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This study presents formation-flying periodic orbits in a
new satellite-relative motion scenario, which considers the presence
of intersatellite Lorentz force. A nonlinear dynamical model for the
proposed relative motion is established based on the Hill–Clohessy–
Wiltshire equation, under the assumption that a chief satellite gen-
erates a rotating magnetic dipole while a constantly charging deputy
satellite moves close to the artificial magnetic field of the chief satellite.
Moreover, we assume that the barycenter of the proposed system is
constrained in a circular reference orbit, and the rotating magnetic
axis of the dipole is perpendicular to the reference orbital plane. We
first derived equilibrium points (and analyzed their stabilities), an
integral constant, and zero-velocity surfaces for the proposed rela-
tive motion based on system parameters, such as the charge-to-mass
ratio of the deputy satellite, the moment and rotating rate of the mag-
netic dipole, and the angular velocity of the reference orbit. With
regard to the zero-velocity surfaces, bounded periodic orbits in the
reference orbital plane are searched out using Poincare maps. Pla-
nar periodic orbits near the equilibrium points are numerically com-
puted via differential correction based on the stability characteristic
of equilibrium points, and a special case is analytically solved us-
ing the Lindstedt−Poincare method. The periodic orbits of relative
motion presented in this study differ from those in traditional satel-
lite formation flying. The difference suggests potential applications of
the presented periodic orbits, such as propellantless satellite forma-
tion maintenance and noncontact capture of electrostatically charged
space debris.
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I. INTRODUCTION

An electrically charged particle moving in a magnetic
field experiences Lorentz force, which is one of the funda-
mental physical principles in electrodynamics. If the elec-
tric charge of the particle is q and its velocity relative to
a magnetic field B is vr , then the Lorentz force acting on
the charged particle is computed as FL =qvr ×B. With a
logical rationale, if a charged satellite moves in the geo-
magnetic field, then it experiences Lorentz force that can
possibly be a propellantless means to change and control
satellite orbits. This orbital control scheme was proposed
by Peck [1], and the orbits of charged satellites were called
“Lorentz-augmented orbits.”

Lorentz-augmented orbits are analogous to the motion
of charged dust grains in planetary magnetic fields [2],
and the motion of a charged ballistic missile is affected
by Lorentz-force perturbations when it crosses the iono-
sphere[3]. Similarly, the motion of electrically charged
Earth-orbit artificial satellites, which is induced by the
geomagnetic field, is also perturbed by Lorentz force
[4], [5]. The SCATHA satellite, which was launched in
1979, conducted an experiment on active charge control by
emitting electrons or ions to study the phenomenon of satel-
lite surface charging [6]. Thereafter, the Cluster satellite
also successfully implemented an active charge control by
emitting indium ions [7]. Although the primary purpose
of the active charge control for both the SCATHA and
Cluster satellites is to alleviate charging accumulation to
decrease induced radiation effects, the practical adjustment
of satellite surface charging in space supports the potential
utilization of Lorentz force in orbit control.

The capability of Lorentz force to control the orbit of
a satellite remains limited to a certain degree and Lorentz-
augmented orbits are still in their conceptual research stage;
nevertheless this innovative idea has attracted the attention
of numerous scholars and a number of applications of
Lorentz-augmented orbits have been proposed from the
perspective of orbital dynamics. Streetman et al. [8] pro-
posed new Lorentz-augmented synchronous orbits; de-
veloped Lorentz control schemes to change semimajor
axis, eccentricity, and inclination using a bang-bang type
control strategy [9]; and examined the effects of Lorentz-
augmented orbits on Jovian gravity-assist maneuvers [10],
[11]. Pollock et al. presented inclination change and
responsive coverage for Earth observation using Lorentz
force [12], [13], derived Lagrange’s planetary equations
for the motion of electrostatically charged satellite, and
proposed the conditions for Lorentz-augmented planetary
escape from equatorial and inclined orbits [14]. These
types of Lorentz-augmented orbits typically require high
charging levels, which are technically challenging. To
date, the possibility of implementing the charging level
in the aforementioned orbital control schemes remains un-
certainty and poses numerous technical challenges even
in the future. This uncertainty has motivated us to find
feasible schemes to utilize Lorentz force. One attempt
has shifted our attention to relative orbit control for
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satellite formation flying, which requires significantly lower
charging levels because changing relative motion is con-
siderably easier than changing the satellite orbit relative
to Earth.

Research on the orbital dynamics of satellite formation
flying mainly covers relative motion modeling, formation
design, formation reconfiguration, and formation mainte-
nance. Control strategies that use electromagnetic force or
electrostatic force have been proposed recently for forma-
tion flying. In one approach that applies electromagnetic
force, satellites in a formation are made to produce ar-
tificial magnetic fields. The interaction among magnetic
fields could control the relative motion of satellite. Kong
et al. proposed a satellite formation control scheme called
electromagnetic formation flight (EMFF) [15]. Umair et al.
conducted a research on the dynamics and control of EMFF
in deep space [16] and studied formation reconfigura-
tion and maintenance in low Earth orbit for EMFF [17].
King et al. proposed another approach that applies elec-
tromagnetic force [18], i.e., controlling satellite relative
motion using intersatellite electrostatic force (Coulomb
force). Schaub focused on formation maintenance using
Coulomb force [19] and proposed one-dimensional (1D)
constrained Coulomb structure control with charge satu-
ration [20]. Felicetti et al. evaluated the control strategies
for maintaining spacecraft formation [21]. Similarly, the
Lorentz force induced by the magnetic field of the Earth can
be used to control satellite formation given that a charged
satellite moves in a low Earth orbit [22]. Pollock et al.
analyzed relative motion in a circular orbit using Lorentz
force, which is beneficial for designing rendezvous and
fly-around maneuvers [23]. Peng and Gao recently pro-
posed Lorentz-force-perturbed orbits for establishing J2-
invariant formation [24] and a bang-bang Lorentz force
control for reconfiguring formation in a near-circular ref-
erence orbit [25]. Ludwik and Christopher designed an op-
timal control strategy that combined continuous Lorentz
force actuation with impulsive thrusting for reconfiguring
formation [26].

In this study, we introduce a new space relative mo-
tion scenario, in which intersatellite Lorentz force provides
a new means to control satellite formation. We focus on
identifying periodic relative orbits in this relative motion
scenario, which is possibly the first step in understanding
this new dynamical system. On the basis of the concept of
EMFF, we first assume that the chief satellite is equipped
with high-temperature superconducting wires and is capa-
ble of generating an artificial magnetic field that can be sim-
plified as a rotating magnetic dipole. In addition, a charged
deputy satellite is moving close to the artificial magnetic
field of the chief satellite. Both the chief satellite and the
deputy satellite are subjected to intersatellite Lorentz force.
Moreover, the reference orbit is considered a high-altitude
circular orbit, such as a geosynchronous orbit, where charg-
ing the satellite is easier than in a low Earth orbit because
of the low-density plasma environment. The Lorentz force
exerted on the charged deputy satellite by the Earth or
the planetary magnetic field is disregarded. We established

the equations for relative motion in the presence of inter-
satellite Lorentz force based on the preceding basic assump-
tions, and then derived equilibrium points (and analyzed
their stabilities), an integral constant, and zero-velocity sur-
faces for the new dynamical system. Two categories of
planar periodic orbits are presented. The first category is
bounded on the reference orbital plane, whereas the second
is bounded around the equilibrium points. The former is
found using Poincare maps, which is inspired by bounded
orbits with regard to zero-velocity surfaces, whereas the
latter, with a special case analytically solved using the
Lindstedt–Poincare method, are numerically computed via
differential correction, which is an analogue of the Lya-
punov orbits [27] in the restricted circular three-body dy-
namics. Several simplifications are made for this research
as follows.

1) The relative motion is planar and the axis of the dipole
is perpendicular to the reference orbital plane.

2) Only one class of equilibrium points is considered when
the deputy satellite is negatively charged.

3) The barycenter of the chief satellite and the deputy
satellite moves in a Keplerian circular reference
orbit.

Despite these simplifications, the dynamics of the pro-
posed system still provide new insights into periodic relative
motion that considers the intersatellite Lorentz force.

Evidently, how to build up desired charge and a rotat-
ing magnetic dipole in space, especially a large amount of
charge and magnetic strength, is still under research. They
are technically challenging and no feasible solutions are
presented in detail in this paper. The relevant technologies
have been proposed in existing literature, for example, [28]
indicates that a satellite has a charging level on the order
of 10−6 C/kg is feasible, and [29] shows that the magnetic
dipole moment of 0.1 T · m3 can be produced. These repre-
sentative quantities are used to analyze the relative motion
and periodic orbits described in the following sections. Our
attention is mainly focused on system dynamics, which
aims to present conceptual research on formation flying
considering intersatellite Lorentz force. It helps us better
understand the amount of charge and magnetic strength
that are required to implement some unique formations
closely related to Lorentz force. It is worthy to note that the
deputy satellite could be a damaged one or debris such that
any destructive effect resulted from charging is not neces-
sary to consider.

The rest of this paper is organized as follows. Rela-
tive motion that considers the intersatellite Lorentz force
is modeled in Section II. Section III presents the equilib-
rium points, integral constant, and zero-velocity surfaces
in the proposed dynamical system. Section IV describes
the bounded planar periodic orbits using Poincare maps,
whereas Section V describes the planar periodic orbits near
the equilibrium points. The conclusions of the study and
potential applications are provided in Section VI.
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Fig. 1. Relative motion that considers the intersatellite Lorentz force in
the LVLH coordinates.

II. MODELING RELATIVE MOTION IN THE PRESENCE
OF INTERSATELLITE LORENTZ FORCE

A relative motion scenario with two satellites (see
Fig. 1), commonly referred to as the chief satellite and the
deputy satellite, is considered. Both satellites are subjected
to gravitational force and Lorentz force. The equation for
the relative motion with the barycenter (center of mass)
of the chief satellite and the deputy satellite in a circular
reference orbit can be derived using the well-known Hill–
Clohessy–Wiltshire equation as follows [30]:

⎧
⎪⎨

⎪⎩

ẍ1 − 2nẏ1 − 3n2x1 = fLx1

ÿ1 + 2nẋ1 = fLy1

z̈1 + n2z1 = fLz1

(1)

⎧
⎪⎨

⎪⎩

ẍ2 − 2nẏ2 − 3n2x2 = fLx2

ÿ2 + 2nẋ2 = fLy2

z̈2 + n2z2 = fLz2

(2)

where n is the mean orbital rate of the circular refer-
ence orbit; r1 = [x1 y1 z1]T and r2 = [x2 y2 z2]T are posi-
tion vectors of the chief satellite and the deputy satellite
in local-vertical-local-horizontal (LVLH) coordinates; and
[
fLx1 fLy1 fLz1

]T
and

[
fLx2 fLy2 fLz2

]T
are the three com-

ponents of the Lorentz-force acceleration acting on the chief
satellite and the deputy satellite, respectively. The LVLH
coordinate frame originates from the barycenter. The unit
vectors of the axes of the LVLH coordinate [x̂ ŷ ẑ] are also
depicted in Fig. 1, where x̂ is in the direction of the orbital
radius vector, ẑ is in the direction of the orbital momentum
vector, and ŷ completes the right-handed orthogonal LVLH
coordinates. Notably, these motion equations are valid only
when the reference orbit is circular and the relative orbit co-
ordinates (x1 y1 z1 x2 y2 z2) are considerably smaller than
the reference orbital radius.

If the chief satellite and the deputy satellite are af-
fected only by the attracting force of Earth’s gravity, i.e.,

[
fLx1 fLy1 fLz1

]T
and

[
fLx2 fLy2 fLz2

]T
are all set to zero,

then the resulting differential equations, namely, (1) and
(2) can be analytically integrated to find closed-form so-
lutions for relative motion [30]. If the expressions for
[
fLx1 fLy1 fLz1

]T
and

[
fLx2 fLy2 fLz2

]T
are complicated non-

linear functions, then finding an analytical solution for (1)
and (2) is generally difficult, and numerical integration is
necessary to determine spacecraft relative orbit at a desired
time instant. In this study, (1) and (2), which are modeled
via intersatellite Lorentz force, eventually form a complex
dynamical system.

The derivation of a potential function associated with
the electromagnetic field is required to model Lorentz force
acceleration using Lagrange mechanics, which is defined
as [31]

UEM =−qvr · A (3)

where q is the charged amount of the deputy satellite, and
vr is the velocity of the charged deputy satellite relative to
the rotating magnetic field of the chief satellite, which is
computed as follow:

vr = ṙ − ωc×r (4)

where r = [x y z]T = [x2−x1 y2−y1 z2−z1]T and ṙ=
[ẋ ẏ ż]T = [ẋ2−ẋ1 ẏ2−ẏ1 ż2−ż1]T are the position and
velocity vectors of the deputy satellite relative to the chief
satellite, respectively; and ωc is the angular velocity vector
of the magnetic rotation observed in the LVLH coordinates.
The vector potential A for the magnetic dipole is defined
as [31]

A = B0

r2
(N̂ × r̂)

= B0

r3

[
(zN̂y − yN̂z) (xN̂z − zN̂x) (yN̂x − xN̂y)

]T

(5)

where r̂ = [r̂x r̂y r̂z] = [(x/r) (y/r) (z/r)] is the unit vector
of the relative position of the deputy satellite with respect
to the chief satellite, r =

√
x2 + y2 + z2 is the distance

between the deputy satellite and the chief satellite, B0 is
the magnetic dipole moment, and N̂ = [Nx Ny Nz]T is the
dipole direction unit vector. Moreover, the magnetic dipole
is assumed to be rotating around the dipole direction unit
vector as follows:

ωc = ωc[Nx Ny Nz]
T. (6)

The Lagrange function of the proposed dynamical sys-
tem is then formulated by considering that the two space-
crafts (the chief satellite and the deputy satellite) experience
intersatellite Lorentz force in a magnetic dipole field [32]

L(0) = m1L(0)
1 + m2L(0)

2 − UEM

= m1L(0)
1 + m2L(0)

2 + qvr · A (7)

where m1 and m2 are the masses of the chief satellite and
the deputy satellite, respectively; and L(0)

k is presented as
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follow:

L(0)
k = 1

2
(ẋ2

k + ẏ2
k + ż2

k) + n(xkẏk − ykẋk + aẏk)

+ 3

2
n2a2 + 3

2
n2x2

k − n2

2
z2
k (8)

where subscripts k=1, 2 denote the chief satellite and the
deputy satellite, respectively; and a is the semimajor axis
of the circular reference orbit.

Equations (1) and (2) are derived from Euler–Lagrange
equation d(∂L/∂ ṙ1)/dt−∂L/∂r1 =0 and d(∂L/∂ ṙ2)/dt−
∂L/∂r2 =0, where the Lorentz-force acceleration compo-
nents are

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fLx2 = q

m2

B0

r3

{
3(N̂ · r̂)(ẏr̂z − żr̂y) + żN̂y − ẏN̂z

−ωc(xN̂z − zN̂x)[3(N̂ · r̂)r̂z − N̂z]

+ωc(yN̂x − xN̂y)[3(N̂ · r̂)r̂y − N̂y]
}

fLy2 = q

m2

B0

r3

{
3(N̂ · r̂)(żr̂x − ẋr̂z) + ẋN̂z − żN̂x

−ωc(yN̂x − xN̂y)[3(N̂ · r̂)r̂x − N̂x]

+ωc(zN̂y − yN̂z)[3(N̂ · r̂)r̂z − N̂z]
}

fLz2 = q

m2

B0

r3

{
3(N̂ · r̂)(ẋr̂y − ẏr̂x) + ẏN̂x − ẋN̂y

−ωc(zN̂y − yN̂z)[3(N̂ · r̂)r̂y − N̂y]

+ωc(xN̂z − zN̂x)[3(N̂ · r̂)r̂x − N̂x]
}

(9)

fLx1 = −m2

m1
fLx2, fLy1 = −m2

m1
fLy2, fLz1 = −m2

m1
fLz2 .

(10)

When (2) is subtracted from (1), the equation for the
relative motion is derived as follows:

⎧
⎪⎨

⎪⎩

ẍ − 2nẏ − 3n2x = fLx

ÿ + 2nẋ = fLy

z̈ + n2z = fLz

(11)

where [fLx fLy fLz]T=[fLx2 fLy2 fLz2]
T−[fLx1 fLy1 fLz1]

T,
which is expressed as

fLx = (1+ε)fLx2, fLy = (1+ε)fLy2, fLz = (1+ε)fLz2

(12)
where ε = m2/m1. In addition, a parameter (q/m) (m =
m2), which is called the charge-to-mass ratio, is proposed.

When (12) is substituted into (11), the equations for
relative motion that considers the presence of intersatellite
Lorentz force are derived. The functions of Lorentz-force
acceleration are evidently complicated and finding an ana-
lytical solution for (11) is difficult. The axis of the dipole
is assumed to be perpendicular to the reference orbit plane,
i.e., N̂ = [0 0 ±1]T. When N̂ = [0 0 1]T is substituted into

Eq. (12), the Lorentz-force acceleration values are given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fLx = (1 + ε)
q

m

B0
[(−x2 − y2 + 2z2)ẏ − 3yzż + ωcx(x2 + y2 − 2z2)]

r5

fLy = (1 + ε)
q

m

B0
[(x2 + y2 − 2z2)ẋ + 3xzż + ωcy(x2 + y2 − 2z2)]

r5

fLz = (1 + ε)
q

m
B0

3z[yẋ − xẏ + ωc(x2 + y2)]

r5
.

(13)
If N̂ = [0 0 − 1]T, then the Lorentz-force acceleration

values are

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fLx = −(1 + ε)
q

m

B0
[(−x2 − y2 + 2z2)ẏ − 3yzż − ωcx(x2 + y2 − 2z2)]

r5

fLy = −(1 + ε)
q

m

B0
[(x2 + y2 − 2z2)ẋ + 3xzż − ωcy(x2 + y2 − 2z2)]

r5

fLz = −(1 + ε)
q

m
B0

3z[yẋ − xẏ − ωc(x2 + y2)]

r5
.

(14)
In (13) and (14), the parameters (q/m) and ωc can be

positive or negative. If these two parameters in (14) are con-
trary to those in (13), then no difference exists between (13)
and (14). Therefore, only the case in Eq. will be analyzed
in this study. Although the proposed dynamical system is
highly nonlinear and the general analytical solutions cannot
be easily found, special solutions may be discovered using
dynamical systems theory.

III. EQUILIBRIUM POINTS, INTEGRAL CONSTANT,
AND ZERO-VELOCITY SURFACES

A. Locations and Stabilities of the Equilibrium Points

The equations for relative motion, i.e., (11), can be
considerably simplified using dimensionless variables. Let
ζ = tn be the new time variable. The time rate of a state
variable is written as

dx
dt

= dx
dζ

dζ

dt
= x′n (15)

where the notation ( )′ = d( )/dζ , which represents the di-
mensionless time rate, is introduced. The equations for rel-
ative motion, i.e., (11) and (13), are derived by defining the
dimensionless unit of the range variable α (α3 = (1+ε) ·
|(q/m)B0ωc/3n2|) and setting [X Y Z]T = [x y z]T/α, as
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follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X′′− 2Y ′− 3X = ±3
[
βY ′(−X2− Y 2 + 2Z2) − 3βYZZ′

+ X(X2 + Y 2 − 2Z2)
]/

R5

Y ′′ + 2X′ = ±3
[
βX′(X2 + Y 2 − 2Z2) + 3βXZZ′

+ Y (X2 + Y 2 − 2Z2)
]/

R5

Z′′ + Z = ±9Z
[
βYX′ − βXY ′ + (X2 + Y 2)

]/
R5

(16)
where β = n/ωc and R = √

X2+Y 2+Z2. The signs at the
right sides of the equations are negative when (q/m)<0
and positive when (q/m)>0. In addition, the dimensionless
forms of (1) and (2) are derived as follow with respect to
(16):

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

X′′
1 − 2Y ′

1 − 3X1 = −ε

1 + ε

(
X′′ − 2Y ′ − 3X

)

Y ′′
1 + 2X′

1 = −ε

1 + ε

(
Y ′′ + 2X′)

Z′′
1 + Z1 = −ε

1 + ε

(
Z′′ + Z

)

(17)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

X′′
2 − 2Y ′

2 − 3X2 = 1

1 + ε

(
X′′ − 2Y ′ − 3X

)

Y ′′
2 + 2X′

2 = 1

1 + ε

(
Y ′′ + 2X′)

Z′′
2 + Z2 = 1

1 + ε

(
Z′′ + Z

)
.

(18)

The dimensionless position vector of the barycen-
ter in the LVLH coordinates are represented by Rc =
[Xc Yc Zc]T, and computed as

⎧
⎪⎪⎨

⎪⎪⎩

Xc = (X1 + εX2)/(1 + ε)

Yc = (Y1 + εY2)/(1 + ε)

Zc = (Z1 + εZ2)/(1 + ε).

(19)

The dynamics of the motion of the barycenter is derived
using (17) and (18) as follows:

⎧
⎪⎪⎨

⎪⎪⎩

X′′
c − 2Y ′

c − 3Xc = 0

Y ′′
c + 2X′

c = 0

Z′′
c + Zc = 0.

(20)

The barycenter should be located at the origin of the
LVLH coordinates as depicted in Fig 1, i.e., Xc = Yc =
Zc = X′

c = Y ′
c = Z′

c = 0, which is the trivial solution for
(20). From (17)–(19), the trivial solution results in the fol-
lowing conditions:

[X1 Y1 Z1 X′
1 Y ′

1 Z′
1]T = −ε

1+ε

[
X Y Z X′ Y ′ Z′]T

(21)

[X2 Y2 Z2 X′
2 Y ′

2 Z′
2]T = 1

1+ε

[
X Y Z X′ Y ′ Z′]T

(22)

where ε = m2/m1 is defined in (12). If the initial orbital
states of the chief satellite and the deputy satellite satisfy
(21) and (22), then the barycenter will always remain at
the origin of the LVLH coordinates. In this case, once the
relative motion modeled by (16) is solved, the motion of
the chief satellite and the deputy satellite can be readily
obtained with respect to (17) and (18). Therefore, this study
focuses only on (16). The expression of relative motion
equations in vector form, as presented in (23) and (24),
is frequently beneficial, and is easy to conduct using the
dimensionless variable X = [X Y Z X′ Y ′ Z′]T

X′ = f (X) (23)

where Eqn. (24) is shown at the bottom of the page.
The locations of the equilibrium points Xe (Xe =

[Xe Ye Ze 0 0 0]T) for this dynamical system can be de-

f (X) = [ f1 f2 f3 f4 f5 f6 ]T =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X′

Y ′

Z′

3X + 2Y ′ ± 3
[βY ′(−X2 − Y 2 + 2Z2) − 3βYZZ′ + X(X2 + Y 2 − 2Z2)]

R5

−2X′ ± 3
[βX′(X2 + Y 2 − 2Z2) + 3βXZZ′ + Y (X2 + Y 2 − 2Z2)]

R5

−Z ± 3
3Z[βYX′ − βXY ′ + (X2 + Y 2)]

R5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(24)
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termined by setting X′ = Y ′ = Z′ = 0 and f (X) = 0

Xe = ±1, Ye = 0, Ze = 0,

if (q/m) < 0; (25)

Xe = 0, Y 2
e = 2Z2

e , Ze = ±(2/
√

3)1/3,

if (q/m) > 0; (26)

Xe = ±(1/4
√

6)1/3, Ye = 0, Z2
e = 5X2

e ,

if (q/m) > 0. (27)

The system has three types of equilibrium points. If
(q/m)<0, then the points are located on the X-axis and
the distance from the origin to the equilibrium points is one
dimensionless unit. If (q/m)>0, i.e., (26) and (27), then
two types of equilibrium points are located on the YZ or XZ

plane. This study focuses only on the first case depicted in
(25). When (q/m)>0, the other two cases can be analyzed
in the same manner.

From dynamical systems theory, the stability of the
equilibrium points can be determined by linearizing the dy-
namical equations at these points. Let δX = X−Xe, where
Xe denotes the equilibrium points. The linearization regard-
ing any of these points is as follow:

δX′ = DXe
f · δX (28)

where DXe
f is the derivative of f evaluated at equilibrium

point Xe. The terms of the differential DXe
f have been com-

puted, and the results are shown in Appendix A. DXe
f ,

which governs the linear flow near the equilibrium points
Xe = [±1 0 0 0 0 0 0]T (see (25)), is explicitly written as
follow:

DXe
f =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

9 0 0 0 2 + 3β 0

0 −3 0 −2 − 3β 0 0

0 0 −10 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
(29)

The eigenvectors and eigenvalues of DXe
f should be

found to determine the stability of the linear system. λ is an
eigenvalue if and only if

det(DXe
f − λI) = 0. (30)

A series of trivial calculations leads to the following
characteristic equation:

λ6+(9β2+12β+8)λ4+(90β2+120β−47)λ2−270 = 0.

(31)
When the substitution of τ = λ2 is performed, (31) is

reduced to

τ 3+(9β2+12β+8)τ 2+(90β2+120β−47)τ −270 = 0.

(32)

The resulting third-order polynomial can be explicitly
solved and the roots are computed as

τ1 = −10 (33)

τ2 = 1

2
(2 − 12β − 9β2

+
√

112 − 48β + 108β2 + 216β3 + 81β4) (34)

τ3 = 1

2
(2 − 12β − 9β2

−
√

112 − 48β + 108β2 + 216β3 + 81β4).(35)

The following expression is easy to find:

|2−12β−9β2|<
√

112−48β+108β2+216β3+81β4.

(36)
Therefore, finding that

τ2 > 0 τ3 < 0 (37)

is also easy.
The six eigenvalues are λk1,2 = ±√

τk , where k =
1, 2, 3. Consider the following pair:

λ21,2 = ±√
τ2. (38)

where λ21,2 are real because τ2 > 0, with one positive value
and one negative value, the corresponding eigenmodes have
an exponentially decaying and growing term. The resulting
solution, which is the “center × center × saddle” behavior,
indicates that an unstable motion occurs near the equilib-
rium point. In the same manner, the other two types of
equilibrium points in (26) and (27) are determined to be
both unstable.

B. Integral Constant and Zero-velocity Surfaces

In Section II, Lorentz force fL was derived using a po-
tential function associated with the electromagnetic field,
which was defined as UEM = −qvr ·A[31]. Moreover, the
terms −3X and Z on the left side of (16) are the gradients
of −3X2/2 and Z2/2, respectively. The terms [−2Y ′ 2X′],
which are obtained from the translation of the coordinate
systems between the inertial coordinates and the LVLH
coordinates, will not affect the total energy of the sys-
tem. Therefore, the dynamical system in (16) must have an
integral constant, which can be derived by starting with
a scalar combination of the dynamical variables X′X′′+
Y ′Y ′′+Z′Z′′

X′X′′+Y ′Y ′′+Z′Z′′

= X′ ·f4 +Y ′ ·f5 +Z′ ·f6

= 3XX′−ZZ′±3
[
XX′(X2+Y 2−2Z2)

+ YY ′(X2+Y 2−2Z2)+3ZZ′(X2 + Y 2)
]
/R5

= Dt

(
3

2
X2 − 1

2
Z2 ∓ 3

X2+Y 2

R3

)

(39)

where Dt is the derivative of the term in the bracket
with respect to time, and (f4 f5 f6) are expressed in (24).
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Evidently

Dt

(
X′2 + Y ′2 + Z′2

2

)

= X′X′′+Y ′Y ′′+Z′Z′′ (40)

and

Dt

(
X′2+Y ′2+Z′2

2

)

= Dt

(
3

2
X2− 1

2
Z2∓3

X2+Y 2

R3

)

.
(41)

Then

1

2
(X′2+Y ′2+Z′2) =

(
3

2
X2 − 1

2
Z2 ∓ 3

X2+Y 2

R3

)

− 1

2
C

(42)
where C is a constant. Thereafter, the following case is
derived:

(

3X2−Z2∓ 6
X2+Y 2

R3

)

−(X′2+Y ′2+Z′2) = C. (43)

This constant or conserved quantity is called the “energy
integral.” It is referred as the “energy” or “energy integral”
in this study because it is a conserved quantity.

If the velocity is set to zero at a given energy level,
then a set of system states is determined and obtained by
implicitly solving the following equation:

3X2 − Z2 ∓ 6
X2 + Y 2

R3
= C. (44)

The solution set for this equation is a 2-D surface that
may provide considerable information about the possible
dynamics at a given energy level. When the deputy satellite
arrives at the zero-velocity surface, its velocity relative to
the chief satellite is zero, and thus, it cannot pass through
the surface. Therefore, the zero-velocity surface restricts
possible dynamics by showing which regions in space are
unreachable at a given energy level.

The signs on the left side of (43) and (44) depend on
the sign of (q/m). In the remainder of this paper, only the
case of (q/m)<0 is considered with the assumption that
space debris or a satellite can always be negatively charged
because debris is generally easier to be negatively charged
than positively charged. The forms of (43) and (44) are
transformed into

3X2 − Z2+ 6
X2+Y 2

R3
− (X′2+Y ′2+Z′2) = C (45)

3X2−Z2+ 6
X2+Y 2

R3
= C. (46)

The value of the energy integral at the equilibrium
point is

C(±1,0,0) = 9 (47)

where subscript (±1, 0, 0) represents the position coor-
dinates of the equilibrium point. The zero-velocity sur-
faces and their projection on the XY -plane for energy
levels of 1.1C(±1,0,0), C(±1,0,0), and 0.9C(±1,0,0) are shown in
Figs. 2–4.

As shown in the Figs. 2–4, the chief satellite always
remains at the origin of the frame. Under the assumptions

Fig. 2. Zero-velocity surfaces and the projection at 1.1C(±1,0,0).

Fig. 3. Zero-velocity surfaces and the projection at C(±1,0,0).

Fig. 4. Zero-velocity surfaces and the projection at 0.9C(±1,0,0).

that the deputy satellite can establish or modify the amount
of charging in the order of 10−6 C/kg [28], the magnetic
dipole moment B0 = 0.1 T · m3 [29], the angular velocity
ωc = 1 rad/s, parameter ε= m2/m1 =1, and the reference
orbit is geostationary orbit, the range between the chief
satellite and the equilibrium point is approximately 2.3 m.

At an energy level of 1.1C(±1,0,0) (see Fig. 2), the allow-
able orbits are separated into two disconnected domains. At
this energy level, the chief satellite and the deputy
satellite are contained in an oblate sphere (see Fig. 2). The
deputy satellite orbiting the chief satellite never goes be-
yond the boundary of the oblate sphere (i.e., relative mo-
tion is bounded). If the deputy satellite is far from the chief
satellite, then the orbits in space with unbounded hyper-
bolic surfaces (see Fig. 2) as the boundary cannot arrive in
the oblate sphere. Fig. 3 indicates that the barrier between
the chief satellite and external space just opens at an en-
ergy level of C(±1,0,0). However, the two domains on each
side of the equilibrium points are still disconnected and no
orbit can pass through. In Fig. 4, the barrier between the
chief satellite and external space is removed when the en-
ergy level is further reduced, and a “neck” occurs near the
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equilibrium point, which indicates that the deputy satellite
can possibly escape from the vicinity of the chief satellite.
Notably, escape is only possible through the small neck.

C. Two Types of Planar Periodic Orbits

The remainder of this paper mainly focuses on planar
relative motion, which will provide substantial conclusions
regarding periodic relative motion that considers the in-
tersatellite Lorentz force. To model planar relative motion
(Z = Ż = 0), (16) ((q/m) < 0) is reduced to its planar
form as follows:

⎧
⎪⎪⎨

⎪⎪⎩

X′′ − 2Y ′ − 3X = −3
−βY ′ + X

R3

Y ′′ + 2X′ = −3
βX′ + Y

R3

(48)

where R = √
X2+Y 2.

The equilibrium points are

X = ±1, Y = 0. (49)

They exhibit the classical “center × saddle” behavior
based on the linearization analysis. Similarly, (48) has an
energy integral, as follows:

3X2+ 6√
X2+Y 2

− (X′2 + Y ′2) = C. (50)

The energy integral value at the equilibrium point
is C(±1,0) = 9, and the zero-velocity curves (ZVC) are
solved via

3X2+ 6√
X2+Y 2

= C. (51)

Consider the following initial position and velocity with
energy integral values of 1.1C(±1,0), C(±1,0), and 0.9C(±1,0).

[X0 Y0 X′
0 Y ′

0]T = [0.5 0 0 1.6882]T (52)

[X0 Y0 X′
0 Y ′

0]T = [−0.8 0 0 0.6481]T (53)

[X0 Y0 X′
0 Y ′

0]T = [−0.6 0 0 1.7263]T. (54)

The corresponding relative orbit shown in Fig. 5(a) is
obtained by integrating the fundamental equation of mo-
tion, i.e., (48), into the initial condition in (52) for 100 time
units. The relative orbit corresponds to an energy integral of
1.1C(±1,0), thereby limiting the motion of the deputy satel-
lite in the oblate sphere around the chief satellite. Moreover,
if the initial condition is set using (53) (subjected to an
energy level of C(±1,0)), then the corresponding orbit re-
mains in the oblate sphere around the chief satellite, as
shown in Fig. 5(b). Finally, the initial condition in (54)
with an energy level of 0.9C(±1,0) is considered. As shown
in Fig. 5(c), the deputy satellite orbits the chief satellite
approximately 20 time units before reaching outside space.
It arrives at the ZVC several times before leaving the chief
satellite through the neck.

Finding two types of planar periodic orbits is easy. First,
the ZVC indicate the existence of bounded motion, as il-
lustrated in Fig. 5(a) and (b). The numerical simulation
shows that Lorentz force can maintain bounded relative

Fig. 5. Orbit around the chief satellite with energy integral values of
1.1C(±1,0), C(±1,0), and 0.9C(±1,0).

orbits when energy integral C is appropriately selected
(C ≥ C(±1,0)). Because the charge-to-mass ratio (q/m),
the magnetic dipole moment B0 and the angular veloc-
ity ωc, which determine the value of parameter α (see
Section III-A), can be arbitrarily set, the desired value of C

can be set to generate bounded relative orbits. This spec-
ulation is derived from the fact that the bounded periodic
motion of the deputy satellite relative to the chief satellite
may be possible.

In addition, periodic motion may occur near the equilib-
rium point because this point exhibits a “center × saddle”
behavior, which is inspired by the existence of Lyapunov
orbits near the collinear Lagrange points in the circular re-
stricted three-body dynamics. The presence of the center
manifold near the equilibrium point can assist in finding
periodic orbits.

Therefore, two types of periodic orbits are first analyzed
in this study: bounded periodic orbits with respect to the
ZVC and periodic orbits around the equilibrium points. In
the first step of this study, the planar cases of periodic orbits,
which are described in Sections IV and V, are investigated.

IV. SEARCHING OUT PLANAR STABLE PERIODIC
ORBITS USING POINCARE MAPS

In dynamical systems theory or celestial mechanics, a
Poincare map, which is typically interpreted as a discrete-
time dynamical system, provides a fundamental tool for
analyzing orbital flows. The dimension of the original
continuous-time dynamical system is reduced by at least
one order with a judicious choice of Poincare maps.
Poincare maps can provide a considerably larger global
picture of the dynamics of a system than linear analysis.

Consider a system of differential equations ẋ = F(x),
and a point x∗. Let φ(x∗, t) be the point of the trajectory
χ (x∗, [0 tf ]) at time t (0 < t < tf ), where χ (x∗, [0 tf ]) is
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the trajectory curve obtained by flowing x∗ forward by time
tf in the system ẋ = F(x). In addition, let a hyperplane �

be through x∗ and traverse to the flow, i.e., all trajectories
starting from � flow through it and are not parallel to it.
Assume that φ(x∗, τ ∗) is again in � for some τ ∗ > 0. It also
assume that no other intersections of φ(x∗, t) with � near
x∗ exist. For x near x∗, there is a nearby time τ (x) such that
φ(x, τ (x)) is in �. Then, P(x) = φ(x, τ (x)) is the Poincare
map.

With regard to the orbital flow of a periodic orbit, its
intersection on the Poincare map always remains at the
same position, which is frequently called a fixed point of a
discrete-time dynamical system. Meanwhile, other types of
flow, such as quasi-periodic or chaotic orbits, can also be
identified using a Poincare map, thereby providing signifi-
cant insight into the orbit structure of a dynamical system.
In this study, Poincare maps are used to search for planar pe-
riodic orbits in the reference orbital plane. The phase space
of the planar system for the proposed relative motion is 4-D
and is difficult to visualize. It is not only convenient but
also quite natural to restrict the energy integral to a partic-
ular value in which case a 3-D continuous-time dynamical
system is obtained. Furthermore, a Poincare map with a
fixed energy integral provides a 2-D discrete-time dynam-
ical system, which is used to identify periodic orbits.

A. Poincare Map With an Energy Integral of C =
1.1C(±1,0)

First, Poincare maps for planar systems are created with
an energy integral of C = 1.1C(±1,0). We select four differ-
ent β values for the system in (48): −0.001, −0.1, 0.01, and
1. A total of 300 initial conditions along the X-axis, whose
velocity magnitude is determined based on an energy inte-
gral of C = 1.1C(±1,0) are chosen. The equations of motion,
i.e., (48), are numerically integrated into 2000 time units
with the proposed initial conditions. The data points are
searched for the crossings of the XZ-plane with a positive
Y -axis velocity (Y ′ >0). A point is considered located on
the XZ-plane when |Y | < 10−6. The X and Ẋ (or Vx) co-
ordinates of the points on the XZ-plane are recorded and
used to create Poincare maps, which are shown in Fig. 6.

As shown in Fig. 6(a), a fixed point (X = 0.3786 and
X′ = 0) exists. Subsequently, the entire initial states can be
recovered because the energy integral is prescribed at C =
1.1C(±1,0). The magnitude of the velocity is determined by
the energy integral (|V | = 2.5254) and the Poincare map
is defined for the crossings with Ẏ >0; thus, the complete
initial condition is derived as follows:

[X0 Y0 X′
0 Y ′

0]T = [0.3786 0 0 2.5254]T. (55)

The corresponding orbit is obtained as shown in Fig. 7
by numerically integrating (48) into the aforementioned
initial condition that was forwarded for 40 time units. It is
a periodic orbit that exists around the chief satellite in the
rotating LVLH frame. The gray line in the figure (the closed
curve outside) denotes the ZVC with an energy integral of
C = 1.1C(±1,0). The figure shows that the deputy satellite

Fig. 6. Poincare maps with C = 1.1C(±1,0) and
β = −0.001,−0.1, 0.01.1.

Fig. 7. Orbit generated by the fixed point in Fig. 6(a).

Fig. 8. Orbit generated by the point near the fixed point in Fig. 6(a).

does not deviate from the periodic orbit, which strongly
suggests that the periodic orbit is stable.

In addition, the circles near the fixed point of the
Poincare map in Fig. 6(a) suggest that quasi-periodic orbits
exist. For example, the initial condition, which is far from
the fixed point but well within the map, is selected to be

[X0 Y0 X′
0 Y ′

0]T = [0.35 0 0 2.7587]T. (56)

This initial condition leads to the orbit shown in Fig. 8.
The quasi-periodic relative orbit remains bounded.
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Fig. 9. Global picture of the Poincare map with C = 1.1C(±1,0) and
β = −0.001.

Fig. 10. Orbit generated by the point far away from the fixed point.

Furthermore, observe the global picture of the dynamics
of the system shown in Fig. 9, which is under the condition
of C = 1.1C(±1,0) and β = −0.001. In the figure, numer-
ous closed curves travel around the only fixed point in the
Poincare map. From the principles of Poincare maps, a con-
clusion can be drawn that the orbits within this ZVC are all
quasi-periodic except for one periodic orbit generated by
the fixed point.

The condition of X0 = 0.2 and X′
0 = 0.6, which is suf-

ficiently far from the fixed point (X0 = 0.3786, X′
0 = 0),

is presented as an example. The complete initial condition
computed at C = 1.1C(±1,0) is

[X0 Y0 X′
0 Y ′

0]T = [0.2 0 0.6 4.4565]T. (57)

The orbit starting from the initial state in (57) is illus-
trated in Fig. 10. The figure indicates that the area occupied
by the orbit is considerably larger than that shown in Fig. 8.

Let ε = m2/m1 = 1/2, and [X0 Y0 X′
0 Y ′

0]T are set by
(55) and (56) without considering the motion in the Z-axis.
The motions of the chief satellite and the deputy satellite
are obtained as shown in Fig. 11 by numerically integrating
(17) and (18) with the initial conditions in (21) and (22).

The origin shown in Fig. 11 is the barycenter. The left
subplot corresponds to the relative motion in Fig. 7, whereas

Fig. 11. Orbits of the chief satellite and the deputy satellite that
correspond to the relative motions in Figs. (7) and (8).

Fig. 12. Orbits of the chief satellite and the deputy satellite that
correspond to the relative motion in Fig. 10.

the right subplot corresponds to that in Fig. 8. As shown
in Fig. 7, if the relative motion is a periodic orbit, then the
motions of the chief satellite and the deputy satellite are also
periodic orbits. By contrast, if the relative motion is a quasi-
periodic orbit, then the motion of the chief satellite and the
deputy satellite are also quasi-periodic orbits. Similarly,
the orbits of the chief satellite and the deputy satellite that
correspond to the relative motions shown in Fig. 10 are
depicted in Fig. 12.

Consider the other three Poincare maps in Fig. 6(b)–(d),
which are analyzed using the same method. As indicated in
the Poincare map with β = −0.1, four fixed points exist,
all with X′ = 0. The four sets of fixed points correspond to
the following four sets of states

[X0 Y0 X′
0 Y ′

0]T
a = [0.4619 0 0 1.9313]T (58)

[X0 Y0 X′
0 Y ′

0]T
b = [0.5187 0 0 1.5731]T (59)

[X0 Y0 X′
0 Y ′

0]T
c = [0.5419 0 0 1.4329]T (60)

[X0 Y0 X′
0 Y ′

0]T
d = [0.6874 0 0 0.4961]T. (61)

Four types of periodic orbits are obtained by integrating
(48) with the initial conditions in (58)–(61) for 40 time
units, as shown in Fig. 13. With the exception of the last
orbit shown in Fig. 13(d), all the other periodic orbits move
around the chief satellite and have different extreme points
in the radial direction. Moreover, the motions of the chief
satellite and the deputy satellite that correspond to the four
periodic orbits are shown in Fig. 14.

In Fig. 6(b), several closed curves also encircle the fixed
points, and the orbits generated by the curves near the fixed
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Fig. 13. Four types of periodic orbits generated by the four sets of fixed
points in Fig. 6(b).

Fig. 14. Orbits of the chief satellite and the deputy satellite that
correspond to the relative motions in Fig. 13.

points are quasi-periodic orbits. The shapes of the quasi-
periodic orbits are similar to that of the periodic orbits
generated by the fixed points, namely, quasi-periodic orbits
that are oscillating near the periodic orbit. The following
four sets of initial conditions are established to obtain the
four types of quasi-periodic orbits presented in Fig. 15

[X0 Y0 X′
0 Y ′

0]T
a = [0.45 0 0 2.0102]T (62)

[X0 Y0 X′
0 Y ′

0]T
b = [0.52 0 0 1.5651]T (63)

[X0 Y0 X′
0 Y ′

0]T
c = [0.537 0 0 1.4623]T (64)

[X0 Y0 X′
0 Y ′

0]T
d = [0.68 0 0 0.5574]T. (65)

Similarly, the orbits of the chief satellite and the deputy
satellite, which are all quasi-periodic, are depicted in
Fig. 16. As shown in Figs. 11, 14, and 16, it is easy to
determine that the shape of the orbits of the deputy satellite
is similar to that of the relative orbits and that the shapes
of the orbits of the chief satellite and the relative orbits are
symmetric with respect to the barycenter. For simplicity,

Fig. 15. Quasi-periodic orbits generated by the points near the fixed
points in Fig. 6(b).

Fig. 16. Orbits of the chief satellite and the deputy satellite that
correspond to the relative motions in Fig. 15.

Fig. 17. Two types of periodic orbit when β = 0.01.

the orbits of the chief satellite and the deputy satellite will
not be discussed in the following simulation cases.

When β = 0.01 or β = 1, the Poincare maps have four
or two fixed points, respectively, as shown in Fig. 6(c)
and (d). Two types of orbits generated by the two points
on the X-axis in Fig. 6(c) are shown in Fig. 17. The two
periodic orbits when β = 1 are shared in Fig. 18. As shown
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Fig. 18. Two types of periodic orbit when β = 1.

Fig. 19. Poincare maps (C = C(±1,0), β = −0.001).

Fig. 20. Poincare maps (C = C(±1,0), β = 0.01).

Fig. 21. Poincare maps (C = C(±1,0), β = −0.1, 1).

in Figs. 17 and 18, three orbits surround the chief satellite
(the origin), whereas one orbit does not [see Fig. 18(a)].

In this section, the Poincare maps with an energy in-
tegral of C = 1.1C(±1,0) are examined. The periodic and
quasi-periodic orbits are verified via numerical simulation
under different values of β. However, discovering numer-
ous discrete points in Fig. 6 is easy. These discrete points
represent the extensive classes of chaotic orbits that are not
analyzed in detail. These periodic and quasi-periodic orbits
can be applied to a new concept of satellite formation that
is entirely different from traditional ones.

B. Poincare Map With Energy Integrals of C = C(±1,0)

and C = 0.9C(±1,0)

Poincare maps with an energy integral of C = C(±1,0)

are provided in Figs. 19−21. When β = −0.001, two fixed

Fig. 22. Poincare maps (C = 0.9C(±1,0), β = −0.001, 0.01,−0.1, 1).

points surrounded by a few closed curves exist. The area of
the closed curves is relatively small and most of the region
in the map is full of discrete points. This condition indicates
that periodic and quasi-periodic orbits exist; however most
orbits generated by the discrete points in Fig. 19 are chaotic
and unpredictable. If β = 0.01, then the chaotic property
can also be observed in the Poincare map shown in Fig. 20.

When the absolute value of β is sufficiently large, the
number of discrete points decreases and the curves surround
the fixed points. As shown in Fig. 21(a), when β = −0.1,
the left part of the section is full of curves, whereas the right
part is full of discrete points. Therefore, the chaotic charac-
teristic in the system is weaker than those in Figs. 19−20.
When β = 1, the chaotic characteristic nearly disappears
because few discrete points are shown in Fig. 21(b).

For the situation in which the energy constant C is
smaller than C(±1,0), let C = 0.9C(±1,0). The four Poincare
maps for different levels of β are created (see Fig. 22).
When β = −0.001 or β = 0.01, no fixed point exists in the
maps shown in Fig 22(a) and (b), which suggests that all
the orbits generated in these cases are not periodical.

When β = −0.1 and β = 1, the Poincare maps are de-
picted in Fig. 22(c) and (d), respectively. These figures show
that the Poincare maps are mainly constituted by curves and
a few scattered discrete points; hence, the orbits in the two
cases are nearly periodic and quasi-periodic.

In this section, a few bounded periodic orbits in the ref-
erence orbital plane are searched out using Poincare maps.
These periodic orbits, which differ from those in traditional
satellite formation flying, demonstrate potential application
in spacecraft formation. For example, a space station can
maintain a number of small service satellites using pro-
pellantless Lorentz force because certain periodic orbits
steadily run around the chief satellite. Moreover, the stable
periodic orbits that do not travel around the chief satellite
[see Figs. 13(d) and 18(a)] indicate that the deputy satellite
can remain static with respect to the chief satellite.

V. COMPUTING PLANAR PERIODIC ORBITS NEAR
THE EQUILIBRIUM POINTS

In this section, periodic orbits near the equilib-
rium points are computed using the classical differential
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correction method by taking advantages of the symmetry
of motion equations. In addition, analytic solutions for a
special case of these periodic orbits are obtained by using
the Lindstedt–Poincare method.

A. Symmetry in the Dynamical System and Symmetric
Orbits

When (48) is considered, f (X) in (23) is expressed as

f (X) =

⎡

⎢
⎢
⎢
⎢
⎣

f1

f2

f3

f4

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

X′

Y ′

3X + 2Y ′ − 3−βY ′+X

R3

−2X′ − 3βX′+Y

R3

⎤

⎥
⎥
⎥
⎥
⎦

(66)

where

X = [X Y X′ Y ′]T. (67)

The symmetry in the system can be deduced through
the following theorem.

Theorem: Let X0 = [X0 Y0 X′
0 Y ′

0]T ∈R4 be a point in
the phase space of the system in (23) and (66), and let
χ (X0, [0 T ]) be the trajectory curve obtained by flowing
X0 forward in time T . In addition, let φ(X0, t) be the point
of the trajectory χ (X0, [0 T ]) at time t . Set Xf = φ(X0, T ),
then

χ∗(AXf , [0 T ]
) ≡ A·χ(

Xf , [0 −T ]
)

(68)

solves the system with φ∗(AXf , 0) = AXf and φ∗(AXf ,

T ) = AX0, where

A =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

.

(69)

The theorem states that if trajectory χ takes X0 to Xf

in time T along path C in the phase space, then trajectory
χ∗ takes AX0 to AXf at the same time along path C∗(C∗ =
AC), which is only a reflection of C across the XZ-plane
with a time reversal along C. The theorem is similar to the
circular restricted three-body problem [33] and its proof is
not provided in this paper.

The theorem is beneficial for computing planar periodic
orbits. Suppose that at time t = 0, a trajectory χ begins at
a point X0 on the X-axis with a velocity normal to the XZ-
plane, i.e., it only has velocity in the Y -axis direction. If
trajectory χ returns to the XZ-plane at a later time t = τ

with a velocity in the opposite direction of its initial velocity,
then the orbit is T -periodic with T = 2τ and we obtain
AX0 = X0 and AXf = Xf , where Xf = φ(X0, τ ). Hence

φ(X0, 2τ ) = φ∗(Xf , τ ) = X0. (70)

This trajectory can be computed using the Newton dif-
ferential correction procedure. In such procedure, the pa-
rameters X0, Y ′

0 and τ can vary to satisfy the terminal
condition as

Y (τ ) = X′(τ ) = 0. (71)

B. Computation of Symmetric Periodic Orbits Via Differ-
ential Correction

The linearized model (see (28)) indicates that the
equilibrium points exhibits “center × saddle” behavior.
However, the linear model is insufficient for conducting
accurate studies on the dynamics near the equilibrium
points. Therefore, numerical solutions that take advantage
of the symmetry of the problem and the differential correc-
tion method (Newton iterations) are necessary.

Let X0 = [X0 Y0 X′
0 Y ′

0]T be the system states in the
dynamics X′ = f (X) (see (66)). Coordinate X0 is held fixed
to find the initial conditions for the periodic orbit. Let Y0 =
X′

0 = 0 and search for Y ′ and τ to satisfy the following
constraint equation:

ϕ(Y ′, τ ) = [Y(τ ) X′(τ )]T = [0 0]T. (72)

A Newton iteration for this problem is

xn+1 = xn − [Dϕ(xn)]−1ϕ(xn) (73)

with x = [Y ′, τ ]T and x0 = [Y ′
0, τ0]T. In this case,

[Y ′
0, τ0]T is the initial assumption that can be set according

to the center manifold of the equilibrium point. The ele-
ments in differential Dϕ(xn) can be derived from the state
transition matrix �(t, t0) and the dynamics f (X) (see (66))

Dϕ(xn) =
[

�(2, 4) f2

�(3, 4) f3

]

(74)

where the differential equation of �(t, t0) is derived as

�̇(t, t0) = A(t)�(t, t0) A(t) = ∂ f
∂X

(75)

with the initial value �(t0, t0) = I4×4. The terms of the
Jacobian matrix A(t) are provided in Appendix A. The
terms f2 and f3 are defined in (66).

When β = 1, the differential is

DXe
f =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 1 0

0 0 0 1

9 0 0 5

0 −3 −5 0

⎤

⎥
⎥
⎥
⎥
⎦

.

(76)

Its eigenvalues and eigenvectors are computed as

λ = [±1.1525 ±4.5087i]T (77)
⎧
⎪⎨

⎪⎩

ν1 = [0.3936 −0.5240 0.4536 −0.6039]T

ν2 = [0.3936 0.5240 −0.4536 −0.6039]T

ν3,4 = u3,4 ± iw3,4

(78)

where
{

u3,4 = [0.1320 0 0 −0.7740]T

w3,4 = [0 0.1717 0.5950 0]T
.

(79)

From the center manifold u3,4 and the eigenvalues
±4.5087i in (77), the initial assumption that makes the
value of the coordinate be −0.03 and its direction vector be
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Fig. 23. View of the periodic orbit.

Fig. 24. Family of periodic orbits near the equilibrium point.

u3,4 in the coordinates of the system is

X0 = Xe + [−0.03 0 0 0.1759]T (80)

τ = T/2 = π/4.5087 = 0.6968 (81)

where Xe = [1 0 0 0]T denotes the coordinates of the
equilibrium point.

Coordinate X0 is held fixed, and Y ′
0 and τ are searched

for until the boundary conditions in (71) are satisfied. Then
Newton iteration is applied and the initial conditions found
are given as follows:

X∗
0 = [0.97 0 0 0.165855]T (82)

T ∗ = 1.385182. (83)

The periodic orbit is located near the equilibrium point
and moves clockwise around it in Fig. 23. The computed
method holds the X0 coordinate fixed and adjusts the ini-
tial Y ′

0 and τ . Subsequently, a few different periodic orbits
can be produced if the X0 coordinates are changed, which
comprise the family of this periodic orbit. Equations (82)
and (83) are used as the starting place to move along the
X-axis between (xe − 0.1) and (xe − 0.03) and parameter
β = 1 remains unchanged, where xe = 1 is the x coordinate
of the equilibrium point. The family of computed orbits is
shown in Fig. 24.

Fig. 25. Four periodic orbits with β = 5, 1, 0.1, and 0.01.

C. Periodic Orbits at Different β values

A variable parameter β exists in (66) and the shape of the
periodic orbit may differ if β is changed. We then compute
the periodic orbits near the equilibrium point at different β

values. First, let the value of β be 5, 1, 0.1, or 0.01, which
are all positive. The initial assumptions are obtained using
the same approach presented in Section V-B. Fig. 25 shows
four orbits with different shapes and sizes.

The Y -axis velocities and the periods for the four peri-
odic orbits in Fig. 25 are

[Y ′
0 T ]β=5 = [0.131283 0.370903] (84)

[Y ′
0 T ]β=1 = [0.057360 1.392538] (85)

[Y ′
0 T ]β=0.1 = [0.059748 2.852129] (86)

[Y ′
0 T ]β=0.01 = [0.065168 3.015937]. (87)

As shown in Fig. 25 and (84)−(87), the smaller β is,
the larger the shape of the orbit and the longer the period.
The Y -axis velocities are all positive, and the motion in
the orbits is clockwise. After the numerical simulation, the
shape of the computed orbits hardly changes when 0<β <

0.01, that is, the orbits are all similar to the orbit when
β = 0.01. Essentially, when the absolute value |β| is small,
e.g., |β|≤0.01, parameter β no longer influences the shape
of the periodic orbits.

For the condition β <0, the periodic orbits have two
modes, i.e., one mode is clockwise and the other is anti-
clockwise. If the absolute value |β| is small (β <−0.01),
then the right side of (48) is dominated by the position states
and the orbits are always moving clockwise (this conclu-
sion will be proved by the following derivations of (107)). If
the absolute value |β| is larger, then the velocity states can
affect the motion. Hence, the intersatellite Lorentz force
acceleration on the right side of (48) is

FL = − 3β

|R|3 [−Y ′ X′]T − 3

|R|3 [X Y ]T. (88)

The first term in (88) is evidently normal to the ve-
locity. If the deputy satellite moves clockwise around the
equilibrium point and parameter β <0, then the first term
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Fig. 26. Three periodic orbits with β = −0.01,−0.1, and −0.3.

Fig. 27. Four periodic orbits with β = −5, −2,−1.2, and −1.

points outward to the path curve, thereby indicating a cen-
trifugal force that will break the closed orbit. Therefore,
the orbits found typically move counterclockwise. When
β = −0.01, −0.1, and −0.3, in which the absolute values
are small, the Y -axis velocities and the periods for the three
orbits in Fig. 26 are

[Y ′
0 T ]β=−0.01 = [0.066652 3.050369] (89)

[Y ′
0 T ]β=−0.1 = [0.074948 3.194880] (90)

[Y ′
0 T ]β=−0.3 = [0.109457 3.446477]. (91)

Evidently, all the orbits in Fig. 26 move clockwise.
Thereafter, the counterclockwise orbits are computed when
|β| is large. Let β = −5, −2, −1.2, and −1. Then, the
Y -axis velocities and the periods for the orbits are

[Y ′
0 T ]β=−5 = [−0.106523 0.488107] (92)

[Y ′
0 T ]β=−2 = [−0.050934 1.792390] (93)

[Y ′
0 T ]β=−1.2 = [−0.074084 3.239621] (94)

[Y ′
0 T ]β=−1 = [−0.108209 3.474706]. (95)

All the periodic orbits shown in Fig. 27 move counter-
clockwise, and their shapes and periods vary with β. The

numerical simulation results show that parameter β does
not only affect the shape and period of periodic orbits, but
also the moving direction.

D. Analytic Approximation of Periodic Orbits Using the
Lindstedt−Poincare Method

When the planar dynamical equation, i.e., (48), is con-
sidered, the rotation angular rate ωc of the dipole is assumed
to be considerably larger than the mean orbital rate. Then,
the approximation β = 0 when |β|≤0.01) is obtained, and
(48) can be written as

⎧
⎪⎪⎨

⎪⎪⎩

X′′ − 2Y ′ − 3X = −3
X

R3

Y ′′ + 2X′ = −3
Y

R3

. (96)

The selection of a coordinate system that is centered at
the equilibrium point is logical to focus on the motion near
the equilibrium point e1 = [1, 0]T. Set ρ = [ρx, ρy]T and
let ρ = R − e1. Then, (96) can be transformed into

⎧
⎪⎪⎨

⎪⎪⎩

ρ ′′
x − 2ρ ′

y − 3(ρx + 1) = ∂�

∂ρx

ρ ′′
y + 2ρ ′

x = ∂�

∂ρy

(97)

where

� = 3

|R| = 3

|ρ + e1| = 3 ·
∞∑

n=0

pn(−ρx/|ρ|)|ρ|n

= 3 − 3ρx +U (98)

U = 3 ·
∞∑

n=2

pn(−ρx/|ρ|)|ρ|n

=
∞∑

n=2

cnpn(ρx/|ρ|)|ρ|n (99)

cn = (−1)n · 3 (100)

where pn denotes the Legendre polynomials. The linear
approximation to the equations of motion is achieved by
considering only the first term (n = 2) in U , i.e.,

{
ρ ′′

x − 2ρ ′
y − 9ρx = 0

ρ ′′
y + 2ρ ′

x + 3ρy = 0
(101)

which is a set of linear ordinary differential equations.
Its characteristic polynomial is

λ4 − 2λ2 − 27 = 0 (102)

where λ is computed as

λ1,2 = ±
√

2
√

7 + 1, λ3,4 = ±i

√

2
√

7 − 1. (103)
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Therefore, the solution for the linear equations in (101)
can be written as follows:

⎧
⎪⎪⎨

⎪⎪⎩

ρx(τ ) = A1e
υτ + A2e

−υτ + A3 cos λτ + A4 sin λτ

ρy(τ ) = −k1A1e
υτ + k1A2e

−υτ

− k2A3 cos λτ + k2A4 sin λτ

(104)
where

υ =
√

2
√

7 + 1, λ =
√

2
√

7 − 1 (105)

k1 = 1

2
(9 − υ2)/υ, k2 = 1

2
(9 + λ2)/λ (106)

and A1, A2, A3, and A4 are arbitrary constants determined
using the initial conditions.

To obtain the periodic solutions for (104), set A1 =
A2 = 0, which results in the following solution:

{
ρx(τ ) = −Ax cos(λτ + φ)

ρy(τ ) = kAx sin(λτ + φ)
(107)

where k = k2 ≈ 3.2. The solution for (107) is a periodic
orbit that moves clockwise around the equilibrium point,
which proves that the periodic orbits are always moving
clockwise when the absolute value |β| is sufficiently small.

The perturbation technique of Lindstedt − Poincare is
adopted to find better approximations to the solutions for
motion near the equilibrium point when |β| is sufficiently
small. When ξ = ωτ is allowed for a frequency correction,
the form of perturbation analysis is assumed as

{
ρx(ξ ) = εx1(ξ ) + ε2x2(ξ ) + ε3x3(ξ ) + ...

ρy(ξ ) = εy1(ξ ) + ε2y2(ξ ) + ε3y3(ξ ) + ...
(108)

and let

ω = 1 + εω1 + ε2ω1 + ... . (109)

When these quantities are substituted into the equations
for motion in (97) and equating components of the same
order, a third-order approximation for the periodic orbit is

{
x(ξ ) = ρ20 − Ax cos τ1 + ρ21 cos 2τ1 + ρ31 cos 3τ1

y(ξ ) = (kAx + σ32) sin τ1 + σ21 sin 2τ1 + σ31 sin 3τ1

(110)
where the expressions for the coefficients ρ20, ρ21, ρ31, σ32,
σ21, σ31 and τ1 are provided in Appendix B.

The expression in (110) is the approximate solution for
the planar periodic orbit with β ≈ 0, which can provide an
accurate prediction for the periodic orbit near the equilib-
rium point if β is small.

To verify the approximate solution, let Ax = 0.01.
Then, the initial states and the orbital period computed
using (110) are

[X0 Y0 X′
0 Y ′

0]T = [−0.010075 0 0 0.066599]T(111)

T = 3.033579. (112)

After setting β = 0.005, 0.01, and 0.05, the Newton
method is used and the initial conditions are numerically

Fig. 28. Comparison of the analytic solution and the numerical solution.

computed

[X0 Y0 X′
0 Y ′

0]T
β=0.005 = [−0.010075 0 0 0.066015]T

(113)

Tβ=0.005 = 3.024622 (114)

[X0 Y0 X′
0 Y ′

0]T
β=0.01 = [−0.010075 0 0 0.065652]T

(115)

Tβ=0.01 = 3.015941 (116)

[X0 Y0 X′
0 Y ′

0]T
β=0.05 = [−0.010075 0 0 0.062987]T

(117)

Tβ=0.05 = 2.944815. (118)

When (111), (112), and (113)−(118) are considered,
the initial conditions, i.e., (111) and (112), obtained using
the analytic solution are found to be relatively similar to
the initial conditions, i.e., (113)−(116), numerically com-
puted using the Newton method when β = 0.005 and 0.01.
The difference between the periods is a time unit margin
of less than 0.02. In the case of β = 0.05, the differences
between the analytic solutions, i.e., (111) and (112), and
the numerical solutions, i.e., (117) and (118), increase. The
orbits obtained using the two methods are shown in Fig. 28,
in which the two orbits for β = 0.005 and β = 0.01 are
overlapping. In conclusion, the analytical solutions are ap-
propriate and reasonable when β is sufficiently small.

In this section, the planar periodic orbits near the equi-
librium points are numerically computed via differential
correction, and the special case when |β| ≤ 0.01 is ana-
lytically solved using the Lindstedt−Poincare method. The
unstable periodic orbits near the equilibrium points indicate
that the deputy satellite located near the equilibrium point
can travel through the point. In addition, the analytical so-
lution for the case when |β| ≤ 0.01 can provide a reference
orbit for the deputy satellite being maintained.

VI. CONCLUDING REMARKS AND PROSPECTS

A dynamical system of space relative motion that in-
volves intersatellite Lorentz force was established based on
the assumptions that a chief satellite would be capable of
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generating a rotating magnetic dipole, while a constantly
charged deputy satellite was moving close to the magnetic
field of the chief satellite. Subsequently, dynamical sys-
tems theory was applied to analyze the system, including
deriving equilibrium points and their stabilities, finding an
integral constant, and depicting zero-velocity surfaces. The
existence of bounded periodic relative orbits was discov-
ered using Poincare maps with respect to zero-velocity sur-
faces. The periodic orbits around the equilibrium points
were found and analyzed at different β values (particu-
larly when β was sufficiently small, analytic solutions were
obtained via the Lindstedt−Poincare method) using differ-
ential corrections methods. Meanwhile, the orbits of the
chief satellite and the deputy satellite could be deduced
through the relative orbit. However, the dynamics of the
proposed relative motion is insufficient to provide complete
understanding. It is also more complicated than originally
envisioned.

This study shows that formation in the presence of
intersatellite Lorentz force is possible with the appropri-
ate selection of initial relative states. If the parameters
((q/m), B0, ωc, ε, and n) are set rationally (as presented in
Section III-B), the range between the chief satellite and the
equilibrium point is approximately 2.3 m. Therefore, imple-
menting formation at the meters scale is feasible. However,
the problem of establishing a desired charge or magnetic
dipole moment in space, particularly a substantial amount
of charge and magnetic strength, must be resolved. Ad-
ditional details regarding the aforementioned technologies
are presented in [28] and [29].

New types of formation flying scenarios can be envi-
sioned based on the understanding of bounded periodic
orbits near the chief satellite and the equilibrium points.
For example, a space station can maintain a number of
small service satellites using propellantless Lorentz force.
Another possible application is the implementation of non-
contact capture of charged space debris using spacecraft
via Lorentz force and towing them to desired orbits. The
charged debris can be captured through the periodic or-
bits around the equilibrium points and placed into bounded
periodic orbits in which debris will be unable to escape.

APPENDIX

A. Terms of the Derivative of f(X) Evaluated at the Point
Xe(q/m < 0)

∂f1

∂X
= ∂f1

∂Y
= ∂f1

∂Z
= ∂f1

∂Y ′ = ∂f1

∂Z′ = 0
∂f1

∂X′ = 1

(119)
∂f2

∂X
= ∂f2

∂Y
= ∂f2

∂Z
= ∂f2

∂X′ = ∂f2

∂Z′ = 0
∂f2

∂Y ′ = 1

(120)
∂f3

∂X
= ∂f3

∂Y
= ∂f3

∂Z
= ∂f3

∂X′ = ∂f3

∂Y ′ = 0
∂f3

∂Z′ = 1

(121)

∂f4

∂X
= 3 −3

3X2+Y 2−2Z2−2βXY ′

R5

+ 15
X[βY′(−X2−Y2+2Z2)−3βYZZ′+X(X2+Y 2−2Z2)]

R7

(122)
∂f4

∂Y
= −3

2XY −3βZZ′ −2βYY ′

R5

+ m15
Y[βY′(−X2−Y2+2Z2)−3βYZZ′+X(X2+Y 2−2Z2)]

R7

(123)
∂f4

∂Z
= −3

4βZY ′ −3βYZ′ − 4XZ

R5

+ 15
Z[βY′(−X2−Y2+2Z2)−3βYZZ′+X(X2+Y 2−2Z2)]

R7

(124)
∂f4

∂X′ = 0 (125)

∂f4

∂Y ′ = 2 − 3
β(−X2 − Y 2 + 2Z2)

R5
(126)

∂f4

∂Z′ = 9
βYZ

R5
(127)

∂f5

∂X
= −3

2XY +3βZZ′ +2βXX′

R5

+ 15
X[βX′(X2+Y2−2Z2)+3βXZZ′+Y (X2+Y 2−2Z2)]

R7

(128)

∂f5

∂Y
= −3

X2 + 3Y 2 − 2Z2 + 2βYX′

R5

+ 15
Y [βX′(X2+Y2−2Z2)+3βXZZ′+Y (X2+Y 2−2Z2)]

R7

(129)
∂f5

∂Z
= −3

3βXZ′ − 4βZX′ − 4YZ

R5

+ 15
Z[βX′(X2+Y2−2Z2)+3βXZZ′+Y (X2+Y 2−2Z2)]

R7

(130)

∂f5

∂X′ = −2 − 3
β(X2 + Y 2 − 2Z2)

R5
(131)

∂f5

∂Y ′ = 0 (132)

∂f5

∂Z′ = −9
βXZ

R5
(133)

∂f6

∂X
= −9

Z(2X−βY ′)
R5

− 45
XZ(βYX′−βXY ′+X2+Y 2)

R7
(134)

∂f6

∂Y
= −9

Z(2Y + βX′)
R5

− 45
YZ(βYX′ − βXY ′+X2 + Y 2)

R7
(135)

∂f6

∂Z
= −1 − 9

βYX′−βXY ′+X2+Y 2

R5
(136)

1428 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 53, NO. 3 JUNE 2017



− 45
Z2(βYX′ − βXY ′+X2 + Y 2)

R7

∂f6

∂X′ = −9
βYZ

R5
(137)

∂f6

∂Y ′ = 9
βXZ

R5
(138)

∂f6

∂Z′ = 0 (139)

B. Expressions for the Coefficients in (110)

σ32 = − k

2λ
β6 (140)

σ31 = 6λγ3 − β3(9λ2 + 9)

81λ4 + 18λ2 − 27
(141)

σ21 = 4λγ1 − β1(4λ2 + 9)

16λ4 + 8λ2 − 27
(142)

ρ20 = −1

9
α1 (143)

ρ21 = 4λβ1 − γ1(4λ2 − 3)

16λ4 + 8λ2 − 27
(144)

ρ31 = 6λβ3 − γ3(9λ2 − 3)

81λ4 + 18λ2 − 27
(145)

τ1 = λξ + φ (146)

k = 1

2
(9 + λ2)/λ (147)

λ =
√

2
√

7 − 1 (148)

β1 = 3

2
c3kA2

x (149)

β3 = 3

2
c3Ax(σ21 − kρ21) − 3

8
kc4A

3
x(k2 + 4) (150)

β6 = ν2 + 2ω2λAx(λk − 1) (151)

γ1 = 3

2
c3A

2
x

(

1 + k2

2

)

(152)

γ3 = −3

2
c3Ax(2ρ21 − kσ21) − 1

2
c4A

3
x(k2 + 2) (153)

ν1 = −3c3Ax

(

2ρ20+ρ21+ k

2
σ21

)

+ 3

2
c3A

3
x(k2−2)

(154)

ν2 = 3

2
c3Ax(σ21−2kρ20 + kρ21)+ 3

2
c4kA3

x

(
3

4
k2−1

)

(155)

α1 = 3

2
c3A

2
x

(

1− k2

2

)

(156)

ω2 = ν1 − kν2

2Axλ[λ(k2 + 1) − 2k]
(157)
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