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Abstract—An experiment applying two combinatorial heuris-
tics to three optimization problems related to infectious disease
models is presented (SIR and SIS models). The study used the
genetic and simulated annealing algorithms to determine the best
combination for selected control measures in order to minimize
the number of infected individuals and the cost of applying those
measures.
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I. INTRODUCTION

The study of infectious disease transmission and its con-
trol using mathematical models has become important for
scientists and professionals from different areas, because of
the physical and economic consequences that an infectious
disease can cause in humans and animals [10]. The simu-
lation of an infectious disease spreading in one or several
populations using mathematical models allows the exploration
of the results of applying control measures and this provides
valuable information for decision making. Several studies have
shown that mathematical models are indispensable tools for
understanding the spreading dynamic of infectious diseases
and the relationship between cost and efficiency when control
measures are applied [9].

Two of the most popular models for studying the spread of
infectious disease are SIR and SIS. In those models the size
of the population is taken as a constant N , and it is divided
into different groups:
• S: represents susceptibles, individuals who do not have

the disease, but could be infected.
• I: Infected group, which contains people who have been

infected.
• R: Recovered group, individuals who have been removed

from group I. They recovered because of natural reasons
or because some control mechanism, such as vaccines,
was provided.

Model SIR supposes that recovered individuals have immunity
against the disease (individuals from group I who have reco-
vered are moved to group R). This model could be appropriate
for infectious diseases caused by viruses such as measles,
mumps and smallpox [10]. On the other hand, the SIS model
moves recovered people from I to S. This means people could

be infected again because of lacking inmunity. The SIS model
could be used to simulate diseases caused by bacteria, such as
meningitis and sexually transmitted diseases.

The SIR model discrete equations are shown in (1), where
γ > 0 is a recovery rate, that is, the probability that an infected
individual is moved from group I to group R, in a time interval
∆t. Futhermore, α > 0 is a contact rate (related to the number
of contacts sufficient to transmit the disease). Then α∆tSn

N
represents the average of contacts that one infected person has
had with individuals from group S during that period of time.
Finally, α∆tSn

N In is the number of individuals who change
from group S to I at time n.

Sn+1 = Sn − α∆tSn

N In

In+1 = In − γ∆tIn + α∆tSn

N In (1)

Rn+1 = Rn + γ∆tIn,

with S0 > 0, I0 > 0, R0 ≥ 0, and such that S0+I0+R0 = N .
Also, equations (2) show how the numbers of susceptible and
infected individuals are updated in the SIS model at time n.
In this case, S0 > 0, I0 > 0 and S0 + I0 = N .

Sn+1 = Sn − α∆tSn

N In + γ∆tIn (2)

In+1 = In − γ∆tIn + α∆tSn

N In

Both models determined by equations (1) and (2) simulate
the infectious disease spreading without any control measure.
Section I-A explains how the SIR and SIS models can be
modified and used to simulate the spreading, considering
selected controls against the disease.

A. SIR and SIS discrete models with control measures

Based on [5], the equations in (3) show how the SIR model
could be written, considering a treatment. In this case, u
is the proportion of individuals treated at time k, β is the
transmission rate, and d2 is the death rate.

Sk+1 = Sk(1− u)− β(Sk(1− u))Ik

Ik+1 = Ik + βSk(1− u)Ik − d2Ik (3)

Rk+1 = Rk + uSk
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On the other hand, based on [4] an SIS model with one
treatment measure can be proposed. Equations (4) show how
to update the numbers of susceptible and infected individuals
in this model.

Sk+1 = γGkSk + γ(1− στ)Ik (4)
Ik+1 = γ(1−Gk)Sk + γστIk,

where Gk = exp
(
−αIk
Nk

)
is the probability of remaining

susceptible from time k to k + 1, α is a weighting constant
to control the prevalence of Ik

Nk
(infected proportion at time

k), and Nk = Sk + Ik. Furthermore, if γ is a survival
probability, then γGkSk is the number of individuals that
remain susceptible at time k + 1, and γ(1 − Gk)Sk is the
number of individuals that change from group S to group I .
Finally, (1 − σ) is a recovery rate (without treatment) and
(1− τ) is a recovery rate because of treatment.

These models describe the spreading dynamic of an infec-
tious disease in one population. Based on equations (3) and (4)
other SIR and SIS models can be considered if the spreading
occurs between two or more interconnected populations.

B. Population models

Population models allow the understanding of how mi-
gration affects the spreading of an infectious disease. They
consider migration, without forgetting the residence patch, as
well as the patch in which one person is located in a given time
[3]. In this research two interconnected populations, denoted x
and y, are considered, in which individuals are homogeneously
distributed. Equations (5) represent the SIR discrete model,
based on [8], for two patches x and y (in fact, the model
includes eight equations, in this case equations for patch x
are shown, the remaining equations could be written changing
x to y).

Sxxk+1 = (1− ρxyS )(Sxxk − βSxxk (Ixxk + Iyxk )) +

τyxS (Sxyk − βS
xy
k (Ixyk + Iyyk ))

Sxyk+1 = (1− τyxS )(Sxyk − βS
xy
k (Ixyk + Iyyk )) + (5)

ρxyS (Sxxk − βSxxk (Ixxk + Iyxk ))

Ixxk+1 = (1− ρxyI )(Ixxk + βSxxk (Ixxk + Iyxk )− dIxxk ) +

τyxI (Ixyk + βSxyk (Ixyk + Iyyk )− dIxyk )

Ixyk+1 = (1− τyxI )(Ixyk + βSxyk (Ixyk + Iyyk )− dIxyk ) +

ρxyI (Ixxk + βSxxk (Ixxk + Iyxk )− dIxxk )

In this model, for A ∈ {S, I}, Axyk indicates how many
individual from group A and patch x are located in y, at time
k. Furthermore, ρxyA is the emigration rate from x to y, and τxyA
is the inmigration rate from y to x. A similar interpretation
can be made for Ayxk and τyxA . Also, β is the transmission
rate and d is an attrition rate. Finally, fluctuations for β are
not considered, because migration number is considered small
compared to the population size.

If a population with two patches is considered, with the
local dynamic in each patch modeled by the equations (4),
then the SIS model could be adapted to simulate how an
infectious disease evolves in both patches, taking into account
the migration. Let Sxk and Ixk , respectively, be the groups of
susceptible and infected individuals at time k in patch x.
In patch x people survive with probability γx, meanwhile
the infected individuals recovered for natural reasons with
probability (1−σx). Furthermore, the susceptible get infected
according to the rate (1 − Gxk). Finally, a fraction (1 − τx)
from the infected group is removed and returned to the group
Sxk because they were treated. Thus, the local dynamic in each
patch can be modeled by equations (6).

S̃xk = γxGxkS
x
k + γx(1− σxτx)Ixk (6)

Ĩxk = γx(1−Gxk)Sxk + γxσxτxIxk ,

If the migration between x and y is considered, then Dz
S and

Dz
I , with z ∈ {x, y}, are the fractions of susceptible and

infected individuals moving at each period of time. Therefore,
the SIS model for one population with two patches is defined
by equations (7).

Sxk+1 = (1−Dx
S)S̃xk +Dy

SS̃
y
k

Ixk+1 = (1−Dx
I )Ĩxk +Dy

I Ĩ
y
k , (7)

Syk+1 = Dx
SS̃

x
k + (1−Dy

S)S̃yk ,

Iyk+1 = Dx
I Ĩ
x
k + (1−Dy

I )Ĩyk ,

II. THE OPTIMIZATION PROBLEMS

The optimization problems studied in this research will be
presented. The SIR model was adapted to study the spreading
of an infectious disease when control measures were applied.
First, the SIR model was used to simulate the spreading
in one population (SIR1P), and then in two interconnected
populations (SIR2P). Also, a third problem was explored
using the SIS model in two populations with selected control
measures (SIS2P).

In the case of SIR1P, the optimization problem was based
on the functional (8) presented in [5], which was considered
together with the equations (3), changing u to uk, that is the
proportion of people that will be treated at the time k.

T−1∑
k=1

(Ik +Bu2
k +B1uk) + IT , (8)

where T is number of time periods that will be modeled.
Furthermore, k ∈ {0, 1, · · · , T − 1} and the restrictions
0 ≤ uk ≤ 1− d and 0 ≤ d ≤ 1 are considered. Additionally,
B and B1 are coefficients that represent the cost of applying
the control measure uk.

On the other hand, the optimization problem for SIR2P
is formulated using the emigration and immigration rates of
infected individuals as the control measures. The vectors

ρxyI =
(
ρxyI0 , ρ

xy
I1
, ..., ρxyIT−1

)
and τxyI =

(
τxyI0 , τ

xy
I1
, ..., τxyIT−1

)
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are used to track at time k the movement of infected individ-
uals between the patches, with k ∈ {0, 1, · · · , T − 1}. In this
case the functional (9) is used together with the equations (5),
but changing τyxI to τyxIk , and ρyxI to ρyxIk . The idea is to take
control of the number of infected people that are moving from
one patch to another. Also, τyxS and ρyxS are constant rates, and
the restrictions 0 ≤ τyxI ≤ τ

yx
S and 0 ≤ ρyxI ≤ ρ

yx
S are used.

∑
x,y

[
T−1∑
k=1

(
B1

(
Îxk

)2

+B2

(
τyxIk − τ

yx
S

)2
(9)

+ B3

(
ρyxIk − ρ

yx
S

)2)
+
(
ÎxT

)2
]
,

where Îxk =
Ixx
k +Iyx

Nx
k

, which represents the prevalence of
infected individuals in group x at time k, with Nx

k the
population size of patch x at that time. Also, Bi, for i = 1, 2, 3,
are relative costs, such that if B1 = 1, then B2 is the cost
of applying restrictions to the infected individuals that are
returning to x, and B3 is the cost of applying restrictions to
the infected individuals that are leaving x.

In the third case, for model SIS2P, the functional (10) is
used together with the equations (6) and (7).

∑
x,y

[
T−1∑
k=1

(
B1

(
Îxk

)2

+B2 (fxk )
2

+B3 (1− τxk )
2

+ B4

(
Dx
Ik
−Dx

S

)2)
+
(
ÎxT

)2
]

(10)

such that at (6) the parameter Gxk is defined by Gxk =

exp
(
−α(1−fx

k )Ik
Nk

)
. In this model the control was applied at

time k to:
• the rates Dx

Ik
and Dy

Ik
, that represent the proportion of

infected individuals that will be allowed to move from x
to y, and reciprocally.

• the variable τxk , where 1− τxk is the proportion of people
which will be treated in patch x.

• the parameter fxk , which is related to the social distance,
that is the percentage of infected individuals that will be
separated from susceptible individuals.

In all three models, the main goal is to minimize the cost
functional according to the equations of each model. This
process minimizes at the same time the number of infected
individuals and the cost of applying the control measures.

III. THE HEURISTICS

For the genetic algorithm (GA) (see Algorithm [A]) a
population of M = 15 instances is used, and the stationary
state model mentioned in [2] was used, that is in the selection
step some instances from the current population can be part
of the next. The initial population was built randomly and the
population size increases during the crossover and decreases to
M = 15 with the selection. Furthermore, the selection step is
based on the stochastic universal sampling strategy presented
in [12].

The model SIR1P uses for each instance only one control
vector U , whereas that SIR2P uses for each instance four
vectors: ρxyI , ρ

yx
I , τ

xy
I , and τyxI . Finally, the model SIS2P uses

six vectors: Dx
I , D

y
I , τ

x, τy, fx and fy . All the control vectors
are of size T . Depending on the number of vectors in each
model, the crossover process with probability pc was made
with one or two cut points. The model SIR1P uses two cut
points (see Figure 1) and both models SIR2P and SIS2P use
only one cut point.

Control vector
A=

B=

S  =

First cut

1

S  =2

Second cut

Fig. 1. Two cut points strategy for the crossover process.

For each instance the mutation occurs with probability pm.
When an instance is selected to mutate, for each control vector
of that instance one position is chosen randomly. That entry is
modified by adding the number 0.001·n, where n ∈ N, n ≤ 10,
chosen randomly. The step size 0.001 was selected due to the
numerical calculations, designed using three signicant digits.
In this study the probabilities of crossover and mutation are
estimated via experimentation (see Section IV). Also, more
than maxiter iterations are not made if in those iterations there
is no change in the best solution registered in memory. For
SIR1P maxiter = 30, for SIR2P maxiter = 150, and for SIS2P
maxiter = 300. These values were selected depending on the
complexity of each model (for instance, the model SIR1P
uses the functional (8) and equations (3), which required
fewer iterations compared to the model SIR2P which uses the
functional (9) and the equations (5)). Each value represents
the minimum number of iterations that should be executed to
guarantee a good performance in the respective algorithm.

[A] Algorithm GA
1) Initial population is built with 15 instances. The fitness is

calculated according to the model (using the respective
functional).

2) Let Ψ(t) := {P 1, . . . , P 15}.
3) Initialize t and auxiter at 0.
4) BestF itness := +∞.
5) Repeat while auxiter ≤ maxiter

a) Increment t and auxiter.
b) Apply crossover operator with probability pc.
c) Apply mutation operator with probability pm.
d) Select Ψ(t + 1) from Ψ(t) by a random roulette

process (SUS).
e) If one instance Pn from Ψ(t) improves the best

fitness in memory, then
i) Let BestF itness := Pn.fitness

ii) Reset auxiter to 0.
6) Return the best instance in memory.
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On the other hand, the simulated annealing algorithm (SA)
(see algorithm [B]) is based on the Metropolis’ rule in order
to decide whether a new feasible solution (a neighbor for the
current solution) is accepted or not. The initial temperature T ∗

was calculated using an acceptance rate χ0 (see [1]) and the
final temperature (Tf ) was fixed at 0.00001.

[B] Algorithm SA
1) s := initial random solution.
2) T ∗ := initial temperature calculated with χ0 = 0.96.
3) Initialize k at 0.
4) Repeat while Tk > Tf

a) Increment k.
b) Do LT times

i) s′ := Build a neighbor for s.
ii) Let ∆E := s.fitness− s′.fitness

iii) If ∆W < 0 do s := s′, otherwise do s := s′

with probability exp(−∆W/T ∗).
c) Let Tk+1 := α · Tk.

5) Return s.

The solutions in simulated annealing were represented by
vectors of size T , as in the genetic algorithm the instances
were encoded (one vector for SIR1P, four vectors in SIR2P,
and six vectors for SIS2P). Finally, the process to build a
neighbor (see step (4i) in algorithm [B]) was inspired by the
mutation process previously described for the GA algorithm.

IV. INITIAL CONDITIONS AND PARAMETERS FITTING

In GA the parameters pc and pm were analyzed. Both
parameters were studied from 0 to 1, using a step of 0.05.
For each combination of pc and pm, 500 multistart runs were
made and a performance percentage was calculated. With those
percentages, and for each model, a contour map was built in
order to visualize the behavior of the genetic algorithm. The
fitness values were calculated using the functions (8), (9) or
(10), depending on the model.

First, based on [5] the following initial conditions were
used for the SIR1P model: N = 105, I(0) = 5, R(0) = 0,
T = 10, B = 20, B1 = 1, β = 0.02, d2 = 0.01, and
d = 0.2. Under these conditions, the reference value for
the fitness was 144.660452399522 (required to calculate the
performance percentage). Figure 2 shows the perfomance of
the genetic algorithm in the SIR1P. Based on these results both
probabilities were fixed for this model at 0.95.

Second, for SIR2P the following initial conditions were
used: Sxx = 1500, Syy = 1000, Ixx = 1, Sxy = Syx =
Iyy = Ixy = Iyx = 0, B1 = 1, B2 = 0.2, B3 = 0.2,
τxyS = ρxyS = 0.03, τyxS = ρyxS = 0.02, β = 0.001,
d = 0.44, and T = 15 ([5], [6], [7],[11]). The reference
value for the fitness in this experiment was 4.52338522907883.
Figure 3 shows the performance of the genetic algorithm
in the SIR2P model. In this case, the range of possibilities
for both parameters is larger. Several combinations can be
chosen, in particular the pair (pc, pm) can be taken such that
(pc, pm) ∈ [0.85, 1] × [0.4, 0.85]. Therefore, in this study
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Fig. 2. Contour map for SIR1P in GA.

and for the SIR2P model the combination pc = 0.95 and
pm = 0.55 was selected.
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Fig. 3. Contour map for SIR2P in GA.

Then, for the model SIS2P: Sx = Sy = 1500, γx = γy =
1, σx = σy = 6/7, Dx

S = Dy
S = 0.03, B1 = 1, B2 =

0.04, B3 = 0.004, B4 = 0.0004, fx ∈ [0, 0.2], fy ∈ [0, 0.2],
Dx
I ∈ [0.001, Dx

S ], Dy
I ∈ [0.001, Dy

S ], 1− τx ∈ [0, 0.05], and
1 − τy ∈ [0, 0.05]. The reference value for the fitness was
50.2170566977095. Figure 4 shows the results and justifies
the combination pc = 0.95 and pm = 0.35 as the selected
values in this model. Table I summarizes the crossover and
mutation probabilities selected depending on the model.
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Fig. 4. Contour map for SIS2P in GA.

A similar experiment was developed for the simulated an-
nealing algorithm, using the same initial conditions previously
described for each model in the GA algorithm. The initial
temperature T ∗ was calculated using χ0 = 0.96 (acceptance
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TABLE I
CROSSOVER AND MUTATION PROBABILITIES SELECTED DEPENDING ON

THE MODEL.

SIR1P SIR2P SIS2P
pc 0.95 0.95 0.95
pm 0.95 0.55 0.35

rate) and Tf = 0.00001 (the final temperature). For each
combination of α values (this parameter was analyzed for
α ≥ 0.95) and for each model, 500 multistart runs were
executed and the performance percentage was calculated. For
instance, Figure 5 shows how the performance percentage
increases, in the SIR2P model, according to α values closer
to one. In this model, a 100% performance was achieved for
α ≥ 0.9935. Because α represents the cooling rate in SA, and
the execution time increases for larger values of α, then for
the SIR2P model this parameter was fixed at α = 0.9935 (the
minimum value required to achieve the 100% performance).

-20

0

20

40

60

80

100

120

0.94 0.95 0.96 0.97 0.98 0.99 1 1.01

Fig. 5. Performance percentage versus α values in SA.

The parameter LT is the length of the Markov chain and
it was selected depending on the complexity of the model.
Table II summarizes the selected values for LT and it shows
for each model the minimum value for α (the cooling rate
in SA) required to achieve a 100% performance with the SA
algorithm.

TABLE II
LENGTH OF THE MARKOV CHAIN AND RANGES FOR α.

SIR1P SIR2P SIS2P
LT 30 100 300
α ≥ 0.985 0.9935 0.999

Finally, Table III shows the mean and the standard deviation
of the total number of fitness evaluations for each algorithm
(in 1000 multistart runs). The simulated annealing algorithm
always uses the same number of evaluations because all the
executions use the same initial temperature and a fixed final
temperature to stop the algorithm. On the other hand, the
genetic algorithm stops if there is no change in the best
solution registered in memory after maxiter iterations are
made. Due to this stop criterion, the total number of fitness
evaluations is not constant for the genetic algorithm.

TABLE III
MEAN AND STANDARD DEVIATION OF THE NUMBER OF FITNESS

EVALUATIONS FOR EACH MODEL.

Meanx Standard deviation
GA-SIR1P 138005 29900
GA-SIR2P 131275 20106
GA-SIS2P 874533 60320
SA-SIR1P 105801 0
SA-SIR2P 108299 0
SA-SIS2P 3653724 0

V. NUMERICAL RESULTS

Table IV shows the average times calculated for the heuris-
tics in each model. Also the standard deviation and the
perfomance are included. The results for SIR1P and SIR2P
show that the average time for SA is less compared to the
average time for the GA algorithm. Also, in both cases the SA
algorithm had better perfomance. On the third case, GA has
less average time, but its perfomance was almost duplicated
for SA.

Summarizing, the experiment showed that SA has better
qualities than GA to study the optimization problems formu-
lated in this paper. The SA algorithm was shown to be faster
and excellent performance percentages were obtained.

TABLE IV
TIME AND PERFORMANCE OF GA AND SA ALGORITHMS ON THE MODELS.

SIR1P

GA SA

Time
Avg (s) 0.522797 0.319579
SD 0.089870 0.009224

Performance 99.9% 100%

SIR2P

GA SA

Time
Avg (s) 1.255823 0.950631
SD 0.199491 0.011273

Perfomance 78.1% 99.9%

SIS2P

GA SA

Time
Avg (s) 17.294875 23.168199
SD 1.237952 0.268691

Performance 49.4% 99.8%

On the other hand, Figures 6, 7 and 8 show how the number
of the infected individuals changes in each model according
to the best solution and the worse combination for the control
measures. Furthermore, the cost for both combinations is
indicated. The worse case occurs when in all periods of time:

• the proportion of treated people in model SIR1P is taken
equal to zero.
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• the migration rates for the infected individuals in model
SIR2P are taking constant and equal to the rates for
susceptible individuals.

• the dispersion rates (Dx
I and Dy

I ) in the SIS2P model are
constant and take the maximum value, equal to the rates
for susceptible individuals. Furthermore, no individuals
are treated and the infected individuals are not separated
from the susceptible individuals.

The results showed how the optimization process found the
best combination for the control measures, and the experiment
achieved to minimize the number of infected individuals,
together with the minimization of the cost of applying the
measures.
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Fig. 6. Change of the number of infected individuals for the best solution
and the worse case for the model SIR1P.
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Fig. 7. Change of the number of infected individuals for the best solution
and the worse case for the model SIR2P.
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VI. CONCLUDING REMARKS

The experiment showed how the simulated annealing algo-
rithm presented better characteristics to study the optimization

problems formulated in order to minimize the number of
infected individuals and the cost of applying control measures,
when the spreading of an infectious disease is modeled with
the SIR and SIS models, and according to the cost functional
presented in each case.

Furthermore, the study showed how the control measures
are necessary to regulate the spreading of the disease and
to take control over the cost. If control measures are not
applied the number of infected individuals increases and the
cost of taking care of them is higher, compared with any other
scenario.

On the other hand, the parameter fitting made with both
heuristics strengthened the hypothesis concerning how the
performance of a heuristic algorithm depends strongly on the
values assigned to its parameters. In particular, the fitting
process showed that the mutation probability in GA is not
generalizable to all spreading disease models. It was neccesary
to use a high value for the SIR1P model, but smaller values
were used for SIR2P and SIS2P models. Finally, it was clear in
the fitting process that values close to 1.0 are required for the
cooling rate (α) to have good results in the simulated annealing
algorithm.
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