
An Empirical Study of Practitioners’ Perspectives

on Green Software Engineering

Irene Manotas

↵
Christian Bird

�
Rui Zhang

�
David Shepherd

�

Ciera Jaspan

✏
Caitlin Sadowski

✏
Lori Pollock

↵
James Clause

↵

↵
University of Delaware, Newark, DE, USA. {imanotas, pollock, clause}@udel.edu

�
Microsoft Research, Redmond, WA, USA. christian.bird@microsoft.com

�
IBM Research - Almaden, San Jose, CA, USA. ruiz@us.ibm.com

�
ABB Corporate Research, Raleigh, NC, USA. david.shepherd@us.abb.com

✏
Google, Inc., Mountain View, CA, USA. {ciera, supertri}@google.com

ABSTRACT
The energy consumption of software is an increasing concern
as the use of mobile applications, embedded systems, and
data center-based services expands. While research in green
software engineering is correspondingly increasing, little is
known about the current practices and perspectives of soft-
ware engineers in the field. This paper describes the first
empirical study of how practitioners think about energy when
they write requirements, design, construct, test, and main-
tain their software. We report findings from a quantitative,
targeted survey of 464 practitioners from ABB, Google, IBM,
and Microsoft, which was motivated by and supported with
qualitative data from 18 in-depth interviews with Microsoft
employees. The major findings and implications from the
collected data contextualize existing green software engineer-
ing research and suggest directions for researchers aiming to
develop strategies and tools to help practitioners improve
the energy usage of their applications.

Categories and Subject Descriptors
D.2.0 [Software Engineering]: General

Keywords
Green Software Engineering; Empirical Study, Survey

1. INTRODUCTION
The past decade has seen a dramatic shift in the type

of computing devices used by consumers and enterprises.
Whereas in 2010, traditional personal computer (PC) sales
(desktops and laptops) outnumbered other computing plat-
forms, in 2013, roughly 317 million PCs were sold compared
to 206 million tablets and 1.2 billion smart phones [14]. This
shift has not only necessitated the development of applica-
tions that run on mobile and embedded platforms, but also

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’16, May 14 - 22, 2016, Austin, TX, USA

c� 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-3900-1/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2884781.2884810

the development of the data center-based services on which
these mobile applications often depend. As the use of these
applications and services has expanded, so too have concerns
about the amount of energy that they consume.
The research community has not been blind to these

changes and, as a result, green software engineering—the pro-
cess of helping practitioners (architects, developers, testers,
managers, etc.) write more energy e�cient applications—is in-
creasingly targeted as an important problem area by software
engineering researchers. The growing number of publications
in events such as the International Workshop on Green and
Sustainable Software (GREENS) [16],International Work-
shop on Measurement and Metrics for Green and Sustainable
Software (MEGSUS) [37], and the Energy Aware Software-
Engineering and Development Workshop (EASED) [11] as
well as tracks at conferences such as the International Con-
ference on Software Engineering (ICSE) [23] and the Inter-
national Conference on Software Maintenance and Evolution
(ICSME) [24], are examples of the growing and widespread
interest in this research area.

Despite its increasing popularity as a research topic, little
is known about practitioners’ perspectives on green software
engineering. Even basic questions such as “What types of
software commonly have requirements about energy usage?”,
“How does the importance of reducing energy usage compare
to other requirements?”, and “How do developers find and
correct energy usage issues?” do not have clear answers.
Without understanding practitioner’s needs, researchers may
find themselves in a situation where, despite the investment
of significant amounts of time and e↵ort, tools and techniques
designed to make practitioners’ lives easier are underused in
practice (e.g., [3, 25]).

To help inform research in green software engineering, we
have conducted both in-depth interviews of 18 Microsoft
practitioners from a wide range of application domains and
a quantitative, targeted survey of 464 ABB, Google, IBM,
and Microsoft developers and testers. To the best of our
knowledge, the interviews and survey compose the first broad-
based empirical study of practitioners’ perspectives on green
software engineering—how they think about battery life/
energy usage when they write requirements, design, construct,
test, and maintain their software.

The contributions of this paper are:

2016 IEEE/ACM 38th IEEE International Conference on Software Engineering

   237

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 31,2024 at 23:57:01 UTC from IEEE Xplore.  Restrictions apply. 



Data

Conduct Interviews Create/Distribute Survey

Distribute 
3860

Invitations

Create
36 Question 

Survey

464
Respondents

Interview
Guide

18 Participants

Code & Analyze Interviews

Selective
Codes

3 Coders

Interview
Transcripts

Topical
Concordance

Figure 1: The applied research methodology.

• Interviews of 18 professional practitioners from Mi-
crosoft that provide in-depth, qualitative information
about the green software engineering state of practice.

• A survey of 464 developers and testers from ABB,
Google, IBM, and Microsoft that quantitatively assesses
the themes and insights of the interviewees.

• An analysis of the collected data that identifies prac-
titioners’ perspectives on green software engineering
throughout the software development process.

• A discussion that (1) contextualizes the state-of-the-art
in green software engineering research with respect to
the study’s findings, and (2) suggests, for each stage of
the software development process, directions for future
green software engineering research.

2. METHODOLOGY
Figure 1 depicts our research methodology. At a high-

level, it has two main components: interviews and a survey.
Individually, each of these approaches has strengths and lim-
itations; combining them leverages their individual strengths
and reduces their individual weaknesses. Interviews are use-
ful for gathering a wide range of qualitative observations
and insights and for gaining an understanding of the broad
context and environment that the interviewees operate in.
In addition, their interactive nature allows for collecting in-
depth information about participants’ thoughts and opinions.
However, their high costs restrict the number that can be
performed. Conversely, surveys allow for collecting only a
limited amount of data from each respondent. However, their
low costs allow for reaching a large number of respondents
which provides generalizability. Conducting a survey after
performing interviews enables us to quantify and generalize
the results obtained from the interviews over a larger popu-
lation and to quantitatively assess themes that were implied
by the interview participants.

2.1 Interviews
The first step in our methodology was to interview prac-

titioners at Microsoft. These interviews were purely ex-
ploratory and were not intended to provide generalizability.
Rather the goal of this step was to learn about how the par-
ticipants think about energy usage in the context of software
development from a variety of perspectives and domains.

2.1.1 Protocol

We used semi-structured, in-depth interviews based on
an interview guide to enable a detailed exploration of the
participants’ views and experiences using a flexible and re-
sponsive approach [22]. Interviews were audio-recorded at
each participant’s o�ce, with participant permission, and
lasted between 30 to 60 minutes each.

At a high level, the interviews had four main parts. First,
the participant was asked some general demographic ques-
tions. Second, the interviewers asked about the participant’s

views on energy usage. This positioned the participant on
the spectrum of energy usage and allowed the participant
to speak openly about their experiences and opinions about
energy usage while limiting bias from the interviewers. Third,
the interviewers began to converse with the participant by
asking open-ended and clarification questions based on the
second part of the interview. The interactive nature of the
conversations allowed the interviewers to gather detailed
information about the participant’s experiences with tech-
niques, policies, specifications, patterns, contexts, failed and
successful attempts, etc. For example, questions like “Do
you have a baseline platform that you use?” and “What have
you seen teams do today to determine if there are energy
issues with their applications?” were posed to several par-
ticipants. Finally, the interviewers thanked the participant,
explained how their responses would be used, and asked
whether there was anything else they wanted to mention that
was not previously covered.

2.1.2 Participants

We identified an initial group of practitioners through mul-
tiple means including using mailing lists related to energy
use, querying the employee database with energy-related
keywords, and communicating with product group managers
to find employees that deal with energy. We included practi-
tioners who appeared to have experience with green software
engineering from areas such as mobile application develop-
ment and server-side infrastructure. Because our goal was to
learn about as many perspectives as possible, we ensured that
the participants came from a range of projects and platforms
and had various roles and levels of seniority. Such a selection
strategy is called Maximum Variation Sampling [45] and is
appropriate, as in this case, when a sample may be limited
and “the goal is not to build a random and generalizable
sample, but rather to try to represent a range of experiences
related to what one is studying.”
The initial group of participants was expanded using the

snowball process—participants were added based on recom-
mendations from current participants—until the data satura-
tion point was reached [4]. That is, once new interviews yield
no additional information, further interviews will yield only
marginal (if any) value [17]. Using the snowball process al-
lowed us to access the hidden population of experienced green
software practitioners—practitioners who we would otherwise
be unable to identify—without incurring prohibitive costs.
In total, we interviewed 18 participants, a number similar to
those used in related work (e.g., [25, 28]).

2.1.3 Data Analysis

We used open, axial, and selective coding to qualitatively
analyze the data obtained from the interviews [15, 55]. A pro-
fessional transcription service transcribed the audio record-
ings and divided them into 355 segments based on distinct
conversation topics. We used open coding to summarize each

238

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 31,2024 at 23:57:01 UTC from IEEE Xplore.  Restrictions apply. 



segment. Then we used axial coding to establish relationships
among the summaries. Finally, we used selective coding to
identify core ideas that were expressed throughout the inter-
views. We defined two categories of selective codes: the first
contains codes that roughly correspond to Chapters 2–6 in
the Software Engineering Body of Knowledge (SWEBOK) [6]
and the second contains codes that indicate the type of in-
formation provided by the participants (e.g., goals, opinions,
etc.). Finally, we coded each segment using the selective
codes. Because of the large number of segments, we required
that each segment was assigned at least one code from each
category. If none of the codes from a category was appro-
priate, a special “no code” code was assigned. Forcing the
assignment of at least one code eliminated the possibility
that coders accidentally skipped a segment. As a result of
the coding process, we created a topical concordance that
shows, for each code, the relevant portions of the transcripts.

2.2 Survey
The second step in our methodology was to survey prac-

titioners. While the interviews were exploratory, the goal
of this step was to quantitatively assess, over a large and
representative population, the qualitative information that
we learned from the interviewees.

2.2.1 Protocol

We used Kitchenham and Pfleeger’s guidelines for personal
opinion surveys [27] and the results from coding the inter-
views to write 155 candidate statements. Each statement
asks the survey respondent to either (1) rate their agreement
with the statement on a 5-point Likert scale from Strongly
Disagree to Strongly Agree, or (2) indicate, on a 5-point
Likert scale from Never to Almost Always, how frequently
the event described by the statement occurs. We then con-
densed the initial set of statements by removing statements
that were redundant, ambiguous, or di�cult for respondents
to self-assess while ensuring that statements derived from
each selective code were represented in the final list. This
process reduced the set of candidate statements to 36 final
statements, which we believed would keep the survey under
our target of 15 minutes. Abbreviated versions of the final
36 statements are shown in Figures 2 to 7 and a complete
copy is available online.1 In addition, we asked free response
follow up questions for areas of particular interest when the
response to a question indicated the respondent may have
insight or evidence to share. For example, if a respondent
indicated that their applications have energy usage goals or
requirements, we asked them to provide an example.

2.2.2 Participants

We primarily recruited developers and testers as survey
respondents because the statements we created reflected
practices and concerns related to their work. Within each
company, we recruited developers and testers who worked
on applications for either mobile devices, data centers, em-
bedded systems, or traditional PCs. To reach these groups,
we selected employees based on their position in their com-
pany’s organizational chart. In total, we sent invitations to
3,860 employees, 700 from ABB, 1,500 from Google, 160 from
IBM, and 1,500 from Microsoft. The survey was anonymous,
though we did ask respondents to provide their contact infor-
mation if they were willing to let us follow up with them. At
1
https://surveys.research.microsoft.com/s3/DeveloperEnergySurvey

Microsoft, we o↵ered a drawing for two $50 gift cards as this
has been shown to improve participation at Microsoft in the
past [54]. The overall response rate is 12% (464 responses)
with per-company rates of 9% for ABB (62 responses), 9%
for Google (134 responses), 13% for IBM (21 responses), and
16% for Microsoft (247 responses). Other online surveys in
software engineering research have reported similar rates [47].

2.3 Threats to Validity
In our interviews and survey, we avoided practitioners

with no interest in energy. Thus, we may be overestimating
the importance of the area as a whole. However, we were
not interested in contrasting experienced and inexperienced
practitioners; instead we preferred to gain insights from
experienced green software engineering practitioners.

Due to the costs of interviewing practitioners, we contacted
potential interviewees and provided them with a brief outline
of the goals of our study. Knowing the high-level goals of
the study allowed practitioners to assess whether they can
provide useful information. However, because they were
aware of the goals of the study, they may have provided
information based on what they thought we wanted to know
(hypothesis guessing) or they may have withheld information
or opinions that they thought would be unpopular (evaluation
apprehension) [57]. We reduced these threats by guiding the
interview process and assuring the participants that their
answers would be anonymized.

The fact that one of the interviewers was not a Microsoft
employee may have led to participants withholding informa-
tion. We addressed this threat by ensuring that at least one
interviewer was employed by Microsoft and clearly stating
that all relevant non-disclosure agreements had been signed.
Our interview participants were partially identified using

the snowball process. One potential disadvantage of this
recruitment strategy is that it may su↵er from community
bias (the potential for the first participants to impact the
sample) [2]. The best defense against this is to begin with
a group that is as diverse as possible [38]. Because we
contacted our initial group of participants through multiple
means (see Section 2.1.2), they show diversity by spanning
organizational, product, and physical boundaries.

Our survey participants are drawn wholly from the popula-
tions of ABB, Google, IBM, and Microsoft. As a result, our
findings may not be representative of the opinions and experi-
ences of all practitioners. However, each of these companies is
diverse and develops a myriad of products in various domains
that run on a spectrum of platforms. In addition, we pur-
posely targeted respondents from di↵erent areas and teams
to increase heterogeneity and maximize generalizability.
We took care when creating our survey to address well-

known design pitfalls [27]. In addition, we piloted the survey
with a small initial set of practitioners and solicited sugges-
tions on how to improve the survey. Based on their answers,
we improved the survey before it was distributed, for example,
by removing potential sources of ambiguity.
When conducting surveys through invitation, avoiding

the self-selection principle is di�cult [53]. Consequently,
practitioners with responsibilities related to energy usage
may see more benefit from contributing than others. Since
we are primarily concerned with the perspectives of green
software engineers, this is unlikely to represent a threat.

239

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 31,2024 at 23:57:01 UTC from IEEE Xplore.  Restrictions apply. 



62%

73%

64%

38%

60%

24%

14%

26%

43%

24%

15%

13%

11%

20%

16%

My applications have requirements about energy usage. (S1)

Data Center

Embedded

Traditional

Mobile

All

Response Never Rarely Sometimes Often Almost Always

Figure 2: Responses to Statement S1 from all re-
spondents and respondents who indicated that they
are experienced in each domain.

3. FINDINGS
This section presents our findings from analyzing the data

collected from both the interviews and the survey. Due to
confidentiality requirements, we present only anonymized,
aggregate information. At a high-level, we are interested
in answering two main research questions. First, in what
domains energy usage is of concern to practitioners? Sec-
ond, when energy usage is of concern, what are experienced
practitioners’ perspectives on green software engineering?

To answer the first question, we considered the responses
of all survey respondents. To answer the second research
question, we focused on the responses of experienced prac-
titioners, the 176 survey respondents (40%) who indicated
that their projects have energy usage requirements: Some-
times, Often, or Almost Always (see Section 3.1). Because
we are interested in the perspectives of practitioners who
have experience in green software engineering, including the
responses of practitioners who are inexperienced would ob-
scure the data of interest. The quotations presented in this
section are taken from both interview transcripts and survey
responses.

3.1 Where is Energy Usage a Concern?
To understand in what domains energy usage is of con-

cern to practitioners, we first asked respondents how fre-
quently they write code for applications that run on mobile
devices, traditional PCs, data centers, and embedded plat-
forms. Based on their responses, we consider a participant
to be experienced in a domain if they write code for that
domain Sometimes, Often, or Almost Always.
Next we asked respondents how frequently their applica-

tions have requirements about energy usage. Figure 2 shows
a summary of the responses we received. The top of the
figure shows the statement that was presented to participants
followed by a label that we use to refer to the statement. The
left-hand side of the figure shows di↵erent groups: All con-
tains the responses of all 464 respondents; Mobile contains
the responses of the 241 experienced mobile respondents;
Traditional contains the responses of the 328 experienced
traditional respondents; Embedded contains the responses
of the 47 experienced embedded systems respondents; and
Data Center contains the responses of the 255 experienced
data center respondents. The body shows stacked bar charts
summarizing the proportion of respondents that chose, from
left to right, Never, Rarely, Sometimes, Often, and Almost
Always. The numeric percentages in the figure indicate the
percentage of respondents that chose Never or Rarely (left),
Sometimes (center), and Often or Almost Always (right).

For example, for the All group 62% of respondents answered
either Never or Rarely, 15% answered Sometimes, and 24%
answered Often or Almost Always.

Based on our interviews, we initially theorized that practi-
tioners with experience in mobile (“battery life is very impor-
tant, especially in mobile devices”), data center (“any watt
that we can save is either a watt we don’t have to pay for,
or it’s a watt that we can send to another server”), and em-
bedded (“maximum power usage is limited so energy has a
big influence on not only hardware but also software”) would
more often have requirements or goals about energy usage
than traditional practitioners (“we always have access to
power, so energy isn’t the highest priority”). However, the
results from the survey only partially support this belief.

Experienced mobile practitioners frequently have re-
quirements or goals about energy usage. As Figure
2 shows, our belief that mobile practitioners have goals or
requirements about energy usage most often was confirmed
by the survey: 63% of experienced mobile practitioners re-
sponded that they have such requirements Sometimes, Often,
or Almost Always.

Experienced traditional practitioners have require-
ments or goals about energy usage more often than
expected. While we thought that Traditional projects
would be by far the least likely to have energy requirements
or goals, 40% of experienced traditional practitioners indi-
cated that they have energy requirements or goals Sometimes,
Often, or Almost Always. One possible explanation for this
finding is that there is overlap between experienced mobile
developers and experienced traditional developers. More
specifically, 58% of the respondents in the Traditional group
(189 out of 328) have experience writing code for mobile
devices (i.e., they indicated that they write code for mobile
devices Sometimes, Often, or Almost Always). Because we
asked about the frequency of energy requirements or goals
for the respondent’s applications in general, rather than for
each domain, this level of mobile experience is likely shift-
ing the range of responses to the more-frequent end of the
spectrum. In future work, we plan to revisit this question by
collecting more targeted data. Another possible explanation
is that some traditional products also run on devices where
battery-life is a concern (e.g., laptops).

Experienced embedded and experienced data cen-
ter practitioners rarely have requirements or goals
about energy usage. While we expected embedded and
data center products to frequently have goals or requirements
about energy usage, only 37% of embedded respondents and
27% of data center respondents indicated that they have such
requirements more frequently than Rarely. Moreover these
responses are also likely shifted towards the more-frequent
end of the spectrum: 52% of embedded respondents (25
out of 48) and 37% of data center respondents (95 out of
255) indicated that they also write code for mobile devices
Sometimes, Often, or Almost Always.
For the data center group, the survey responses do not

necessarily contradict our interview participants. Our inter-
view participants were primarily responsible for the physical
aspects of the data centers (e.g., computers, routers, power,
cooling, etc.) while our survey primarily targeted the em-
ployees who are responsible for the services that run on the
data centers. This di↵erence suggests that while there are
power and energy usage concerns at the lower levels, these

240

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 31,2024 at 23:57:01 UTC from IEEE Xplore.  Restrictions apply. 



20% 33%47%I'm willing to sacrifice performance, usability, etc. for reduced energy usage. (S2)

Response Never Rarely Sometimes Often Almost Always

Figure 3: Requirements-related statement and responses from experienced practitioners.

concerns are not influencing the requirements and goals of
the applications and services that run on the data centers.
Both sides seem to agree on the cause of this disparity. One
program manager summarized it as follows:

Our main concern is marketshare and that means
user experience is a priority. We can be more
e�cient to try to cut costs, but since we don’t
charge by energy used this doesn’t make us more
attractive to users. So we tend to focus on other
things like performance or reliability.

For the embedded group, we found several reasons why
practitioners do not have requirements or goals about energy
usage. First, many embedded products are not battery-
powered (e.g., “In our embedded systems, we always have
access to power so energy is not a concern.”). Second, many
practitioners are concerned with the overall energy usage of
their systems but rely on the hardware, not the software,
to reduce energy usage. Finally, satisfying other metrics is
more important than reducing energy usage (e.g., “Ensuring
the deterministic, real-time behaviour of our embedded device
is more important than saving energy.”).

3.2 Perspectives on Requirements
Our survey statements concerning requirements focused

on whether practitioners have experience with energy usage
requirements (see Section 3.1), what typical energy usage
requirements look like, and how often practitioners make
tradeo↵s between other features and energy usage.

Energy requirements are more often desires rather
than specific targets. In addition to their Likert responses
to Statement S1, we also asked experienced practitioners to
provide an example of an energy requirement or goal. The
majority of the provided examples are what we consider
desires rather than detailed requirements. For example, one
respondent said that they have “no specific goals for energy
usage, just ‘don’t be bad’.” Another respondent indicated that
“considerations on background tasks as well as things that use
the radios in phones are always in the back of my mind”and a
third stated that, “the goal is to accomplish something without
making the user annoyed about battery drain.” Although
desires are more common, detailed requirements do exist in
some cases. A interesting example is: “turn-by-turn guided
navigation should not drain more battery than a car can
charge.” In addition, a few respondents indicated that they
have had requirements similar to“perform[ing] [user scenario]
should not use more than X mA” or “under normal usage, a
device with an X Wh battery should last for Y hours.”

Energy-usage requirements are often stated in terms
other than energy usage. It is also interesting to note
that many of the example goals and requirements are ex-
pressed in terms of things other than battery life or energy
usage. We believe that this is likely due to the lack of tool
support for measuring energy usage (see Section 3.5). As
a result, requirements are often written in terms of more
easily captured metrics that practitioners believe correlate
with energy usage. In some cases, these are traditional per-
formance metrics. As one respondent stated: “I don’t usually
think about battery life directly. Often I consider running

time [. . .] and that ‘seems’ to suggest battery life.” In other
cases, they are countable events (e.g., “We tried to optimize
for when/how often we wake up the radio.”). It is interesting
to note that some practitioners are aware that such proxy
measures may not be accurate:

Most people think power savings = CPU reduction.
This is somewhat true in a broad sense, but is only
a small part of the picture. The problem is that
it’s easy to measure CPU utilization (and hence
reduction), but it’s very hard to translate any of
this to actual power savings. Many people have
spent a lot of time that ultimately had no benefit.

Unfortunately, this misconception is common and is an ex-
ample of the levels of uncertainty that even experienced
practitioners have (see Sections 3.3 and 3.4). Finally, there
are requirements and goals that are defined in terms of previ-
ous or alternate versions, or as one respondent expressed it,
“‘not worse than’ kinds of requirements” (e.g., “New feature
additions or architecture changes shouldn’t regress battery
life.” and “I had a requirement that energy usage in our
primary scenario be comparable to the legacy solution.”).

Energy-usage requirements focus on “idle time.” A
common theme in our interviews and survey responses was
the importance of reducing energy usage when a user is not
interacting with their device. As one participant stated:

We’re trying to prioritize idle battery consump-
tion down to zero. Being active is going to drain
the battery. But the thing that’s going to piss
people o↵, is if I wasn’t using it and my battery is
dead so that’s where we want to focus our e↵orts.

In fact, one participant was so focused on idle time that they
were surprised by the suggestion that non-idle time portions
of an execution should also be optimized: “I haven’t thought
about that, actually, when an app is in the foreground and
we’re trying to still save battery in some way.”

Practitioners are often willing to sacrifice other re-
quirements for reduced energy usage. Figure 3 shows,
in the same format at Figure 2, a summary of experienced
practitioners’ responses when asked how frequently they
are willing to make tradeo↵s between other requirements
and energy usage. As the figure shows, respondents are
overwhelmingly willing to make sacrifices to improve energy
usage (80% of respondents answered Sometimes, Often, or
Almost Always). As several respondents stated: “There is
always a tradeo↵ between battery life vs performance/feature”
and “the entire experience was a series of compromises be-
tween what designers wanted and [. . .] battery concerns.” In
fact, only 5 respondents answered that they Never make such
compromises.

3.3 Perspectives on Design
Our survey statements concerning design focused on how

energy concerns impact di↵erent aspects of the design pro-
cess, including the contexts that practitioners consider when
assessing energy usage and the extent to which they believe
there exist general patterns that lead to reduced energy us-
age and anti-patterns that lead to increased energy usage.

241

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 31,2024 at 23:57:01 UTC from IEEE Xplore.  Restrictions apply. 



8%

21%

15%

19%

30%

39%

35%

52%

69%

54%

51%

47%

45%

30%

26%

16%

23%

25%

34%

34%

24%

31%

39%

31%

3%

9%

65%

55%

32%

36%

When evaluating energy usage, I consider other applications. (S4d)

When evaluating energy usage, I consider the hardware. (S4c)

When evaluating energy usage, I consider my application's environment. (S4b)

When evaluating energy usage, I consider usage scenarios. (S4a)

Energy usage concerns impact the design of the entire application. (S3d)

Energy usage concerns impact the design of interactions. (S3c)

Energy usage concerns impact the design of individual modules. (S3b)

Energy usage concerns impact the design of individual classes. (S3a)

There are general techniques that lead to poor energy usage. (S6)

There are general techniques that lead to good energy usage. (S5)

Response Never Rarely Sometimes Often Almost Always

Response Strongly Disagree Disagree Undecided Agree Strongly Agree

Figure 4: Design-related statements and responses from experienced practitioners.

20% 45%35%

0%

0%

1%

2%

1%

9%

10%

13%

19%

98%

94%

91%

91%

86%

70%

69%

66%

30%

2%

6%

8%

7%

13%

21%

21%

21%

51%

Energy usage concerns influence how I write new code. (S8)

Good energy usage should be the responsibility of hardware. (S10d)

Good energy usage should be the responsibility of operating system. (S10c)

Good energy usage should be the responsibility of libraries. (S10b)

Good energy usage should be the responsibility of applications. (S10a)

I could learn how to improve energy usage by reading documentation. (S9d)

I could learn how to improve energy usage by looking at other code. (S9c)

I could learn how to improve energy usage by talking to other developers. (S9b)

I could learn how to improve energy usage by using tools. (S9a)

I have accurate intuitions about the energy usage of my code. (S7)

Response Never Rarely Sometimes Often Almost Always

Response Strongly Disagree Disagree Undecided Agree Strongly Agree

Figure 5: Construction-related statements and responses from experienced practitioners.

Figure 4 shows the results we collected for these statements
using the same stacked bar format as earlier figures.

Concerns about energy usage impact how applica-
tions are designed. Based on our interviews, we believed
that application design would be heavily influenced by energy
concerns. As one participant stated: “It’s not a bug fix to
get power e�ciency. It’s a design change.” The data for
Statements S3a–S3d indicate that this sentiment is widely
held; energy usage concerns frequently impact the design
of individual classes, individual modules, interactions, and
entire applications. Moreover, with the exception of individ-
ual classes, more than 50% of respondents indicated that
such impacts occur Sometimes, Often, or Almost Always.
Interestingly, although individual classes are impacted less
often, many practitioners believe that e�cient algorithms,
which are presumably implemented in a single class, are an
e↵ective way to reduce energy usage (see the discussion of
patterns and anti-patterns below).

High-level designs are impacted by energy usage con-
cerns more frequently than low-level designs. The

responses for Statements S3a–S3d also show that 85% and
81% of respondents indicated that Sometimes, Often, or
Almost Always, concerns about energy usage impact the
design of interactions and entire applications, respectively.
Conversely, only 47% and 65% of respondents indicated that
concerns about energy usage impact the design of classes and
modules Sometimes, Often, or Almost Always, respectively.

Practitioners consider usage scenarios most often
when evaluating energy usage. The responses for State-
ments S4a–S4d show that 92% of respondents consider usage
scenarios when evaluating energy usage Sometimes, Often,
or Almost Always. Moreover, only 4 respondents indicated
that they Never consider user scenarios when evaluating en-
ergy usage. The application’s environment is the next most
frequently considered context (79% of respondents answered
Sometimes, Often, or Almost Always), with hardware close
behind (69% of respondents answered Sometimes, Often, or
Almost Always). These responses agree with our interviews.
As one participant indicated, they have “started looking at
telemetry more” in order to “figure out more realistic goals”

242

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 31,2024 at 23:57:01 UTC from IEEE Xplore.  Restrictions apply. 



and that“there’s a lot of other situations where we’ve tweaked
little things here and there based on telemetry.”

Practitioners consider other applications least often
when evaluating energy usage. Unlike for Statements
S4a–S4c, in response to Statement S4d, more respondents
indicated that they considered other applications Never or
Rarely (39%) than Often or Almost Always (30%). In total,
61% of respondents indicated that, when evaluating energy
usage, they consider other applications Sometimes, Often, or
Almost Always. This suggests that practitioners may believe
that interactions between applications are unlikely to impact
energy usage or that such interactions are too numerous or
di�cult to consider.

Practitioners believe general patterns that lead to
good or bad energy usage exist. The majority of re-
spondents agree that there are general techniques that both
lead to good energy usage (Statement S5, 55% of respondents
Agree or Strongly Agree while only 9% Strongly Disagree
or Disagree) and bad energy usage (Statement S6, 65% of
respondents Agree or Strongly Agree while only 3% Strongly
Disagree or Disagree). However, it is interesting to note
that in both cases, there is a relatively large proportion
of respondents who are Undecided (36% and 32%, respec-
tively), which indicates that even experienced practitioners
are unsure about whether such patterns exist.

To gain more information about the kinds of (anti-)patterns
that practitioners believe exist, we asked respondents who
responded with Agree or Strongly Agree to provide an ex-
ample of such patterns. In general, each list of answers is
the inverse of the other (e.g., for good energy usage do X;
not doing X leads to poor energy usage). However, their
responses show the complex tradeo↵s that practitioners must
make. For example, one participant stated that “o✏oading
computation to the cloud”, which requires using the radio to
send and receive messages, is an e↵ective method for reducing
energy usage, while other participants noted that “decreased
radio use increases battery life.” These tradeo↵s mean that
practitioners cannot blindly adhere to a set of rules, but must
deeply understand the tradeo↵s of the operations they are
performing. Overall, the most frequently mentioned tech-
niques for improving energy usage are: using an event-driven
architecture instead of polling, coalescing timers, and using
e�cient algorithms. All of these techniques allow applica-
tions to achieve longer periods of inactivity, which matches
the requirements-level focus on optimizing idle time energy
usage and the design-level focus on optimizing interactions
and entire applications.

3.4 Perspectives on Construction
Our survey statements concerning construction focused on

learning whether energy concerns influence how new code
is written, if practitioners believe that they have accurate
intuitions about energy usage, how they would like to learn
how to improve energy usage, and who they feel should be
responsible for energy usage. Figure 5 shows the results we
collected for these statements using the same stacked bar
format as earlier figures.

Energy concerns influence how practitioners write
new code. The responses for Statement S8, show that 80%
of respondents consider energy concerns when they write
new code Sometimes, Often or Almost Always. This result is
the opposite of what we expected from our interviews where

one participant said that “Only when meeting performance
goals becomes egregious in terms of power, then we negotiate
a compromise that balances [. . .] performance and power
consumption.” Practitioners seem to take energy require-
ments and goals into consideration immediately, rather than
waiting until energy issues are identified.

Practitioners believe that they do not have accurate
intuitions about the energy usage of their code. The
responses for Statement S7 indicate that, while 30% of re-
spondents believe that they have accurate intuitions about
the energy e�ciency of their code, the majority either dis-
agree (19%) or are undecided (51%). This result matches
our interview data. As one participant stated: “I care about
memory usage, CPU usage, like I understand those. [. . .] I
don’t have the same intuition about energy.” This result also
further enforces our overall perception that, while practition-
ers have energy requirements, they lack the same level of
expertise that they have with other types of requirements.

Practitioners believe that they could learn how to
improve energy e�ciency in many ways. The responses
for Statements S9a–S9d show that practitioners are eager to
learn how to improve the energy e�ciency of their code in
any way that they can. As one participant stated: “I would
love to have more education [. . .] for designing and investi-
gating battery lifetime! Anything to help raise awareness and
break through attitude barriers.” Among the options that we
specifically asked about, participants state they could learn
from other developers (86% of respondents answered Agree
or Strongly Agree while only 1% answered Strongly Disagree
or Disagree) and feel that using tools, looking at other code,
and reading documentation would be roughly equivalent in
e↵ectiveness (66% to 70% of respondents answered Agree or
Strongly Agree for each option while 9% to 13% answered
Strongly Disagree or Disagree).

Energy usage should be a shared responsibility. The
responses for our final four statements, Statements S10a–
S10d, show that respondents strongly believe that energy
usage is a responsibility that is shared among applications, li-
braries, operating systems, and hardware. As one respondent
stated: “we are all in the same boat.” Only 2% of respon-
dents Strongly Disagree or Disagree that applications have
a responsibility for good battery life, and the percentage of
respondents that Strongly Disagree or Disagree for the other
elements is even lower. In fact, zero respondents Strongly
Disagree or Disagree that operating systems and hardware
should be responsible for good battery life.

3.5 Perspectives on Finding and Fixing Issues
Our survey statements concerning finding and fixing energy

issues focused on learning how practitioners currently learn
about energy usage issues (problems or defects related to
energy use), how they would prefer to learn about those
issues, how frequently energy issues to occur, and how di�cult
energy issues are to discover, diagnose, and fix. Figure 6
shows the results we collected for these statements using the
same stacked bar format as earlier figures.

Practitioners currently learn about energy issues pri-
marily from profiling and user feedback. The responses
for Statements S11a–S11b, show that practitioners currently
learn about energy issues in their applications in a variety
of ways. With 72% of respondents answering Sometimes,
Often, or Almost Always, the most common way they learn

243

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 31,2024 at 23:57:01 UTC from IEEE Xplore.  Restrictions apply. 



4%

7%

28%

32%

32%

59%

76%

69%

45%

42%

39%

19%

20%

24%

27%

26%

30%

22%

13%

15%

20%

42%

61%

55%

32%

18%

26%

30%

48%

40%

I want to learn about energy issues from user feedback. (S12c)

I want to learn about energy issues from profiling. (S12b)

I want to learn about energy issues from static analysis. (S12a)

I learn about energy issues from user feedback. (S11c)

I learn about energy issues from profiling. (S11b)

I learn about energy issues from static analysis. (S11a)

Energy issues are more difficult to fix than other performance issues. (S13d)

Energy issues are more difficult to diagnose than other performance issues. (S13c)

Energy issues are more difficult to discover than other performance issues. (S13b)

Energy issues occur more frequently than other performance issues. (S13a)

Response Never Rarely Sometimes Often Almost Always

Response Strongly Disagree Disagree Undecided Agree Strongly Agree

Figure 6: Finding and fixing issues-related statements and responses from experienced practitioners.

51%

50%

61%

50%

19%

16%

12%

11%

30%

35%

27%

39%

During code review or other discussions, energy usage is mentioned. (S17)

I investigate how the changes I make impact energy usage. (S16)

Documentation about changes made to improve energy usage exists. (S15)

When modifying code, I make changes I think will improve energy usage. (S14)

Response Never Rarely Sometimes Often Almost Always

Figure 7: Maintenance-related statements and responses from experienced practitioners.

about such issues is by profiling performance metrics and
counters (e.g., CPU usage). User feedback is a close second
with 69% of respondents answering Sometimes, Often, or
Almost Always. While the frequency that practitioners learn
about energy issues from profiling and user feedback was
expected, the high number of respondents (41%) that indi-
cated that they learn about energy issues from static analysis
Sometimes, Often, or Almost Always was surprising. In our
interviews, few participants were aware of static analysis
tools for detecting energy issues.
To learn more about the static analysis tools that these

practitioners are using, we emailed the respondents who an-
swered Sometimes, Often, or Almost Always to Statement
S11a. We found that practitioners were using static analysis
tools that do not identify energy issues directly, but rather
look for code patterns (e.g., spawning lots of threads, polling
frequently, bad data structures) that lead to bad CPU per-
formance. Here the practitioners are proceeding under the
assumption that such metrics correlate with energy usage
that we reported when discussing practitioners’ perspectives
on requirements (see Section 3.2).

Practitioners want to learn about energy issues most
frequently from profiling and static analysis. While
static analysis is currently the least used technique for learn-
ing about energy usage issues, 93% of respondents indicated
that they would Sometimes, Often, or Almost Always like it
to be e↵ective (Statement S12a). However, although many
respondents are enthusiastic—“Having static analysis to point
out deficiencies of e�ciency would be awesome”—some are
skeptical about its feasibility—“Good luck getting static anal-
ysis to work on this.” The ability to detect energy issues
via profiling is also highly desired with 96% of respondents

indicating that they would Sometimes, Often, or Almost
Always like it to be e↵ective (Statement S12b). Finally, de-
spite the fact that user feedback is currently one of the most
commonly used approaches, practitioners are least enthu-
siastic about it. Although they would rather learn about
issues than have them go undetected (68% of respondents
answered Sometimes, Often, or Almost Always), it appears
they would prefer to learn about such issues earlier in the
development process, before users are impacted.

Practitioners are unsure, but suspect that energy is-
sues do not occur more frequently than other perfor-
mance issues. The responses for Statement S13a indicate
that, while 42% of respondents Strongly Disagree or Disagree
with the statement, nearly as many (40%) are Undecided
about whether energy issues occur more frequently than
other types of performance issues. It is possible that this
perception is true, however it may also be a reflection of the
fact that there are few tools capable of detecting such issues
and only the most egregious problems are reported by users.

Practitioners believe that energy issues are more dif-
ficult to discover and diagnose than other perfor-
mance issues. The responses to Statements S13b and S13c
indicate that respondents believe that energy issues are more
di�cult to discover than performance issues (61% of respon-
dents answered Agree or Strongly Agree) and more di�cult
to diagnose than performance issues (55% of respondents
answered Agree or Strongly Agree). When asked to explain
why they have these beliefs, respondents provided a wide
range of answers. Many of them feel that energy issues are
more di�cult to discover because “current test suites are
not equipped for them,” they are “not sure what tools exist
to discover such issues,” and “performance issues are very

244

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 31,2024 at 23:57:01 UTC from IEEE Xplore.  Restrictions apply. 



obvious—the application is slow, frozen, etc.—but battery
drain is a slower change and is not as immediately notice-
able.” Similarly, many respondents felt that energy issues are
di�cult to diagnose because there are “too many variables
that a↵ect power”, “the [observable] problem is far removed
from the source”, and energy issues “are most often emergent
behaviors arising from complex interactions between many
subsystems rather than found in one subsystem.”

Practitioners are undecided about whether energy
issues are more di�cult to fix than performance is-
sues. The responses for Statement S13d indicate that the
majority of respondents (48%) are Undecided about whether
energy issues are more di�cult to fix than performance issues.
Again this might be true, or it might be because practition-
ers have not fixed enough energy issues to form an overall
impression of their di�culty. The respondents who agreed
that energy issues are more di�cult to fix primarily felt this
way because if “it was not considered from the start, improv-
ing battery life or energy usage could require large changes”
or could “require some high level re-design.” These reasons
match our observations in Section 3.3 that energy concerns
most often impact high-level designs. Respondents also felt
that in many cases fixes are di�cult because the problem is
outside of their control (e.g., “Dependencies on libraries [. . .]
that are inherently ine�cient can make battery life issues
hard to improve.” and “Problems don’t always reside in the
app code. The hardware often doesn’t support polling, idle,
or other modern commands to minimize energy usage.”).

3.6 Perspectives on Maintenance
Our survey statements concerning maintenance focused on

learning how practitioners take energy concerns into consider-
ation when making changes, and documenting and reviewing
code. Figure 7 shows the results we collected for these state-
ments using the same stacked bar format as earlier figures.

Energy concerns are largely ignored during mainte-
nance. The responses for Statements S14–S17 indicate that
participants are the least concerned with energy when per-
forming maintenance activities. For each statement, the
largest number of respondents answered Never or Rarely.
The lack of tool support that we identified in Section 3.5
likely explains why respondents do not investigate the im-
pacts of the changes that they make. It is less clear how-
ever, why respondents are not creating documentation or
discussing energy with other developers, when they feel that
these would be e↵ective ways of learning how to improve the
energy e�ciency of their code (see Section 3.4).

4. RELATED WORK
Pang et al. have also studied green software engineering

practitioners perspectives on Construction [43]. Compared
to their work, our study is broader in several ways: (1) We
considered four additional phases of the development cycle
that led to unique observations for the Requirements, Design,
Finding and Fixing Issues and Maintenance phases, (2) The
participants of our study include data center and embedded
practitioners in addition to mobile and desktop practitioners,
and (3) We interviewed more practitioners and collected a
larger number of survey responses. As a result, our data
reflects the perspectives of a larger group and provides more
evidence that the results are representative.

Beyond studying green software engineering practitioners
directly, there is work that shares our desire to understand
practitioners’ perspectives on various aspects of the software
development process and suggest areas for future research.
One set of work examines the adoption of tools for specific
development tasks. For example, Johnson et al. analyzed the
reasons why software engineers do not use static analysis tools
for automatic code inspections [25]; and Cherubini et al. in-
vestigated how developers use drawings to represent code [8].
Other researchers have examined particular development ac-
tivities. For example, de Souza and Redmiles proposed an
analytical framework about developers’ strategies to handle
the e↵ect of software dependencies and changes [10]; Dage-
nais et al. studied and characterized project landscapes for
newcomer developers [9]; and Murphy-Hill et al. analyzed
the di↵erences between video game development and other
software development [39].
In the area of green software engineering, empirical stud-

ies about the causes of energy usage have been performed
for mobile (e.g., [29, 32, 44, 46]), desktop (e.g., [20, 26, 49–
51]) and server applications (e.g., [7, 35]). There is also
research focused on both developing tools to help develop-
ers examine/improve the energy usage of their applications
(e.g., [5, 18, 19, 21, 36, 56]), and on models to support the
green software development process [1, 41]. Additional in-
formation about such existing work is provided in Section 5
where we discuss state-of-the-art green software engineering
research in the context of our study’s findings.

5. CONCLUSIONS AND IMPLICATIONS
Based on our findings, our overall conclusions are that

green software engineering practitioners care and
think about energy when they build applications;
however, they are not as successful as they could
be because they lack the necessary information and
support infrastructure. In the remainder of this section
we (1) contextualize the state-of-the-art in green software
engineering research with respect to the study’s findings,
and (2) suggest directions for researchers aiming to develop
strategies and tools to help practitioners improve the energy
usage of their applications by addressing practitioners’ lack
of information and support infrastructure.

5.1 Implications for Requirements
The findings that “energy-usage requirements are often

stated in terms other than energy usage” and “energy us-
age requirements are more often desires rather than specific
targets” suggests that energy requirements are di�cult to
specify directly. Existing work on eliciting quality or “just
in time” requirements (e.g., [12, 13]) may serve as a starting
point. A potential hurdle to extending such work is the lack
of an easily understood energy metric. Providing easy to use
energy measurement tools may help in this situation, but
the concept of a joule is likely to remain too abstract. An
approach proposed by Zhang et al. supports “not worse than”
requirements by advocating the use of benchmark scenarios
to compare energy usage between alternatives. A strength of
this approach is its focus on scenarios, which practitioners are
already considering (see Section 3.3). However, it requires
portable benchmarks and alternative implementations, which
may be unavailable. Requirements elicitation strate-
gies would be more useful if they helped practition-

245

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 31,2024 at 23:57:01 UTC from IEEE Xplore.  Restrictions apply. 



ers easily understand and express how much energy
usage is reasonable for a given task.

The finding that “experienced practitioners are often will-
ing to sacrifice other requirements for reduced energy usage”
motivates the development of techniques and tools for ex-
ploring potential tradeo↵s between energy usage and other
non-functional requirements. Again, existing work in the area
of trade-o↵ analysis may provide a starting point [58], but no
one has investigated whether such approaches are suitable for
energy usage requirements. Techniques for quantifying
how changes in energy usage impact other quality
requirements such as performance would help prac-
titioners make intelligent trade-o↵ decisions.

5.2 Implications for Design
The finding that “practitioners consider usage scenarios

most often when evaluating energy usage” is promising.
It suggests that the large body of scenario-based research
(e.g., [40, 48]) is applicable when designing energy-e�cient
software. The focus on scenarios also suggests that some
scenarios are more sensitive to energy e�ciency than oth-
ers. Tools and techniques will be more valuable to
practitioners if they are scenario-aware.
The findings that “practitioners believe general patterns

that lead to good or bad energy usage exist” and “high-level
designs are impacted by energy usage concerns more fre-
quently than low-level designs” motivates empirical studies
of the impacts of such patterns. While there has been a
significant amount of work in understanding how changes
made by developers impact energy usage (e.g., [29, 32, 35, 44,
46, 50, 51]), the considered changes have been at a lower level
than the (anti-)patterns suggested by the practitioners. The
few studies that have considered higher-level decisions (e.g.,
design patterns [49], web servers [35]) are preliminary and
limited in scope. Studies that evaluate whether prac-
titioners’ beliefs are correct and provide context to
help decision making can have an impact on design.

5.3 Implications for Construction
The finding that “energy concerns influence how practi-

tioners write new code” suggests that new programming
languages or language features could help developers during
the development of energy-e�cient applications. Existing
work in the area of energy-aware programming (e.g., [42, 60])
matches practitioners’ focus on idle time by allowing compu-
tation to be degraded or delayed to save energy. However, to
use such features e↵ectively, practitioners must understand
the energy impacts of their code, which given their lack of
intuition (see Section 3.4), may be infeasible. Practitioners’
focus on idle time motivates additional investigation
into new programming paradigms for delaying com-
putation and bundling work as well as automated
transformations for improving energy usage.
The finding that “practitioners believe that they do not

have accurate intuitions about energy usage” motivates the
creation of energy profiling tools that can help them under-
stand the energy usage of their applications. Researchers
have proposed several such tools (e.g., [19, 21, 52]), but most
of these approaches are coarse-grained, which may limit their
usefulness. One exception is work by Li et al. which attempts
to calculate source line level energy information [30]. In gen-
eral, fine-grained energy profiling is di�cult for many reasons
including high clock rates and tail energy. Tail energy is

particularly challenging since it means that software energy
usage can depend on other applications, the factor least con-
sidered by practitioners (see Section 3.3). Fine-grained
tools supporting whole system analysis would help
practitioners understand their code and the energy
impacts of interactions among applications.

The finding that“practitioners believe that they could learn
how to improve energy e�ciency in many ways” suggests that
they lack the necessary knowledge, expertise, and intuition
about how to construct energy-e�cient software. The desire
to learn is evident in their responses, which indicate that
they would use all forms of help that we asked about (other
developers, tools, profiling, example code, documentation,
etc.). Education mechanisms in any and all forms
would likely be received well by practitioners.

5.4 Implications for Finding and Fixing Issues
The finding that “practitioners believe that energy issues

are more di�cult to discover than other performance issues”
motivates techniques for detecting energy issues. Existing
static analysis-based work (e.g., [44]) is comparable to the
tools currently used by practitioners (see Section 3.5) because
they look for patterns that may lead to energy issues (e.g.,
forgetting to close a resource). Existing testing or dynamic
analysis-based work (e.g., [5, 31–34, 56]) attempts to locate
energy issues directly, but is limited by imprecise oracles.
Practitioners would like oracles that can (1) detect
energy issues as they occur, rather than waiting for
battery drain to become evident, and (2) determine
whether the amount of energy being consumed is
reasonable given the work being performed.
The finding that “practitioners believe that energy issues

are more di�cult to diagnose than other performance issues”
motivates the need for new techniques for debugging energy
issues. To the best of our knowledge, no one has yet inves-
tigated such approaches. Debugging techniques should
take into consideration the large distances between
when and where faulty behaviors are discovered and
the root causes of such issues.

5.5 Implications for Maintenance
The finding that “energy concerns are largely ignored dur-

ing maintenance” demonstrates the importance of focusing
on energy use in earlier phases of the development life cycle.
Presumably, once an application enters maintenance, it is
either too di�cult or not important enough to change energy
usage. The lack of documentation regarding energy usage
and the low number of respondents who investigate how their
changes impact energy usage may point to a need for im-
proved practices and tooling, but further study is needed to
understand why energy appears to be ignored during main-
tenance and what tooling or practices can help. To the best
of our knowledge, no one has investigated what roles energy
usage concerns play during maintenance. Additional sur-
veys and interviews may help uncover why energy
concerns are ignored during maintenance.

6. ACKNOWLEDGMENTS
This work is supported in part by NSF Grant No. 1216488.

Thanks to: Alberto Bacchelli for help with interviewing;
Aditi Garg and Ningjing Tian for coding; Hyrum Wright and
Will Snipes for facilitating with Google and ABB; and the
interviewees and survey respondents participating.

246

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 31,2024 at 23:57:01 UTC from IEEE Xplore.  Restrictions apply. 



7. REFERENCES
[1] L. Ardito and M. Morisio. Green it-available data and

guidelines for reducing energy consumption in it systems.
Sustainable Computing: Informatics and Systems, 4(1):
24 – 32, 2014.

[2] R. Atkinson and J. Flint. Snowball sampling. In The
Sage encyclopedia of social science research methods,
pages 1044–1045. Sage Publications, 2004.

[3] N. Ayewah, D. Hovemeyer, J. Morgenthaler, J. Penix,
and W. Pugh. Using static analysis to find bugs. IEEE
Software, 25(5):22–29, 2008.

[4] E. Babbie. The practice of social research. Cengage
Learning, 13th edition, 2012.

[5] A. Banerjee, L. K. Chong, S. Chattopadhyay, and
A. Roychoudhury. Detecting energy bugs and hotspots in
mobile apps. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, pages 588–598, 2014.

[6] P. Bourque and R. Fairley, editors. Guide to the Software
Engineering Body of Knowledge, Version 3.0. IEEE
Computer Society, 2014. www.swebok.org.

[7] E. Capra, C. Francalanci, and S. A. Slaughter. Mea-
suring application software energy e�ciency. IT Profes-
sional, 14(2):54–61, 2012.

[8] M. Cherubini, G. Venolia, R. DeLine, and A. J. Ko.
Let’s go to the whiteboard: How and why software
developers use drawings. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
pages 557–566, 2007.

[9] B. Dagenais, H. Ossher, R. K. E. Bellamy, M. P. Ro-
billard, and J. P. de Vries. Moving into a new soft-
ware project landscape. In Proceedings of the 32nd
ACM/IEEE International Conference on Software En-
gineering, pages 275–284, 2010.

[10] C. de Souza and D. Redmiles. An empirical study
of software developers’ management of dependencies
and changes. In Proceedings of the ACM/IEEE 30th
International Conference on Software Engineering, pages
241–250, 2008.

[11] EASED. Energy aware software-
engineering and development workshop.
http://www.enviroinfo2014.org/index.php/
energy-aware-software-engineering-and-development.

[12] N. Ernst and G. Murphy. Case studies in just-in-time
requirements analysis. In Proceedings of the IEEE 2nd
International Workshop on Empirical Requirements En-
gineering, pages 25–32, 2012.

[13] F. Fotrousi, S. Fricker, and M. Fiedler. Quality require-
ments elicitation based on inquiry of quality-impact
relationships. In Proceedings of the IEEE 22nd Inter-
national Requirements Engineering Conference, pages
303–312, 2014.

[14] Gartner. Gartner says worldwide traditional PC, tablet,
ultramobile and mobile phone shipments to grow 4.2
percent in 2014. http://www.gartner.com/newsroom/
id/2791017.

[15] B. Glaser and A. Strauss. The discovery of grounded the-
ory: Strategies for qualitative research. Aldin Publishing
Co., 1967.

[16] GREENS. International workshop on green and sustain-
able software. http://greens.cs.vu.nl.

[17] G. Guest, A. Bunce, and L. Johnson. How many inter-
views are enough? an experiment with data saturation
and variability. Field methods, 18(1):59–82, 2006.

[18] A. Gupta, T. Zimmermann, C. Bird, N. Nagappan,
T. Bhat, and S. Emran. Mining energy traces to aid
in software development: An empirical case study. In
Proceedings of the 8th International Symposium on Em-
pirical Software Engineering and Measurement, 2014.

[19] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan.
Estimating mobile application energy consumption using
program analysis. In Proceedings of the International
Conference on Software Engineering, pages 92–101, 2013.

[20] A. Hindle. Green mining: A methodology of relating
software change to power consumption. In Proceedings
of the 9th IEEE Working Conference on Mining Software
Repositories, pages 78–87, 2012.

[21] A. Hindle, A. Wilson, K. Rasmussen, E. J. Barlow, J. C.
Campbell, and S. Romansky. Greenminer: A hard-
ware based mining software repositories software energy
consumption framework. In Proceedings of the 11th
Working Conference on Mining Software Repositories,
pages 12–21, 2014.

[22] S. Hove and B. Anda. Experiences from conducting semi-
structured interviews in empirical software engineering
research. In Proceedings of the 11th IEEE International
Symposium Software Metrics, pages 23–33, 2005.

[23] ICSE. International conference on software engineering.
http://icse-conferences.org.

[24] ICSME. International conference on software mainte-
nance and evolution. http://www.icsme.org.

[25] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge.
Why don’t software developers use static analysis tools
to find bugs? In Proceedings of the International Con-
ference on Software Engineering, pages 672–681, 2013.

[26] E. Kern, M. Dick, T. Johann, and S. Naumann. Green
software and green it: An end users perspective. In
Information Technologies in Environmental Engineering,
volume 3, pages 199–211. Springer, 2011.

[27] B. A. Kitchenham and S. L. Pfleeger. Personal opin-
ion surveys. In Guide to Advanced Empirical Software
Engineering, pages 63–92. Springer, 2008.

[28] L. Layman, L. Williams, and R. Amant. Toward reduc-
ing fault fix time: Understanding developer behavior
for the design of automated fault detection tools. In
Proceedings of the 1st International Symposium on Em-
pirical Software Engineering and Measurement, pages
176–185, 2007.

[29] D. Li and W. G. J. Halfond. An investigation into energy-
saving programming practices for Android smartphone
app development. In Proceedings of the 3rd International
Workshop on Green and Sustainable Software, pages 46–
53, 2014.

[30] D. Li, S. Hao, W. G. J. Halfond, and R. Govindan. Cal-
culating source line level energy information for Android
applications. In Proceedings of the 2013 International
Symposium on Software Testing and Analysis, pages
78–89, 2013.

[31] D. Li, A. H. Tran, and W. G. J. Halfond. Making web ap-
plications more energy e�cient for OLED smartphones.
In Proceedings of the 36th International Conference on
Software Engineering, pages 527–538, 2014.

[32] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas,
R. Oliveto, M. Di Penta, and D. Poshyvanyk. Mining
energy-greedy API usage patterns in Android apps: An
empirical study. In Proceedings of the 11th Working

247

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 31,2024 at 23:57:01 UTC from IEEE Xplore.  Restrictions apply. 



Conference on Mining Software Repositories, pages 2–
11, 2014.

[33] Y. Liu, C. Xu, S. Cheung, and J. Lu. Greendroid: Au-
tomated diagnosis of energy ine�ciency for smartphone
applications. IEEE Transactions on Software Engineer-
ing, 40(9):911–940, 2014.

[34] Y. Liu, C. Xu, and S.-C. Cheung. Characterizing and
detecting performance bugs for smartphone applications.
In Proceedings of the 36th International Conference on
Software Engineering, pages 1013–1024, 2014.

[35] I. Manotas, C. Sahin, J. Clause, L. Pollock, and K. Win-
bladh. Investigating the impacts of web servers on web
application energy usage. In Proceedings of the 2nd
International Workshop on Green and Sustainable Soft-
ware, pages 16–23, 2013.

[36] I. Manotas, L. Pollock, and J. Clause. Seeds: A soft-
ware engineer’s energy-optimization decision support
framework. In Proceedings of the 36th International
Conference on Software Engineering, pages 503–514,
2014.

[37] MEGSUS. International workshop on measurement
and metrics for green and sustainable software. http:
//www.iwsm-mensura.org/2015/megsus.

[38] D. Morgan. Snowball sampling. In L. M. Given, editor,
The Sage encyclopedia of qualitative research methods,
pages 816–817. Sage Publications, 2008.

[39] E. Murphy-Hill, T. Zimmermann, and N. Nagappan.
Cowboys, ankle sprains, and keepers of quality: How
is video game development di↵erent from software de-
velopment? In Proceedings of the 36th International
Conference on Software Engineering, pages 1–11, 2014.

[40] J. D. Musa. Operational profiles in software-reliability
engineering. IEEE Software, 10(2):14–32, Mar. 1993.

[41] S. Naumann, M. Dick, E. Kern, and T. Johann. The
greensoft model: A reference model for green and sus-
tainable software and its engineering. Sustainable Com-
puting: Informatics and Systems, 1(4):294 – 304, 2011.

[42] N. Nikzad, O. Chipara, and W. G. Griswold. APE: An
annotation language and middleware for energy-e�cient
mobile application development. In Proceedings of the
36th International Conference on Software Engineering,
pages 515–526, 2014.

[43] C. Pang, A. Hindle, B. Adams, and A. Hassan. What do
programmers know about software energy consumption?
Software, IEEE, 2015.

[44] A. Pathak, Y. C. Hu, and M. Zhang. Bootstrapping
energy debugging on smartphones: A first look at energy
bugs in mobile devices. In Proceedings of the 10th ACM
Workshop on Hot Topics in Networks, pages 5:1–5:6,
2011.

[45] M. Q. Patton. Qualitative evaluation and research meth-
ods. SAGE Publications, inc, 1990.

[46] G. Pinto, F. Castor, and Y. D. Liu. Mining questions
about software energy consumption. In Proceedings
of the 11th Working Conference on Mining Software
Repositories, pages 22–31, 2014.

[47] T. Punter, M. Ciolkowski, B. Freimut, and I. John.
Conducting on-line surveys in software engineering. In
Proceedings of the 2003 International Symposium on
Empirical Software Engineering, pages 80–88, 2003.

[48] G. N. Rodrigues, D. S. Rosenblum, and S. Uchitel. Sensi-
tivity analysis for a scenario-based reliability prediction
model. In Proceedings of the 2005 Workshop on Archi-
tecting Dependable Systems, pages 1–5, 2005.

[49] C. Sahin, F. Cayci, I. L. M. Gutiérrez, J. Clause, F. E.
Kiamilev, L. L. Pollock, and K. Winbladh. Initial explo-
rations on design pattern energy usage. In Proceedings
of the 1st International Workshop on Green and Sus-
tainable Software, pages 55–61, 2012.

[50] C. Sahin, L. Pollock, and J. Clause. How do code
refactorings a↵ect energy usage? In Proceedings of
the 8th International Symposium on Empirical Software
Engineering and Measurement, pages 36:1–36:10, 2014.

[51] C. Sahin, P. Tornquist, R. Mckenna, Z. Pearson, and
J. Clause. How does code obfuscation impact energy us-
age? In Proceedings of the 2014 IEEE International Con-
ference on Software Maintenance and Evolution, pages
131–140, 2014.

[52] M. Schirmer, S. Bertel, and J. Penke. Contexto: Lever-
aging energy awareness in the development of context-
aware applications. In 4th Workshop on Energy Aware
Software-Engineering and Development, pages 131–140,
2014.

[53] J. A. Singer and N. G. Vinson. Ethical issues in empirical
studies of software engineering. IEEE Transactions on
Software Engineering, 28:1171–1180, 2002.

[54] E. Smith, R. Loftin, E. Murphy-Hill, C. Bird, and
T. Zimmermann. Improving developer participation
rates in surveys. In Proceedings of the 6th International
Workshop on Cooperative and Human Aspects of Soft-
ware Engineering, pages 89–92, 2013.

[55] A. Strauss and J. Corbin. Basics of Qualitative Research:
Techniques and Procedures for Developing Grounded
Theory. SAGE Publications, Inc, 1998.

[56] M. Wan, Y. Jin, D. Li, and W. G. J. Halfond. Detecting
display energy hotspots in Android apps. In Proceedings
of the 8th IEEE International Conference on Software
Testing, Verification and Validation, pages 1–10, 2015.

[57] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Reg-
nell, and A. Wesslén. Experimentation in Software Engi-
neering: An Introduction. Kluwer Academic Publishers,
2000.

[58] C. Wohlin, L. Lundberg, and M. Mattsson. Special
issue: Trade-o↵ analysis of software quality attributes.
Software Quality Journal, 13(4), 2005.

[59] C. Zhang, A. Hindle, and D. German. The impact of
user choice on energy consumption. IEEE Software, 31
(3):69–75, 2014.

[60] H. S. Zhu, C. Lin, and Y. D. Liu. A programming
model for sustainable software. In Proceedings of the
37th International Conference on Software Engineering,
2015.

248

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 31,2024 at 23:57:01 UTC from IEEE Xplore.  Restrictions apply. 


