
Carving Software-Defined Networks
for Scientific Applications with SPATEN

Celio Trois, Luis Bona, Marcos D. Fabro
Univ. Federal do Parana (UFPR) - Curitiba - Brazil

Email: {ctrois, bona, didonet}@inf.ufpr.br

Magnos Martinello
Univ. Federal do Espirito Santo (UFES) - Espirito Santo - Brazil

Email: magnos@inf.ufes.br

Abstract—Scientific applications (SciApps) are broadly used
in all science domains. For more accurate results, they have
been increasingly demanding computational power and extremely
agile networks. These applications are usually implemented using
numerical methods presenting well-behaved patterns to exchange
data across its computing nodes. This paper presents SPATEN, a
tool that exploits the spatial communication patterns of SciApps
as the fundamental logic to drive the network programming.
SPATEN classifies the SciApps nodes communications and bal-
ances the elephant flows across the available network paths. As
a proof of concept, we carried out a set of experiments in real
testbeds, demonstrating that network programming may affect
the performance of SciApps significantly. Also, a balanced flow
allocation can speed up SciApps to near-optimal execution times.

I. INTRODUCTION

Scientists have been executing scientific applications

(SciApps) in different domains, including bioinformatics, as-

trophysics, weather forecasting, and genome research, among

others. These applications are implemented with parallel and

distributed programming, exchanging huge amounts of data

among their computing nodes [2].

The wide majority of SciApps is implemented using well-

known numerical methods, so-called dwarfs [3]. A compu-

tational dwarf can be defined as “a pattern of communica-

tion and computation common across a set of applications.”

They have been used for optimizing the communication on

networks-on-chip, GPUs, multicore processors, multiprocessor

architectures, and user application performance [9], [4].

The performance of SciApps is highly dependent on the

computing nodes interconnection bandwidth. However, the

common assumption is that these applications run on a fixed

number of computing nodes [5] where the network has been

considered as a static resource, working as a connectivity

service that can not be controlled or modified.

Software-Defined Networking (SDN) has emerged to sup-

port new possibilities for network management, decoupling

control and forwarding functions and enabling the network to

become directly programmable according to the user require-

ments [11]. We have found in literature proposals using SDN

to improve specific user applications [6], [12]. However, to

the best of our knowledge, no existing work routes the data

flows through the network using the communication patterns

for improving the performance of SciApps.

In this work, we propose SpateN, a tool that exploits the

Spatial PATterns as the key logic to Enhance the Network pro-

gramming. SPATEN classifies the elephant flows and balances

them across the available network paths. We assume that the

computing nodes have well-behaved communication patterns,

meaning that a given application executed in a set of nodes

has a strong trend to transmit the same amount of data across

the same nodes. Also, we consider that these applications run

on a dedicated cluster where SPATEN has full access to the

programmable switches.

As a proof of concept, we carried out a set of experiments

in real testbeds to demonstrate that (i) communication pat-

terns are fundamental to achieve the network programmability

demanded by SciApps; (ii) SPATEN is able to overcome the

challenges introduced by SDN; and (iii) a balanced network

load allows to keep near-optimal SciApps execution time.

The rest of this paper is structured as follows. Section II

presents a brief literature review, while in Section III, our

approach named SPATEN is described. Section IV reports our

experiments and finally, the conclusion and future works are

reported in Section V.

II. BACKGROUND

In this section, a characterization of SciApps communi-

cation patterns is presented. Also, we discuss some SDN

benefits, issues, and related works.

The SciApps are usually implemented using known numer-

ical methods that present well-behaved communication and

computation patterns, so-called computational dwarfs [3], also

named motif or kernel. The dwarfs are broadly used for de-

signing new chip-multiprocessors communication topologies,

network-on-chip, and thread mapping aiming to speed up user

applications. The communication patterns can be characterized

by their spatial behaviors, indicating where the nodes are

located in the network topology and how much information

they have exchanged. These characteristics can be used as

input to modify the Software-Defined Network for balancing

the communication across its paths.

One benefit brought by SDN is the ability to perform

the forwarding operation considering flows (multiple packet

headers fields) and not just destination addresses. Thus, it is

possible to accommodate traffic from different applications

through different physical topology paths aiming to optimize

applications [12], [6].

2016 IEEE 41st Conference on Local Computer Networks

© 2016, Celio Trois. Under license to IEEE. 200

2016 IEEE 41st Conference on Local Computer Networks

© 2016, Celio Trois. Under license to IEEE.

DOI 10.1109/LCN.2016.42

200

2016 IEEE 41st Conference on Local Computer Networks

© 2016, Celio Trois. Under license to IEEE.

DOI 10.1109/LCN.2016.42

200

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 18:48:09 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Spatial behavior of four scientific applications: bt, cg, ft, and lu.

While SDN brought improvements for the networks, it

also posed new problems. One issue introduced by SDN is

the time to populate the switches forwarding tables. When

an SDN-enabled device receives a new packet, if no match

is found, the device forwards the packet to the controller

(reactive approach); the controller manages the switch flow

tables by adding, modifying, or removing the entries. Querying

the controller reactively is time-consuming, so to deal with

this issue, some SDN programming languages [11] rely on

proactive approaches for installing the rules on switches ahead

of time.
Another issue brought by SDN is the time taken for finding

the matching rules at the switch flow tables. The number

of table entries is increased because SDN enables specifying

matching on specific flows using multiple packet header fields

(microflows). To alleviate this problem, SDN includes wild-

card matching rules. Ternary Content Addressable Memories

(TCAMs) are being used for speeding up wildcarding table

lookup operations. Although fast, TCAM is expensive and

power-hungry, so SDN vendors are using a combination of

TCAM and SRAM or DRAM, but they are slower than

TCAMs for wildcarding.
Our approach uses the programmability introduced by SDN

along with SciApps spatial behavior information for balancing

the application flows through the network paths, avoiding both

issues shown above.

III. SPATEN: SPATIAL NETWORK PROGRAMMING

SPATEN is a tool that uses spatial information to program

the network for SciApps. For running an application, the

scientist (user) must inform the application and the number

of computing nodes. Based on previously stored spatial be-

haviors, SPATEN generates the rules, proactively installs them

on the SDN switches, and when the network is ready, it starts

the application.
For developing SPATEN, we have investigated the communi-

cation behavior of NAS Parallel Benchmarks [7] applications,

selecting those that most exchanged information among the

computing nodes: bt, cg, ft, and lu. Their spatial behaviors

were recorded and stored in the SPATEN database. The net-

work topology annotated with links bandwidth and latency is

also stored in its database.

A. Spatial Behavior

Spatial behavior can be formalized as a traffic matrix MB ,

where each position MB [i][j] holds the number of bytes

transmitted from node i to node j. SPATEN has an option for

measuring and recording the application traffic matrix; in this

operation, SPATEN installs forwarding rules matching both,

source and destination addresses, on all top-of-rack (ToR)

switches before executing the application. After the application

has finished, SPATEN reads the flow table statistics from ToR

switches and computes its traffic matrix. We have opted to

create an option for reading/storing the traffic matrix, but it

could also be done online [8].

Figure 1 shows the spatial behavior of chosen applications.

It is possible to see that they feature different communication

patterns; ft exchanges almost the same amount of data across

all nodes, transmitting a maximum of 185.7 MB through a

pair of nodes. cg is the application that most exchanged data,

considering the pairs of nodes (597.1MB); however, as we can

see on its spatial behavior matrix, only a few pairs of nodes

have communicated. Figure 1 also presents the total amount

of data transmitted from all nodes.

For graphical visualization, we have normalized the matrix

to its maximum value, showing it in a gray gradient, where

cells in black are the most communicative pair of nodes, and

white indicates that no communication happened.

B. Classifying the Communication

This section presents details of how spatial behavior is

used to classify communication. Traffic flows are typically

classified as either short-lived (mice flows) or throughput-

bound (elephant flows) [10]; SPATEN uses the spatial behavior

to detect the pairs of hosts exchanging elephant flows.

The cg application was chosen to explain the communica-

tion classification. The matrices are divided into Pods where

each Pod is the set of computers connected to the same ToR

switch. Figure 1b shows the cg spatial behavior matrix divided

in Pods, considering two Pods of eight nodes. The nodes in

the same Pod (crosshatched) are not classified because their

communications occur within the ToR switch. The remaining

matrix cells are labeled as unclassified.

201201201

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 18:48:09 UTC from IEEE Xplore. Restrictions apply.

To classify the cells, we have used the Muhammad et al.

approach [1], where the flow is classified as an elephant

whenever it is consuming 10% of the link bandwidth per

second. In Figure 1b, the cells identified in red with thin

diagonal lines have been classified as elephants; the rest of

the cells remained unclassified.

C. Routing

The Dijkstra’s weighted shortest-path algorithm [8] is used

for placing the previously classified elephant flows. SPATEN

finds a path and creates the rules (R1) for switches, with

a higher priority, matching source (i) and destination (j)

addresses.

After placing the elephant flows, SPATEN computes the

paths among all hosts using an approach similar to Mice-

Trap [10], reducing the number of matching rules by grouping

the flows by the destination address. These rules (R2) are

created with a lower priority.

SPATEN proactively fills the switches flow tables with R1
and R2 before starting the application, avoiding both problems

reported in Section II.

IV. EVALUATION

To evaluate our proposal, the experiments were structured

into two parts. The first part is devoted to understanding

network programmability impact on the SciApps performance.

In the second part, the experiments investigate the feasibility

of accelerating applications by balancing their elephant flows.

For all experiments, the applications were executed 30 times

and their execution times were recorded. To avoid the pitfalls

introduced by simulation and emulation tools, and be sure that

the obtained results are correct and accurate, all experiments

were executed in a real testbed. As the baseline, we have

firstly measured all experiments with the switches configured

as L2/L3 mode1, using the simplest possible topology: all

computers connected to a single switch.

Our testbed was composed of 16 Lenovo PCs with processor

Intel quad-core 3.2Ghz, 8GB RAM, 1TB HD, 1 Gigabit

Ethernet, running Linux Debian 8.2, and MPI implementation

mpich-3.2. Three Pica8 P-3290 OpenFlow switches running

the operating system PicOS v2.6.4. Each switch has 48 Gigabit

Ethernet ports, four 10 Gigabit optical SFP+ ports, and a

Firebolt3 chipset supporting up to 2048 flow entries in its

TCAM memory. This switch can operate in two modes of

operation: L2/L3 mode and Open vSwitch (OVS) mode. The

OVS mode supports OpenFlow 1.4, through Open vSwitch

v2.0 integration2. The evaluation was performed using the

NAS parallel benchmarks v3.3.1 [7].

A. Impact of Network Programmability

To understand the impact of network programmability, we

have used a single switch programmed with SPATEN, Ryu3,

1Layer 2 / Layer 3: The switch runs as a non-SDN switch.
2http://openvswitch.org/
3https://osrg.github.io/ryu/

and Pox4, two well-known SDN controllers, forwarding the

flows with their default reactive learning switch. We have ex-

ecuted the most rule-intensive applications, ft and lu, using 16

computers, measuring their execution time and investigating

the installed matching rules. Figure 2a shows the execution

times for lu application.

When the switch is programmed with Ryu controller, the

application execution time was close to the baseline. However,

the first execution time was higher due to the time for querying

the controller. When controlled by Pox, the application took

longer to execute; this is explained because the controller is

creating and installing rules for every new flow (microflow).

Furthermore, Pox installs the rules using expiration timeouts.

When these timeouts expire, the rules are removed and the

controller has to be queried again. With SPATEN, the execution

time achieves the baseline, because it proactively installs the

necessary rules before starting the application.

(a) lu execution time. (b) ft execution time.

Fig. 2: Execution time of ft and lu applications executed in 16

computers connected to a single switch.

Figure 2b shows the measured times for ft. When controlled

with Ryu the application execution average time was 1.4

seconds slower. However, in the first execution it took 106.4

seconds (77% longer than the baseline) to install the all-to-

all nodes matching rules. When the switch was controlled

by Pox, the ft execution time was much higher, taking an

average of approximately 94 seconds to finish its execution.

The application execution time using SPATEN was similar to

the baseline.

We note that the Ryu installs the matching rules using

source and destination MAC addresses. So, for the ft appli-

cation, it has installed 240 rules on the switch flow table. On

the other hand, Pox has ranged from 117 to 334 rules. The

higher number is because Pox creates microflow rules, and the

idle and hard timeouts were responsible for the variation. The

number of rules installed by SPATEN was 16 because they

match only the destination addresses.

An important remark is the scalability regarding network

states for installing rules based on the {source, destination}
tuple. It implies that the necessary number of rules grows ex-

ponentially and can be calculated as n×(n−1), where n is the

number of nodes. Considering 48 computing nodes connected

to all P-3290 Ethernet ports and a controller installing rules

for communicating all-to-all nodes, a total of 2256 flow entries

4https://github.com/noxrepo/pox

202202202

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 18:48:09 UTC from IEEE Xplore. Restrictions apply.

will be necessary, exceeding the 2048 entries TCAM size. In

our testbed switches, we have observed that the RTT for a ping

message goes from 0.3ms for rules stored in TCAM to 4ms

when they are located in DRAM. The throughput goes from

936Mbits/s when rules are stored in TCAM to only 4Mbits/s

when stored in DRAM.

B. Programming the Network with SPATEN

In order to prove that SPATEN can optimize the SciApps,

we have used the two applications that exchanged more traffic

considering the pair of nodes (cg and bt). They were executed

in 16 computers connected through the topology shown in

Figure 3. The topology is composed of three switches, one

spine and two top-of-rack (ToR) switches. Each ToR switch

have eight computers connected to its Gigabit Ethernet ports,

and they are connected to the spine through four Gigabit links.

Fig. 3: Real testbed for SPATEN proof of the concept.

To assess the outcome, we compared the application execu-

tion time programmed with SPATEN against a single switch in

L2/L3 mode (baseline). We also measured the execution time

when the application flows were unbalanced on the available

links.

(a) cg execution time. (b) bt execution time.

Fig. 4: Execution time of cg and bt applications executed in

16 computers connected to the given topology.

Figure 4a shows the measured execution time of this ex-

periment for the cg application, while Figure 4b illustrates

the bt application. For both applications, the execution time

had a very small increase, 100 milliseconds on average, when

the network was programmed with SPATEN, compared to

the baseline. On the other hand, when elephant flows were

allocated to share a link, the execution time increased consid-

erably. For instance, cg execution time doubles in Figure 4a,

when four elephant flows are sharing a link.

V. CONCLUSION

We have presented SPATEN, a tool that improves the perfor-

mance of scientific applications (SciApps) by taking advantage

of their well-behaved communication patterns as the main

insight for programming the network.

Our approach relies on the application of spatial behavior

to classify the elephant flows, proactively allocating these

flows in a balanced way along network paths, eliminating

the time for querying the controller, and reducing the number

of installed matching rules. Our experiments demonstrate the

effectiveness of our approach in keeping the execution time of

SciApps to near-optimal times in a real testbed.

In future work, we intend to apply SPATEN to scientific

workflows with multiple execution phases, as well as explore

the possibility to run (or schedule) multiple concurrent appli-

cations.

ACKNOWLEDGMENTS

The authors would like to thank CAPES for partial funding

of this research, CNPq under Grant 456143/2014-9, and the

Brazilian Ministry of Communications for partial funding it

via “Digital Inclusion: Technology for Digital Cities” project.

REFERENCES

[1] M. Afaq, S. Rehman, and W.-C. Song, “Large flows detection, marking,
and mitigation based on sflow standard in sdn,” Journal of Korea
Multimedia Society Vol, vol. 18, no. 2, pp. 189–198, 2015.

[2] S. Ahern, S. R. Alam, M. R. Fahey, R. J. Hartman-Baker, R. F. Barrett,
R. A. Kendall, D. B. Kothe, R. T. Mills, R. Sankaran, A. N. Tharrington
et al., “Scientific application requirements for leadership computing
at the exascale,” Oak Ridge National Laboratory (ORNL); Center for
Computational Sciences, Tech. Rep., 2007.

[3] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams
et al., “The landscape of parallel computing research: A view from
berkeley,” Technical Report UCB/EECS-2006-183, EECS Department,
University of California, Berkeley, Tech. Rep., 2006.

[4] L. Chen, X. Huo, and G. Agrawal, “A pattern specification and opti-
mizations framework for accelerating scientific computations on hetero-
geneous clusters,” in Parallel and Distributed Processing Symposium
(IPDPS), 2015 IEEE International. IEEE, 2015, pp. 591–600.

[5] R. d. R. Righi, V. F. Rodrigues, C. A. da Costa, G. Galante, L. C. E.
de Bona, and T. Ferreto, “Autoelastic: Automatic resource elasticity
for high performance applications in the cloud,” IEEE Transactions on
Cloud Computing, vol. 4, no. 1, pp. 6–19, Jan 2016.

[6] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience with a
globally-deployed software defined wan,” in ACM SIGCOMM Computer
Communication Review, vol. 43, no. 4. ACM, 2013, pp. 3–14.

[7] H. Jin, H. Jin, M. Frumkin, M. Frumkin, J. Yan, and J. Yan, “The
openmp implementation of nas parallel benchmarks and its perfor-
mance,” NASA Technical Report NAS-99-011, Tech. Rep., 1999.

[8] J. Ru, S. Wei, and Z. Hongke, “Traffic matrix-based routing optimiza-
tion,” in Proceedings of the 2015 International Conference on Computer
Science and Intelligent Communication, 2015, pp. 429–432.

[9] E. Rubin, E. Levy, A. Barak, and T. Ben-Nun, “Maps: Optimizing
massively parallel applications using device-level memory abstraction,”
ACM Trans. Archit. Code Optim., vol. 11, no. 4, pp. 1–22, Dec. 2014.

[10] R. Trestian, G. M. Muntean, and K. Katrinis, “Micetrap: Scalable
traffic engineering of datacenter mice flows using openflow,” in 2013
IFIP/IEEE International Symposium on Integrated Network Manage-
ment (IM 2013), May 2013, pp. 904–907.

[11] C. Trois, M. D. D. D. Fabro, L. C. E. de Bona, and M. Martinello,
“A survey on sdn programming languages: Towards a taxonomy,” IEEE
Communications Surveys Tutorials, vol. PP, no. 99, pp. 1–25, April 2016.

[12] C. Trois, M. Martinello, L. C. E. de Bona, and M. D. Del Fabro,
“From software defined network to network defined for software,” in
Proceedings of the 30th Annual ACM Symposium on Applied Computing,
ser. SAC ’15. ACM, 2015, pp. 665–668.

203203203

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 18:48:09 UTC from IEEE Xplore. Restrictions apply.

