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Abstract— Minimizing the ongoing impact of train delays has
benefits to both the users of the railway system and the railway
stakeholders. However, the efficient rescheduling of trains after
a perturbation is a complex real-world problem. The complexity
is compounded by the fact that the problem may be both
dynamic and multi-objective. The aim of this research is to
investigate the ability of ant colony optimization algorithms to
solve a simulated dynamic multi-objective railway rescheduling
problem and, in the process, to attempt to identify the features of
the algorithms that enable them to cope with a multi-objective
problem that is also dynamic. Results showed that, when the
changes in the problem are large and frequent, retaining the
archive of non-dominated solution between changes and updating
the pheromones to reflect the new environment play an important
role in enabling the algorithms to perform well on this dynamic
multi-objective railway rescheduling problem.

Index Terms—Train rescheduling, dynamic multi-objective
optimization, ant colony optimisation, rail transportation,
U.K. railway network.

I. INTRODUCTION

ESCHEDULING trains after a delay is a complex real-

world problem. In a busy, capricious railway network,
such as the UK railway network, delays are inevitable. From
signal failures to broken down trains, there are a myriad
number of ways for a train to fall behind schedule. In normal
railway operation conflict is avoided by the careful allocation
of trains to resources at specified times. A primary delay to
one train may cause it to miss its scheduled time slot which
may result in conflict with another train scheduled to use that
same resource. To avoid conflict a train dispatcher might have
to delay other trains competing for the same resources, which
will propagate the delay throughout the network.

The aim of any train dispatcher faced with train disruption
is to find an optimal way to reschedule the trains in order
to minimise the overall impact of the delay on the network.
However, this is not a simple task. A real-world reschedul-
ing problem may be both dynamic and multi-objective. The
dynamism is a consequence of the fact that the railway system
is in a constant state of movement. As trains are waiting to
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be rescheduled at a particular network bottleneck, more trains
will be arriving. These trains may have different scheduled
timetables, speed profiles and physical characteristics. The
arrival of these new trains will change the nature of the
problem, making it a dynamic one that changes over time.
The multi-objective nature of the problem is a result of the
multiple demands placed upon the train dispatcher attempt-
ing to solve a rescheduling problem. They may need to
simultaneously minimise several conflicting consequences of
the perturbation, such as delay, timetable deviation, energy
consumption and missed connections. The conflicting nature
of these objectives means that increasing the quality of one
objective might have a detrimental effect on the quality of
another.

The aim of this paper is to investigate the application
of ant colony optimisation (ACO) to a difficult dynamic
multi-objective problem (DMOP); the dynamic multi-objective
railway junction rescheduling problem (DM-RJRP). Unfortu-
nately, at the present time, Network Rail do not store the data
necessary to investigate such problems, therefore the junction
is simulated based on a model inspired by very thorough
understanding of the real world problem.

ACO has already been shown to be effective in dynamic,
combinatorial scheduling problems [17], [26] and is also very
suitable for adapting to multi-objective problems due to its
flexibility in being able to add multiple colonies, or multiple
pheromone and heuristic matrices, to address the separate
objectives. A further advantage of using ACO is that its
population-based nature means that multiple trade-off solu-
tions can be generated in one run of the algorithm, in contrast
classical optimisation methods may have to run the algorithm
separately for each objective [7].

Rescheduling trains after a delay is a popular research
area with much interesting work being carried out [14].
However, the previous work in this area has assumed that
the problem is static. There has, so far, been little work in
dynamic train rescheduling problems and even less in dynamic
multi-objective train rescheduling problems. Our aim is to
make the following contributions to the study of railway
rescheduling:

1) The investigation of a railway rescheduling problem that
is both dynamic and multi-objective. As previous works
consider only static or multi-objective problems, they
fail to take into account the dynamic and multi-objective
nature of railway scheduling problems. The investigation
of such a problem is a new contribution to railway
rescheduling.
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2) A contribution to the field of understanding how
ACO algorithms can be applied to railway reschedul-
ing DMOPs. We attempt to identify both the features
of the algorithms necessary for good performance on
this DMOP and also the effect of the frequency and
magnitude of change on each algorithm’s performance.

We apply several different multi-objective ACO (MOACO)
algorithms to the problem; based on a population based
ACO (P-ACO) [19], and on the MAX-MIN Ant Sys-
tem (MMAS) [30]. Each algorithm uses a different method
of dealing with dynamic changes. It is hoped that the perfor-
mance of the algorithms will give insights into the features
of the algorithm necessary for good performance on this
DMOP. In addition, we compare the best ACO algorithm with
NSGA-II [8], a ‘state-of-the-art’ multi-objective algorithm,
and with First Come First Served (FCFES), a heuristic often
used by railway dispatchers to resolve perturbations [5].

The complex nature of this dynamic problem means that
we consider only a small section of the UK Railway Network,
a junction on the Birmingham to Derby train line, called the
Stenson Junction. We believe that the principles discovered
in this work will aid our understanding of the problem and
will be applicable to larger areas of the railway network.
The problem has been modelled using a simulator built
in C4++. The simulator evaluates the solutions produced by the
algorithms in terms of two objectives: minimising timetable
deviation and minimising additional energy expenditure. Min-
imising timetable deviation involves minimising the difference
between a train’s scheduled arrival time and its rescheduled
arrival time, it attempts to ensure trains arrive neither too
late or too early. The second objective minimises the extra
energy consumed by the trains as a result of changing the
order that they pass through the junction.

The rest of the paper is organised as follows. Sect. II
reviews the literature related to multi-objective and dynamic
train rescheduling and the use of ACO algorithms for both
multi-objective and dynamic problems. Sect. IIT describes the
problem under investigation. Sect. IV gives details of the
algorithms used in this work. An experimental study carried
out to investigate the ability of ACO algorithms to solve the
DM-RIJRP is described in Sect. V. Finally, Sect. VI concludes
this paper with a discussion of the main achievements and
ideas for future work.

II. RELATED WORK

In a multi-objective problem with conflicting objectives,
there is no single solution that is able to optimise all the
objectives simultaneously as any improvement in one objec-
tive may result in a deterioration in a conflicting objective.
Many researchers have tackled this problem by combining the
objectives into a single, often weighted, objective. The purpose
of the weights is to indicate the relative importance of each
objective to the problem solution. This approach will result
in a single solution for each run, however, its disadvantage
is that the weights will have to be determined in advance
using domain knowledge. In addition, this approach assumes
that the relative importance of each objective does not change
over time. This may not always be the case. For example,
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in the early morning rush hour, a train dispatcher may wish
to minimise overall delays whereas in the afternoon they
may wish to maintain connections for long distance travellers.
A more flexible approach is to produce a set of trade-off
solutions to provide the decision maker with a choice of
solutions. This will allow them to make a decision as to
which solution best matches their requirements at a particular
moment in time.

In order to produce a set of trade-off solutions, we need
a means of comparing solutions against each other. This is
achieved using the concept of dominance [7]. A solution x
is said to dominate a solution x» (denoted as x; < xp) if:

1) xp is no worse than x; in all objectives and

2) x is strictly better than x, in at least one objective.

Each solution is compared with every other solution. If a
solution is not dominated by any other solution, it is added
to the non-dominated set of solutions, also referred to as the
Pareto optimal set (POS). The points that the Pareto-optimal
solutions map to, in the objective space, is known as the Pareto
optimal front (POF). The POS is the set of trade-off solutions
that are presented to the decision maker. The decision maker
can be confident that, in this set, no solution is any better than
any other solution in terms of the trade off between objective
values and it is only their particular preference at that time
that makes one solution better than another.

A. Multi-Objective Train Rescheduling

Most railway rescheduling research concentrates on single
objective rescheduling problems, very little work has been
carried out on multi-objective problems and of those works
most combine the objectives into a single weighted objective
incurring the disadvantages detailed in Sect. II above.

Walker et al. [31] employed Branch and Bound (BB) with
column and constraint generation to solve a train rescheduling
problem on the Wellington Metro Line in New Zealand.
Their two objectives were to minimise the deviation from
the existing schedule and minimise the cost increase from
the adjusted crew roster. They solved the problem by com-
bining both the objectives into a single objective function
to produce a single solution. Weston et al. [33] considered
a rescheduling problem where the two objectives were to
minimise the delay and minimise the number of broken
passenger connections. They combined the two objectives into
a single cost function and solved the problem using a decision
tree.

Schachtebeck and Schobel [28] and Schobel [29] considered
the bi-objective problem of minimising delay and minimising
the number of missed connections for a rescheduling problem
based on the railway network in the region of Harz, Germany.
They combined the two objectives into a single objective
and used an integer programming model to produce a single
solution. Dollevoet et al. [9] took a similar approach for
Randstad railway network in the Netherlands, combining the
two objectives of minimising the delays to customers and
the weighted sum of all missed connections to produce a
single objective function. This was solved using CPLEX and
an iterative approach that repeatedly tries to improve the
assignment of trains to platforms.
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Huang et al. [20] investigated a multi-objective timetable
scheduling problem on the Beijing Yizhuang subway line.
They used a genetic algorithm with a binary encoding method
to find the optimal headway between trains to minimise
both energy consumption and passenger travel time. Again,
the objectives were combined into a single, weighted, objective
function. They found that the optimised timetable produced
required two extra trains but reduced the total passenger
waiting time by 23.9% and reduced energy consumption
by 4.9 kWh per train. Yin et al. [35] considered a multi-
objective rescheduling problem on a metro line where their aim
was to minimise passenger travel time, passenger delay and
energy consumption. To solve the problem they used an algo-
rithm based on an approximate dynamic programming (ADP)
technique and weighted each of the objectives to obtain a
single solution. They found that their algorithm outperformed
a heuristic (HEM) where the arrival times and departure times
of all affected trains were postponed. However, to find several
’trade-off” solutions they had to rerun the algorithm with
different weights which increased the execution time.

So far, there has been very little work that produces a
set of Pareto optimal trade-off solutions for multi-objective
railway rescheduling problems. Corman et al. [4] considered
a bi-objective problem on a section of the Dutch railway. The
two objectives they considered were those of minimising train
delays and maximising the number of retained passenger and
rolling stock connections. Using a BB algorithm combined
with one of two heuristics, named ‘Add’ and ‘Remove’, they
produced a set of trade-off solutions for the decision maker.

Lejeune et al. [24] considered the problem of timetabling
trains to minimise the two conflicting objectives of energy
consumption and running time. They used the indicator-based
evolutionary algorithm (IBEA) to produce a set of ’trade-off’
solutions which could be used as an aid to the timetable maker
when constructing a timetable.

However, none of the above rescheduling research consider
that the problem may be a dynamic one. They assume that
delays occur at the beginning of the problem and that no
further delays occur over the duration of the scenario. In a
real-world scenario with extreme perturbations, there may be
further primary train delays, or more train arrivals, which will
change the nature of the problem under investigation.

B. Dynamic Train Rescheduling

The dynamic nature of the railway system is rarely con-
sidered in train rescheduling research. D’Ariano er al. [6]
discussed the fact that speed and location modifications may
happen while the algorithm is computing a solution, but
concluded that the fast speed of their algorithm means that
this is unlikely and therefore that such real-time variation
would not have an effect on their rescheduling system. As the
BB algorithm used in their work appears to have no inbuilt
mechanism to cope with change, using it again after a dynamic
change would effectively be a restart of the algorithm and
would lose information that could potentially be usefully
carried over to the new environment.

Work has started in the area of dynamic train reschedul-
ing problems. Eaton and Yang [11] modelled a dynamic
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rescheduling problem on the Stenson Junction located in the
UK railway network (the DRJRP). They found that a P-ACO
algorithm outperformed a FCFS heuristic when the changes
were frequent and of high magnitude. This suggests that in
severely disrupted delay scenarios computational systems may
provide a much needed aid to the train dispatcher.

The problem was extended in [12]. The difference between
these two papers is that the latter paper extends the problem
to a larger area of the railway network, compares more
algorithms and investigates the use of random immigrants
and/or elite immigrants to repair the solutions after a dynamic
change. It was discovered that on the high frequency, high
magnitude dynamic changes, ACO algorithms with a memory
outperformed ACO algorithms that have no inbuilt mechanism
to cope with dynamic change. Restarting the algorithm, by the
use of random immigrants, between changes had a detrimental
effect on the performance of the algorithm when the changes
were large and frequent. These results illustrate the positive
benefit of retaining information between changes in severely
disrupted delay scenarios.

C. ACO for Multi-Objective and Dynamic Problems

The modification of ACO algorithms for multi-objective
problems is a popular research area. Although ACO algorithms
were originally designed for single objective problems, their
flexibility in allowing multiple colonies [21], [22], multiple
pheromone matrices and heuristic matrices [16], [19] or a com-
bination of both [25] makes them very suitable for problems
with multiple objectives. In addition, as ACO is a population
based approach, the set of trade-off solutions can be found in
a single run of the algorithm.

MOACO algorithms have been applied to the real-world
problems of multi-objective multicast routing [27], generating
flight trajectories in hazardous weather conditions [1], task
scheduling for grid over optical burst switching networks [34]
and time and space assembly line balancing at the Nissan plant
in Spain [3]. However, they have not as yet been applied to a
multi-objective problem in the railway industry.

With regards to dynamic scheduling problems, ACO has
previously been applied to the dynamic travelling salesman
problem (DTSP) with good results [17], [26]. The DTSP is
a combinatorial optimisation problem similar to the DRJRP.
In the TSP, the objective is to find the sequence of cities for a
salesman to visit that minimises the distance he has to travel
whereas in the DRJRP the aim is to find the sequence of trains
to pass through the junction to minimise the overall delay. One
issue with the DTSP is that once the ants have converged
on a solution they will still follow the same pheromone
trails after a dynamic change unless the trails are updated
in some way to take into account the new environment.
Guntsch and Middendorf [17] tackled this problem by
modifying the pheromone trails after a change while
Mavrovouniotis and Yang [26] maintained diversity after a
change by the use of immigrant ants. However, there has
been very little investigation into real-world DMOPs using
ACO algorithms. The fact that they have previously shown
good results for both dynamic and multi-objective problems
suggests that they may also be applicable to problems that



EATON et al.: ANT COLONY OPTIMIZATION FOR SIMULATED DYNAMIC MULTI-OBJECTIVE RAILWAY JUNCTION RESCHEDULING

&
&
7(AC)

10(8,C) 5(8,D) 3(B,C

Cc

Fig. 1. The junction before a dynamic change (taken from [11]).
combine both dynamic and multi-objective characteristics. The
question then arises as to which features of the algorithms
make them best able to cope with DMOPs. This paper aims
to take a first step towards answering that question.

III. THE DYNAMIC MULTI-OBJECTIVE RAILWAY
JUNCTION RESCHEDULING PROBLEM (DM-RJRP)

The DM-RIJRP is concerned with the sequencing of trains
through two junctions on the Derby to Birmingham line. It is
a microscopic model as it is modelled at the level of track
block sections. The original static problem was created by
Fan et al. [13] and has been extended in this paper to make it
both dynamic and multi-objective.

The two junctions under consideration are the North
Stafford and Stenson Junctions. They are both ‘flat junctions’
which means that the merging rail tracks require that trains
cross in front of opposing trains on the same level. The
junctions are connected by two sets of tracks, therefore two
trains can pass through the junction at the same time as long
as they are on different tracks.

The problem is a dynamic one because as trains are waiting
to be rescheduled at the junction more timetabled trains will
be arriving, which will change the nature of the problem. This
is illustrated in Figs. 1 and 2. Fig. 1 shows the original trains
waiting at a junction after a train delay. Train 1 has been
delayed by 5 minutes, which means that train 7 has arrived
before it on track A. However, after a while several more trains
arrive at the junction, as shown in Fig. 2. Train 13 has arrived
on route A while train 14 has arrived on route C. In addition,
at the moment that this change occurs, trains 7 and 8 have
passed through the junction and will no longer be of relevance
to the problem.

A. The Problem Objectives

The DM-RIJRP is not only a dynamic problem but also a
multi-objective one. The two objectives under consideration
are to minimise deviation from the original schedule and to
minimise additional energy costs incurred by changing the
order that the trains pass through the junction. These two
objectives are described in more detail below.

1) Objective 1 - Minimising Timetable Deviation: When we
minimise timetable deviation, we aim to minimise the differ-
ence between the train’s new arrival time and its timetabled
arrival time, whether that difference is positive or negative.
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Fig. 2. The junction after a dynamic change (taken from [11]).

In a rescheduling situation, trains that arrive too early can
create as many problems as trains that arrive too late as both
situations may result in conflict with other trains scheduled to
use the same resources. We calculate the timetable deviation
Dev; of train i as in Eq. (1), where ¢, is the scheduled arrival
time and 7, is the actual arrival time.

Dev; = |ty — t4] (1)

The objective is to minimize the deviation, in minutes, for
all trains at the point of change c, as shown in Eq. (2), where
NT is the number of trains in the problem at change c.

NT
file) =min}_ Devi(c) @

i=1

2) Objective 2 - Minimising Additional Energy
Expenditure: The second objective is to minimise any
extra energy expended by the trains as a result of changing
the order that they pass through the junction. The energy
usage calculation formulas were kindly supplied by associates
at the University of Birmingham, and were taken from
their microscopic railway simulator, BRaVE. We calculate
the energy expended by each train on its journey from its
approach station to its destination station as follows.

. wt * gt * gd
Fg = resistance + ————— 3)
cos(gd)
F=Fgtws’ " “
E =Fxd 5)

Eq. (3) calculates the force required to overcome grav-
ity (Fg), where wt is the weight in kilograms of the train, gt is
gravity (a constant value of 9.806) and gd is gradient (zero in
this case as the track is level). The resistance for the train at
its current speed is found using the look-up table provided
by [23]. Eq. (4) calculates the force required to move the
train (F), where v is the speed (in metres per second) the train
is travelling at the end of the time step and u is the speed the
train was moving at the end of the previous time step. At is the
time step which is set to 1 second. Eq. (5) calculates the energy
expended (E), where (d) is the distance travelled, in metres,
in the current time step. The resulting value is in joules, it is
converted to kWh by dividing by 3,600,000.

The objective is to mimimise the additional energy for all
trains at the point of change c, as shown in Egs. (6) and (7),
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where Ex E; is the additional energy expended by train i, E; is
the scheduled energy for train i, and E, is the actual energy
expended by train i.

ExE; = argmax{(E; — E,), 0.0} (6)
nt
fa(e) = min)  ExEi(c) @

i=1

The relationship between energy usage and train delay is
complex. The original assumption made was that a slightly
delayed train would use more additional energy than a seri-
ously delayed train because the train would have had to travel
faster to reduce the delay and the extra speed would use more
energy. However, this was not found to be the case. Instead,
a seriously delayed train was often found to use less energy.
This is because, in the above equations, the amount of time a
train spends waiting for the way ahead to clear before it can
move again has no effect on the energy it consumes. When
a train is waiting, d in Eq. (5) will be zero and consequently
E will also be zero. It is recognised that, in the real world,
a waiting train will use some energy, however, in the energy
model represented by this set of energy equations that energy
is not taken into account. A train that spends a lot of time
speeding up and slowing down to avoid conflict with other
trains will expend more energy than a waiting train because
acceleration, especially from a standing start, uses more energy
than simply travelling at a constant speed. A seriously delayed
train may have spent a larger proportion of its time waiting
and less time speeding up and slowing down, therefore, it will
have used less energy.

Preliminary experiments found that minimising energy
usage and minimising timetable deviation do conflict to
some degree. The smaller the difference between the trains
scheduled arrival time and its original arrival time, the more
energy it is likely to expend narrowing that difference. This
may be because a train that arrives very near its original
scheduled time will have spent very little time waiting but
will have instead performed multiple slow-downs and speed-
ups, in quick succession, to maintain its schedule. The multiple
speed-ups mean that it will have expended more energy on its
journey. As a result of this observed conflict between these
two objectives, deviation rather than delay was chosen as the
objective to minimise in this study.

It is recognised that we could also have taken into account
energy saved by trains when the order they pass through the
junction causes them to use less than their scheduled energy.
However, for simplicity, we decided to look only at extra
energy expended by the trains. Future work may take into
account energy saved as well as energy expended.

The aim of this problem is to find a sequence of trains to
pass through the junction to minimise the objective values.
As the objective values are to some degree conflicting, there
will not be a single solution to the problem but a set of trade-
off solutions in form of a Pareto optimal set. A characteristic
of this problem is that the goal is to eventually remove the
deviation and extra energy consumption from the system and
to return the network to normal operation. Therefore, the aim
is to end up with a single solution with an objective value of
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TABLE I

THE SCHEDULED TIMETABLE AND ENERGY
CONSUMPTION FOR EACH TRAIN

Train Train Type  Route Scheduled  Energy
Number Arrival Consumption
(kWh)
1 Class 150 AtoD 12:10 23.96
2 Class 220 Dto A 12:11 107.89
3 Freight BtoC 12:15 426.64
4 Class 220 DtoB 12:16 63.33
5 Freight BtoD 12:16 307.15
6 Class 150 DtoB  12:20 43.02
7 Freight AtoC 12:23 569.17
8 Class 150 Cto A 1221 67.90
9 Class 220 Cto A 12:27 147.96
10 Class 220 BtoC 12:30 140.82
11 Freight CtoB 12:39 434.57
12 Class 150 AtoD 12:35 60.10

zero in each objective. This is different to many benchmark
dynamic optimisation problems, where the problem constantly
changes over time without ever being resolved. A further
interesting feature of this problem is that it is time-linked. The
decision made by the dispatcher as to which solution to choose
to sequence the trains through the junction affects the trains
that are available to reschedule at the next dynamic change.

B. The Stenson Junction Train Simulator

To evaluate the performance of each algorithm, the sequence
of trains in each solution has to be executed by running the
trains in the specified order through the junctions. To facil-
itate this a simulator has been developed using C++ Visual
Studio 2012. The simulator models the movement of the trains
through the junction in one second time steps. The speed
of the train at each second is calculated using the Improved
Euler Integration, also called Heun’s Method, which means
that the current speed of the train is based on a combination
of the train’s current acceleration and an estimate of its
future acceleration. Power and resistance tables supplied by
Kirkwood et al. [23] are used to calculate a train’s acceleration
at time ¢ using Newton’s Second Law of Motion (F = ma).
The tables are based on RailSys data, which is used by
Network Rail as a simulation tool [32]. More details about
the construction of the simulator can be found in [11].

Table I shows the type of trains used, their routes through
the junction, their scheduled arrival times and their original
energy consumption. The timetable was created by running
all trains, in their numerical order, through the simulator
and recording their arrival times. This gave a baseline mea-
surement to be able to calculate the deviation of the trains
from their original timetable after a perturbation. The trains
are one of three types: Class 200 with a maximum run-
ning speed of 200km/h and a length of 187.4m, Class 150
with a maximum running speed of 120km/h and a length
of 80.24m, or a F2-mixed freight train with a maximum
running speed of 110km/h and a length of 355m [13]. A train
cannot enter a track section until the previous train has left.
Therefore, the speed and length of the previous train affects
how quickly a train can move into its next track section.
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The simulator was made dynamic by the introduction of a
specified number of trains (m) at specified time intervals (f).
m represents the magnitude of change, while f relates to the
frequency of change. The new trains were chosen by repeating
the timetable shown in Table I in blocks of m trains.The extra
trains can be thought of as an extended timetable for the train
junction and each combination of the magnitude and frequency
of change was run through the simulator in order to obtain
the conflict-free timetable for that dynamic scenario. A newly
arrived train is not allowed to leave the station until the track
section after the station is clear of all other trains. When a
dynamic change occurs, any trains that have moved into the
junction, or are about to move into the junction, are removed
by the simulator and the remaining trains plus the additional
trains are passed to the algorithm in timetable order.

C. Model Realism

At this present time, Network Rail are unable to provide the
data necessary to investigate dynamic multi-objective railway
rescheduling problems. Therefore, as a first step, we have
developed a simulation tool that allows us to investigate such
problems. To make the model as realistic as possible, we have
based it on a real section of the UK railway network, simulated
the mechanics of railway operation, such as interlocking and
automatic fixed block technology, and used power and resis-
tance data based on RailSys data, which is used by Network
Rail as a simulation tool [32]. The model allows us to create
delay scenarios with different combinations of magnitude and
frequency of change which allows us to investigate the effect
that the characteristics of a dynamic change has on the ability
of the algorithm to provide solutions. Although such data is
not stored by Network Rail at the present time, it is hoped
that demonstrating the effectiveness of the algorithm in this
simulated problem will provide a reason to collect and store
such data in the future.

D. Model Limitations

The present model is limited by the fact that it considers
only a small area of the UK railway network. Extending
the model to a larger area would extend the computational
complexity of the problem and could mean that in the case
of the ACO algorithms more ants may be needed to obtain
the same results. A further limitation of the model is that we
consider only flat sections of track with no gradients. The
addition of gradients into the problem would affect the energy
consumption of the trains and may impact the shape of the
POF obtained by the algorithms.

IV. PROPOSED MOACO ALGORITHMS
FOR THE DM-RJRP

A. The Basic ACO Algorithm

ACO is an optimisation algorithm inspired by the natural
world. It is based on the ability of some ant species to
find the shortest path to a food source using only indirect
communication in the form of pheromones [10]. Ants lay down
pheromones on the ground as they move backwards and for-
wards from the nest to a food source. Pheromones will accu-
mulate quicker on the shortest paths because the ants choosing
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those paths return faster. Ants can sense the pheromone on
the ground and tend to probabilistically choose paths with the
strongest pheromone concentration. A high concentration of
pheromones on a trail will attract more ants which then lay
down even more pheromone. In this way, the shortest path to a
food source becomes marked by the strongest pheromone trail.
However, once the food source is depleted retaining the high
pheromone levels on this trail would be a waste of time and
resources as ants would continue to follow the trail without
the reward of food at the end. To prevent this from happening,
pheromone trails evaporate over time and eventually disappear
if they are not reinforced by the ants.

To apply this principle to an optimisation problem, it has
to first be decomposed into a fully connected weighted graph
G = (V, E), where V is a set of vertexes or nodes and E is a
set of edges or connections between the nodes. The ants move
along the edges of the graph from node to node recording the
nodes visited. This list of visited nodes, sometimes called the
ant’s tour, is one possible solution to the optimisation problem.
Pheromones are deposited on the edges of the graph by the
ants according to how good an ant’s solution is in terms of
the optimisation objective. The pheromone trails help to guide
the ants to choose better nodes. Pheromones can be decreased
as well as increased to model the process of evaporation which
allows previous bad decisions to be forgotten. In addition
to the pheromone, the edges may also be associated with a
heuristic value, which is based on problem specific knowledge
and provides additional guidance to the ants. An ant k, when
at node 7, chooses the next node j in its neighbourhood Nl.k s
probabilistically as follows:

ok = [zij1%ni; 17
Y ZZEN}[Tz’l]“[ﬂiZ]ﬂ

where 7;; is the pheromone information and #;; is the heuristic
information, o and /£ are constants, which determine the
relative influence of the pheromone and heuristic values,
respectively. An ant chooses the next node in this way with a
probability of 1 — go; otherwise, it chooses the next best node
in terms of the pheromone and heuristic values.

In this problem each node is a train waiting to be sequenced
at the junction. Unfortunately a computationally efficient and
effective problem-specific heuristic is not available. Therefore,
the ants rely only on the pheromone values to guide them
while making their choices and the value of f is set to zero.
An advantage of using only the pheromone values to guide
the ants is that it reduces the amount of problem-specific
knowledge needed to run the algorithm.

, if j € NF, (8)

B. MOACOs for the DM-RJRP

There are many possible designs for MOACO algorithms as
it is a popular research area and much work has been carried
out on modifying ACO algorithms to make them suitable for
multi-objective problems. In fact, work by Lépez-Ibafiez and
Stiitzle [25], where they automatically designed MOACOs for
the symmetric bi-objective TSP, found that different designs
produced similar quality results, suggesting that there is no
single effective way to introduce a multi-objective aspect to
an ACO algorithm.
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In this work, two multi-objective algorithms have been
chosen for investigation. The first is a multi-objective version
of P-ACO developed by Guntsch and Middendorf [19]. P-ACO
is a population based ACO that has an inbuilt memory. This
memory allows solutions from before the change to be carried
over to the new environment thus retaining information already
learned by the ants between changes. The second algorithm
used in this study is one designed by Alaya et al. [2] based on
MMAS. This algorithm was chosen because its base algorithm
was found to perform poorly on the DRJRP in previous
work [12] and because its multi-objective modification, one
colony and a pheromone matrix for each objective, is similar
to that of multi-objective P-ACO. Choosing an algorithm that
performed poorly allows us to investigate the modifications
that are necessary to improve its performance on this DMOP.
The following sections describe each of the algorithms in more
detail with their dynamic adaptations.

C. Dynamic Multi-Objective P-ACO

We first describe the multi-objective version of this algo-
rithm and then the dynamic adaptation.

1) Multi-Objective P-ACO: The single objective P-ACO
algorithm [18] was adapted by Guntsch and Middendorf [19]
to improve its performance on a multi-objective job shop
scheduling problem where the two objectives to be minimised
were overall tardiness and changeover costs. They modified
the algorithm by adding a pheromone and heuristic matrix
for each objective and by constructing the memory (P) from
an archive of non-dominated solutions (Q). The memory is
populated by choosing a random solution from Q plus k£ — 1
closest solutions, where k is the size of the memory and the
closeness of one solution to another is defined as the sum
of absolute differences in objective values over all objectives.
At the end of each iteration, any solutions that dominate the
solutions in the archive are added to Q and any dominated
solutions are removed from Q. The memory is populated from
Q and the solutions in the memory are used to update each
of the pheromone matrices. The ants’ decision as to which
node to choose next is based on a weighted summation of
the separate matrices and the weights are determined using
the average-weight rank method where the idea is to give an
objective a higher weight if the solutions in P are better with
respect to this objective compared to all solutions in Q.

In this work, we compare two different versions of dynamic
multi-objective P-ACO (DM-PACO). The first makes use of
the average-weight-rank method proposed by Guntsch and
Middendorf to facilitate the ants’ decision making. This algo-
rithm is referred to as DM-PACO-ST. The second version
of the algorithm (denoted DM-PACO-R) randomly chooses
which pheromone matrix to use at each decision point. This
method is the same as that used by the multi-objective version
of MMAS described in Sect. IV-D.1.

2) Dynamic Modification for P-ACO: This algorithm has
an inbuilt memory and is able to retain information between
changes. Therefore, the only modification introduced to this
algorithm to allow it to cope with a dynamic change is to repair
the solutions in the non-dominated archive. The repair involves
removing any trains that have passed out of the problem and
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Algorithm 1 DM-PACO

1: Input P > The memory
2: Input Q > The non-dominated archive
3: Input k > The size of P
4: ConstructGraph

5: InitialisePheromoneTrails to 7,,;,

6: while (termination condition not satisfied) do

7:  ConstructSolutions

8:  EvaluateSolutions

9:  UpdateQ

10:  ClearP and update with k members of Q

11:  InitialisePheromoneTrails to 7,,;,

12:  UpdatePheromonesTrails > using solutions in P
13:  if change occurs then

14: ReconstructGraph

15: InitialisePheromoneTrails to 7,,i,

16: RepairSolutionsInQ

17: EvaluateSolutionsInQ

18: UpdateQ

19: ClearP and update with k members of Q

20: InitialisePheromoneTrails to 7,,i,

21: UpdatePheromonesTrails > using solutions in P

22: end if
23: end while

adding in any newly arrived trains in the order dictated by the
train timetable. This is similar to the KeepElitist strategy used
by Guntsch and Middendorf [17]. The pheromone values for
any new trains added to the problem are initialised to 7,,;,. The
repaired solutions are re-evaluated to assess their performance
in the new environment and the members of the archive
are reassessed for dominance: any solutions that are now
dominated by any other solution in the archive are removed.
The memory after a change is created from the non-dominated
archive and used to reinitialise both pheromone matrices. The
overall framework of this algorithm is given in Algorithm 1.

D. Dynamic Multi-Objective MMAS

The multi-objective version of MMAS we are modifying in
this work is based on m-ACO4(1,m), one of four algorithms
designed by Alaya et al. for a multi-objective knapsack
problem [2]. M-ACOQO4(1,m) is similar to P-ACO in that it uses
one ant colony with multiple pheromone structures, one for
each objective. The following sections describe m-ACO4(1,m)
followed by details of the modifications made to attempt to
improve its performance in a dynamic environment.

1) Multi-Objective MMAS: In m-ACO4(1,m), ants make
their decision as to which node to choose next by randomly
selecting one of the objective pheromone matrices to use in
Eq. (8). At the end of an iteration, each pheromone matrix is
updated separately for each objective using the best iteration
ant for that objective. The update value A, is based on
the difference between the best-so-far ant’s solution quality
in objective x and the best iteration ant’s solution quality in
objective x as in Eq. (9), where S* is the best solution in
objective x for the current iteration and Sy, is the best-so-far
solution over all the iterations, including the current iteration,
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TABLE 11
FOUR DIFFERENT VERSIONS OF THE DM-MMAS ALGORITHM

Retain Pheromones
DM-MMAS-ST
DM-MMAS-NT

Clear Pheromones
DM-MMAS-SC
DM-MMAS-NC

Clear Archive
Retain Archive

in objective x. The smaller the difference between the two,
the larger the update.

1
o+ Ja§t = fol)JCest

As in the base MMAS algorithm, pheromone values are
initialised to a maximum value. After each iteration, all
pheromone trails are evaporated as in Eq. (10), where L = E
is the set of all pheromones and 0 < p < 1 is the pheromone
evaporation rate [10], which is a constant parameter of the
algorithm. In addition, the pheromone trails are bound between
a minimum 7,,;,, and a maximum 7,,,, value.

©)

Ay

7 < (1 —p)rj, VG, j)eL, (10)
Stagnation is addressed by reinitialising all trails to 7,4, When
the algorithm shows stagnation behaviour or there has been
no change in the best fitness for a set number of iterations.
To allow m-ACOQy4 to produce a POS, it holds a non-dominated
archive of solutions that it retains until the end of the run.

2) Dynamic Modifications for MMAS: MMAS has no
inbuilt mechanism to cope with a dynamic change apart from
the evaporation of pheromone trails, which can be slow [30].
The fact that MMAS was found to perform poorly on a single
objective version of the DRJRP [12] suggests that adaptations
need to be made to m-ACO4(1,m) to improve its performance
on the multi-objective version of the DRJRP. The goal of the
modifications is to investigate the role of the pheromone trails
and the archive of non-dominated solutions in the algorithm’s
performance. We have designed four different versions of
the algorithm, summarised in Table II, that either retain the
pheromones and non-dominated archive after a change or clear
them. The four designs are described in more detail below:

DM-MMAS-SC: The aim with this design is to investi-
gate how important it is to retain the
pheromones after a dynamic change. For
this reason, the pheromone matrix is reini-
tialised to 7,,,, after the change to remove
all the old pheromone information. In addi-
tion, the non-dominated archive is emptied
of all solutions.

This version is the closest to the origi-
nal behaviour of MMAS after a change
in [12]. In this case, the pheromone val-
ues are retained after a change and only
evaporation is used to remove old outdated
decisions. As before, the non-dominated
archive is emptied of all solutions.

Here we want to investigate the importance
of retaining the non-dominated archive

DM-MMAS-ST:

DM-MMAS-NC:
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Algorithm 2 DM-MMAS-SC

1: Input NDS > The non-dominated archive
2: Input r > Reinitialisation Interval
3: Input BestlterationAnt; > in objective (i)
4: ConstructGraph

5: InitialisePheromoneTrails to 7,4

6: while (termination condition not satisfied) do

7:  ConstructSolutions

8:  EvaluateSolutions

9:  UpdateNDS © with any new non-dominated solutions
10:  Update BestIterationAnt;

11:  EvaporatePheromoneTrails

12:  UpdatePheromone i > using BestIterationAnt;
13:  if no change in BestIterationAnt; for r iterations then
14: ReinitialisePheromone i to 7,4y

15:  end if

16:  if change occurs then

17: ReconstructGraph

18: InitialisePheromoneTrails to 7,,4x

19: EmptyNDS

20:  end if

21: end while

between changes. Therefore, the non-
dominated archive of solutions is retained
after a dynamic change. However, as the
archive is no longer relevant to the new
environment, the solutions in it have
to undergo a repair. The same repair
strategy is used as for DM-PACO (see
Sect. IV-C.2), but, in this case the
pheromone values for the new trains added
to the problem are initialised to 7,4y
In addition, the pheromone trails are
cleared after each change.
The purpose of this modification is
to investigate both the importance of
the pheromone information and the
non-dominated archive after a dynamic
change. Therefore, both the non-dominated
archive and the pheromone information
are retained after a change.

The framework of the base DM-MMAS algorithm without
modifications (DM-MMAS-SC) is given in Algorithm 2.

DM-MMAS-NT:

E. Dynamics Implementation

Solving a real-world train rescheduling problem requires
consideration of how it could be implemented in a real-world
railway perturbation scenario. After a delay, the trains relevant
to the problem are passed to the algorithm to discover a POS
of solutions. The train dispatcher then chooses the solution
that best matches their objectives at that moment in time. The
sequence of trains in this solution is run through the junctions
until a dynamic change occurs, triggered by the arrival of more
timetabled trains. At the point of change, a ‘snapshot’ is taken
of the junctions by the simulator. The snapshot records the
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status of the trains, track and junction at the point of change.
The newly arrived trains and the snapshot are passed to the
ACO algorithm and the algorithm is run again to find a POS
of solutions for the new environment. The first action the
algorithm takes when it receives the updated information is to
reconstruct the directed edge graph that the ants walk along to
make their solutions. This is necessary since some trains will
have passed through the junction and will no longer be relevant
to the problem while other trains will have been added.

As we are unable to predict the solution that a train dis-
patcher might select from the set of non-dominated solutions
presented to them, we have to simulate this choice within the
algorithm. This is achieved by randomly choosing a solution
from the POS to make the snapshot of the junction at the point
of change.

F. Comparison Algorithms

To compare our algorithms with other approaches for
the same problem, we have repeated our experiments using
NSGA-II [8], a ’state-of-the-art” multi-objective algorithm.
NSGA-II is traditionally applied to continuous optimisation
problems. In order to allow it to be used for this combinatorial
problem where the order of trains that pass through the
junction has to be feasible, we have modified the crossover
and mutation operators. The purpose of crossover is to exploit
previously found good solutions. Therefore, we have replaced
it with an operation that, with probability p., performs a
path-preserving local search with a parent to create a new
child solution. Details of this search procedure can be found
in [12]. The purpose of mutation is to explore the search space.
Therefore, we have replaced it with a procedure that, with
probability p,,, replaces a parent with a random feasible child
solution.

In addition, we compare our approach with that of using
FCFS, a heuristic often employed by train dispatchers to
recover the timetable after perturbations [5]. The comparison
is limited by the fact that FCFS can produce only a single
solution to the problem. However, this approach is included
to allow comparison with a technique used in the railway
industry.

V. EXPERIMENTAL STUDY
A. Experimental Design

Algorithm parameters were established by preliminary
experimentation. The best combination for DM-PACO was
found to be 12 ants with a memory size of 8. Such a large
memory size means that in many cases all the ants in the non-
dominated set will be included in the memory and therefore the
memory completely reflects the non-dominated set. A ¢, value
of 0.0 was found to perform best, which results in the
ants always making a probabilistic decision about the next
node to choose. For both pheromone matrices, the maximum
pheromone value (7,,4,) was set to 1, the minimum pheromone
value (7jni;) was set to 1/n, where n is the number of nodes,
and the pheromone update value to (7,4x — Tinir )/k, where k is
the size of the memory. All pheromone levels were initialised
to Tinjs-
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To make the algorithms more comparable, we used the same
number of ants for each algorithm. The pheromone bounds
for MMAS are given by 7,4x = % and 7, = T";‘”, where
C is the fitness of the best ant and a is a constant parameter
of the algorithm. For both pheromone matrices, a was set to
25 and p to 0.5. As in the original MMAS algorithm [10],
the ¢, value was set to 0.0. Reinitialisation of the pheromone
matrices to maximum was triggered when there had been no
change in the best-so-far solution after 20 iterations.

In the case of NSGA-II, preliminary experimentation
showed that the best performance was obtained with a p.
of 0.2 with a p, of 0.2. To make it comparable with the
ACO algorithms, a population size of 12 was used.

Nine different dynamic environments were investigated
involving all permutations of 3 different magnitudes of
change (2 trains, 5 trains, 8 trains) and 3 different frequencies
of changes (5 mins, 10 mins, 15 mins). For all algorithms,
the POS at the point of change was recorded. Thirty runs were
completed for each algorithm on each dynamic scenario and
all algorithms were run for 125 iterations before a dynamic
change.

B. Performance Measures

The two goals of multi-objective optimisation are to find
solutions that are as close to the POF as possible and as well
spread as possible along the whole POF [7]. However, this
is a difficult task in the real world when the true POF is
unknown. For this reason, two different performance measures
have been adopted to give insight into the performance of
the algorithms. The measures are hypervolume (HV), which
measures how much of the objective space is dominated by
the members of the POS [37], and generational distance (GD),
which measures the convergence of a solution’s non-dominated
set towards the POF. To calculate HV, a reference point is
required. In this study, it is determined by the worst values for
each objective over all algorithms and over all changes. This
is to allow the values across all changes to be averaged as they
all use the same reference point. To calculate GD a reference
POF (PO F®) is needed. As this is a real-world problem the
POFR is unknown and therefore is created for each delay
scenario from the union of all the POS for all the algorithms
for that particular change. To give an offline performance
measure for each run (P,) an average was taken over all the
changes, see Eq. (11), where NC is the number of changes and
PM is the performance measure under consideration, either
HV or GD.

| Ne
P = NC PM,

c=1

(1)

C. Experimental Results

The first interesting result is that there is no significant
difference between DM-PACO-ST and DM-PACO-R across
all the scenarios on both of the performance measures.
In DM-PACO-ST, the ants base their decisions on a weighted
aggregation of the pheromones for each objective using
weights determined by the average-weight rank method [19],
whereas in DM-PACO-R, the ants make their decision using



EATON et al.: ANT COLONY OPTIMIZATION FOR SIMULATED DYNAMIC MULTI-OBJECTIVE RAILWAY JUNCTION RESCHEDULING 2989
TABLE III
A STATISTICAL ANALYSIS OF AVERAGE HV AT 0.05 SIGNIFICANCE LEVEL

Algorithms m=8 f=5 m=8f=10 m=8f=15 m=5f{=5 m=5f{=10 m=5f=15 m=2f=5 m=2f=10 m=2f=15
DM-MMAS-NT < DM-MMAS-ST s+ s+ ~ s+ ~ ~ ~ ~ ~
DM-MMAS-NT < DM-MMAS-NC s+ ~ ~ ~ ~ ~ ~ ~ ~
DM-MMAS-ST < DM-MMAS-SC ~ ~ ~ ~ ~ ~ ~ ~ ~
DM-PACO-R < DM-MMAS-NT ~ s+ ~ ~ ~ ~ ~ ~ ~
DM-PACO-R < NSGA-II s+ s+ ~ s+ s+ ~ ~ ~ ~
DM-PACO-R < FCFS s+ s+ s+ s+ s+ s+ s+ s+ s+

only one, randomly selected, pheromone matrix. As there
is no difference between the two versions of DM-PACO,
DM-PACO-R was chosen as the comparison algorithm as it
uses the same decision method as that used by DM-MMAS.

Results were tested for statistical significance using the
Kruskal-Wallis test for multiple comparisons followed by the
Wilcoxon rank-sum pairwise test with Bonferroni correction at
a 0.05 significance level. FCFS was compared to DM-PACO-R
using the one-sample Wilcoxon signed rank test as in this case
we are comparing a single result with multiple results for the
ACO algorithm. Table III relates to the HV performance mea-
sure. Results for the GD performance measure were similar.
Therefore, for space considerations, only the HV performance
table is shown here. The table shows the results of com-
paring Algorithml < Algorithm2, where the symbol “s+”,
“s—" or “~ 7 indicates that Algorithml is significantly better
than, significantly worse than, or not significantly different
from Algorithm2, respectively.

For both HV and GD, the version of m-ACOg4(1,m) that
retains the non-dominated set and the pheromone trails after
a change (DM-MMAS-NT) performs significantly better than
the version that retains the pheromone trails but clears the non-
dominated set after a change (DM-MMAS-ST). This signifi-
cant difference in performance is apparent on the high magni-
tude, high and medium frequency changes (m = 8, f = 5
and m = 8, f = 10) and the medium magnitude, high
frequency change (m = 5, f = 5). This result suggests
that, in the DM-RJRP, it is very important to retain the non-
dominated archive of solutions between changes when the
changes are of a high frequency and of a medium to high
magnitude.

Retaining the non-dominated archive between changes can
be thought of as keeping a memory of the solutions found
before. The continued existence of this archive provides a set
of solutions to compare any new solutions to when checking
for dominance. When many trains are added in short intervals,
few trains will have had the opportunity to pass through the
junction before the next set of trains arrives. This results in
a large number of trains in the system and a correspondingly
large search space for the ants to navigate. The large search
space may make it difficult for the ants to find good new
solutions especially as the good solutions may now have
become localised in one area of the search space due to time-
linked nature of the problem. Retaining and repairing the
archive means that only solutions that are better than those
already found are added to the archive, which guides the
algorithm in its search for better solutions.

With regards to the issue of retaining pheromone val-
ues between changes, a comparison between DM-MMAS-
NT and DM-MMAS-NC shows that, on the high magnitude,
high frequency change (m = 8, f = 5), when both the
pheromone trails and the non-dominated archive are retained
between changes, the algorithm performs significantly bet-
ter than when the non-dominated archive is retained but
the pheromone trails are cleared. These results suggest that,
in the high magnitude high frequency change, retaining the
pheromones between changes improves the performance of the
algorithm.

However, DM-PACO-R still significantly outperforms
DM-MMAS-NT on the high magnitude, medium frequency
change (m = 8, f = 10) even though they both retain the
non-dominated archive between changes. This suggests that
there may be more improvements needed for DM-MMAS to
allow it to perform well in this DMOP. It is interesting that
this performance difference is seen for the high magnitude,
medium frequency scenario (m = 8§, f = 10) rather than
for the high magnitude, highest frequency scenario (m = 8,
f = 5). In our previous work [12], the high magnitude,
high frequency scenario showed the biggest difference in
performance between the algorithms. However, an examination
of the underlying results suggests that scenariom = 8, f = 10
is, in this DMOP, more difficult to solve than m = 8, f = 5.
In m = 8, f = 5, the DM-PACO-R algorithm converged
to the desired solution (0, 0) in 50% of the runs, while in
m = 8, f = 10 it only achieved convergence in 3.33% of
the runs. This suggests that m = 8, f = 10 is the more
difficult problem to solve and also suggests that, in this DMOP,
the difficulty of the problem is not only determined by the
magnitude and frequency of dynamic change but also by the
interaction between the objectives.

Table III shows that NSGA-II performs as well as
DM-PACO-R on all the low magnitude changes (m = 2) and
on the high and medium magnitude low frequency changes
(m=238, f=15and m = 5, f = 15). This suggests that
our used crossover and mutation operators, we used are a
viable answer to the problem of how to preserve a workable
order of trains to pass through the junction. However, DM-
PACO-R significantly outperforms NSGA-II on the high and
medium magnitude and high and medium frequency changes.
This is most likely because NSGA-II has no inbuilt mechanism
to cope with dynamic change and also does not retain its
non-dominated archive between changes. This provides further
evidence for the importance of retaining the non-dominated
archive between changes.
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TABLE IV
NUMBER OF TIMES FCFS DOMINATES THE POS PRODUCED BY
DM-PACO-R IN EACH DELAY SCENARIO (SQUARE
BRACKETS DENOTE THE CHANGE NUMBER)
m=38 m=5 m=2
f=5 f=10 f=15 f=5 f=10 f=15 f=5 f=10 f=15
0 0 0 0 0 0 1171 0 1[3]
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Fig. 3. Amalgamated POFs for DM-PACO-R and DM-MMAS-ST on

m=8 f=10 for a selection of changes instances.

FCEFS is outperformed across all scenarios by DM-PACO-R.
This is not unsurprising as FCFS produces only a single
solution which may result in a lower HV score than a set
of ’trade-off” solutions. For this reason, we also investigated
the number of times the single solution produced by FCFS
dominated the solutions in the POS produced by DM-PACO-R
(Table IV). In this table, the value in square brackets shows
the change number where the solution in FCFS dominated
the solutions in DM-PACO-R. We can see that FCFS only
dominates the solutions in DM-PACO-R when m =2, f =5
and when m = 2, f = 15. In each case, it was for a
single change, change 7 for m = 2, f = 5 and change 3
for m = 2, f = 15. This result shows that for all the
high/medium magnitude and high/medium frequency changes
FCFS produces solutions that are worse than the solutions in
the POS for DM-PACO-R. This is illustrated in Fig. 3, where
it can be seen that the single FCFS solution is worse than the
POF produced by DM-PACO-R.

Fig. 3 shows the evolution of the POF over time for the best
performing algorithm (DM-PACO-R) and one of the worst per-
forming algorithms (DM-MMAS-ST) for the delay scenario
involving 8 additional trains introduced every 10 minutes.
They show the POFs produced when a non-dominated set is
created from the union of all the runs. The points on the front
are not joined to give a smooth representation as this may be
misleading for two reasons: 1). there is no guarantee that the
front actually is smooth and 2). actual solutions corresponding
to the intermediate vectors are unknown and may not actually
exist [15]. The scale of each graph varies to make it easier to
see the POFs produced.
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TABLE V

EXAMPLE TRADE-OFF SOLUTIONS FOR CHANGE 1 m = 8 AND f = 10
FOR DM-PACO-R FOR EACH MEMBER OF THE BEST-SO-FAR POS

Deviation ~ Add. Energy  Train
(min) (kWh) Order
17.217 39.014 6-8-9-7-1-11-10-12-13-14-15-16-17-18-19-20
43.550 27.905 6-8-9-7-11-10-14-16-1-12-13-15-17-18-19-20
58.850 26.839 6-8-9-7-11-10-1-14-15-16-17-18-20-12-13-19
75.750 26.362 6-8-9-7-11-10-14-16-1-20-18-15-17-12-13-19
85.450 24.173 6-8-9-11-10-14-7-1-15-16-18-17-12-13-19-20
TABLE VI
FCFS SOLUTION FOR CHANGE | m = 8§ AND f = 10
Deviation ~ Add. Energy  Train
(min) (kWh) Order
134.167 194.201 8-12-6-3-9-5-14-10-16-13-11-15-18-17-19-20

It is apparent from Fig. 3 that the algorithms can solve
the DM-RJRP to produce a POS of trade-off solutions. It is
also apparent that the non-dominated fronts produced are very
different for the two algorithms. Before any additional trains
have been added to the problem both algorithms find a very
similar POF, it is only after more trains are added that the
shapes of the fronts start to diverge. After change 4, we can
see a dramatic difference in the two fronts, with DM-MMAS-
ST producing a large front with many solutions while DM-
PACO-R has converged to a single solution with a value of
zero in each objective. At a first glance, the set of graphs for
DM-MMAS-ST looks the most promising as it shows a large
number of non-dominated solutions on the POFs. However,
paradoxically, this is not what we want in this real-world
problem. In contrast, we want the effects of the delay to
eventually disappear from the system to allow the trains to
return to their normal running schedule. DM-PACO manages
to achieve this.

It is interesting to note that overall the number of non-
dominated solutions produced in this real-world problem is
actually very small. This is similar to results obtained by
Corman et al. in their work on bi-objective conflict resolution
in railway traffic management [4]. In two out of three of their
scenarios, they obtained an average of only 3 or 4 Pareto
optimal solutions. This suggests that small numbers of Pareto
optimal solutions may be a feature of real-world railway
rescheduling problems.

Tables V and VI show an example set of non-dominated
solutions produced for DM-PACO-R and for FCFS. Each row
in Table V is a non-dominated solution with the deviation
and additional energy incurred. The train order is the order
the trains need to pass through the junction to give those
values. We can see that FCFS has a different set of trains
to sequence than DM-PACO-R. This is because, before the
change occurred, different trains were sequenced and removed
from the problem by FCFS than by DM-PACO-R thus result-
ing in a different set of trains for each algorithm to work with.
This illustrates the time linked nature of the problem.

D. Algorithm Computation Times

The experiments were run on a 2.9GHz Intel Xeon
E5-2666 v3 (Haswell) processor. Table VII shows the average
execution times for dynamic scenarios m = 2, f = 15 and
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TABLE VII

AVERAGE ALGORITHM EXECUTION TIMES IN MINUTES FOR
DM-PACO-R ON SCENARIOm =2, f = 15 AND

m=238, f=5
Change 1 2 3 4 12
m=2,f=15 040 022 021 025 -
m=8,f=5 123 1.82 249 320 1150

m = 8, f = 5. These two scenarios were chosen as they are
the extremes of the delay scenarios. The timing results for all
algorithms were similar, therefore only the results for DM-
PACO-R are shown.

Over all changes, when two trains are added every 15 m
(m = 2, f = 15), the average execution time is less than
a minute. However, when eight trains are added every five
minutes (m = 8, f = 5), the large number of trains in the
problem increases the work of the simulator and results in
an average execution time of 11.50 m for change 12. This
large computation time is, of course, unacceptable in a real-
world situation. However, it could be reduced by choosing
a different termination condition, e.g., running the algorithm
until there has been no improvement in the solutions for a
predefined number of iterations. In addition, ACO is very
amenable to being run in parallel [10], which would cut down
the computation time considerably and make it feasible for
real-time operation.

VI. CONCLUSION

The efficient rescheduling of trains after a perturbation is a
complex real-world problem made more complicated by the
fact that it can be both dynamic and multi-objective. It is
dynamic because while trains are waiting to be rescheduled
more trains will be arriving with different characteristics
and schedules which will change the nature of the problem.
It is multi-objective because the train dispatcher may need to
consider more than one objective when making a decision as
to which solution to implement. The investigation of DMOPs
in the railway industry is limited, as is the application of ACO
algorithms to such problems.

An experimental study was carried out to investigate the
ability of ACO algorithms to solve a simulated dynamic
multi-objective rescheduling problem in the railway industry.
An additional goal of this work was to attempt to identify the
features of an ACO algorithm that make it suitable for coping
with both the dynamic as well as multi-objective nature of this
problem. The study involved the use of several multi-objective
ACO algorithms. Two of the algorithms were based on multi-
objective P-ACO, the others were based on different variations
of a multi-objective MMAS algorithm where the aim of the
modifications was to improve the performance of the algorithm
on the DM-RJRP.

It is apparent that all the ACO algorithms can find a
POS of solutions for the DM-RJRP. However, the algorithm
based on P-ACO performs better than the algorithms based
on MMAS. The performance of multi-objective MMAS can
be improved, on this problem, by retaining the non-dominated
archive between changes. However, for a comparable per-
formance with DM-PACO-R, on scenarios with large and
frequent changes, multi-objective MMAS also benefits from
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using the solution employed to make the snapshot of the
junction to update the pheromone trails after a change. The
best performing algoirithm DM-PACO-R also outperformed
NSGA-II and FCFS.

An interesting observation in this work is that a scenario that
was the most difficult for the algorithm to solve in the dynamic
single objective version of this problem was not necessarily the
most difficult scenario to solve when the problem was made
multi-objective. This suggests that the problem difficulty is not
only influenced by the magnitude and frequency of dynamic
change but also by the interaction between the objectives.

This work has concentrated on modifications to the algo-
rithm after it encounters a dynamic change. It is feasible
that the internal mechanisms of the algorithms may also have
an effect on their ability to solve this DMOP. For example,
DM-MMAS updates the pheromones with the best iteration
ant in each objective while DM-PACO updates with the ants
in a memory created from the non-dominated set. In addition,
it is possible that NSGA-II’s performance could be improved
by modifications to make it able to retain information between
changes such as the introduction of elite immigrants. In future
work, we aim to investigate the effect of these internal
mechanisms on the algorithms’ performance.

The fact that the model used to explore this problem sim-
ulates the physical movement of trains through the junctions,
means that on the high magnitude, high frequency changes
the time taken to produce a solution is unrealistically long.
In addition, this work is focused on a small area of the railway
network and does not take into account the effect that changes
made in a local area will have on the global behaviour of
the network. For this reason, our future work will concentrate
on an event-based, macroscopic model of the railway that
takes into account the movements of the trains between timing
points on a train’s journey. This new model will allow us to
extend our work to a larger area of the railway network and
thus take into account the more global impact of delays. It is
believed that the principles learned here can be carried over
to this new model to allow us to design algorithms for larger
railway rescheduling problems.
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