
(1)
0 (θ) := 4

7‖θ− c
(1)
0 ‖2 + 1

3 ∈ [1/3, 4/9].

Therefore, for all θ ∈ B2, F (θ) = max1≤j≤T

{
f j
0

}T

j=1
.

This completes the base case.

Inductive case. Let us assume that for every θ

in the ball of radius ri+1 around c
(i)
0 , F (θ) =

maxi≤j≤T

{
f
(j)
0 (θ)

}
. To prove the claim, we need

to prove that, for θ ∈ Bi+2 around c
(i+1)
0 , F (θ) =

maxi<j≤T

{
f
(j)
0 (θ)

}
. From the induction hypothesis

we know that F (θ) = maxi≤j≤T

{
f j
0 (θ)

}
in the ball

Bi. Since Bi+2 ⊆ Bi+1 by construction, we need to

show that f (i)(θ) ≤ max
{
f j
0 (θ)

}T

j=i+1
. Note that

f
(i)
0 (θ) and f

(i+1)
0 (θ) grows linearly as the distance

of the point θ from c
(i)
0 with slope

(
4
7

)i
and

(
4
7

)i+1
,

respectively. Therefore, if we prove that f
(i+1)
0 (θ) ≥

f
(i)
0 (θ) at the boundary of the ball Bi+2 and at θ =

c
(i+1)
0 , we are done. At θ = c

(i+1)
0 , we have

f
(i)
0 (θ) ≤

(
4

7

)i
ri
6
+

1

3
+

ri
3

i−1∑
j=1

(
4

7

)j

≤ 1

3
+

ri
3

i∑
j=1

(
4

7

)j

≤ f
(i+1)
0 (θ).

For θ at the boundary of the ball Bi+2, we have

f
(i)
0 (θ) =

(
4

7

)i

‖θ − c
(i)
0 ‖+

1

3
+

ri
3

i−1∑
j=1

(
4

7

)j

≤
(
4

7

)i

‖c(i+1)
0 − c

(i)
0 ‖2 +

(
4

7

)i

‖c(i+1)
0 − θ‖2

+
1

3
+

ri
3

i−1∑
j=1

(
4

7

)j

≤
(
4

7

)i
ri
6
+

(
4

7

)i

‖c(i+1)
0 − θ‖2 = f

(i+1)
0 (θ).
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This completes the proof that for every θ in the ball of

radius ri+1 around c
(i+1)
0 , F (θ) = max

{
f
(j)
0 (θ)

}T

j=i
and Claim 15 follows.

One of the main corollaries of Claim 15 is that c
(T )
0 =

argminθ∈Bp(0p,1) F (θ). Another direct consequence of

this structural theorem is that F (θ) is 1-Lipschitz.

Now suppose θ ∈ Bp(0p, 1) is such that disc(F ; θ) ≤
2
7

(
7
18

)T
.We know that F (θ) = f

(T )
0 (θ) in the ball of

radius 1
2

(
7
18

)T
. Since c

(T )
0 = argminθ∈Bp(0p,1) F (θ),

we know that ‖θ − c
(T )
0 ‖2 ≤ 1

14

(
7
18

)T ≤ ‖c(r−1)
0 −

c
(T )
0 ‖2. Since balls of radius 1

2

(
7
18

)T
around c

(T )
0 and

c
(T )
1 are disjoint, this implies that any such θ is closer

to c
(T )
0 . In other words, for any algorithm to output a

θ such that disc(F ; θ) ≤ 2
7

(
7
18

)T
, it has to distinguish

where the minimizer is c
(T )
0 or c

(T )
1 . That is, any such

algorithm has to query for a point inside the ball BT in

at least one of the T batches.

Now the adversary can compute the minimizer in less

than T rounds if, in the batch-j query, one of its queries

is a point inside Bi for i ≥ j. Let Ei,j be such an

event. Then for i ≥ 1,Pr[Ei,j ] = qjvol(Bi)/vol(Bj) ≤
q
(

7
18

)(i−j)p
. Therefore, the probability with which the

adversary succeeds in computing a minimizer in less

than T rounds is

Pr

[
T∨

i=1

Ei

]
≤ q

((
1

2

)Tp

+ T

(
7

18

)Tp
)
.

Setting T := Θ(log(1/α)) completes the proof.

IV. NOISY-GRADIENT BASED METHODS

In this section we give noisy versions of the gradient

computation based algorithms to solve convex opti-

mization. Before we present our noisy gradient based

method, we first provide an exposition of an algorithm

(in Section IV-A), which we will use heavily in this and

later sections, for estimating the gradient (and also the

loss) of the population risk L(θ) = Ed∼P [�(θ; d)] at

any θ.

A. Locally Differentially Private (LDP) Function and
Gradient Oracles

Gradient oracle: For a given data set D =
{d1, · · · , dn} drawn i.i.d. from the population distri-

bution P , the objective is to estimate the gradient

of L(θ) = Ed∼P [�(θ; d)] at a given θ, using local

reports from n/T samples from D. Algorithm NOISY-

GRADIENT-ORACLE is expected to be called to estimate

the gradient at T different θ’s (θ1, · · · , θT ) using T sets

of n/T disjoint samples.

Input. Current partition number: t, number of par-

titions: T , current model estimate: θcurrent, privacy

parameter: ε, value flag: flag ∈ {T,F}, fixed model:

θ0. Let D = {d1, · · · , dn} ∼ Pn be the data set,

L(θ) = Ed∼P [�(θ; d)] is a 1-Lipschitz function.

Algorithm. Perform the following steps:

1) Define St =
{
(t− 1)� nT �, · · · , t� nT � − 1

}
. If

t = T , then St = St ∪
{
t� nT �, · · · , n

}
.

2) The server sends θcurrent to all the users. Ev-

ery user i s.t. {i ∈ St} does the following:

Compute zi := Rε(∇�(θcurrent; di)) and zi :=
Rε(�(θcurrent; di)−�(θ0; di)), whereRε(·) is the

randomizer defined in Appendix A.

3) Compute Lossnoisy (t) = 1
St

∑
i∈St

zi and

Gradnoisy (t) =
1
St

∑
i∈St

zi.

4) If flag=F, return Gradnoisy (t) else return
(Gradnoisy (t), Lossnoisy (t)).

Figure 6. Locally Noisy Gradient Oracle (NOISY-GRADIENT-
ORACLE)

Privacy guarantee. The following theorem is immedi-

ate from the privacy result of Duchi et al. [14].

Theorem 16. NOISY-GRADIENT-ORACLE is ε-LDP.

In particular, since differential privacy is preserved

under post-processing, all our algorithms in this section

are ε-LDP. In the following, we state the following

utility guarantees for the algorithm NOISY-GRADIENT-

ORACLE. We will use both the unbiasedness and the

concentration properties below heavily in the later al-

gorithms (see Appendix A for a proof).

Theorem 17. Let D = {d1, · · · , dn} be drawn i.i.d.
from the distribution P , and let L(θ) = Ed∼P [�(θ; d)].
Then for a fixed partition number t ∈ [T ] and a θcurrent
(independent of the data samples in t), the following
are true for Algorithm NOISY-GRADIENT-ORACLE.

1) Unbiasedness: E [Gradnoisy (t)] = ∇L(θcurrent).
2) Bounded variance:

E

[
‖Gradnoisy (t)−∇L(θcurrent)‖22

]
= O

(
Tp/nε2

)
.

3) Tight concentration: Let x be any vector
(with ‖x‖2 ≤ 1) independent of the sample
set St and the gaussian noise added in Fig-
ure 6. Then with probability at least 1 − γ,
|〈Gradnoisy (t), x〉 − 〈∇L(θcurrent), x〉| is bounded
by O

(√
T log(1/γ)/nε2

)
.
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Function oracle: We have the following bound on

the estimation of the loss (population risk) at a given

θcurrent. The proof of this theorem is analogous to

Theorem 17.

Theorem 18. Let θ0 be a fixed model in the con-
vex set C. Let x be any vector (with ‖x‖2 ≤ 1)
independent of the Gaussian noise added in Figure
6. Using the notation from Theorem 17, for Algo-
rithm NOISY-GRADIENT-ORACLE with probability at
least 1 − γ, |Lossnoisy (t)− (L(θcurrent)− L(θ0))| =

O
(√

T log(1/γ)/nε2
)
.

B. Noisy Cutting Plane Method

In this section we provide the details of the main

cutting plane method (Figure 7) The algorithm for noisy

cutting plane method is a simple variation of the cutting

plane method of Levin [30] and Newman [35]. However,

we need to be careful due to the effect of the noise at

every iteration. To better understand the algorithm, we

first review the basic cutting plane method. In a cutting

plane method, we assume there is an oracle which, in

every iteration t ∈ [T ] of the first stage, either returns a

point θt in the convex set C, with sufficiently small error,

or a hyperplane that divides the solution space roughly

by half. The idea is that after T iterations, there will be

at least one iteration t∗ ∈ [T ] such that errP(θt∗) ≤ α,

where α is the desired accuracy. Finally, the output is an

θ ∈ {θ1, · · · , θT } such that it minimizes the loss L(θ).
In the differentially private variant of the cutting-

plane method (Algorithm 7 (PRIVATE-COG)), instead

of using the exact gradient (or the function oracle

for the loss L(θ)), we use their differentially private

variant from Section IV-A. The ε-local differential

privacy of PRIVATE-COG follows immediately from

Theorem 16 and that differential privacy is preserved

under post-processing. In Theorem 19 we provide the

utility guarantee. (See Appendix B-B for the proof.)

Theorem 19. Let C be a bounded convex set such that
‖C‖2 ≤ 1. Let D = {d1, · · · , dn} be drawn i.i.d. from
the distribution P . Let L(θ) = Ed∼P [�(θ; d)]. Then with
probability 1− γ over the coin tosses of NOISY-COG,

errP(θpriv) = O
(
T ln(T/γ)/

(
nε2

)
+ (1− 1/e)

T/p
)
.

Remark 2. The algorithm can be made efficient by
using the randomized algorithm of Bertsimas and Vem-
pala [9] to compute the center of gravity.

C. Noisy Gradient Descent

In this section we focus on understanding the role of

interaction in the convergence rate of gradient descent

Input. Given a convex set C such that ‖C‖2 ≤ 1.

Let D = {d1, · · · , dn} ∼ Pn be the data set, L(θ) =
Ed∼P [�(θ; d)] is a 1-Lipschitz function.

Algorithm. The server does the following.

1) Set C0 := C. Pick a point θ0 ∈ C.

2) for t = 1, · · · , T,
a) Compute θt ← COG(Ct−1) and estimate

(∇Lpriv(θt), Lpriv(θt)) ←NOISY-GRADIENT-

ORACLE (t, T, θt, ε,T, θ0).
b) The server updates the convex

set as follows: Ct ← Ct−1 ∩
{θ ∈ R

p : 〈∇Lpriv(θt), θ − θt〉 ≤ 0} .
Output. The server outputs the following.

θpriv := argmin
θt∈{θ1,··· ,θT }

{Lpriv(θt)} (7)

Figure 7. A Noisy Cutting Plane Method (NOISY-COG)

Input. Given a convex set C such that ‖C‖2 ≤ 1.

Let D = {d1, · · · , dn} ∼ Pn be the data set, L(θ) =
Ed∼P [�(θ; d)] is a 1-Lipschitz function.

Algorithm. The server defines a step size ηt and

follows the following steps.

1) Pick a point θ0 ∈ C.

2) for t = 1, · · · , T,
a) Estimate ∇Lpriv(θt)=NOISY-GRADIENT-

ORACLE(t, T, θt, ε,F).
b) Computes θt+1 = ΠC (θt − ηt∇Lpriv(θt))

Output. θpriv := θT

Figure 8. Local and Noisy Gradient Descent Algorithm (NOISY-
GRADIENT-DESCENT)

style algorithms in the local model with access to noisy

gradient oracle (NOISY-GRADIENT-DESCENT (Figure

8)). We analyze the gradient descent algorithm when

the convex function has certain properties, such as Lip-

schitz property, smoothness and strong convexity. While

noisy gradient descent has been extensively studied

in [7, 14, 29] for optimality of excess empirical risk

(both in the local and the central model), we focus on

the interaction complexity of noisy gradient descent to

achieve those errors. The rounds of interaction differ

significantly under various assumptions on the loss

function �(·, d). As a result, we state them categorically

below. Moreover, in each of the setting, we get ε-
LDP algorithm by using the noisy gradient oracle from

Section IV-A.

The fact that NOISY-GRADIENT-DESCENT is ε-LDP
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follows immediately from Theorem 16. In the following

we state the interaction round complexity of NOISY-

GRADIENT-DESCENT. While the first three results in

Theorem 20 follow immediately from prior works ([40]

and [29] respectively) in combination with Theorem 16,

the bound for smooth and strongly convex functions

require a new analysis, which we state in Appendix B-C.

Theorem 20 (Utility guarantees for noisy gradient

descent). Let C be a bounded convex set such that
‖C‖2 ≤ 1. Let D = {d1, · · · , dn} be drawn i.i.d.
from the distribution P , and let L(θ) = Ed∼P [�(θ; d)].
Let �(·; ·) be 1-Lipschitz in the first parameter. The
following are true for the NOISY-GRADIENT-DESCENT

algorithm.

1) If learning rate η = 1√
t
, then E[errP(θpriv)] =

O
(
log T

(
1/
√
T +

√
p/nε2

))
.

2) If �(·; ·) is Δ-strongly convex and the learn-
ing rate η = 1

Δt , then E [errP(θpriv)] =

O
(

log T
ΔT + p log(T )

nε2Δ

)
.

3) If �(·; ·) is β-smooth and the learning rate
η = 1

Δt , then Nestrov’s accelerated vari-
ant of NOISY-GRADIENT-DESCENT [29] satisfies
E [errP(θpriv)] = O

(
1
T 2 + pT 2 log2 T

nε2β

)
.

4) If �(·; ·) is β-smooth and Δ-strongly convex, then
with learning rate η = 1

β we have

E [errP(θpriv)] = O
(

β
2 e

−ΔT/β + pT
nε2

)
.

Remark 3. For 1-Lipschitz convex functions, one can
achieve an error of Õ(

√
p/n) in T =

√
n/p rounds

of interaction. Variants of this result has appeared in
[7, 14, 43]. Under Δ-strong convexity, one can achieve
an error of Õ(p/n) in T = n/p rounds of interaction.
Variants of this result has appeared in [7, 43]. Under
β-smoothness, one can achieve an error of Õ(

√
p/n)

in T = (n/p)1/4 rounds of interaction. The algorithm is
a variant of the classic Nestrov’s accelerated gradient
descent (see [29] for a complete exposition.) Further,
if we assume Δ-strong convexity and β-smoothness
along with the default 1-Lipschitzness property, then one
can show that with T = β log(n)

Δ , NOISY-GRADIENT-

DESCENT algorithm achieves an error of Õ(p/n).

All the number of rounds of interaction above are

tight [33, 34], and equals that of the non-private coun-

terparts. Notice that Theorem 20 in essence implies

that NOISY-GRADIENT-DESCENT algorithm reaches

the “error level” in computing the gradient of the loss

function at the same rate as the non-private counterpart.

The main takeaway from this section is that differen-

tially private (noisy) gradient descent can be shown

to converge to the optimal error level, with the same

asymptotic number of interactions as the non-private

variant.

V. CONCLUSIONS

This paper looks at how the structure of an optimiza-

tion problem affects the amount of interaction necessary

for a locally-private algorithm to arrive at an accurate

answer. The starting observation for our work is that

the parallelizability of local protocol queries matters—

protocols that require multiple rounds of interaction

are slower and harder to engineer. The ideal is a

noninteractive protocol, in which all queries are asked

in parallel. However, protocols with just a few rounds

of interaction (that is, batches of queries) can be useful.

There are accurate, noninteractive protocols for some

tasks, such as computing sums or finding heavy hitters.

But current protocols for convex optimization use as

many rounds of interaction as there are participants in

the protocol. We focus on convex optimization since it

is a fundamental tool in statistics and machine learning.

We find that the structure of an optimization problem

affects not only the accuracy that can be achieved by

differentially private protocols, but also the amount of

interaction necessary to get that accuracy.

Our paper provides both good and bad news for the

prospective implementer of locally private optimization.

On the positive side, we draw three main conclusions:

(i) For very low-dimensional convex optimization,

there are reasonable noninteractive protocols. These

protocols have nearly the same theoretical guarantees

as the best interactive protocols when the dimension

is constant. Evaluating their effectiveness in practice—

and especially understanding the range of dimensions at

which they offer an attractive tradeoff—requires further

study.

(ii) Sometimes problem structure can be exploited

to find good noninteractive protocols. We illustrate this

with a noninteractive algorithm for linear regression that

has the same asymptotic error as the best interactive

one, even in high dimensions (see, Appendix C). This

exploits the fact that the quadratic loss function itself

has a compact description.

(iii) A few rounds of interaction help enormously. The

same ideas that go into designing protocols with many

rounds of interaction can be adapted to get protocols

with optimal error and just a few rounds of interaction.

Specifically, an optimization algorithm is “first-order” if

it gets information only by approximating the gradient

or the loss function at a small number of “query” points.

First-order optimization methods that make few queries

and handle noise gracefully can be turned into protocols
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that use few rounds of interaction. We demonstrate this

for gradient descent and the cutting plane method.
The best choice of algorithm depends on the tradeoff

between various aspects of the problem structure (di-

mension, smoothness, strong convexity); see Figure 2.

Interestingly, the smoothness of a problem does not af-

fect the error achievable by the best differentially private

algorithm, but it can drastically reduce interaction.
Unfortunately, for general convex optimization (that

is, without assuming both smoothness and strong con-

vexity), our protocols still require a number of rounds

of interaction that grows polynomially with the problem

dimension.
On the negative side, we show:

(iv) Known algorithmic design techniques for

local private learning cannot provide noninterac-

tive protocols—or even ones with few rounds of

interaction—for general convex optimization in high

dimensions. Specifically, any first-order optimization

algorithm must either have “many” batches of queries,

or make exponentially-many queries (in the dimension

p) in order to have nontrivial accuracy. Here “many”

depends on the desired accuracy—the lower bound is

about log(1/α) for desired error α. That means that

every nonadaptive first-order algorithm (one that asks

all its queries in one batch) must make exponentially

many queries to be useful. Consequently, very different

techniques are needed for noninteractive, general pur-

pose local optimization.
Both our positive and negative results highlight the

role of several key structural properties: (a) The di-

mension p, that is the number of real parameters in

the vectors θ over which we aim to minimize a loss

function. (b) The variability of the loss function we

aim to minimize; measures of variability include the

“Lipschitz constant”—an upper bound on the amount

that any one individual can change the gradient of the

loss function—and the smoothness, which is an upper

bound on the rate at which the gradient changes as θ
varies. For example, the loss function for support vector

machines has low Lipschitiz constant but is not smooth

(the gradient changes abruptly). (c) The strong convexity
of the loss function. A strongly convex function is

bounded below by a quadratic function at every point

and, in particular, has a well-defined minimum. (d) The

shape and size of the constraint set C in which θ resides.

We focus here on the role of the diameter of C, though

other work on (central) differential privacy suggests

that properties (the Gaussian width, and the number of

exptreme points) [43] also play a role.
Perhaps the simplest conclusion is that these struc-

tural properties are important, and a prospective imple-

menter’s first task is to extract as much structure as

possible from the specific problem and include these

extra properties explicitly in the problem formulation.

The importance and difficulty of evaluation. This

paper focuses on the analytical evaluation of several

algorithms and advances some basic design principles.

One of the lessons of our work is that there is currently

no single all-purpose algorithm for local private learn-

ing, and so the choice of the best algorithm is likely to

depend on the problem and the data at hand. That high-

lights the need for further algorithmic research—what

new techniques can we bring to bear? can we bypass

the lower bounds in this paper by using algorithms that

access the loss function differently?—as well as careful,

application-specific empirical evaluation. We hope this

study informs such efforts, both by suggesting specific

algorithms and highlighting structural properties that

play an important role.
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APPENDIX A.

LOCAL RANDOMIZER FOR ε-LDP

Randomizer of Duchi et al. [14]. On input x ∈ R
p, the

randomizer Rε(x) does the following. It first sets x̃ =
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bx/‖x‖2, where b ∈ {−1, 1} Bernoulli random variable

Ber(1/2 + ‖x‖/2). We then sample T ∼ Ber(eε/(eε +
1)) and outputs Rε(x), where

Rε(x) :=

{
Uni(u ∈ R

p : 〈u, x̃〉 > 0) if T = 1

Uni(u ∈ R
p : 〈u, x̃〉 ≤ 0) if T = 0

.

Let y be any unit vector independent of the input

to the randomizer x. An alternate way to see the

randomizer Rε(x) is that the output of Rε(·) is such

that 〈y,Rε(x)〉 = 〈y, cε,dBu,xu〉 for cε,p = O(
√
p/ε)

and Bu,x is ±1 random variable chosen such that

E[Rε(x)] = x. In the following we prove Theorem

17, the utility guarantee we desire from our NOISY-

GRADIENT-ORACLE.

Proof of Theorem 17: Duchi et al. [14, Section

V.C] proved that Rε(x) is an unbiased estimator, i.e.,

E [Gradnoisy (t)] = ∇L(θcurrent); therefore, the first part

follows. In order to show the second and the third part

of Theorem 17 , we show that the randomizer has sub-

gaussian tail (see Definition 21 and Theorem 22 below).

Definition 21. A real-valued random variable X is sub-

gaussian if it has the property that there is some c > 0
such that for every t ∈ R one has E[etX ] ≤ ec

2t2/2.
Moreover, Var(X) = c2.

Theorem 22. Given a vector x ∈ R
p, the randomizer of

Duchi et al. [14] defined above is a subgaussian random
vector with variance O(p/ε2).

Proof: In the following, we use the notation

MX(t) = E[etX ] to denote the moment generat-

ing function of the random variable X . Let Av,x =
〈v, cε,dBu,xu〉. In order to prove that the randomizer of

Duchi et al. [14] outputs a subgaussian random vector,

it suffices to prove that Av,x is subgaussian.

MAv,x(t) = E[etAv,x ] = E[etcε,p〈v,u〉 + e−tcε,p〈v,u〉]
= M〈v,u〉(cε,pt) +M〈v,u〉(−cε,pt)
= M〈v,u〉(cε,pt) ≤ 2ec

2
ε,pt

2/2 = 2et
2p/ε2 .

Using Definition 21 completes the proof.

For the second part, notice that, by definition, the

set St (the current batch in Algorithm 6) has Θ(n/k)
entries and every user in the set St randomizes its

output independently of the others. This observation,

along with with Theorem 22, allows us to bound the

variance of the estimator Gradnoisy (t) in (8) below. Here

we use the fact that ‖∇�(θ; d)‖2 ≤ 1 for for all θ ∈ C
and d ∈ D (where C is the convex set over which the

optimization is performed, and D is the domain of the

data entries).

E

[
‖Gradnoisy (t)−∇L(θcurrent)‖22

]
= (T/n)Var(Rε(x))

= O
(
Tp/nε2

)
. (8)

To prove the third part of Theorem 17, we

provide a tail bound on the the inner product

〈Gradnoisy (t), y〉 for any vector y s.t. ‖y‖2 ≤ 1
and is independent of Rε(x). Now, by standard tail

bound for sub-gaussian distribution [45], we have,

Pr
[
|〈Rε(x), y〉| = O

(√
T log(1/γ)/ε2n

)]
≥ 1 −

γ.This completes the proof of Theorem 17.

APPENDIX B.

MISSING PROOFS

A. Proof of Claim 4

Proof: In the net-based argument, one would first

construct an α/2-net over the convex set of size m and

then find the minimum over each of these net points.

To make it local-differentially private, we need to use

the randomizer of Duchi et al. [14]. This would incur a

total population error, O

(√
m logm log(1/γ)

ε2n + α
2

)
with

probability 1− γ. In a p-dimensional space [0, 1]p, we

need to have m = O((2/α)p) net points. Setting this

value of m, we get the population error

O

(√(
2

α

)p
p log(2/α) log(1/γ)

ε2n
+

α

2

)
. (9)

To minimize equation (9), we need αp+2ε2n =
2p+1p log(2/α) log(1/γ). In other words, the popu-

lation error is at most O

((
p log(1/γ)

ε2n

)1/(p+2)
)

In

other words, equation (1) implies that one need n =

Ω̃
(

p4p

ε2αp+2

)
to get errD(θpriv) ≤ α.

B. Proof of Theorem 19

Proof: We first state the following claim. The

claims allows us to work with an easy to handle function

M(·).
Claim 23. Let θ∗ = argminθ∈C L(θ), and let M(θ) :=
L(θ)−L(θ0), where θ0 is as in the first step of Figure 7.
Then the following holds : (i) θ∗ = argminθ∈C M(θ),
(ii) ∀θ ∈ C, L(θ)− L(θ∗) = M(θ)−M(θ∗).

Proof: The first part of the claim follows from

the fact that L(θ0) is a constant, and subtracting a

constant from the objective function does not change the

argument of the optimum value. The second part fol-

lows from the following straightforward computation:

M(θ)−M(θ∗) = L(θ)− L(θ0)− L(θ∗) + L(θ0).This

completes the proof of Claim 23.
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We will use the following result about non-private

cutting plane method.

Lemma 24. [10, Theorem 2.1] Let C and p be as
defined in Theorem 19. Let θ∗ = argminθ∈C L(θ) and
Ct be as defined in Figure 7 for iteration t ∈ [T ]. Let
E be the event that θ∗ ∈ Ct for all iterations t ≤ T .
Conditioned on the event E, there exists an iteration
τ ∈ [T ], such that M(θτ ) satisfies the following bound.

M(θτ )−M(θ∗) ≤ 2 (1− 1/e)
T/p

.

We now analyze the algorithm presented in Figure 7.

Our first lemma states the condition when the optimal

point is not excluded by NOISY-COG.

Lemma 25. Let θ∗ = argminθ∈C L(θ). Let gt =
∇Lpriv(θt) − ∇L(θt) for 0 < t ≤ T . If for all τ ≤
t ∈ [T ], 〈gt, θt − θ∗〉 ≥ −α and M(θt)−M(θ∗) ≥ α,
then θ∗ ∈ Cτ , where Cτ is the convex set included after
τ rounds.

Proof: Since the function M(·) is convex, we have

M(θ) ≥M(θt) + 〈∇M(θt), θ − θt〉 for all θ ∈ C. This

implies that 〈∇M(θt), θt − θ〉 ≥M(θt)−M(θ)
Let α be a parameter that we will fix later.

Now, if M(θt) − M(θ∗) ≥ α, then we have

〈∇M(θt), θt − θ∗〉 ≥ M(θt) − M(θ∗) ≥ α. This

further implies that 〈∇M(θt), θ
∗ − θt〉 ≤ −α. From

the description of NOISY-COG, we exclude all θ ∈ C
such that 〈∇M(θt), θ − θt〉 ≥ 〈gt, θ − θt〉. Combining

these observations completes the proof of Lemma 25.

Lemma 26. Let θ∗ = argminθ∈C M(θ). Then with
probability 1−γ over the coin tosses of PRIVATE-COG,
there exists a t ∈ [T ] such that

M(θt)−M(θ∗) = O
(√

T log(T/γ)/nε2 + (1− 1/e)
T
p

)
.

Proof: From Theorem 17, for all t ∈ [T ] we

have with probability at least 1 − γ, |〈gt, θt − θ∗〉| =
O
(√

T log(1/γ)/nε2
)
, where gt = ∇Lpriv(θt) −

∇L(θt) for 0 < t ≤ T . If we pick α =

O
(√

T log(T/γ)/nε2
)
, then taking union bound over

all the T rounds, Pr [∀t ∈ [T ], 〈gt, θ
∗ − θt〉 ≤ −α] ≤ γ.

Lemma 26 now follows from Lemma 24 and 25.
Lemma 26 and Theorem 18 gives Theorem 19.

C. Analysis for 1-Lipschitz, β-smooth and Δ-strongly
Convex Functions

In the following we provide the analysis of part (4)

from Theorem 20.
Proof of Theorem 20 (4): Let θ∗ = min

θ∈C
L(θ),

Dt = θt−θ∗ and zt+1 = θt−η(Rε(∇L(θt))). Let gt =

(∇Lpriv(θt)−∇L(θt)) be the error in the estimation

in Algorithm PRIVATE-GRADIENT-ORACLE (Figure 6)

for t ∈ [T ]. First, by the Pythogorean theorem, we have,

‖Dt+1 −Dt‖22 = ‖Dt‖22 + ‖Dt+1‖22 − 2〈Dt, Dt+1〉.
(10)

Using the β-smoothness and Δ-strong convexity, we

have the following:

L(θt+1)− L(θ∗) = L(θt+1)− L(θt) + L(θt)− L(θ∗)

≤ 〈∇L(θt), Dt+1〉+
β

2
‖θt+1 − θt‖22 −

Δ

2
‖Dt‖22

= 〈1
η
(θt − zt+1)− gt, θt+1 − θ∗〉

+
β

2
‖θt+1 − θt‖22 −

Δ

2
‖θt − θ∗‖22

= 〈1
η
(θt + θt+1 − θt+1 − zt+1)− gt, θt+1 − θ∗〉

+
β

2
‖θt+1 − θt‖22 −

Δ

2
‖θt − θ∗‖22

≤ 1

η
〈θt − θ∗, θt+1 − θ∗〉 − 〈gt, θt+1 − θ∗〉

− 1

η
‖Dt+1‖22 +

β

2
‖θt+1 − θt‖22 −

Δ

2
‖Dt‖22.
(11)

Let wt+1 = θt − η∇L(θt). Now,

E[〈gt, θt+1 − θ∗〉] = E[〈gt, θt+1 −ΠC(wt+1)〉]
+ E[〈gt,ΠC(wt+1)− θ∗〉]

= E[〈gt, θt+1 −ΠC(wt+1)〉]
≤ E[‖gt‖2‖θt+1 −ΠC(wt+1)‖2]
≤ E[‖gt‖2‖zt+1 − wt+1)‖2]. (12)

Substituting equation (10) and equation (12) in equa-

tion (11), and then using the bound on gt from Theorem

17, for all 1 ≤ t ≤ T , we get

2E[L(θt+1, d)− L(θ∗, d)]

≤
(
1

η
−Δ

)
E[‖Dt‖22]−

1

η
E[‖Dt+1‖22]

+

(
β − 1

η

)
E[‖Dt −Dt+1‖22] +O

(
Tp/

(
nε2

))
.

≤
(
1

η
−Δ

)
E[‖Dt‖22]−

1

η
E[‖Dt+1‖22] +O

(
Tp/

(
nε2

))
.

(13)

Since E[L(θt+1)−L(θ∗)] ≥ 0, equation (13) implies

that

E[‖Dt+1‖22] ≤ (1− ηΔ)E[‖Dt‖22] + η ·O
(
Tp/

(
nε2

))
.

(14)
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Let ‖θ0 − θ∗‖2 ≤ 1, then using the above equations,

we get

E[‖DT ‖22] ≤ e−ηΔT + η

(
1− e−ηΔT

1− e−ηΔ

)
·O

(
Tpσ2

nε2

)
≤ e−ηΔT + η ·O

(
Tp/

(
nε2

))
. (15)

Using the fact that the function is β-smooth, i.e.,

E[errD(θpriv)] ≤ β
2E[‖DT ‖22] and setting η = 1

β , and

we have Theorem 20.

APPENDIX C.

CASE STUDY: LINEAR REGRESSION

In this section we concentrate on a specific problem

of linear regression in the LDP model. We give a

simple non-interactive algorithm that outputs an esti-

mate (Theorem 27). We show that the error guarantee

achieved by this algorithm is the best one can hope

for by showing a matching lower bound (Theorem 31).

Our algorithm satisfies a slightly weaker variant of

the privacy definition in Definition 1, called (ε, δ)-
approxmiate differential privacy [16], where the def-

inition of closeness in Definition 1 is modified to

Pr[Q(d) ∈ E] ≤ eε Pr[Q(d′) ∈ E] + δ. Consider

δ ≈ 1/nω(1), where n is the number of data samples.

A. Local-Differentially Private Linear Regression

Let X1, · · · ,Xn ∈ R
p be row vectors and y ∈ R

n

be a column vector, where di := (Xi, yi) ∈ R
p+1 is the

data of the user i and D := (d1, · · · , dn) be the dataset.

We present this section in the terms of empirical risk.

Using standard results [39], this bound can be converted

to population risk with no difference in the asymptotic

bound. For linear regression, we know that the loss

function has the following closed form expression.

�(θ; (Xi, yi)) := (yi − 〈Xi, θ〉)2, (16)

L̂(θ;D) :=
1

2n

n∑
i=1

�(θ; di) =
1

2n
‖y− Xθ‖22. (17)

and the minimizer has the form θ∗ :=
argminθ∈C

1
2n‖y − Xθ‖22. We show that it is possible

to non-interactively compute a θpriv in (ε, δ)-local-

differentially private manner. More precisely, we show

the following.

Theorem 27. Let C ⊆ R
p be a bounded convex set

(‖C‖2 ≤ 1) over which the linear regression problem is
defined. There is an efficient non-interactive algorithm
that solves linear regression problem, stated in equa-
tion (17), while preserving (ε, δ)-local differential pri-
vacy such that with probability at least 99/100 over the

coin tosses of the algorithm,

errD(θpriv) = O
(√

p log(1/δ)/ (nε2)
)
.

Proof: Note that ‖y − Xθ‖22 = ‖y‖22 − 2〈Xθ, y〉 +
〈Xθ,Xθ〉. Since the first term does not depend on θ,

this implies that

argmin
θ∈C

1

2n
‖y− Xθ‖22 = argmin

θ∈C

1

2n
〈Xθ,Xθ〉 − 2〈Xθ, y〉.

We maintain the following two quantities:

1) Noisy covariance: Z := XTX + B, where B ∼
N (0, 2n log(1/δ)/ε2)p×p; and

2) Noisy terms, z := (
∑

yiXi) + b, where b ∼
N (0, 2n log(1/δ)/ε2)1×p.

This can be achieved in the local model as follows:

every user computes Zi := XT
i Xi + Bi, where Bi ∼

N (0, 2 log(1/δ)/ε2)p×p and zi := yiXi + bi, where

bi ∼ N (0, 2 log(1/δ)/ε2)1×p. The user then sends

(Zi, zi) to the server. The server can now compute

Z =
∑

i Zi and z =
∑

zi. This results in the same

noisy covariance and noisy term as above because

XTX =
∑n

i=1 XT
i Xi and the noise matrix B1, · · · ,Bn

and the noise vector b1, · · · ,bn are independent.

Now let us define

L̂priv(θ;D) :=
1

2n

(
‖y‖22 − 2

∑
〈yiXT

i + b, θ〉
)

+
1

2n

(
θT(XTX +B)θ

)
and let the minimizer of L̂priv(θ;D) be θpriv.

From now on, we write L̂(·) instead of L̂(·;D)
and L̂priv(·) instead of L̂priv(·;D). We can decompose

L̂(θpriv)− L̂(θ∗) as following:

L̂(θpriv)− L̂(θ∗) = L̂(θpriv)− L̂priv(θpriv) + L̂priv(θpriv)

− L̂priv(θ
∗) + L̂priv(θ

∗)− L̂(θ∗)

≤ L̂(θpriv)− L̂priv(θpriv) + L̂priv(θ
∗)− L̂(θ∗)

≤
2‖b‖2‖θpriv − θ∗‖2 + θTprivBθpriv − (θ∗)TBθ∗

2n
.

(18)

The first inequality follows from the fact that

L̂priv(θpriv) − L̂priv(θ
∗) ≤ 0 (since θ∗ is the minimizer)

and the second inequality follows from the fact that

〈·, ·〉 ≤ ‖ · ‖2‖ · ‖2. Let β = θpriv − θ∗. We can further

decompose θTprivBθpriv as follows.

θTprivBθpriv = (θ∗)TBθ∗ + βTBθ∗ + (θ∗)TBβ + βTBβ
(19)
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Now using equation (19) in equation (18), the bound
on the singular values of Gaussian matrices [38] and
that ‖C‖2 ≤ 1, we get

L̂(θpriv)− L̂(θ∗) ≤ 1

2n
(2‖b‖2‖θpriv − θ∗‖2)

+
1

2n

(
λmax(B)‖θpriv − θ∗‖22

)
+

1

2n
(2λmax(B)‖θpriv − θ∗‖2‖C‖2)

= O
(√

p log(1/δ)/ (nε2)
)
.

This completes the proof ot Theorem 27.

B. Lower Bound on Linear Regression

In this section we prove that the error bound achieved

in Theorem 27 is optimal.

Minimax rates. We use the framework of minimax

rates introduced by Duchi et al. [14] to prove the lower

bound. Let S ⊂ [0, 1]|D| denote the simplex with |D|
corners, each representing one of the possible datasets.

Let P ∈ S be a probability distribution over the datasets

D. User i data di is assumed to be drawn i.i.d. using the

distribution P. For every user i, let Ri(·) be the local

randomizer of the user i which is used to generate the

report Zi = Ri(di) ∈ Z . Each of these randomizers

are assumed to use independent random bits. Let Alg
be an algorithm that is used to estimate the distribution

P based on Z1, · · · , Zn. The minimax rate is defined

as follows:

MinMax := min
Alg

max
P

E[‖Alg(Z1, · · · , Zn)−P‖∞].

Now that we have described our framework to prove

the lower bound, we sketch our proof. Our proof uses

idea in Bassily and Smith [6]. In order to use their idea,

we need to first introduce the notion of an γ-degrading

channel. For any γ ∈ [0, 1], an γ-degrading channel

W γ : D → D is a randomized mapping that is defined

as follows: for every d ∈ D,

W γ(d) :=

{
d with probability γ

0 otherwise
(20)

Let MinMaxγ be the minimax error resulting from the

scenario where each user i ∈ [n] with data di ∈ D
first applies di to an independent copy W γ of an γ-

degrading channel, and then apply the output to its (ε, δ)
local-differentially private algorithm Ri that outputs Zi.

That is, MinMaxγ is the minimax error when Ri(·) is

replaced by Ri(W
γ
i (·)) for all i ∈ [n]. We first prove

the following claim.

Claim 28. If MinMax ≥ 0.01, then MinMaxγ ≥ 0.01γ

Proof: Let W γ = γD. Then Ed∼Wγ [�(θ; d)] =
γEd∼D[�(θ; d)] ≥ γ

100 . This completes the proof

of Claim 28.
We now construct a hard instance of input to any LDP

algorithm. Let H be the p-dimensional hypercube that is

just contained inside Bp. Consider a codeword which is

the subset of the coordinates of H and has distance p/8.

Using Gilbert-Varshamov bound [31], we know that the

size of the codeword is N ≥ 2p/8. We pick N distri-

butions D1, · · · ,DN . Each of these distributions are a

point distribution such that y − 〈X, θ〉 = 1 ⇔ θ∗i = X.
Our result follows from the following claims:

Claim 29. Let θpriv be the output of an algorithm that
solves the linear regression problem. Then the mutual
information between θpriv and the distribution of the
data points is I(θpriv;D) ≤ nε2γ2, where γ is the
parameter for the degrading channel.

Proof: Using the chain rule of mutual information

and Duchi et al. [14], we have the following:

I(θpriv; d) ≤ I(Z1, · · · , Zn; d) ≤ 4(eε − 1)2n ≤ 16ε2n

The claim now follows from Bassily and Smith [6].

Claim 30. For any Di, let Si
1/100 :={

θ ∈ Bp : L̂(θ;D) ≤ 1/100
}

, where D ∼ Di,

then ∀i, j, i �= j, Si
1/100 ∩ Sj

1/100 = 0.

Proof: Let i and j be adjacent node on the hyper-

cube H. Let Q be the intersection (of the extension)

of the sets Si
1/100 and Si

1/100. Let C be the center of

the ball Bp. First note that the boundary of Si
1/100 and

Sj
1/100 are hyperplane whose normal intersects at C. Let

ζ be the angle made by the normal of the hyperplane

corresponding to Si
1/100 and the line passing through

C and Q. First of all, sin ζ =
√
1/32, and cos ζ =√

31/32.
By symmetry, the line CQ cuts the line between node-

i and node-j into half. Therefore, the length of CQ is
9

10
√

31/32
≥ 1. This implies that Q lies outside Bp.

We now complete the proof of the main result.

Theorem 31. Any ε-local differential private algorithm
for linear regression incurs an error Ω(

√
p/nε2).

Proof: By Fano’s inequality [48] and Claim 29,

Pr
[
θipriv /∈ Si

1/100

]
≥ 1− I(θpriv;D)

logN
≥ 1− 8cnε2γ2

p
.

Then Claim 30 gives us that MinMax ≥
10−2

(
1− 8cnε2γ2/p

)
. For γ = O(

√
p

nε2 ), we get

MinMax ≥ 1/100. By Claim 28, we have the overall

error Ω
(√

p
nε2

)
.
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