
Membership Inference Attacks Against
Machine Learning Models

Reza Shokri

Cornell Tech

shokri@cornell.edu

Marco Stronati∗

INRIA

marco@stronati.org

Congzheng Song

Cornell

cs2296@cornell.edu

Vitaly Shmatikov

Cornell Tech

shmat@cs.cornell.edu

Abstract—We quantitatively investigate how machine learning
models leak information about the individual data records on
which they were trained. We focus on the basic membership
inference attack: given a data record and black-box access to
a model, determine if the record was in the model’s training
dataset. To perform membership inference against a target model,
we make adversarial use of machine learning and train our own
inference model to recognize differences in the target model’s
predictions on the inputs that it trained on versus the inputs
that it did not train on.

We empirically evaluate our inference techniques on classi-
fication models trained by commercial “machine learning as a
service” providers such as Google and Amazon. Using realistic
datasets and classification tasks, including a hospital discharge
dataset whose membership is sensitive from the privacy perspec-
tive, we show that these models can be vulnerable to membership
inference attacks. We then investigate the factors that influence
this leakage and evaluate mitigation strategies.

I. INTRODUCTION

Machine learning is the foundation of popular Internet

services such as image and speech recognition and natural lan-

guage translation. Many companies also use machine learning

internally, to improve marketing and advertising, recommend

products and services to users, or better understand the data

generated by their operations. In all of these scenarios, ac-

tivities of individual users—their purchases and preferences,

health data, online and offline transactions, photos they take,

commands they speak into their mobile phones, locations they

travel to—are used as the training data.

Internet giants such as Google and Amazon are already

offering “machine learning as a service.” Any customer in

possession of a dataset and a data classification task can upload

this dataset to the service and pay it to construct a model.

The service then makes the model available to the customer,

typically as a black-box API. For example, a mobile-app maker

can use such a service to analyze users’ activities and query

the resulting model inside the app to promote in-app purchases

to users when they are most likely to respond. Some machine-

learning services also let data owners expose their models to

external users for querying or even sell them.

Our contributions. We focus on the fundamental question

known as membership inference: given a machine learning

model and a record, determine whether this record was used as

∗This research was performed while the author was at Cornell Tech.

part of the model’s training dataset or not. We investigate this

question in the most difficult setting, where the adversary’s

access to the model is limited to black-box queries that

return the model’s output on a given input. In summary,

we quantify membership information leakage through the

prediction outputs of machine learning models.

To answer the membership inference question, we turn

machine learning against itself and train an attack model
whose purpose is to distinguish the target model’s behavior

on the training inputs from its behavior on the inputs that it

did not encounter during training. In other words, we turn the

membership inference problem into a classification problem.

Attacking black-box models such as those built by com-

mercial “machine learning as a service” providers requires

more sophistication than attacking white-box models whose

structure and parameters are known to the adversary. To

construct our attack models, we invented a shadow training
technique. First, we create multiple “shadow models” that

imitate the behavior of the target model, but for which we

know the training datasets and thus the ground truth about

membership in these datasets. We then train the attack model

on the labeled inputs and outputs of the shadow models.

We developed several effective methods to generate training

data for the shadow models. The first method uses black-box

access to the target model to synthesize this data. The second

method uses statistics about the population from which the

target’s training dataset was drawn. The third method assumes

that the adversary has access to a potentially noisy version

of the target’s training dataset. The first method does not

assume any prior knowledge about the distribution of the target

model’s training data, while the second and third methods

allow the attacker to query the target model only once before

inferring whether a given record was in its training dataset.

Our inference techniques are generic and not based on any

particular dataset or model type. We evaluate them against

neural networks, as well as black-box models trained using

Amazon ML and Google Prediction API. All of our experi-

ments on Amazon’s and Google’s platforms were done without

knowing the learning algorithms used by these services, nor

the architecture of the resulting models, since Amazon and

Google don’t reveal this information to the customers. For our

evaluation, we use realistic classification tasks and standard

model-training procedures on concrete datasets of images,

retail purchases, location traces, and hospital inpatient stays. In

2017 IEEE Symposium on Security and Privacy

© 2017, Reza Shokri. Under license to IEEE.

DOI 10.1109/SP.2017.41

3

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 16,2024 at 09:46:03 UTC from IEEE Xplore. Restrictions apply.

addition to demonstrating that membership inference attacks

are successful, we quantify how their success relates to the

classification tasks and the standard metrics of overfitting.

Inferring information about the model’s training dataset

should not be confused with techniques such as model in-

version that use a model’s output on a hidden input to infer

something about this input [17] or to extract features that

characterize one of the model’s classes [16]. As explained

in [27] and Section IX, model inversion does not produce an

actual member of the model’s training dataset, nor, given a

record, does it infer whether this record was in the training

dataset. By contrast, the membership inference problem we

study in this paper is essentially the same as the well-known

problem of identifying the presence of an individual’s data in a

mixed pool given some statistics about the pool [3], [15], [21],

[29]. In our case, however, the goal is to infer membership

given a black-box API to a model of unknown structure, as

opposed to explicit statistics.

Our experimental results show that models created using

machine-learning-as-a-service platforms can leak a lot of in-

formation about their training datasets. For multi-class clas-

sification models trained on 10,000-record retail transaction

datasets using Google’s and Amazon’s services in default

configurations, our membership inference achieves median

accuracy of 94% and 74%, respectively. Even if we make

no prior assumptions about the distribution of the target

model’s training data and use fully synthetic data for our

shadow models, the accuracy of membership inference against

Google-trained models is 90%. Our results for the Texas

hospital discharge dataset (over 70% accuracy) indicate that

membership inference can present a risk to health-care datasets

if these datasets are used to train machine learning models

and access to the resulting models is open to the public.

Membership in such datasets is highly sensitive.

We discuss the root causes that make these attacks possi-

ble and quantitatively compare mitigation strategies such as

limiting the model’s predictions to top k classes, decreasing

the precision of the prediction vector, increasing its entropy,

or using regularization while training the model.

In summary, this paper demonstrates and quantifies the

problem of machine learning models leaking information

about their training datasets. To create our attack models, we

developed a new shadow learning technique that works with

minimal knowledge about the target model and its training

dataset. Finally, we quantify how the leakage of membership

information is related to model overfitting.

II. MACHINE LEARNING BACKGROUND

Machine learning algorithms help us better understand and

analyze complex data. When the model is created using

unsupervised training, the objective is to extract useful features

from the unlabeled data and build a model that explains its

hidden structure. When the model is created using supervised
training, which is the focus of this paper, the training records

(as inputs of the model) are assigned labels or scores (as

outputs of the model). The goal is to learn the relationship

between the data and the labels and construct a model that can

generalize to data records beyond the training set [19]. Model-

training algorithms aim to minimize the model’s prediction er-

ror on the training dataset and thus may overfit to this dataset,

producing models that perform better on the training inputs

than on the inputs drawn from the same population but not

used during the training. Many regularization techniques have

been proposed to prevent models from becoming overfitted

to their training datasets while minimizing their prediction

error [19].

Supervised training is often used for classification and other

prediction tasks. For example, a retailer may train a model

that predicts a customer’s shopping style in order to offer her

suitable incentives, while a medical researcher may train a

model to predict which treatment is most likely to succeed

given a patient’s clinical symptoms or genetic makeup.

Machine learning as a service. Major Internet companies

now offer machine learning as a service on their cloud

platforms. Examples include Google Prediction API,1 Amazon

Machine Learning (Amazon ML),2 Microsoft Azure Machine

Learning (Azure ML),3 and BigML.4

These platforms provide simple APIs for uploading the data

and for training and querying models, thus making machine

learning technologies available to any customer. For example,

a developer may create an app that gathers data from users,

uploads it into the cloud platform to train a model (or update

an existing model with new data), and then uses the model’s

predictions inside the app to improve its features or better

interact with the users. Some platforms even envision data

holders training a model and then sharing it with others

through the platform’s API for profit.5

The details of the models and the training algorithms are

hidden from the data owners. The type of the model may be

chosen by the service adaptively, depending on the data and

perhaps accuracy on validation subsets. Service providers do

not warn customers about the consequences of overfitting and

provide little or no control over regularization. For example,

Google Prediction API hides all details, while Amazon ML

provides only a very limited set of pre-defined options (L1- or

L2-norm regularization). The models cannot be downloaded

and are accessed only through the service’s API. Service

providers derive revenue mainly by charging customers for

queries through this API. Therefore, we treat “machine learn-

ing as a service” as a black box. All inference attacks we

demonstrate in this paper are performed entirely through the

services’ standard APIs.

III. PRIVACY IN MACHINE LEARNING

Before dealing with inference attacks, we need to define

what privacy means in the context of machine learning or,

1https://cloud.google.com/prediction
2https://aws.amazon.com/machine-learning
3https://studio.azureml.net
4https://bigml.com
5https://cloud.google.com/prediction/docs/gallery

4

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 16,2024 at 09:46:03 UTC from IEEE Xplore. Restrictions apply.

alternatively, what it means for a machine learning model to

breach privacy.

A. Inference about members of the population

A plausible notion of privacy, known in statistical disclosure

control as the “Dalenius desideratum,” states that the model

should reveal no more about the input to which it is applied

than would have been known about this input without applying

the model. This cannot be achieved by any useful model [14].

A related notion of privacy appears in prior work on model

inversion [17]: a privacy breach occurs if an adversary can

use the model’s output to infer the values of unintended

(sensitive) attributes used as input to the model. As observed

in [27], it may not be possible to prevent this “breach” if

the model is based on statistical facts about the population.

For example, suppose that training the model has uncovered

a high correlation between a person’s externally observable

phenotype features and their genetic predisposition to a certain

disease. This correlation is now a publicly known scientific

fact that allows anyone to infer information about the person’s

genome after observing that person.

Critically, this correlation applies to all members of a given

population. Therefore, the model breaches “privacy” not just of

the people whose data was used to create the model, but also of

other people from the same population, even those whose data

was not used and whose identities may not even be known to

the model’s creator (i.e., this is “spooky action at a distance”).

Valid models generalize, i.e., they make accurate predictions

on inputs that were not part of their training datasets. This

means that the creator of a generalizable model cannot do

anything to protect “privacy” as defined above because the

correlations on which the model is based—and the inferences

that these correlations enable—hold for the entire population,

regardless of how the training sample was chosen or how the

model was created from this sample.

B. Inference about members of the training dataset

To bypass the difficulties inherent in defining and protecting

privacy of the entire population, we focus on protecting privacy

of the individuals whose data was used to train the model. This

motivation is closely related to the original goals of differential

privacy [13].

Of course, members of the training dataset are members

of the population, too. We investigate what the model reveals

about them beyond what it reveals about an arbitrary member

of the population. Our ultimate goal is to measure the mem-
bership risk that a person incurs if they allow their data to be

used to train a model.

The basic attack in this setting is membership inference,

i.e., determining whether a given data record was part of the

model’s training dataset or not. When a record is fully known

to the adversary, learning that it was used to train a particular

model is an indication of information leakage through the

model. In some cases, it can directly lead to a privacy breach.

For example, knowing that a certain patient’s clinical record

was used to train a model associated with a disease (e.g, to

determine the appropriate medicine dosage or to discover the

genetic basis of the disease) can reveal that the patient has this

disease.

We investigate the membership inference problem in the

black-box scenario where the adversary can only supply inputs

to the model and receive the model’s output(s). In some

situations, the model is available to the adversary indirectly.

For example, an app developer may use a machine-learning

service to construct a model from the data collected by the app

and have the app make API calls to the resulting model. In this

case, the adversary would supply inputs to the app (rather than

directly to the model) and receive the app’s outputs (which are

based on the model’s outputs). The details of internal model

usage vary significantly from app to app. For simplicity and

generality, we will assume that the adversary directly supplies

inputs to and receives outputs from the black-box model.

IV. PROBLEM STATEMENT

Consider a set of labeled data records sampled from some

population and partitioned into classes. We assume that a

machine learning algorithm is used to train a classification

model that captures the relationship between the content of

the data records and their labels.

For any input data record, the model outputs the prediction
vector of probabilities, one per class, that the record belongs

to a certain class. We will also refer to these probabilities

as confidence values. The class with the highest confidence

value is selected as the predicted label for the data record.

The accuracy of the model is evaluated by measuring how it

generalizes beyond its training set and predicts the labels of

other data records from the same population.

We assume that the attacker has query access to the model

and can obtain the model’s prediction vector on any data

record. The attacker knows the format of the inputs and

outputs of the model, including their number and the range of

values they can take. We also assume that the attacker either

(1) knows the type and architecture of the machine learning

model, as well as the training algorithm, or (2) has black-box

access to a machine learning oracle (e.g., a “machine learning

as a service” platform) that was used to train the model. In

the latter case, the attacker does not know a priori the model’s

structure or meta-parameters.

The attacker may have some background knowledge about

the population from which the target model’s training dataset

was drawn. For example, he may have independently drawn

samples from the population, disjoint from the target model’s

training dataset. Alternatively, the attacker may know some

general statistics about the population, for example, the

marginal distribution of feature values.

The setting for our inference attack is as follows. The

attacker is given a data record and black-box query access

to the target model. The attack succeeds if the attacker can

correctly determine whether this data record was part of the

model’s training dataset or not. The standard metrics for attack

accuracy are precision (what fraction of records inferred as

members are indeed members of the training dataset) and

5

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 16,2024 at 09:46:03 UTC from IEEE Xplore. Restrictions apply.

(data record, class label) Target Model

Attack Model

data ∈ training set ?

predict(data)

label

prediction

Fig. 1: Membership inference attack in the black-box setting. The
attacker queries the target model with a data record and obtains
the model’s prediction on that record. The prediction is a vector of
probabilities, one per class, that the record belongs to a certain class.
This prediction vector, along with the label of the target record, is
passed to the attack model, which infers whether the record was in
or out of the target model’s training dataset.

ML API

Private Training Set Target Model

Shadow Training Set 1 Shadow Model 1

Shadow Training Set 2 Shadow Model 2

..
.

..
.

Shadow Training Set k Shadow Model k

train()

train()

train()

train()

Fig. 2: Training shadow models using the same machine learning
platform as was used to train the target model. The training datasets
of the target and shadow models have the same format but are disjoint.
The training datasets of the shadow models may overlap. All models’
internal parameters are trained independently.

recall (what fraction of the training dataset’s members are

correctly inferred as members by the attacker).

V. MEMBERSHIP INFERENCE

A. Overview of the attack

Our membership inference attack exploits the observation

that machine learning models often behave differently on the

data that they were trained on versus the data that they “see”

for the first time. Overfitting is a common reason but not the

only one (see Section VII). The objective of the attacker is to

construct an attack model that can recognize such differences

in the target model’s behavior and use them to distinguish

members from non-members of the target model’s training

dataset based solely on the target model’s output.

Our attack model is a collection of models, one for each

output class of the target model. This increases accuracy of the

attack because the target model produces different distributions

over its output classes depending on the input’s true class.

To train our attack model, we build multiple “shadow”

models intended to behave similarly to the target model. In

contrast to the target model, we know the ground truth for each

shadow model, i.e., whether a given record was in its training

dataset or not. Therefore, we can use supervised training on

the inputs and the corresponding outputs (each labeled “in” or

“out”) of the shadow models to teach the attack model how to

distinguish the shadow models’ outputs on members of their

training datasets from their outputs on non-members.

Formally, let ftarget() be the target model, and let Dtrain
target

be its private training dataset which contains labeled data

records (x{i}, y{i})target. A data record x
{i}
target is the input to

the model, and y
{i}
target is the true label that can take values

from a set of classes of size ctarget. The output of the target

model is a probability vector of size ctarget. The elements of

this vector are in [0, 1] and sum up to 1.

Let fattack() be the attack model. Its input xattack is com-

posed of a correctly labeled record and a prediction vector

of size ctarget. Since the goal of the attack is decisional

membership inference, the attack model is a binary classifier

with two output classes, “in” and “out.”

Figure 1 illustrates our end-to-end attack process. For a

labeled record (x, y), we use the target model to compute

the prediction vector y = ftarget(x). The distribution of y
(classification confidence values) depends heavily on the true

class of x. This is why we pass the true label y of x in

addition to the model’s prediction vector y to the attack

model. Given how the probabilities in y are distributed around

y, the attack model computes the membership probability

Pr{(x, y) ∈ Dtrain
target}, i.e., the probability that ((x, y),y)

belongs to the “in” class or, equivalently, that x is in the

training dataset of ftarget().
The main challenge is how to train the attack model to

distinguish members from non-members of the target model’s

training dataset when the attacker has no information about the

internal parameters of the target model and only limited query

access to it through the public API. To solve this conundrum,

we developed a shadow training technique that lets us train

the attack model on proxy targets for which we do know the

training dataset and can thus perform supervised training.

B. Shadow models

The attacker creates k shadow models f i
shadow(). Each

shadow model i is trained on a dataset Dtrain
shadow i of the same

format as and distributed similarly to the target model’s train-

ing dataset. These shadow training datasets can be generated

using one of methods described in Section V-C. We assume

that the datasets used for training the shadow models are

disjoint from the private dataset used to train the target model

(∀i,Dtrain
shadow i ∩ Dtrain

target = ∅). This is the worst case for the

attacker; the attack will perform even better if the training

datasets happen to overlap.

The shadow models must be trained in a similar way to

the target model. This is easy if the target’s training algorithm

6

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 16,2024 at 09:46:03 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Data synthesis using the target model

1: procedure SYNTHESIZE(class : c)
2: x ← RANDRECORD(.) � initialize a record randomly
3: y∗c ← 0
4: j ← 0
5: k ← kmax

6: for iteration = 1 · · · itermax do
7: y ← ftarget(x) � query the target model
8: if yc ≥ y∗c then � accept the record
9: if yc > confmin and c = argmax(y) then

10: if rand() < yc then � sample
11: return x � synthetic data
12: end if
13: end if
14: x∗ ← x
15: y∗c ← yc
16: j ← 0
17: else
18: j ← j + 1
19: if j > rejmax then � many consecutive rejects
20: k ← max(kmin, �k/2)
21: j ← 0
22: end if
23: end if
24: x ← RANDRECORD(x∗, k) � randomize k features
25: end for
26: return ⊥ � failed to synthesize
27: end procedure

(e.g., neural networks, SVM, logistic regression) and model

structure (e.g., the wiring of a neural network) are known.

Machine learning as a service is more challenging. Here the

type and structure of the target model are not known, but

the attacker can use exactly the same service (e.g., Google

Prediction API) to train the shadow model as was used to

train the target model—see Figure 2.

The more shadow models, the more accurate the attack

model will be. As described in Section V-D, the attack model

is trained to recognize differences in shadow models’ behavior

when these models operate on inputs from their own training

datasets versus inputs they did not encounter during training.

Therefore, more shadow models provide more training fodder

for the attack model.

C. Generating training data for shadow models

To train shadow models, the attacker needs training data

that is distributed similarly to the target model’s training data.

We developed several methods for generating such data.

Model-based synthesis. If the attacker does not have real

training data nor any statistics about its distribution, he can

generate synthetic training data for the shadow models using

the target model itself. The intuition is that records that are

classified by the target model with high confidence should

be statistically similar to the target’s training dataset and thus

provide good fodder for shadow models.

The synthesis process runs in two phases: (1) search, using

a hill-climbing algorithm, the space of possible data records

to find inputs that are classified by the target model with high

confidence; (2) sample synthetic data from these records. After

this process synthesizes a record, the attacker can repeat it until

the training dataset for shadow models is full.

See Algorithm 1 for the pseudocode of our synthesis

procedure. First, fix class c for which the attacker wants to

generate synthetic data. The first phase is an iterative process.

Start by randomly initializing a data record x. Assuming that

the attacker knows only the syntactic format of data records,

sample the value for each feature uniformly at random from

among all possible values of that feature. In each iteration,

propose a new record. A proposed record is accepted only

if it increases the hill-climbing objective: the probability of

being classified by the target model as class c.

Each iteration involves proposing a new candidate record by

changing k randomly selected features of the latest accepted

record x∗. This is done by flipping binary features or resam-

pling new values for features of other types. We initialize k to

kmax and divide it by 2 when rejmax subsequent proposals

are rejected. This controls the diameter of search around the

accepted record in order to propose a new record. We set the

minimum value of k to kmin. This controls the speed of the

search for new records with a potentially higher classification

probability yc.

The second, sampling phase starts when the target model’s

probability yc that the proposed data record is classified as

belonging to class c is larger than the probabilities for all

other classes and also larger than a threshold confmin. This

ensures that the predicted label for the record is c, and that the

target model is sufficiently confident in its label prediction. We

select such record for the synthetic dataset with probability y∗c
and, if selection fails, repeat until a record is selected.

This synthesis procedure works only if the adversary can

efficiently explore the space of possible inputs and discover

inputs that are classified by the target model with high confi-

dence. For example, it may not work if the inputs are high-

resolution images and the target model performs a complex

image classification task.

Statistics-based synthesis. The attacker may have some statis-

tical information about the population from which the target

model’s training data was drawn. For example, the attacker

may have prior knowledge of the marginal distributions of

different features. In our experiments, we generate synthetic

training records for the shadow models by independently

sampling the value of each feature from its own marginal

distribution. The resulting attack models are very effective.

Noisy real data. The attacker may have access to some data

that is similar to the target model’s training data and can be

considered as a “noisy” version thereof. In our experiments

with location datasets, we simulate this by flipping the (bi-

nary) values of 10% or 20% randomly selected features, then

7

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 16,2024 at 09:46:03 UTC from IEEE Xplore. Restrictions apply.

(data record, class label) predict(data) (prediction, class label, “in” / “out”)

Shadow Training Set 1

Shadow Test Set 1

Shadow Model 1 “in” Prediction Set 1

“out” Prediction Set 1
··
·

··
·

··
·

Shadow Training Set k

Shadow Test Set k

Shadow Model k “in” Prediction Set k

“out” Prediction Set k

Attack Training Set Attack Model

train()

Fig. 3: Training the attack model on the inputs and outputs of the shadow models. For all records in the training dataset of a shadow model,
we query the model and obtain the output. These output vectors are labeled “in” and added to the attack model’s training dataset. We also
query the shadow model with a test dataset disjoint from its training dataset. The outputs on this set are labeled “out” and also added to the
attack model’s training dataset. Having constructed a dataset that reflects the black-box behavior of the shadow models on their training and
test datasets, we train a collection of ctarget attack models, one per each output class of the target model.

training our shadow models on the resulting noisy dataset.

This scenario models the case where the training data for the

target and shadow models are not sampled from exactly the

same population, or else sampled in a non-uniform way.

D. Training the attack model

The main idea behind our shadow training technique is that

similar models trained on relatively similar data records using

the same service behave in a similar way. This observation is

empirically borne out by our experiments in the rest of this

paper. Our results show that learning how to infer membership

in shadow models’ training datasets (for which we know the

ground truth and can easily compute the cost function during

supervised training) produces an attack model that successfully

infers membership in the target model’s training dataset, too.

We query each shadow model with its own training dataset

and with a disjoint test set of the same size. The outputs on

the training dataset are labeled “in,” the rest are labeled “out.”

Now, the attacker has a dataset of records, the corresponding

outputs of the shadow models, and the in/out labels. The

objective of the attack model is to infer the labels from the

records and corresponding outputs.

Figure 3 shows how to train the attack model. For all

(x, y) ∈ Dtrain
shadow i , compute the prediction vector y =

f i
shadow(x) and add the record (y,y, in) to the attack training

set Dtrain
attack. Let Dtest

shadow i be a set of records disjoint from the

training set of the ith shadow model. Then, ∀(x, y) ∈ Dtest
shadow i

compute the prediction vector y = f i
shadow(x) and add the

record (y,y, out) to the attack training set Dtrain
attack. Finally,

split Dtrain
attack into ctarget partitions, each associated with a

different class label. For each label y, train a separate model

that, given y, predicts the in or out membership status for x.

If we use model-based synthesis from Section V-C, all of

the raw training data for the attack model is drawn from

the records that are classified by the target model with high

confidence. This is true, however, both for the records used in
the shadow models’ training datasets and for the test records

left out of these datasets. Therefore, it is not the case that

the attack model simply learns to recognize inputs that are

classified with high confidence. Instead, it learns to perform

a much subtler task: how to distinguish between the training

inputs classified with high confidence and other, non-training

inputs that are also classified with high confidence.

In effect, we convert the problem of recognizing the com-

plex relationship between members of the training dataset and

the model’s output into a binary classification problem. Binary

classification is a standard machine learning task, thus we can

use any state-of-the-art machine learning framework or service

to build the attack model. Our approach is independent of the

specific method used for attack model training. For example,

in Section VI we construct the attack model using neural

networks and also using the same black-box Google Prediction

API that we are attacking, in which case we have no control

over the model structure, model parameters, or training meta-

parameters—but still obtain a working attack model.

VI. EVALUATION

We first describe the datasets that we use for evaluation,

followed by the description of the target models and our exper-

imental setup. We then present the results of our membership

inference attacks in several settings and study in detail how and

why the attacks work against different datasets and machine

learning platforms.

8

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 16,2024 at 09:46:03 UTC from IEEE Xplore. Restrictions apply.

A. Data

CIFAR. CIFAR-10 and CIFAR-100 are benchmark datasets

used to evaluate image recognition algorithms [24]. CIFAR-10

is composed of 32×32 color images in 10 classes, with 6, 000
images per class. In total, there are 50, 000 training images

and 10, 000 test images. CIFAR-100 has the same format as

CIFAR-10, but it has 100 classes containing 600 images each.

There are 500 training images and 100 testing images per

class. We use different fractions of this dataset in our attack

experiments to show the effect of the training dataset size on

the accuracy of the attack.

Purchases. Our purchase dataset is based on Kaggle’s “ac-

quire valued shoppers” challenge dataset that contains shop-

ping histories for several thousand individuals.6 The purpose

of the challenge is to design accurate coupon promotion

strategies. Each user record contains his or her transactions

over a year. The transactions include many fields such as

product name, store chain, quantity, and date of purchase.

For our experiments, we derived a simplified purchase

dataset (with 197, 324 records), where each record consists

of 600 binary features. Each feature corresponds to a product

and represents whether the user has purchased it or not. To

design our classification tasks, we first cluster the records

into multiple classes, each representing a different purchase

style. In our experiments, we use 5 different classification

tasks with a different number of classes {2, 10, 20, 50, 100}.

The classification task is to predict the purchase style of a

user given the 600-feature vector. We use 10, 000 randomly

selected records from the purchase dataset to train the target

model. The rest of the dataset contributes to the test set and

(if necessary) the training sets of the shadow models.

Locations. We created a location dataset from the publicly

available set of mobile users’ location “check-ins” in the

Foursquare social network, restricted to the Bangkok area

and collected from April 2012 to September 2013 [36].7 The

check-in dataset contains 11, 592 users and 119, 744 locations,

for a total of 1, 136, 481 check-ins. We filtered out users with

fewer than 25 check-ins and venues with fewer than 100 visits,

which left us with 5, 010 user profiles. For each location venue,

we have the geographical position as well as its location type

(e.g., Indian restaurant, fast food, etc.). The total number of

location types is 128. We partition the Bangkok map into areas

of size 0.5km × 0.5km, yielding 318 regions for which we

have at least one user check-in.

Each record in the resulting dataset has 446 binary features,

representing whether the user visited a certain region or

location type, i.e., the user’s semantic and geographical profile.

The classification task is similar to the purchase dataset. We

cluster the location dataset into 30 classes, each representing

a different geosocial type. The classification task is to predict

the user’s geosocial type given his or her record. We use 1, 600
randomly selected records to train the target model. The rest

6https://kaggle.com/c/acquire-valued-shoppers-challenge/data
7https://sites.google.com/site/yangdingqi/home/foursquare-dataset

of the dataset contributes to the test set and (if necessary) the

training sets of the shadow models.

Texas hospital stays. This dataset is based on the Hospital

Discharge Data public use files with information about inpa-

tients stays in several health facilities,8 released by the Texas

Department of State Health Services from 2006 to 2009. Each

record contains four main groups of attributes: the external

causes of injury (e.g., suicide, drug misuse), the diagnosis

(e.g., schizophrenia, illegal abortion), the procedures the pa-

tient underwent (e.g., surgery) and some generic information

such as the gender, age, race, hospital id, and length of stay.

Our classification task is to predict the patient’s main proce-

dure based on the attributes other than secondary procedures.

We focus on the 100 most frequent procedures. The resulting

dataset has 67, 330 records and 6, 170 binary features. We use

10, 000 randomly selected records to train the target model.

Note that our experiments do not involve re-identification

of known individuals and fully comply with the data use

agreement for the original Public Use Data File.

MNIST. This is a dataset of 70, 000 handwritten digits

formatted as 32 × 32 images and normalized so that the

digits are located at the center of the image.9 We use 10, 000
randomly selected images to train the target model.

UCI Adult (Census Income). This dataset includes 48, 842
records with 14 attributes such as age, gender, education,

marital status, occupation, working hours, and native country.

The (binary) classification task is to predict if a person makes

over $50K a year based on the census attributes.10 We use

10, 000 randomly selected records to train the target model.

B. Target models

We evaluated our inference attacks on three types of target

models: two constructed by cloud-based “machine learning as

a service” platforms and one we implemented locally. In all

cases, our attacks treat the models as black boxes. For the

cloud services, we do not know the type or structure of the

models they create, nor the values of the hyper-parameters

used during the training process.

Machine learning as a service. The first cloud-based machine

learning service in our study is Google Prediction API. With

this service, the user uploads a dataset and obtains an API

for querying the resulting model. There are no configuration

parameters that can be changed by the user.

The other cloud service is Amazon ML. The user cannot

choose the type of the model but can control a few meta-

parameters. In our experiments, we varied the maximum num-
ber of passes over the training data and L2 regularization
amount. The former determines the number of training epochs

and controls the convergence of model training; its default

value is 10. The latter tunes how much regularization is per-

formed on the model parameters in order to avoid overfitting.

8https://www.dshs.texas.gov/THCIC/Hospitals/Download.shtm
9http://yann.lecun.com/exdb/mnist
10http://archive.ics.uci.edu/ml/datasets/Adult

9

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 16,2024 at 09:46:03 UTC from IEEE Xplore. Restrictions apply.

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

P
re

ci
si

on

Classes

CIFAR-10, CNN, Membership Inference Attack

2500
5000

10000
15000

0.5

0.6

0.7

0.8

0.9

1

 0 2000 4000 6000 8000 10000 12000 14000

P
re

ci
si

on

Training Set Size

CIFAR-10, CNN, Membership Inference Attack

0.5

0.6

0.7

0.8

0.9

1

 0 5000 10000 15000 20000 25000 30000

P
re

ci
si

on

Training Set Size

CIFAR-100, CNN, Membership Inference Attack

Fig. 4: Precision of the membership inference attack against neural networks trained on CIFAR datasets. The graphs show precision for
different classes while varying the size of the training datasets. The median values are connected across different training set sizes. The
median precision (from the smallest dataset size to largest) is 0.78, 0.74, 0.72, 0.71 for CIFAR-10 and 1, 1, 0.98, 0.97 for CIFAR-100. Recall
is almost 1 for both datasets. The figure on the left shows the per-class precision (for CIFAR-10). Random guessing accuracy is 0.5.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 C
la

ss
es

Accuracy

Purchase Dataset, Amazon (10,1e-6), Membership Inference Attack

Precision
Recall

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 C
la

ss
es

Accuracy

Purchase Dataset, Amazon (100,1e-4), Membership Inference Attack

Precision
Recall

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 C
la

ss
es

Accuracy

Purchase Dataset, Google, Membership Inference Attack

Precision
Recall

Fig. 5: Empirical CDF of the precision and recall of the membership inference attack against different classes of the models trained using
Amazon ML (in two different configurations) and Google Prediction API on 10, 000 purchase records. 50, 75, 90-percentile of precision is
0.74, 0.79, 0.84 on Amazon (10, 1e − 6), 0.84, 0.88, 0.91 on Amazon (100, 1e − 4), and 0.94, 0.97, 1 on Google, respectively. Recall is
close to 1.

We used the platform in two configurations: the default setting

(10, 1e− 6) and (100, 1e− 4).

Neural networks. Neural networks have become a very

popular approach to large-scale machine learning. We use

Torch7 and its nn packages,11 a deep-learning library that has

been used and extended by major Internet companies such as

Facebook.12

On CIFAR datasets, we train a standard convolutional neural

network (CNN) with two convolution and max pooling layers

plus a fully connected layer of size 128 and a SoftMax layer.

We use Tanh as the activation function. We set the learning

rate to 0.001, the learning rate decay to 1e − 07, and the

maximum epochs of training to 100.

On the purchase dataset (see Section VI-A), we train a fully

connected neural network with one hidden layer of size 128
and a SoftMax layer. We use Tanh as the activation function.

We set the learning rate to 0.001, the learning rate decay to

1e− 07, and the maximum epochs of training to 200.

11https://github.com/torch/nn
12https://github.com/facebook/fblualib

C. Experimental setup

The training set and the test set of each target and shadow

model are randomly selected from the respective datasets, have

the same size, and are disjoint. There is no overlap between the

datasets of the target model and those of the shadow models,

but the datasets used for different shadow models can overlap

with each other.

We set the training set size to 10, 000 for the purchase

dataset as well as the Texas hospital-stay dataset, Adult dataset

and the MNIST dataset. We set it to 1, 200 for the location

dataset. We vary the size of the training set for the CIFAR

datasets, to measure the difference in the attack accuracy.

For the CIFAR-10 dataset, we choose 2, 500; 5, 000; 10, 000;

and 15, 000. For the CIFAR-100 dataset, we choose 4, 600;

10, 520; 19, 920; and 29, 540.

The experiments on the CIFAR datasets were run lo-

cally, against our own models, so we can vary the model’s

configuration and measure the impact on the attack accu-

racy. The experiments on the other datasets (purchases with

{2, 10, 20, 50, 100} classes, Texas hospital stays, locations,

Adult, and MNIST) were run against models trained using

either Google or Amazon services, where we have no visibility

10

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 16,2024 at 09:46:03 UTC from IEEE Xplore. Restrictions apply.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 C
la

ss
es

Accuracy

Texas Dataset, Google, Membership Inference Attack

Precision
Recall

Fig. 6: Precision and recall of the membership inference attack against
the classification model trained using Google Prediction API on the
Texas hospital-stay dataset.

into their choice of the model type and structure and little

control over the training process (see Section VI-B).

For the purchase dataset, we built target models on all plat-

forms (Google, Amazon, local neural networks) employing the

same training dataset, thus enabling us to compare the leakage

from different models. We used similar training architectures

for the attack models across different platforms: either a fully

connected neural network with one hidden layer of size 64

with ReLU (rectifier linear units) activation functions and a

SoftMax layer, or a Google-trained black-box model.

We set the number of shadow models to 100 for the CIFAR

datasets, 20 for the purchase dataset, 10 for the Texas hospital-

stay dataset, 60 for the location dataset, 50 for the MNIST

dataset, and 20 for the Adult dataset. Increasing the number

of shadow models would increase the accuracy of the attack

but also its cost.

D. Accuracy of the attack

The attacker’s goal is to determine whether a given record

was part of the target model’s training dataset. We evaluate

this attack by executing it on randomly reshuffled records from

the target’s training and test datasets. In our attack evaluation,

we use sets of the same size (i.e, equal number of members

and non-members) in order to maximize the uncertainty of

inference, thus the baseline accuracy is 0.5.

We evaluate the attack using the standard precision and

recall metrics. Precision is the fraction of the records inferred

as members of the training dataset that are indeed members.

Recall measures coverage of the attack, i.e., the fraction of

the training records that the attacker can correctly infer as

members. Most measurements are reported per class because

the accuracy of the attack can vary considerably for different

classes. This is due to the difference in size and composition

of the training data belonging to each class and highly depends

on the dataset.

The test accuracy of our target neural-network models with

the largest training datasets (15, 000 and 29, 540 records,

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 C
la

ss
es

Accuracy

Purchase Dataset, Membership Inference Attack

Google
Amazon (100,1e-4)

Amazon (10,1e-6)
Neural Network

Fig. 7: Precision of the membership inference attack against models
trained on the same datasets but using different platforms. The attack
model is a neural network.

respectively) is 0.6 and 0.2 for CIFAR-10 and CIFAR-100,

respectively. The accuracy is low, indicating that the models

are heavily overfitted on their training sets. Figure 4 shows

the results of the membership inference attack against the

CIFAR models. For both CIFAR-10 and CIFAR-100, the

attack performs much better than the baseline, with CIFAR-

100 especially vulnerable.

Table I shows the training and test accuracy of the models

constructed using different machine learning platforms for the

purchase dataset with 100 classes. Large gaps between training

and test accuracy indicate overfitting. Larger test accuracy

indicates better generalizability and higher predictive power.

Figure 5 shows the results of the membership inference

attack against the black-box models trained by Google’s and

Amazon’s machine learning platforms. Figure 7 compares

precision of the attacks against these models with the attacks

against a neural-network model trained on the same data. Mod-

els trained using Google Prediction API exhibit the biggest

leakage.

For the Texas hospital-stay dataset, we evaluated our attack

against a Google-trained model. The training accuracy of the

target model is 0.66 and its test accuracy is 0.51. Figure 6

shows the accuracy of membership inference. Precision is

mostly above 0.6, and for half of the classes, it is above 0.7.

Precision is above 0.85 for more than 20 classes.

For the location dataset, we evaluated our attacks against

a Google-trained model. The training accuracy of the target

model is 1 and its test accuracy is 0.66. Figure 8 shows the

accuracy of membership inference. Precision is between 0.6
and 0.8, with an almost constant recall of 1.

E. Effect of the shadow training data

Figure 8 reports precision of the attacks trained on the

shadow models whose training datasets are noisy versions of

the real data (disjoint from the target model’s training dataset

but sampled from the same population). Precision drops as the

amount of noise increases, but the attack still outperforms the

11

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 16,2024 at 09:46:03 UTC from IEEE Xplore. Restrictions apply.

ML Platform Training Test
Google 0.999 0.656
Amazon (10,1e-6) 0.941 0.468
Amazon (100,1e-4) 1.00 0.504
Neural network 0.830 0.670

TABLE I: Training and test accuracy of the models constructed using
different ML-as-a-service platforms on the purchase dataset (with 100
classes).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 C
la

ss
es

Precision

Location Dataset, Google, Membership Inference Attack

Real Data
Noisy Data 10%
Noisy Data 20%

Fig. 8: Empirical CDF of the precision of the membership inference
attack against the Google-trained model for the location dataset.
Results are shown for the shadow models trained on real data and for
the shadow models trained on noisy data with 10% and 20% noise
(i.e., x% of features are replaced with random values). Precision of
the attack over all classes is 0.678 (real data), 0.666 (data with 10%
noise), and 0.613 (data with 20% noise). The corresponding recall
of the attack is 0.98, 0.99, and 1.00, respectively.

baseline and, even with 10% of the features in the shadows’

training data replaced by random values, matches the original

attack. This demonstrates that our attacks are robust even
if the attacker’s assumptions about the distribution of the
target model’s training data are not very accurate.

Figure 9 reports precision of the attacks when the attacker

has no real data (not even noisy) for training his shadow mod-

els. Instead, we used the marginal distributions of individual

features to generate 187, 300 synthetic purchase records, then

trained 20 shadow models on these records.

We also generated 30, 000 synthetic records using the

model-based approach presented in Algorithm 1. In our ex-

periments with the purchase dataset where records have 600
binary features, we initialize k to kmax = 128 and divide it

by 2 when rejmax = 10 subsequent proposals are rejected.

We set its minimum value kmin = 4. In the sampling phase,

we set the minimum confidence threshold confmin to 0.2.

For our final set of sampled records, the target model’s

confidence in classifying the records is 0.24 on average (just

a bit over our threshold confmin = 0.2). On average, each

synthetic record needed 156 queries (of proposed records)

during our hill-climbing two-phase process (see Section V-C).

We trained 8 shadow models on this data.

Figure 9 compares precision of the attacks when shadow

models are trained on real data versus shadow models trained

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 C
la

ss
es

Precision

Purchase Dataset, Google, Membership Inference Attack

Real Data
Marginal-Based Synthetic

Model-Based Synthetic

Fig. 9: Empirical CDF of the precision of the membership inference
attack against the Google-trained model for the purchase dataset.
Results are shown for different ways of generating training data for
the shadow models (real, synthetic generated from the target model,
synthetic generated from marginal statistics). Precision of the attack
over all classes is 0.935 (real data), 0.795 (marginal-based synthetic
data), and 0.896 (model-based synthetic data). The corresponding
recall of the attack is 0.994, 0.991, and 0.526, respectively.

on synthetic data. The overall precision is 0.935 on real data

compared to 0.795 for marginal-based synthetics and 0.895
for model-based synthetics. The accuracy of the attack using

marginal-based synthetic data is noticeably reduced versus real

data, but is nevertheless very high for most classes. The attack

using model-based synthetic data exhibits dual behavior. For

most classes its precision is high and close to the attacks

that use real data for shadow training, but for a few classes

precision is very low (less than 0.1).

The reason for the attack’s low precision on some classes

is that the target classifier cannot confidently model the dis-

tribution of data records belonging to these classes—because

it has not seen enough examples. These classes are under-

represented in the target model’s training dataset. For example,

each of the classes where the attack has less than 0.1 precision

contributes under 0.6% of the target model’s training dataset.

Some of these classes have fewer than 30 training records (out

of 10, 000). This makes it very difficult for our algorithm to

synthesize representatives of these classes when searching the

high-dimensional space of possible records.

For the majority of the target model’s classes, our attack

achieves high precision. This demonstrates that a membership
inference attack can be trained with only black-box access
to the target model, without any prior knowledge about
the distribution of the target model’s training data if the

attacker can efficiently generate inputs that are classified by

the target model with high confidence.

F. Effect of the number of classes and training data per class

The number of output classes of the target model contributes

to how much the model leaks. The more classes, the more

signals about the internal state of the model are available to

the attacker. This is one of the reasons why the results in Fig. 4

12

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 16,2024 at 09:46:03 UTC from IEEE Xplore. Restrictions apply.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2 10 20 50 100

A
tta

ck
 P

re
ci

si
on

Number of Classes

Purchase Dataset, Google, Membership Inference Attack

Fig. 10: Precision of the membership inference attack against differ-
ent purchase classification models trained on the Google platform.
The boxplots show the distribution of precision over different classi-
fication tasks (with a different number of classes).

are better for CIFAR-100 than for CIFAR-10. The CIFAR-

100 model is also more overfitted to its training dataset. For

the same number of training records per class, the attack

performs better against CIFAR-100 than against CIFAR-10.

For example, compare CIFAR-10 when the size of the training

dataset is 2, 000 with CIFAR-100 when the size of the training

dataset is 20, 000. The average number of data records per

class is 200 in both cases, but the attack accuracy is much

better (close to 1) for CIFAR-100.

To quantify the effect that the number of classes has

on the accuracy of the attack, we trained target models

using Google Prediction API on the purchase dataset with

{2, 10, 20, 50, 100} classes. Figure 10 shows the distribution

of attack precision for each model. Models with fewer classes

leak less information about their training inputs. As the

number of classes increases, the model needs to extract more

distinctive features from the data to be able to classify inputs

with high accuracy. Informally, models with more output

classes need to remember more about their training data, thus

they leak more information.

Figure 11 shows the relationship between the amount of

training data per class and the accuracy of membership infer-

ence. This relationship is more complex, but, in general, the

more data in the training dataset is associated with a given

class, the lower the attack precision for that class.

Table II shows the precision of membership inference

against Google-trained models. For the MNIST dataset, the

training accuracy of the target model is 0.984 and its test

accuracy is 0.928. The overall precision of the membership

inference attack is 0.517, which is just slightly above random

guessing. The lack of randomness in the training data for each

class and the small number of classes contribute to the failure

of the attack.

For the Adult dataset, the training accuracy of the target

model is 0.848 and its test accuracy is 0.842. The overall

precision of the attack is 0.503, which is equivalent to random

Dataset Training Testing Attack
Accuracy Accuracy Precision

Adult 0.848 0.842 0.503
MNIST 0.984 0.928 0.517
Location 1.000 0.673 0.678
Purchase (2) 0.999 0.984 0.505
Purchase (10) 0.999 0.866 0.550
Purchase (20) 1.000 0.781 0.590
Purchase (50) 1.000 0.693 0.860
Purchase (100) 0.999 0.659 0.935
TX hospital stays 0.668 0.517 0.657

TABLE II: Accuracy of the Google-trained models and the corre-
sponding attack precision.

guessing. There could be two reasons for why membership

inference fails against this model. First, the model is not

overfitted (its test and train accuracies are almost the same).

Second, the model is a binary classifier, which means that the

attacker has to distinguish members from non-members by

observing the behavior of the model on essentially 1 signal,

since the two outputs are complements of each other. This

is not enough for our attack to extract useful membership

information from the model.

G. Effect of overfitting

The more overfitted a model, the more it leaks—but only

for models of the same type. For example, the Amazon-

trained (100, 1e−4) model that, according to Table I, is more

overfitted leaks more than the Amazon-trained (10, 1e − 6)
model. However, they both leak less than the Google-trained

model, even though the Google model is less overfitted than

one of the Amazon models and has a much better predictive

power (and thus generalizability) than both Amazon models.

Therefore, overfitting is not the only factor that causes
a model to be vulnerable to membership inference. The

structure and type of the model also contribute to the problem.

In Figure 11, we look deeper into the factors that contribute

to attack accuracy per class, including how overfitted the

model is and what fraction of the training data belongs to each

class. The (train-test) accuracy gap is the difference between

the accuracy of the target model on its training and test data.

Similar metrics are used in the literature to measure how

overfitted a model is [18]. We compute this metric for each

class. Bigger gaps indicate that the model is overfitted on its

training data for that class. The plots show that, as expected,

bigger (train-test) accuracy gaps are associated with higher

precision of membership inference.

VII. WHY OUR ATTACKS WORK

Table II shows the relationship between the accuracy of

our membership inference attack and the (train-test) gap of

the target models. Figure 12 also illustrates how the target

models’ outputs distinguish members of their training datasets

from the non-members. This is the information that our attack

exploits.

Specifically, we look at how accurately the model predicts

the correct label as well as its prediction uncertainty. The ac-

curacy for class i is the probability that the model classifies an

13

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 16,2024 at 09:46:03 UTC from IEEE Xplore. Restrictions apply.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

A
tta

ck
 P

re
ci

si
on

Fraction of the Training Set for a Class

Purchase Dataset, 10-100 Classes, Google, Membership Inference Attack

10 Classes
20 Classes
50 Classes

100 Classes

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

A
tta

ck
 P

re
ci

si
on

Target Model (Train-Test) Accuracy Gap

Purchase Dataset, 10-100 Classes, Google, Membership Inference Attack

10 Classes
20 Classes
50 Classes

100 Classes
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T
ar

ge
t M

od
el

 (
T

ra
in

-T
es

t)
 A

cc
ur

ac
y

G
ap

Fraction of the Training Set For a Class

Purchase Dataset, 10-100 Classes, Google, Membership Inference Attack

10 Classes
20 Classes
50 Classes

100 Classes

Fig. 11: Relationship between the precision of the membership inference attack on a class and the (train-test) accuracy gap of the target
model, as well as the fraction of the training dataset that belongs to this class. Each point represent the values for one class. The (train-test)
accuracy gap is a metric for generalization error [18] and an indicator of how overfitted the target model is.

 0

 0.2

 0.4

 0.6

 0.8

 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Prediction Uncertainty

Purchase Dataset, 10 Classes, Google, Membership Inference Attack

Members
Non-members

 0

 0.2

 0.4

 0.6

 0.8

 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Prediction Uncertainty

Purchase Dataset, 20 Classes, Google, Membership Inference Attack

Members
Non-members

 0

 0.2

 0.4

 0.6

 0.8

 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Prediction Uncertainty

Purchase Dataset, 100 Classes, Google, Membership Inference Attack

Members
Non-members

 0

 0.2

 0.4

 0.6

 0.8

 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Prediction Accuracy

Purchase Dataset, 10 Classes, Google, Membership Inference Attack

Members
Non-members

 0

 0.2

 0.4

 0.6

 0.8

 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Prediction Accuracy

Purchase Dataset, 20 Classes, Google, Membership Inference Attack

Members
Non-members

 0

 0.2

 0.4

 0.6

 0.8

 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Prediction Accuracy

Purchase Dataset, 100 Classes, Google, Membership Inference Attack

Members
Non-members

Fig. 12: Classification uncertainty (top row) and prediction accuracy (bottom row) of the target model for the members of its training dataset
vs. non-members, visualized for several sample classes. The difference between the member and non-member output distributions is among
the factors that our attack exploits to infer membership. The accuracy of our attack is higher for the models where the two distributions are
more distinguishable (See Table II).

input with label i as i. Prediction uncertainty is the normalized

entropy of the model’s prediction vector: −1
log(n)

∑
i pi log(pi),

where pi is the probability that the input belongs to class i,
and n is the number of classes. The plots show that there

is an observable difference between the output (both accuracy

and uncertainty) of the model on the member inputs versus the

non-member inputs in the cases where our attack is successful.

Success of membership inference is directly related to the

(1) generalizability of the target model and (2) diversity of its

training data. If the model overfits and does not generalize well

to inputs beyond its training data, or if the training data is not

representative, the model leaks information about its training

inputs. We quantify this relationship in Fig. 11. From the

machine learning perspective, overfitting is harmful because

it produces models that lack predictive power. In this paper,

we show another harm of overfitting: the leakage of sensitive

information about the training data.

As we explained in Section VI, overfitting is not the only

reason why our inference attacks work. Different machine

learning models, due to their different structures, “remember”

different amounts of information about their training datasets.

This leads to different amounts of information leakage even if

the models are overfitted to the same degree (see Table I).

VIII. MITIGATION

As explained in Section VII, overfitting is an important

(but not the only) reason why machine learning models leak

information about their training datasets. Of course, overfitting

is a canonical problem in machine learning because it limits

the predictive power and generalizability of models. This

means that instead of the usual tradeoff between utility and

privacy, machine learning research and privacy research have

similar objectives in this case. Regularization techniques such

as dropout [31] can help defeat overfitting and also strengthen

14

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 16,2024 at 09:46:03 UTC from IEEE Xplore. Restrictions apply.

privacy guarantees in neural networks [23]. Regularization is

also used for objective perturbation in differentially private

machine learning [9].
(Ideal) well-regularized models should not leak much infor-

mation about their training data, and our attack can serve as

a metric to quantify this. Also, models with a trivial structure

(e.g., XOR of some input features) generalize to the entire

universe and do not leak information.
If the training process is differentially private [12], the

probability of producing a given model from a training dataset

that includes a particular record is close to the probability of

producing the same model when this record is not included.

Differentially private models are, by construction, secure

against membership inference attacks of the kind developed in

this paper because our attacks operate solely on the outputs of

the model, without any auxiliary information. One obstacle is

that differentially private models may significantly reduce the

model’s prediction accuracy for small ε values. In Section IX,

we survey some of the related work in this area.
In the case of machine learning as a service, platform

operators such as Google and Amazon have significant re-

sponsibility to the users of their services. In their current

form, these services simply accept the data, produce a model

of unknown type and structure, and return an opaque API to

this model that data owners use as they see fit, without any

understanding that by doing so, they may be leaking out their

data. Machine learning services do not inform their customers

about the risks of overfitting or the harm that may result

from models trained on inadequate datasets (for example, with

unrepresentative records or too few representatives for certain

classes).
Instead, when adaptively choosing a model for a customer-

supplied dataset, services such as Google Prediction API and

Amazon ML should take into account not only the accuracy of

the model but also the risk that it will leak information about

its training data. Furthermore, they need to explicitly warn

customers about this risk and provide more visibility into the

model and the methods that can be used to reduce this leakage.

Our inference attacks can be used as metrics to quantify

leakage from a specific model, and also to measure the

effectiveness of future privacy protection techniques deployed

by machine-learning services.

A. Mitigation strategies
We quantitatively evaluate several defenses against mem-

bership inference.

Restrict the prediction vector to top k classes. When the

number of classes is large, many classes may have very small

probabilities in the model’s prediction vector. The model will

still be useful if it only outputs the probabilities of the most

likely k classes. To implement this, we add a filter to the last

layer of the model. The smaller k is, the less information the

model leaks. In the extreme case, the model returns only the

label of the most likely class without reporting its probability.

Coarsen precision of the prediction vector. To implement

this, we round the classification probabilities in the prediction

Purchase dataset Testing Attack Attack Attack
Accuracy Total Accuracy Precision Recall

No Mitigation 0.66 0.92 0.87 1.00
Top k = 3 0.66 0.92 0.87 0.99
Top k = 1 0.66 0.89 0.83 1.00
Top k = 1 label 0.66 0.66 0.60 0.99
Rounding d = 3 0.66 0.92 0.87 0.99
Rounding d = 1 0.66 0.89 0.83 1.00
Temperature t = 5 0.66 0.88 0.86 0.93
Temperature t = 20 0.66 0.84 0.83 0.86
L2 λ = 1e− 4 0.68 0.87 0.81 0.96
L2 λ = 1e− 3 0.72 0.77 0.73 0.86
L2 λ = 1e− 2 0.63 0.53 0.54 0.52

Hospital dataset Testing Attack Attack Attack
Accuracy Total Accuracy Precision Recall

No Mitigation 0.55 0.83 0.77 0.95
Top k = 3 0.55 0.83 0.77 0.95
Top k = 1 0.55 0.82 0.76 0.95
Top k = 1 label 0.55 0.73 0.67 0.93
Rounding d = 3 0.55 0.83 0.77 0.95
Rounding d = 1 0.55 0.81 0.75 0.96
Temperature t = 5 0.55 0.79 0.77 0.83
Temperature t = 20 0.55 0.76 0.76 0.76
L2 λ = 1e− 4 0.56 0.80 0.74 0.92
L2 λ = 5e− 4 0.57 0.73 0.69 0.86
L2 λ = 1e− 3 0.56 0.66 0.64 0.73
L2 λ = 5e− 3 0.35 0.52 0.52 0.53

TABLE III: The accuracy of the target models with different mitiga-
tion techniques on the purchase and Texas hospital-stay datasets (both
with 100 classes), as well as total accuracy, precision, and recall of
the membership inference attack. The relative reduction in the metrics
for the attack shows the effectiveness of the mitigation strategy.

vector down to d floating point digits. The smaller d is, the

less information the model leaks.

Increase entropy of the prediction vector. One of the signals

that membership inference exploits is the difference between

the prediction entropy of the target model on its training inputs

versus other inputs. As a mitigation technique for neural-

network models, we can modify (or add) the softmax layer and

increase its normalizing temperature t > 0. The softmax layer

converts the logits computed for each class into probabilities.

For the logits vector z, the ith output of the softmax function

with temperature t is ezi/t
∑

j ezj/t
. This technique, also used

in knowledge distillation and information transfer between

models [20], would increase the entropy of the prediction

vector. Note that for a very large temperature, the output

becomes almost uniform and independent of its input, thus

leaking no information.

Use regularization. Regularization techniques are used to

overcome overfitting in machine learning. We use L2-norm

standard regularization that penalizes large parameters by

adding λ
∑

i θ
2
i to the model’s loss function, where θis are

model’s parameters. We implement this technique with various

values for the regularization factor λ. The larger λ is, the

stronger the effect of regularization during the training.

B. Evaluation of mitigation strategies

To evaluate the effectiveness of different mitigation strate-

gies, we implemented all of them in locally trained mod-

15

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 16,2024 at 09:46:03 UTC from IEEE Xplore. Restrictions apply.

els over which we have full control. The inference attack,

however, still assumes only black-box access to the resulting

models. The baseline model for these experiments is a neural

network with one hidden layer with 256 units (for the purchase

dataset) and 1,000 units (for the Texas hospital-stay dataset).

We use Tanh as the activation function.

Table III shows the results of our evaluation. It compares

different mitigation strategies based on how they degrade the

accuracy of our attack relative to the attack on a model

that does not use any mitigation. The mitigation strategies

that we implemented did not impose any cost on the target

model’s prediction accuracy, and in the case of regularization,

the target model’s prediction accuracy increased as expected.

Note that more regularization (by increasing λ even further)

would potentially result in a significant reduction of the target

model’s test accuracy, even if it foils membership inference.

This is shown in the table for λ = 1e − 2 on the purchase

dataset, and for λ = 5e−3 on the Texas hospital stay dataset.

Overall, our attack is robust against these mitigation strate-

gies. Filtering out low-probability classes from the predic-

tion vector and limiting the vector to the top 1 or 3 most

likely classes does not foil the attack. Even restricting the
prediction vector to a single label (most likely class),
which is the absolute minimum a model must output to
remain useful, is not enough to fully prevent membership
inference. Our attack can still exploit the mislabeling behavior
of the target model because members and non-members of

the training dataset are mislabeled differently (assigned to

different wrong classes). If the prediction vector contains

probabilities in addition to the labels, the model leaks even

more information that can be used for membership inference.

Some of the mitigation methods are not suitable for

machine-learning-as-service APIs used by general applications

and services. Regularization, however, appears to be neces-

sary and useful. As mentioned above, it (1) generalizes the

model and improves its predictive power and (2) decreases

the model’s information leakage about its training dataset.

However, regularization needs to be deployed carefully to

avoid damaging the model’s performance on the test datasets.

IX. RELATED WORK

Attacks on statistical and machine learning models. In [2],

knowledge of the parameters of SVM and HMM models is

used to infer general statistical information about the training

dataset, for example, whether records of a particular race were

used during training. By contrast, our inference attacks work

in a black-box setting, without any knowledge of the model’s

parameters, and infer information about specific records in the

training dataset, as opposed to general statistics.

Homer et al. [21] developed a technique, which was further

studied in [3], [15], for inferring the presence of a particular

genome in a dataset, based on comparing the published statis-

tics about this dataset (in particular, minor allele frequencies)

to the distribution of these statistics in the general population.

By contrast, our inference attacks target trained machine

learning models, not explicit statistics.

Fig. 13: Images produced by model inversion on a trained CIFAR-10
model. Top: airplane, automobile, bird, cat, deer. Bottom: dog, frog,
horse, ship, truck. The images do not correspond to any specific
image from the training dataset, are not human-recognizable, and at
best (e.g., the truck class image) are vaguely similar to the average
image of all objects in a given class.

Other attacks on machine learning include [7], where the

adversary exploits changes in the outputs of a collaborative

recommender system to infer inputs that caused these changes.

These attacks exploit temporal behavior specific to the recom-

mender systems based on collaborative filtering.

Model inversion. Model inversion [16], [17] uses the output

of a model applied to a hidden input to infer certain features

of this input. See [27] for a detailed analysis of this attack and

an explanation of why it does not necessarily entail a privacy

breach. For example, in the specific case of pharmacogenetics

analyzed in [17], the model captures the correlation between

the patient’s genotype and the dosage of a certain medicine.

This correlation is a valid scientific fact that holds for all

patients, regardless of whether they were included in the

model’s training dataset or not. It is not possible to prevent

disclosure due to population statistics [14].

In general, model inversion cannot tell whether a particular

record was used as part of the model’s training dataset. Given

a record and a model, model inversion works exactly the same

way when the record was used to train the model and when

it was not used. In the case of pharmacogenetics [17], model

inversion produces almost identical results for members and

non-members. Due to the overfitting of the model, the results

are a little (4%) more accurate for the members, but this

accuracy can only be measured in retrospect, if the adversary

already knows the ground truth (i.e., which records are indeed

members of the model’s training dataset). By contrast, our goal

is to construct a decision procedure that distinguishes members

from non-members.

Model inversion has also been applied to face recognition

models [16]. In this scenario, the model’s output is set to 1
for class i and 0 for the rest, and model inversion is used to

construct an input that produces these outputs. This input is

not an actual member of the training dataset but simply an

average of the features that “characterize” the class.

In the face recognition scenario—and only in this specific

scenario—each output class of the model is associated with a

single person. All training images for this class are different

photos of that person, thus model inversion constructs an

artificial image that is an average of these photos. Because

they all depict the same person, this average is recognizable

16

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 16,2024 at 09:46:03 UTC from IEEE Xplore. Restrictions apply.

(by a human) as that person. Critically, model inversion does

not produce any specific image from the training dataset, which

is the definition of membership inference.
If the images in a class are diverse (e.g., if the class contains

multiple individuals or many different objects), the results of

model inversion as used in [16] are semantically meaningless

and not recognizable as any specific image from the training

dataset. To illustrate this, we ran model inversion against

a convolutional neural network13 trained on the CIFAR-10

dataset, which is a standard benchmark for object recognition

models. Each class includes different images of a single type

of object (e.g., an airplane). Figure 13 shows the images

“reconstructed” by model inversion. As expected, they do not

depict any recognizable object, let alone an image from the

training dataset. We expect similar results for other models,

too. For the pharmacogenetics model mentioned above, this

form of model inversion produces an average of different

patients’ genomes. For the model that classifies location traces

into geosocial profiles (see Section VI-A), it produces an

average of the location traces of different people. In both

cases, the results of model inversion are not associated with

any specific individual or specific training input.
In summary, model inversion produces the average of the

features that at best can characterize an entire output class.

It does not (1) construct a specific member of the training

dataset, nor (2) given an input and a model, determines if this

specific input was used to train the model.

Model extraction. Model extraction attacks [32] aim to

extract the parameters of a model trained on private data.

The attacker’s goal is to construct a model whose predictive

performance on validation data is similar to the target model.
Model extraction can be a stepping stone for inferring

information about the model’s training dataset. In [32], this is

illustrated for a specific type of models called kernel logistic

regression (KLR) [38]. In KLR models, the kernel function

includes a tiny fraction of the training data (so called “import

points”) directly into the model. Since import points are

parameters of the model, extracting them results in the leakage

of that particular part of the data. This result is very specific

to KLR and does not extend to other types of models since

they do not explicitly store training data in their parameters.
Even for KLR models, leakage is not quantified other than

via visual similarity of a few chosen import points and “the

closest (in L1 norm) extracted representers” on the MNIST

dataset of handwritten digits. In MNIST, all members of a

class are very similar (e.g., all members of the first class are

different ways of writing digit “1”). Thus, any extracted digit

must be similar to all images in its class, whether this digit

was in the training set or not.

Privacy-preserving machine learning. Existing literature on

privacy protection in machine learning focuses mostly on how

to learn without direct access to the training data. Secure

multiparty computation (SMC) has been used for learning

decision trees [26], linear regression functions [11], Naive

13https://github.com/Lasagne/Recipes/blob/master/modelzoo/cifar10 nin.py

Bayes classifiers [33], and k-means clustering [22]. The goal

is to limit information leakage during training. The training

algorithm is the same as in the non-privacy-preserving case,

thus the resulting models are as vulnerable to inference attacks

as any conventionally trained model. This also holds for the

models trained by computing on encrypted data [4], [6], [35].

Differential privacy [12] has been applied to linear and

logistic regression [8], [37], support vector machines [28], risk

minimization [5], [9], [34], deep learning [1], [30], learning

an unknown probability distribution over a discrete population

from random samples [10], and releasing hyper-parameters

and classifier accuracy [25]. By definition, differentially pri-

vate models limit the success probability of membership

inference attacks based solely on the model, which includes

the attacks described in this paper.

X. CONCLUSIONS

We have designed, implemented, and evaluated the first

membership inference attack against machine learning models,

notably black-box models trained in the cloud using Google

Prediction API and Amazon ML. Our attack is a general,

quantitative approach to understanding how machine learning

models leak information about their training datasets. When

choosing the type of the model to train or a machine learning

service to use, our attack can be used as one of the selection

metrics.

Our key technical innovation is the shadow training tech-

nique that trains an attack model to distinguish the target

model’s outputs on members versus non-members of its train-

ing dataset. We demonstrate that shadow models used in this

attack can be effectively created using synthetic or noisy data.

In the case of synthetic data generated from the target model

itself, the attack does not require any prior knowledge about

the distribution of the target model’s training data.

Membership in hospital-stay and other health-care datasets

is sensitive from the privacy perspective. Therefore, our results

have substantial practical privacy implications.

Acknowledgments. Thanks to Adam Smith for explaining

differential privacy and the state of the art in membership

inference attacks based on explicit statistics.

This work was supported by the NSF grant 1409442 and a

Google Research Award.

REFERENCES

[1] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Tal-
war, and L. Zhang, “Deep learning with differential privacy,” in CCS,
2016.

[2] G. Ateniese, L. V. Mancini, A. Spognardi, A. Villani, D. Vitali, and
G. Felici, “Hacking smart machines with smarter ones: How to extract
meaningful data from machine learning classifiers,” International Jour-
nal of Security and Networks, vol. 10, no. 3, pp. 137–150, 2015.

[3] M. Backes, P. Berrang, M. Humbert, and P. Manoharan, “Membership
privacy in MicroRNA-based studies,” in CCS, 2016.

[4] M. Barni, P. Failla, R. Lazzeretti, A. Sadeghi, and T. Schneider, “Privacy-
preserving ECG classification with branching programs and neural
networks,” Trans. Info. Forensics and Security, vol. 6, no. 2, pp. 452–
468, 2011.

[5] R. Bassily, A. Smith, and A. Thakurta, “Private empirical risk minimiza-
tion: Efficient algorithms and tight error bounds,” in FOCS, 2014.

17

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 16,2024 at 09:46:03 UTC from IEEE Xplore. Restrictions apply.

[6] J. Bos, K. Lauter, and M. Naehrig, “Private predictive analysis on
encrypted medical data,” J. Biomed. Informatics, vol. 50, pp. 234–243,
2014.

[7] J. Calandrino, A. Kilzer, A. Narayanan, E. Felten, and V. Shmatikov,
““You might also like:” Privacy risks of collaborative filtering,” in S&P,
2011.

[8] K. Chaudhuri and C. Monteleoni, “Privacy-preserving logistic regres-
sion,” in NIPS, 2009.

[9] K. Chaudhuri, C. Monteleoni, and A. Sarwate, “Differentially private
empirical risk minimization,” JMLR, vol. 12, pp. 1069–1109, 2011.

[10] I. Diakonikolas, M. Hardt, and L. Schmidt, “Differentially private
learning of structured discrete distributions,” in NIPS, 2015.

[11] W. Du, Y. Han, and S. Chen, “Privacy-preserving multivariate statistical
analysis: Linear regression and classification.” in SDM, 2004.

[12] C. Dwork, “Differential privacy,” in Encyclopedia of Cryptography and
Security. Springer, 2011, pp. 338–340.

[13] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to
sensitivity in private data analysis,” in TCC, 2006.

[14] C. Dwork and M. Naor, “On the difficulties of disclosure prevention in
statistical databases or the case for differential privacy,” J. Privacy and
Confidentiality, vol. 2, no. 1, pp. 93–107, 2010.

[15] C. Dwork, A. Smith, T. Steinke, J. Ullman, and S. Vadhan, “Robust
traceability from trace amounts,” in FOCS, 2015.

[16] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that
exploit confidence information and basic countermeasures,” in CCS,
2015.

[17] M. Fredrikson, E. Lantz, S. Jha, S. Lin, D. Page, and T. Ristenpart,
“Privacy in pharmacogenetics: An end-to-end case study of personalized
Warfarin dosing,” in USENIX Security, 2014.

[18] M. Hardt, B. Recht, and Y. Singer, “Train faster, generalize better:
Stability of stochastic gradient descent,” in ICML, 2016.

[19] T. Hastie, R. Tibshirani, J. Friedman, and J. Franklin, “The elements
of statistical learning: Data mining, inference and prediction,” The
Mathematical Intelligencer, vol. 27, no. 2, pp. 83–85, 2005.

[20] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv:1503.02531, 2015.

[21] N. Homer, S. Szelinger, M. Redman, D. Duggan, W. Tembe,
J. Muehling, J. V. Pearson, D. A. Stephan, S. F. Nelson, and D. W. Craig,
“Resolving individuals contributing trace amounts of DNA to highly
complex mixtures using high-density SNP genotyping microarrays,”
PLoS Genetics, vol. 4, no. 8, 2008.

[22] G. Jagannathan and R. Wright, “Privacy-preserving distributed k-means
clustering over arbitrarily partitioned data,” in KDD, 2005.

[23] P. Jain, V. Kulkarni, A. Thakurta, and O. Williams, “To drop or not
to drop: Robustness, consistency and differential privacy properties of
dropout,” arXiv:1503.02031, 2015.

[24] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Master’s thesis, University of Toronto, 2009.

[25] M. J. Kusner, J. R. Gardner, R. Garnett, and K. Q. Weinberger,
“Differentially private Bayesian optimization,” in ICML, 2015.

[26] Y. Lindell and B. Pinkas, “Privacy preserving data mining,” in CRYPTO,
2000.

[27] F. McSherry, “Statistical inference considered harmful,”
https://github.com/frankmcsherry/blog/blob/master/posts/2016-06-
14.md, 2016.

[28] B. Rubinstein, P. Bartlett, L. Huang, and N. Taft, “Learning in a large
function space: Privacy-preserving mechanisms for SVM learning,” J.
Privacy and Confidentiality, vol. 4, no. 1, p. 4, 2012.

[29] S. Sankararaman, G. Obozinski, M. I. Jordan, and E. Halperin, “Ge-
nomic privacy and limits of individual detection in a pool,” Nature
Genetics, vol. 41, no. 9, pp. 965–967, 2009.

[30] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in CCS,
2015.

[31] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from over-
fitting,” JMLR, vol. 15, no. 1, pp. 1929–1958, 2014.

[32] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing
machine learning models via prediction APIs,” in USENIX Security,
2016.

[33] J. Vaidya, M. Kantarcıoğlu, and C. Clifton, “Privacy-preserving Naive
Bayes classification,” VLDB, vol. 17, no. 4, pp. 879–898, 2008.

[34] M. Wainwright, M. Jordan, and J. Duchi, “Privacy aware learning,” in
NIPS, 2012.

[35] P. Xie, M. Bilenko, T. Finley, R. Gilad-Bachrach, K. Lauter, and
M. Naehrig, “Crypto-nets: Neural networks over encrypted data,”
arXiv:1412.6181, 2014.

[36] D. Yang, D. Zhang, and B. Qu, “Participatory cultural mapping based on
collective behavior data in location-based social networks,” ACM TIST,
vol. 7, no. 3, p. 30, 2016.

[37] J. Zhang, Z. Zhang, X. Xiao, Y. Yang, and M. Winslett, “Functional
mechanism: Regression analysis under differential privacy,” VLDB,
vol. 5, no. 11, pp. 1364–1375, 2012.

[38] J. Zhu and T. Hastie, “Kernel logistic regression and the import vector
machine,” in NIPS, 2001.

18

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 16,2024 at 09:46:03 UTC from IEEE Xplore. Restrictions apply.

