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Abstract—With the recent roll-out of 100 Gbit Ethernet tech-
nology for high-performance computing applications and the
technology for 100 Gbit wireless communication emerging on the
horizon, it is just a matter of time until non-high performance
computing applications will have to utilize these data rates. Since
10 Gbit/s protocol processing is already challenging for current
server machines and simply upscaling the computing resources
is no solution, new approaches are needed. In this paper, we
present a stream processing based design approach for scalable
communication protocols. The stream processing paradigm en-
ables us to adapt the communication protocol processing for a
certain hardware configuration without touching the protocol’s
implementation. We use this design technique to develop a
prototype communication protocol for ultra-high throughput
applications and we demonstrate how to adapt the protocol
processing for a Stable Throughput as well as for a Low Latency
scenario. Last but not least, we present the evaluation results
of the experiments, which show that the measured throughput
respectively latency of the adapted protocol, scales nearly linear
with the number of provided interfaces.

Index Terms—100 Gbit/s Wireless, Soft Real-Time Stream-
Processing, End2End100

I. INTRODUCTION

Today’s applications and services become more depending

on fast wireless communication. Every day, terabytes of data

are transferred over wireless networks with HD video stream-

ing being only one example. To satisfy the hunger for even

higher data rates, many companies and research groups focus

on improving existing technologies, e.g., IEEE 802.11 (WiFi).
Once the problems on the physical layer, which are currently

addressed by many researchers, are solved, higher communi-

cation layers also need to be changed to meet the desired data

rate. This problem is addressed in the project End2End1001.

The project End2End100 is a project of IHP2 and BTU3 and

is related to the DFG (German Research Foundation) priority

program "100 Gbit/s Wireless And Beyond"4, in which trans-

1German Research Foundation Project End2End100, DFG NO 625/9-1
2Innovations for High Performance Microelectronics GmbH
3Brandenburg University of Technology Cottbus–Senftenberg
4DFG Schwerpunktprogram SPP 1655 Drahtlose Ultrahochgeschwindig-

keitskommunikation für den mobilen Internetzugriff

mission technologies for 100 Gbit/s wireless communication

are investigated. While the priority program is focusing on

the transmission technology, the overall goal of End2End100

is to integrate the results of the priority program within an

end-to-end communication solution and to achieve a wireless

throughput of 100 Gbit/s between two endpoints.

While the necessity of new concepts for high data rate

communication concepts is widely acknowledged, research

regarding new higher level concepts for the communication

protocol processing at high data rates is still hardly an issue

in the research community.

While it is important to exploit existing approaches, it will

not enable us to use future data rates of 100 Gbit/s and beyond.

The following example will emphasize the problem. A server

in a data center is equipped with a 100 Gbit/s network interface

and a state-of-the-art processor, such as the Intel Haswell. To

be able to fully utilize the network interface, the server has

to process 100 Gbit/s = 12.5 GB/s of packet data per second.

Assuming the packets have a size of 1500 Bytes, the server has

to process 8,333,333.33 raw packets per second respectively

a new packet every 120 nano seconds. Putting that in relation

with the 96.4 ns main memory access latency for a 64 Byte

cache line (Intel Haswell [1]), indicates that we have to think

of new protocol processing paradigms.

This example leads to five necessities, which have to be

met for enabling 100 Gbit/s protocol processing. We need

communication protocols, which are (1) easy to parallelize,

and the entire protocol processing must be (2) performed

in parallel with (3) close to zero parallelization overhead.

Computation intensive parts of the protocol, like CRC/FEC

calculation must be (4) offloaded to special purpose external

accelerator hardware, e.g., FPGAs, and the host machines (5)

should only produce and consume data, but should not take

part in the protocol processing as such.

In this publication, we show how the stream processing

programming paradigm can incorporate these necessities into a

single design flow, and how it enables us to efficiently scale up

the communication protocol processing regarding the desired
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Fig. 1. Stream processing based protocol design flow. a) Protocol design. b) Protocol implementation based on data independent Protocol Processing Stages
(PPS). c) Measuring the hardware processing capabilities. d) Deriving the soft real-time requirements. e) Adapting the Protocol Processing Graph with the help
of Stream Operators, i.e., parallelization. f) Mapping the Protocol Processing Graph onto the processing hardware, e.g., assign PPS to cores of an embedded
many-core and further offload PPSs to more suitable processing hardware.

data rate without changing the protocol as such.

The remainder of this paper is organized as follows: In sec-

tion II, we describe how the stream processing approach can

be used for the protocol design and the protocol processing.

Section III gives an overview of our communication protocol

for high data rates and its representation as a stream processing

graph. Section IV focuses on the adaptation of the protocol

processing for a low latency, and a high and stable throughput

scenario. The evaluation results are presented and discussed in

section V, followed by the presentation of some related work

in section VI. The paper is finished with our conclusions and

an outlook in section VII.

II. STREAM PROCESSING OF PROTOCOLS

As mentioned in the introduction, upcoming transmission

technologies need a new way of thinking about protocol

processing. We propose a new protocol processing concept

based on soft real-time stream processing, which enables

the protocol developer to design scalable and parallelizable

protocols. Stream processing is a data-flow oriented program-

ming approach, in which the control flow follows the data

flow, rather than being defined by function calls. The stream

processing [2] approach is widely used for tasks that have to

process a continuous flow of data, e.g., deep packet inspection.

In principle, all communication protocols can be described

as a simple stream processing graph. Consider the Protocol
Processing Graph (PPG) of the generalized communication

protocol shown in figure 1a). The protocol consists of a sender

S and a receiver R. The sender consumes a stream of data and

transforms it into a stream of protocol data units (PDUs). This

PDU stream is consumed by the receiver, which transforms it

back into the original data stream. Additionally, the receiver

produces a stream of acknowledgements. These are consumed

and used by the sender to create a stream of the possibly

needed retransmissions.

Understanding communication as a stream processing prob-

lem allows us to manage the whole protocol development

process, i.e., design, implementation, adaptation for hardware
and execution on that hardware, without any paradigm shift.

The first step of the design process is to subdivide the protocol

into separate tasks, so-called Packet Processing Stages (PPSs),
as shown in figure 1b). These PPSs are predefined building

blocks, which implement data independent steps of the proto-

col processing. The desired protocol behavior is achieved by

connecting the PPSs according to the data flow. The data flow

is represented by directed edges. In [3] we showed how the

combination of the stream processing programming approach,

soft real-time properties, hardware processing capabilities and
data stream manipulation operators, helps with the protocol

design process.

The processing capabilities of a PPS indicate the number

of streamed elements the PPS can process given a particular

hardware. They are obtained by measuring the maximum

achievable data rate on the hardware, which will process the

PPS. That is possible because each PPS only depends on their

internal state and the data at the input, which we can simulate.

Figure 1c) shows a PPS measurement setup. The measured

PPS is mapped onto the investigated execution hardware, e.g.,

a general purpose processor, and is allowed to utilize the

hardware to the full extent. Each input of the PPS is connected

to a stream producer, and each output is connected to a stream

consumer. The stream producer generates a very high data rate

stream, which fully utilizes the measured PPS. The processing

capability of the PPS is the maximum data rate it was able to

process.

The soft real-time requirements are an inherent property of

each protocol, as they state how each part of a protocol has

to perform to meet the desired data rate. The soft real-time

requirements are estimated by analyzing the protocol given the

desired data rate, which is either given by the use case, e.g., the

data rate of a high definition video stream, or by the theoretical
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Fig. 2. The data structures for our prototype link layer protocol.

maximum data rate of the used communication technology.

However, hidden data and processing dependencies can make

the real-time analysis a cumbersome procedure. The stream

processing approach eases the real-time analysis significantly

because the real-time requirements for the building blocks can

be derived directly from the data rate of the data flow (Fig.

1d).

By comparing the real-time requirements and the processing

capabilities, shown in figure 1d), it is clear that the destination

hardware is not able to process the protocol. The stream

processing approach can be used to conveniently parallelize

the protocol processing without any changes to the protocol,

as it is shown in figure 1e). The parallelization is carried

out with the help of Stream Operators (SOs). A SO is used

to manipulate the data stream, e.g., splitting the stream into

substreams.

However, some tasks, such as a compute intensive Forward

Error Correction (FEC), are too demanding for a certain

general purpose CPU. In such a case a possible solution is

to offload the task onto a better suited external accelerator as

shown in figure 1f). The stream processing approach allows

convenient offloading of PPSs. The only requirement for

offloading a task is that an interface exists, which manages the

data format transformation and the transport of the streamed

data.

After the design process is finished, the protocol is already

adapted for the target hardware and can be used on the

hardware without further modifications.

III. PROTOCOL

In this section, we will present our high throughput link

layer protocol, which was developed by means of the afore-

mentioned stream processing approach. The basic idea for the

protocol was presented in [3]. It is designed for scenarios

which need (wireless) communication at ultra high data rates

of up to 100 Gbit/s and beyond in a streamed manner. Such

scenarios include the transmission of high volume media

streams, and the connection of two data-centers. However, the

design and processing approach proposed in section II can be

used to design protocols for any other scenario as well.

The protocol is based on data-chunks as shown in figure

2. A data-chunk is a large amount of memory, i.e., several
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Fig. 3. Protocol Graph of our prototype Ultra High Throughput Data Link
Layer Protocol.

megabyte. Using data-chunks reduces the management effort

for the host to a feasible amount of a few hundred data-

chunks, compared to several million of Ethernet frames or

TCP packets. Each data-chunk has a sequence number and is

cut into a stream of payload pieces, which are coded as sub-
packets. These sub-packets are aggregated into larger frames,

as shown in figure 2, which solves the contradiction between

the need for large frames (reduced overhead ratio), and the

need for small frames (minimize possible data loss)[3]. Each

sub-packet combines the payload and some metadata, e.g, the

sub-packet’s position in the data chunk. Additionally, each

sub-packet contains a CRC/FEC code for error discovery and

recovery. By adding the metadata to each sub-packet, we

can use partially corrected frames. Furthermore, it enables

us to use very fine grained selective retransmissions using

aggregated acknowledgements, as well as avoiding reordering

at the sub-packet level because each sub-packet can be copied

to its final position in the data-chunk.

The protocol processing is separated into a transmission

phase and a retransmission phase, to avoid the over-utilization

of the communication channels. Over-utilization could happen,

because we already use the entire capacity of the communi-

cation channel for the initial transmission of a data-chunk.

Therefore, each additional sub-packet due to retransmissions

would exceed the channel’s capacity. The two phases are

explained in the following.

Transmission phase – In the first step a data-chunk,

provided by a producer, e.g., the host, is split into sub-packets.

Each sub-packet is given a data-chunk sequence number and

a sub-packet sequence number, which determines the position

of the sub-packet in the data-chunk. The sub-packets are then

aggregated into frames. Before the frames are handed over to

the PHY-Layer, the CRC and the FEC are calculated for each

sub-packet. When all sub-packets are transmitted the sender

switches to the retransmission phase, i.e., incoming aggregated

acknowledgements are not ignored anymore.

On the receiver side, each incoming frame is checked for

erroneous sub-packets, which are repaired if possible. For each

usable sub-packet, i.e., correctly transmitted or repaired, the

according bit in the aggregated acknowledgement bitmap is

set to one and the acknowledgement transmission timeout is

reset. Finally, the sub-packet’s payload is copied to its position

in the receiver’s data-chunk buffer.

The transmission of the aggregated acknowledgement is

triggered when a data-chunk is completely received or when

the acknowledgement transmission timeout has fired. The

acknowledgement transmission timeout stays active, issuing
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acknowledgements for the data-chunk, until a new data-chunk

is transmitted or the end of the transmission is signaled.

Retransmission Phase – When all sub-packets of a data-

chunk are transmitted once, the sender switches to the re-

transmission phase, i.e., incoming acknowledgements are pro-

cessed. Each incoming acknowledgement contains the bitmap

of the currently processed data-chunk. This bitmap is scanned

for missing sub-packets. For each bit which is zero, the corre-

sponding sub-packet is created. As in the transmission phase,

the sub-packets are aggregated into frames and enhanced with

CRC and FEC codes. When an acknowledgement signals the

complete transmission of a data-chunk, the sender switches

back to the transmission phase, and starts the transmission of

the next data-chunk.

A. Protocol Processing Stages

The protocol is implemented in a stream processing fashion,

as shown in figure 3. The corresponding Protocol Processing

Graph is assembled with the following PPSs.

• Sub-Packet Generator - The Sub-Packet Generator re-

ceives a data-chunk at the input. The data-chunk is cut

into sub-packets, which are forwarded to the output. Each

sub-packet is assigned a sequence number.

• Sub-Packet Aggregator - The Sub-Packet Aggregator

aggregates sub-packets into frames.

• Ack Processor - The Ack Processor receives Acknowl-

edgements (Ack) at its input. For each sub-packet, that

could not be repaired by the FEC stage, i.e., a zero in the

acknowledgement bitmap, a sub-packet is generated and

sent. When all sub-packets are transmitted correctly, the

sending host is informed.

• Sub-Packet Combiner - The Sub-Packet Combiner re-

ceives frames, and copies the faultless sub-packets into a

data-chunk buffer. Each faultless sub-packet is forwarded

to the Ack Generator.

• Ack Generator - The Ack Generator receives sub-

packets at its input. For each sub-packet, the correspond-

ing bit in the acknowledgement bitmap is set to one,

and the acknowledgement timeout is reset. When either

a timeout occurs or all sub-packets are received, the

aggregated acknowledgement is sent.

• CRC/FEC Stage - The CRC/FEC Stage receives frames.

It calculates the CRC/FEC for all sub-packets in the frame

and forwards the frame to the output.

IV. SCALING THE PROTOCOL

In this section, we will show the feasibility of our protocol

processing approach for high throughput communication. We

will scale the aforementioned protocol for our high throughput

protocol evaluation system and demonstrate the flexibility

of the stream processing approach with two scenarios. The

motivation for different scenarios stems from the idea that

different classes of applications have different requirements on

the communication system. For example, a video conference

application requires a low communication latency, while a stor-

age system needs a high and stable throughput. The common
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to the one lane, which has control over all transmission interfaces, i.e., one
data-chunk is transmitted in parallel.

approach to solving these differences in the requirements is to

develop application specific protocols. Our approach allows us

to employ the same protocol and the already developed PPS to

fulfill different requirements just by rearranging the PPS into

a new PPG. As example requirements we choose (1) Stable
Throughput (Fig. 4a) and (2) Low Latency (Fig. 4b), which

are explained in the following.

A. Scenarios

The idea behind the Stable Throughput scenario is that we

can reduce the impact of the acknowledgement overhead, and

also reduce the influence of unstable channels by transmitting

several data-chunks in parallel, as shown in figure 4a). That

can be achieved by providing one protocol processing pipeline

per communication channel. This way an erroneous channel

does not interfere with the transmission on other channels,

which makes the overall transmission more robust and stable.

The parallel protocol processing pipelines also help to hide

the per data-chunk management overhead, which is expected

to further increase the throughput. A downside of this approach

is that the latency per data-chunk will stay constant, instead

of decreasing for a higher number of interfaces.

The Low Latency scenario uses the available communication

channels in a different manner. Instead of providing a protocol

pipeline for each communication channel, the physical chan-

nels are combined into one logical channel by splitting the

transmission of a data-chunk as shown in figure 4b). The data-

chunk splitting can be achieved by using all communication
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Fig. 5. Schematic view of the protocol processing embedded many-core.

channels for one protocol processing pipeline, which implicitly

binds the physical channels together. In the case that all

physical channels provide the same data rate and latency, the

theoretical per data-chunk latency is expected to decrease by

the factor of the number of combined channels. The downside

of using only one protocol processing pipeline is, that an

erroneous physical channel slows down the overall protocol

processing, which makes this approach highly depending on

low error rates. Additionally, the per data-chunk management

overhead, e.g., waiting for the acknowledgement that the

chunk was completely transmitted, is not hidden by the parallel

transmission of data-chunks, as it is the case in the Stable
Throughput scenario.

B. Real Time Requirements and Hardware Processing Capa-
bilities

As mentioned in section II, the real-time requirements

depend on the desired data rate and the protocol parameters.

The target data rate and the protocol parameters are chosen

with respect to our evaluation system.

Our evaluation hardware system configuration is shown in

figure 5. It is separated into a sender side Network-Interface-

Card (NIC) and a receiver side NIC, each consisting of an

embedded 72 core TILEncore Gx72 [4] many-core board,

which is responsible for the higher level packet processing,

and four FPGAs for compute-intensive tasks, such as CRC and

FEC calculation. The TILEncore Gx72 boards are equipped

with eight 10 GbE Ethernet interfaces, which are used as

communication channels.

Since we are focusing on achieving the highest possible

throughput the evaluation hardware system can deliver, we

define the maximum theoretical gross data rate of 80 Gbit/s

(8 x 10 GbE) as the target data rate. This data rate can only

be achieved if we do not lose any packets.

The protocol parameters needed for the calculation of the

real time requirements are explained shortly in the following:

• Sub-Packet – 1216 Byte + 16 Byte (Header + CRC/FEC)

= 1232 Byte

The payload size of 1216 Byte is a multiple of the

cacheline size of the TILEncore Gx72 many-core, which

minimizes the memory access overhead. Additionally,

1216 Byte are close to the optimal block size of the used

Reed-Salomon Forward Error Correction (FEC) code.

• Frame Size – 8 × sub-packets + 24 (Byte Header +

CRC) = 9880 Byte
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Here we are bound to the Ethernet hardware capabilities.

We chose the largest frame size we were able to transmit.

• Sub-Packets per Data-Chunk – 13800 sub-packets
data-chunk

The number of sub-packets is a multiple of 8. This is

convenient for our aggregated acknowledgements, which

are coded as a bitmap, as a multiple of 8 bit (1 Byte)

simplifies the implementation of the Ack Processor and

the Ack Generator Protocol Processing Stages. Using

13800 sub-packets per data-chunk × 1216 Byte payload

per sub-packet leads to a data-chunk size of 16780800

Byte (~16Mb), i.e., the host has to manage less than

600 data-chunks per second. We found this a reasonable5

tradeoff between the management effort for the host and

the overhead induced by the aggregated acknowledge-

ments.

• Protocol Structure Overhead – Given these parameters

we have 13800 sub-packets × 16 Byte metadata + 13800

/ 8 frames × 24 Byte = 262200 Byte protocol overhead

per data-chunk. Thus, the protocol structure overhead is

1.56%, i.e., the maximum achievable net data rate for a

10 GbE Ethernet interface is 9.844 Gbit/s.

After defining the protocol parameters, the protocol’s soft real-

time requirements can be calculated. As the procedure is the

same for every protocol, we focus only on the sender side.

The soft real-time requirements are calculated beginning with

the inputs of the PPG. In the case of the sender’s protocol

graph, these are the inputs of the Sub-Packet Generator and

the PHY-Layer, which is represented by the 10 GbE interface.

Due to the maximum achievable net data rate of 78.752

Gbit/s (8×10 GbE - 1.56% protocol structure overhead), the

Sub-Packet Generator has to process 586.62 data-chunks per

second (78.752 Gbit = 78.752*109 Bit = 9.844*109 Byte /

16780800 Byte = 586.62). The Sub-Packet Generator pro-

duces 13800 sub-packets for every data-chunk. Therefore, the

sub-packet output data rate of the Sub-Packet Generator is

8095356 sub−packets
s (586.62 * 13800 sub-packet = 8095356

sub-packets). The trigger output sends two triggers for each

5A reasonable tradeoff keeps the involvement of the host as low as possible,
while not affecting performance factors, such as latency and throughput.
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data-chunk. Thus, the output data rate is 2×586.62 triggers
s .

The other input into the protocol graph is the PHY-Layer. As

we estimated the packet loss rate with 0%, we will get exactly

one acknowledgement for each data-chunk, thus the 10 GbE

Interface has to process 586.62acks
s , which is also its output

data rate. The output data rates are now used as the input data

rates for the remaining PPSs the same way, until all real time

requirements are calculated.

The hardware processing capabilities for all PPSs but the

CRC/FEC stage6 were measured on our evaluation hardware

as stated in section II. The hardware processing capability of

the communication interface was calculated given its data rate

of 10 Gbit/s. The soft real-time requirements and hardware

capabilities for the sender side are shown in figure 6.

C. Adapting the Protocol Processing Graph

Comparing the soft real-time requirements with hardware’s

processing capabilities indicates that the processing hardware

in combination with the protocol can not provide the desired

6The value of the CRC/FEC PPS’s processing capability is an estimation.
Since it is conceivable that calculating CRC/FEC codes in software is not
reasonable for high data rates, we did not implement a software PPS for the
CRC/FEC calculation.

data rate without further modification. The adaptation of the

protocol graph starts with estimating the needed amount of

parallelization. While not all PPSs have to be parallelized, we

see that we need a minimum of 13 Sub-Packet Aggregators

and eight 10 GbE interfaces, which is within the limits of

the target communication system (72 Cores). However, the

parallelization factor of 101191.95 for the CRC/FEC Stage is

far beyond limits. Thus, we have to offload the processing

of the CRC and FEC into an external accelerator hardware,

in our case an external FPGA. In the following, we show

briefly how the PPG of our protocol can be adapted to meet the

soft real-time requirements, with respect to the aforementioned

scenarios.

1) Stable Throughput: Figure 7a) shows a part of the PPG

for the Stable Throughput scenario. The robust throughput

is achieved by sending several data-chunks in parallel (see

Fig. 4a). That behavior can be accomplished by splitting

the data stream and parallelizing the Protocol Processing

Graph (PPG) for each communication channel, i.e., we create

independent protocol processing pipelines for each of the

10 GbE interfaces. Additionally, we have to split the output

stream of the Sub-Packet Generator within each protocol

processing pipeline, because one Sub-Packet Aggregator is

not able to provide a data rate of 10 Gbit/s, needed to fully

utilize a 10 GbE interface. As mentioned before, the CRC/FEC

processing stage has to be offloaded. Due to the stream

processing approach, the offloading of the CRC/FEC into an

external FPGA is a matter of having a PPS implementation

and a communication interface (10 GbE) for the accelerator

hardware. More information about the FPGA and the FEC

implementation can be found in [5] and [6].

2) Low Latency: Figure 7b) shows a part of the PPG for the

Low Latency scenario arrangement. As mentioned before, low

latency is achieved by transmitting one data-chunk in parallel

over several communication channels (see Fig. 4b). We can

obtain this behavior by using one Sub-Packet Generator and

splitting its sub-packet output into several substreams, which

are processed in parallel. The sub-packets transmitted over

these substreams are aggregated into frames by parallel Sub-

Packet Aggregators. To be able to fully utilize a 10 GbE

interface, we join two sub-packet streams for transmission over

one 10 GbE interface. As in the other scenario, the CRC/FEC

calculations are offloaded into FPGAs.

D. Implementation and Hardware Mapping of the Protocol
Processing Graph

We implemented the presented scenarios with the help

of our low latency stream processing framework STRIPES

- Stream Interconnected Processing Engines. STRIPES com-

bines the PPSs and SOs and provides a lightweight execution

environment, which manages the streaming of the data be-

tween the PPSs and adds support for memory management.

The framework is executed on the embedded TILEncore Gx72

many-cores. The mapping of the PPGs is shown in the figures

8 and 9. The Protocol Processing Stages (PPSs) are assigned
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to the many-core according to the data stream to minimize the

probability of interferences between the data flows.

V. SCENARIO EVALUATION

In this section, we present the evaluation results for the

two scenarios. The results were obtained on our evaluation

system with a throughput and a latency benchmark. The

benchmarks measure the influence of lost packets by marking

a defined percentage of the sub-packets as unrecoverable. The

measurements were made with and without the external FPGA

(CRC/FEC calculation).

The experiments do not include the host, because the

maximum throughput between the host and the embedded

many-core is limited to ~64 Gbit/s, which is lower than our

target data rate of 80 Gbit/s. Instead we transmit test data that

is provided by the embedded many-core itself.

A. Throughput and Latency Without FPGA (CRC/FEC)

The achieved throughput for both scenarios is shown in fig-

ure 10. The figure shows the results depending on the number

of used 10 GbE interfaces and the simulated packet loss. As

one can see, the throughput for the Stable Throughput scenario
is close to the theoretical maximum of the 10 GbE interfaces.

The theoretical maximum for the Stable Throughput scenario
is missed by a total overhead of 0.205 Gbit/s when one

interface is used, and missed by 1.685 Gbit/s when all eight

interfaces are used (Tab. I). The total overhead is composed

of the protocol structure overhead and the protocol processing

overhead. The absolute protocol structure overhead (in Gbit/s)

can be calculated considering the net throughput and the

relative protocol structure overhead of 1.56%. Subtracting the

Low Latency Stable Throughput
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TABLE I
THROUGHPUT AND LATENCY RESULTS FOR THE Stable Throughput

SCENARIO WITH 0% PACKET LOSS

Nu
mb

er
of

Inte
rfac

es

The
ore

tica
l M

ax
(Gb

it/s
)

Ne
t T

hro
ugh

put
(Gb

it/s
)

Tot
al O

ver
hea

d (Gb
it/s

)

Pro
toc

ol
Ov

erh
ead

(1.5
6%

) (G
bit/

s)

Pro
ces

sin
g Ov

erh
ead

(Gb
it/s

)

Pro
ces

sin
g Ov

erh
ead

(%
)

Lat
enc

y (ms
)

1 10 9.795 0.205 0.155 0.050 0.500 13.705
2 20 19.591 0.409 0.310 0.099 0.495 13.702
3 30 29.355 0.645 0.465 0.180 0.600 13.715
4 40 39.011 0.989 0.618 0.371 0.927 13.758
5 50 48.963 1.037 0.776 0.261 0.522 13.705
6 60 58.755 1.245 0.931 0.314 0.523 13.704
7 70 68.494 1.506 1.085 0.421 0.601 13.714
8 80 78.315 1.685 1.241 0.444 0.555 13.109

TABLE II
THROUGHPUT AND LATENCY RESULTS FOR THE Low Latency SCENARIO

WITH 0% PACKET LOSS

Nu
mb

er
of

Inte
rfac

es

The
ore

tica
l M

ax
(Gb

it/s
)

Ne
t T

hro
ugh

put
(Gb

it/s
)

Tot
al O

ver
hea

d (Gb
it/s

)

Pro
toc

ol
Ov

erh
ead

(1.5
6%

) (G
bit/

s)

Pro
ces

sin
g Ov

erh
ead

(Gb
it/s

)

Pro
ces

sin
g Ov

erh
ead

(%
)

Lat
enc

y (ms
)

1 10 9.789 0.211 0.155 0.056 0.560 13.714
2 20 19.497 0.503 0.309 0.194 0.970 6.881
3 30 29.142 0.858 0.462 0.396 1.320 4.604
4 40 38.859 1.141 0.616 0.525 1.313 3.366
5 50 48.232 1.768 0.764 1.004 2.008 2.782
6 60 56.693 3.307 0.898 2.409 4.015 2.366
7 70 66.796 3.204 1.059 2.145 3.064 2.008
8 80 76.73 3.27 1.216 2.054 2.568 1.748
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calculated protocol structure overhead from the total overhead,

results in the protocol processing overhead, which is a measure

for the scalability. The values are shown in table I.

The protocol processing overhead (acknowledgement over-

head and stream processing) accounts for 0.5% of the the-

oretical data rate for 1 interface (0.05 Gbit/s of 10 Gbit/s)

and 0.555% for the theoretical data rate of 8 interfaces (0.444

Gbit/s of 80 Gbit/s). That is a difference of only 0.055%. These

numbers indicate that the stream processing approach causes

little overhead for the Stable Throughput scenario and that the

protocol throughput of the Stable Throughput scenario scales

nearly linear. However, a closer look at the protocol processing

overhead reveals that it does not grow monotonously, but

fluctuates between a minimum of 0.495% (2 interfaces) and

a maximum of 0.927% (4 interfaces). This indicates further,

that the parallelization overhead is not the dominant part of

the processing overhead. The most probable reason for the

fluctuating overhead is, that additional hardware parameters,

e.g., a varying memory access latency, have a bigger impact

on the overhead, than the protocol processing itself. Finally,

the results confirm the prediction, that the Stable Throughput
scenario is robust against packet loss.

As expected, the throughput of the Low Latency scenario

is lower than the Stable Throughput scenario. While the

throughput for one interface can be considered the same, the

protocol processing overhead of the Low Latency scenario in-

creases steeper than the Stable Throughput scenario (compare

Tab. I and Tab. II). The first reason for the higher increase

is that the acknowledgement overhead cannot be hidden by

transmitting several chunks in parallel. On the contrary, the

ratio between acknowledgement overhead and transmission

grows, due to the protocol’s current implementation, as more

interfaces are used for the transmission, which is also the

reason why the Low Latency scenario is more affected by lost

packets than the Stable Throughput scenario. Additionally,

the current implementation of the protocol does not employ a

sophisticated memory allocation strategy for the data-chunks.

Therefore, its more likely that several Protocol Processing

Stages access the same memory controller at the same time

when reading or writing to the data-chunk.

The achieved latency per data-chunk is shown in figure

11. The figure shows the results depending on the number

of used 10 GbE interfaces and the simulated packet loss.

One can see that the latency of the Low Latency scenario

scales indirectly proportional with the number of used inter-

faces (Tab.II). Considering the latency per data-chunk for one

communication interface as the base value, the perfectly scaled

latency for eight interfaces would be 13.714ms/8 = 1.714ms.
The measured latency for eight interfaces is 1.748ms, which
is a difference of only 34μs. As expected, the latency of the

Stable Throughput scenario can be considered as constant (see

table I).

B. Full System with FPGA

At the time this publication was written, we had only

one FPGA for measurements available. However, designing

Low Latency Stable Throughput
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Fig. 11. Latency comparison for the Low Latency and the Stable Throughput
scenario, depending on the number of used 10 GbE interfaces.
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the CRC/FEC as an offloaded Protocol Processing Stage,

the results will scale with the number of used FPGAs. The

achieved throughput and latency for the complete protocol

processing system, i.e., with external FPGA for Cyclic Re-

dundancy Check (CRC) and FEC calculation, is shown in

figure 12. The results show, that the throughput is lower,

and the latency is higher when the FPGA is used. This

is caused by the latency added due to the FEC processing

on the FPGA, as it increases the time it takes the sender

to realize that a data-chunk is completely transmitted. The

impact can be lowered by either choosing larger data-chunks

or by overlapping the transmission of data-chunks with the

transmission of acknowledgements.

VI. RELATED WORK

This work was inspired by COPRA [7]. COPRA is a

COmmunication PRocessing Architecture for wireless sensor

networks. In COPRA, different predefined protocol building

blocks are combined to form a protocol. The modularity of

the building blocks enables the developer to connect exactly

the needed protocol parts for each application, which offers a

high flexibility. However, in contrast to our approach, COPRA

was designed for 16 bit micro controllers and a lossy event

flow, which is acceptable for hard real-time problems, but not

for flow controlled communication.

The communication protocol stack is traditionally located
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within the operating system’s kernel. That means applications

have to switch into the kernel space for every network oper-

ation, which makes it unfeasible for high data rate communi-

cation. Additionally, it makes the protocol stack inflexible, as

each change implies modifications at the operating system’s

kernel. In [8] the authors propose to move the protocol stack

into the user space to ease the deployment of new protocols,

protocol improvements and extensions. We agree with the

authors that the protocol processing has to move from the

kernel, but doubt that a simple user space protocol stack will

enable data rates of 100 GBit/s end-to-end communication,

because the protocol processing still uses the host’s resources,

e.g., CPU time and memory, which are lost for the host’s actual

task, e.g., performing database queries.

RouteBricks [9] is an extension to the Click Modular Router

[10] which introduces parallel processing to exploit the pro-

cessing power of multi-processor off-the-shelf server systems.

Like ours, their approach was twofold: Firstly, they showed

that a throughput requirement, which cannot be fulfilled by

a single server, can be fulfilled by a cluster of servers and

that the throughput scales linearly with the number of used

machines. Secondly, they made clear that the full packet

processing capability of a single server can only be exploited

when the packet processing is parallelized. Besides the use

case (RouteBricks is a router, we introduced an integrated

parallel NIC approach), the authors still use the host computers

processing power to process packets, while we argue that new

protocols are needed, and that the packet- / protocol-processing

should be offloaded to specialized hardware.

NetSlices [11] is an approach to make the packet processing

more efficient by replacing the Unix raw socket with a parallel

approach. The authors have three main contributions: 1. They

state that the actual packet processing should not be done

within the kernel because memory placement, CPU affinity,

and the process isolation are hard to control. 2. The packet

processing should be parallelized. The authors propose a

mapping where the user- and kernel-space packet processing

is coupled closely, to reduce cache misses. 3. As long as

the packet processing application has no control over the

hardware, it will not be able to come close to the theoretically

available performance. We agree with all the stated arguments.

However, we think packet processing should neither be carried

out in the kernel nor within the host machine’s user space. In

fact, the authors approach can be sufficient as long the host

is a dedicated protocol processing machine with one task,

e.g., routing or deep packet inspection. In cases the packet

processing is only a service for the host machines actual

task, e.g., managing a big database, the authors approach will

take processing power and memory bandwidth, leaving only

a fraction of it to the actual tasks.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a new approach for the design

of scalable high performance communication protocols. We

showed how our soft real-time stream processing approach

can be used to determine the needed amount of parallelism

and how a Protocol Stream Graph can be adapted with the

help of Stream Operators. Additionally, we presented an easy

way to use external accelerator hardware to offload compute

intensive tasks. Finally, we presented the evaluation results,

which showed that our approach works in practice and gives

the expected throughput and latency behavior.

The next step is to integrate more processing parame-

ters, e.g., memory bandwidth, into the planning approach,

which will allow the protocol designer to adapt the protocol

processing graph according to these hardware capabilities.

Additionally, we plan to replace the manual mapping of PPSs

onto CPUs with a dynamic approach. This will allow us to

react to changing environment parameters, such as the Bit

Error rate (BER), by increasing or decreasing the amount

of parallelism. In the future, we also plan to implement

a high throughput MAC-Protocol for wireless transmission

technology and provide an accurate simulation of the channel

behavior.
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