
Optimizing Indirect Memory References with milk

Vladimir Kiriansky
MIT CSAIL

vlk@csail.mit.edu

Yunming Zhang
MIT CSAIL

yunming@csail.mit.edu

Saman Amarasinghe
MIT CSAIL

saman@csail.mit.edu

ABSTRACT
Modern applications such as graph and data analytics, when
operating on real world data, have working sets much larger
than cache capacity and are bottlenecked by DRAM. To
make matters worse, DRAM bandwidth is increasing much
slower than per CPU core count, while DRAM latency has
been virtually stagnant. Parallel applications that are bound
by memory bandwidth fail to scale, while applications bound
by memory latency draw a small fraction of much-needed
bandwidth. While expert programmers may be able to tune
important applications by hand through heroic effort, tra-
ditional compiler cache optimizations have not been suffi-
ciently aggressive to overcome the growing DRAM gap.

In this paper, we introduce milk — a C/C++ language
extension that allows programmers to annotate memory-
bound loops concisely. Using optimized intermediate data
structures, random indirect memory references are trans-
formed into batches of efficient sequential DRAM accesses.
A simple semantic model enhances programmer productiv-
ity for efficient parallelization with OpenMP.

We evaluate the Milk compiler on parallel implementa-
tions of traditional graph applications, demonstrating per-
formance gains of up to 3×.

1. INTRODUCTION
Memory bottlenecks limit the performance of many mod-

ern applications such as in-memory databases, key-value
stores, graph analytics, and machine learning. These ap-
plications process large volumes of in-memory data since
DRAM capacity is keeping pace with Moore’s Law. Indirect
memory references in large working sets, however, cannot be
captured by hardware caches. Out-of-order execution CPUs
also cannot hide the high latency of random DRAM accesses,
and most cycles are wasted on stalls. Compiler cache opti-
mizations also cannot statically capture locality in irregular
memory accesses even when loop-level locality exists.

Any execution order is often acceptable, yet performance
dramatically depends on the access pattern. The follow-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

PACT ’16 September 11–15, 2016, Haifa, Israel
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4121-9/16/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2967938.2967948

ing read-modify-write loop is typical in many domains, e.g.,
graph analysis, image processing, and query planning:

01 #pragma omp parallel for
02 for(int i=0; i<N; i++)
03 #pragma omp atomic
04 count[d[i]]++;

On contiguous DRAM-resident inputs this loop achieves 18%
of peak DRAM bandwidth of Intel Haswell CPUs; if inputs
are always sorted we can optimize to remove atomics and
reach 54% of peak bandwidth. On uniform random inputs,
however, this loop’s effective bandwidth is only 2%.

For this loop on random inputs, the Milk compiler achieves
4× end-to-end speedup. Our compiler transformations dy-
namically partition the index values in d to capture all avail-
able locality in accesses to count. Each partition accesses
a subset of memory that fits in cache. In addition, synchro-
nization is eliminated since threads process disjoint parti-
tions. Just adding milk clauses to the OpenMP directives
enables these optimizations.

To achieve high performance and low overhead, Milk’s
DRAM-conscious Clustering transforms loops into three log-
ical phases: Collection, Distribution, and Delivery. In Col-
lection, dynamically generated indices of indirect accesses
(e.g., simply d[i] above) are first collected in cache local
buffers. In Distribution, indices are written to DRAM res-
ident partitions using efficient sequential DRAM access. In
Delivery, each partition’s deferred updates are read from
DRAM and processed, along with dependent statements.

These three logical phases are similar to inspector-executor
style optimizations [18, 32, 40]; in Milk, however, to elimi-
nate materialization of partitions and conserve DRAM band-
width, the phases are fused and run as coroutines. Prior
research either focused on expensive preprocessing that re-
sulted in net performance gain only when amortized over
many loop executions, or explored simple inspection for cor-
respondingly modest gains. In contrast, our transformations
are well optimized to pay off within a single execution — as
required in real applications that use iterative algorithms
with dynamically changing working sets or values.

The Milk execution model is a relaxed extension of the
bulk-synchronous parallel (BSP) model [50], in which com-
municating processors work on local memory during a su-
perstep before exchanging data at a global barrier. Milk vir-
tual processors access randomly only one DRAM-resident
cache line per superstep, in addition to sequential memory
or cache-resident data. All indirect references are deferred
to the next superstep. A Milk superstep may encompass
loop nests that include billions of deferred references. Ref-

299
Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 19:15:03 UTC from IEEE Xplore. Restrictions apply.

BC SSSPPRBFS

0.00
0.20
0.40
0.60
0.80
1.00

g t u w r
0.00
0.20
0.40
0.60
0.80
1.00

g t u w r
0

20
40
60
80

100

g t u w r

Temporal Locality Spatial Locality

0.00
0.20
0.40
0.60
0.80
1.00

g t u w r
0.00
0.20
0.40
0.60
0.80
1.00

g t u w r
CC

Id
ea

l C
ac

he
 H

it
%

Figure 1: Temporal and spatial locality on an infinite cache
with 64-byte lines of indirect memory references per su-
perstep of Betweenness Centrality, Breadth-First Search,
Connected Components, PageRank, and Single-Source
Shortest Paths. Synthetic graphs with V =128M vertices
and avg. degree d=16: power law Graph500 (g) and uniform
(u); and real-world graphs: US roads V =24M, d=2.4 (r);
Twitter V =62M, d=24 (t); weblinks V =51M, d=39 (w).

C
ac

he
 H

it
%

0

20

40

60

80

100

BC BFS CC PR SSSP

baseline milk

4 cores/hyperthreads

Figure 2: Cache hit rates of demand reads on 256 KB L2,
8 MB shared L3 [2], for V=32M, d=16(uniform).

erences targeting the same cache line are grouped to maxi-
mize locality, and are processed by a single virtual processor
to eliminate synchronization. This abstract programming
model is similar to MapReduce [16] with discrete phases of
Map and Reduce for processing references to distinct mem-
ory locations. Milk programs, however, allow programmers
to continue thinking in terms of individual references and
to maintain traditional serial or OpenMP syntax, usually
without semantic change.

We investigate the total locality available in applications,
compare to locality captured by hardware, and show Milk’s
effectiveness. To find an upper bound on locality within a
Milk superstep, we use an ideal cache model. An ideal cache
would not incur cache capacity or cache conflict misses, or
true or false sharing coherence misses on a multiprocessor
system. The only memory demands should be compulsory
cache misses and output write-backs. (We assume all data
is written to memory between supersteps, therefore reuses
across supersteps are counted as compulsory misses.)

Since compulsory cache misses, temporal locality, and spa-
tial locality are program- and data-dependent, we instru-
mented the indirect memory references of commonly used [11,

Sp
ee
du
p

0x

0.5x

1x

1.5x

2x

2.5x

3x

BC BFS CC PR SSSP
Figure 3: Milk overall speedup. 8MB L3, V=32M, d=16(u).

36,43,47] graph applications with state-of-the-art implemen-
tations in the Graph Algorithm Platform Benchmark Suite
(GAPBS) [10]. The GAPBS datasets include public samples
of real graphs (Twitter, USA road, and web crawl), and syn-
thetic graphs (uniform and power law [13, 21]) to compare
sensitivity to graph degree distributions and diameters. We
describe the applications in more detail in Section 6, where
we also show their handwritten in OpenMP critical loops.

Figure 1 shows that, on an ideal cache, the total locality
within a superstep is close to 100% for most graphs and ap-
plications, and above 50% for all. Temporal locality on an
infinite cache (i.e., reuse of the same address) captures more
than 90% of accesses for high-degree low-diameter graphs.
However, for the road graph and for SSSP, harnessing spa-
tial locality (i.e., capturing reuse of 64-byte cache lines) is
important. Unlike hit rates on the ideal infinite cache, the
cache hit rates observed on real hardware are much lower,
and most cycles are wasted on memory stalls.

Figure 2 shows the low cache hit rates of real hardware
are improved by 4× with Milk. On a synthetic graph with
32 M vertices, most applications have greater than 128 MB
total working sets, and little locality is captured by the
8 MB shared L3 cache and 256 KB L2 per core on a Haswell
CPU [2]. To isolate indirect memory reads during full pro-
gram execution, we use hardware performance counters that
track non-prefetch demand reads that hit L2 or L3 caches.
In the baseline 80–90% of all L1 misses require a DRAM ac-
cess, while with Milk they are served by L2 and L3 caches.
Figure 3 shows that these improved hit rates translate to
end-to-end speedups, ranging from 1.3× to 2.7×.

The rest of this paper is organized as follows: In Section 2,
we explore memory system complexities and opportunities
in more detail. We introduce the Milk programming model
and Milk compiler and runtime library design in Section 3,
milk syntax and semantic extensions in Section 4, and im-
plementation details of Milk optimizations in Section 5. We
demonstrate Milk expressiveness on parallel graph applica-
tions in Section 6, and we evaluate performance in Section 7.
Section 8 surveys related work and Section 9 concludes.

2. BACKGROUND
We now examine the organization of DRAM to show why

random memory references are often 10–20× slower than
sequential memory accesses. We also explain why hardware
approaches for hiding long latency penalties are ineffective.

300
Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 19:15:03 UTC from IEEE Xplore. Restrictions apply.

2.1 DRAM Organization
The memory hierarchy is optimized for sequential accesses,

often at the expense of random accesses, at all levels: DRAM
chip, DRAM channel, memory controllers, and caches.

Sequential DRAM reads benefit from spatial locality in
DRAM chip rows. Before a DRAM read or write can oc-
cur, a DRAM row – typically 8–16KB of data – must be
destructively loaded (activated) into an internal buffer for
its contents to be accessed. Consecutive read or write re-
quests to the same row are limited only by DRAM channel
bandwidth, thus sequential accesses take advantage of spa-
tial locality in row accesses. In contrast, random accesses
must find independent request streams to hide the high la-
tency of a row cycle of different banks (DRAM page misses),
or worse the additional latency of accessing rows of the same
bank (DRAM page conflicts).

Hardware memory controllers reorder requests to mini-
mize page misses, and other high-latency request sequences
to minimize bus turnarounds and read-to-write transitions.
But requests can be rescheduled only within a short win-
dow of visibility, e.g., 48 cache lines per memory channel
[38] shared among cores. Requests are equally urgent from
hardware perspective, and cannot be reordered outside of
this window.

DRAM interfaces are also optimized for sequential ac-
cesses. Modern CPUs transfer blocks of at least 64 bytes
from DRAM. Double Data Rate (DDR) DRAM interfaces
transfer data on both rising and falling edges of a clock sig-
nal: e.g., a DDR3-1600 [24] chip operating at 800 MHz de-
livers a theoretical bandwidth of 12.8 GB/s. Current gen-
eration CPUs use DDR3/DDR4 interfaces with burst trans-
fers of 4 cycles (mandatory for DDR4), leading to a 64-byte
minimum transfer for a 64-bit DRAM. Even though larger
transfers would improve DRAM power, reliability, and peak
performance, this size coincides with current cache line sizes.

Sequential memory accesses benefit significantly from large
cache lines, as they have good spatial locality and can use all
of the data within each line. By contrast, random memory
accesses use only a small portion of the memory bandwidth
consumed. In many applications with irregular memory ac-
cesses, each DRAM access uses only 4–8 bytes out of cache
lines transferred – 64 bytes transferred for reads, and 128
bytes for writes (a cache-line read and write-back) – netting
3–6% effective bandwidth.

Applications that are stalling on memory but do not satu-
rate the memory bandwidth are bound by memory latency.
Random DRAM device latency has been practically stag-
nant at ∼50 ns for the last decade [41,42]. A DRAM request
at peak bandwidth has 100× worse latency than an L1 cache
lookup, and in the time it takes to wait for memory, a SIMD
superscalar core can execute ∼5,000 64-bit operations.

2.2 CPU Request Reordering
CPU out-of-order execution allows multiple long delay

memory accesses to be handled but only up to the lim-
its of small hardware structures. By Little’s Law, memory
throughput is the ratio of outstanding memory requests over
DRAM latency. The visible effect of either low memory level
parallelism or high DRAM latency is underutilized memory
bandwidth. Such “latency bound” programs perform well
in-cache, and may have no explicit data dependencies, but
become serialized on large inputs.

Hardware prefetchers for sequential accesses increase mem-
ory level parallelism with more outstanding DRAM requests.
Therefore, sequential reads and writes achieve higher DRAM
bandwidth than random accesses. Current hardware has no
prefetchers for random requests.

Current CPUs can handle 10 demand requests per core
(Line Fill Buffers between L1 and L2) [1, 11] as long as
all requests fit within the out-of-order execution window.
The effective Memory Level Parallelism (MLP) is most con-
strained by the capacity limits of resources released in FIFO
order, e.g., reorder buffer, or load and store buffers. A loop
body with a large number of instructions per memory load
may reduce the effective parallelism, e.g., a 192 micro-op
entry reorder buffer (ROB) must fit all micro-ops since the
first outstanding non-retired instruction. Branch mispredic-
tion, especially of hard to predict branches that depend on
indirect memory accesses further reduce the effective ROB
size. Finally, atomic operations drain store buffers [44] and
reduce Instruction Level Parallelism (ILP). While hardware
mechanisms, including memory controllers and out-of-order
schedulers, can reorder only a limited window of tens of op-
erations, Milk efficiently orchestrates billions of accesses.

3. DESIGN
Given the inefficiency of random DRAM references and

the limitations of hardware latency-hiding mechanisms, in
order to harvest locality beyond hardware capabilities, the
Milk compiler uses a software based approach to plan all
memory accesses. To use the Milk compiler, programs must
fit the Milk execution model and have milk1 annotations.

Milk achieves significant performance improvement by
reordering the memory accesses for improved cache local-
ity. The reordered memory references maximize temporal
locality by partitioning all indirect references to the same
memory location within the cache capacity. The planned
accesses also improve spatial locality by grouping indirect
references to neighboring memory locations. Furthermore,
Milk avoids true sharing, false sharing, and expensive syn-
chronization overheads by ensuring only one core writes to
each cache line.

However, naively reorganizing indirect references can add
non-trivial overhead. Milk keeps all additional bandwidth
low by using only efficient sequential DRAM references. Al-
though data transformations require an investment of ad-
ditional CPU cycles and sequential DRAM bandwidth, we
show how to minimize these overheads with DRAM-conscious
Clustering.

In order for the Milk compiler to perform the optimiza-
tion automatically, users must annotate indirect accesses in
parallel OpenMP loops with a milk clause, which is suffi-
cient for simple loops like Figure 4a. Explicit milk direc-
tives can select indirect references that should be deferred,
along with their context (see line 12 in Figure 4b). Op-
tional combiner functions allow programmers to summarize
the combined effects of updates targeting the same address.
Section 4 describes milk’s syntax in more detail.

The Milk execution model is similar to MapReduce [16].
We do not offer a Map interface, however, since efficient
iteration over in-memory data structures can use domain-
specific knowledge (e.g., incoming vs. outgoing neighbor
traversal in graph processing, 2-D loop nests for image pro-

1Milk’s milk is an homage to Cilk’s cilk [19].

301
Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 19:15:03 UTC from IEEE Xplore. Restrictions apply.

01 void f(int a[], int ind[], int x) {
02 #pragma omp parallel for milk
03 for(int i=0; i<n; i++)
04 a[ind[i]] = x;
05 }

(a) Implicit Indirect References with milk.

06 void g(float a[], int ind[],
07 float b[]) {
08 #pragma omp parallel for milk
09 for(int i=0; i<n; i++) {
10 float value = b[i];
11 int index = ind[i];
12 #pragma milk pack(value:+) tag(index)
13 #pragma omp atomic if(!milk)
14 a[index] += value;
15 }
16 }

(b) Explicit Indirect References with milk.

17 .milk.outlined.f(int _tag,
18 Context *c) {
19 c->a[_tag] = c->x;
20 }
21 .milk.outlined.g(int index,
22 float value,
23 Context *c) {
24 c->a[index] += value;
25 }

(c) Outlined functions for Delivery.

26 void f(int a[], int ind[], int x) {
27 _Milk_containers c;
28 #pragma omp parallel
29 {
30 #pragma omp for nowait
31 for(int i=0; i<n; i++)
32 _Milk_collect(ind[i], &c);
33 _Milk_distribute(&c);
34 _Milk_deliver(&c, Context(a, x),
35 .milk.outlined.f);
36 }
37 }
38 void g(float a[], int ind[],
39 float b[]) {
40 _Milk_containers c;
41 #pragma omp parallel
42 {
43 #pragma omp for nowait
44 for(int i=0; i<n; i++)
45 _Milk_collect(&c, ind[i], b[i]);
46 _Milk_distribute(&c, SumCombine);
47 _Milk_deliver(&c, Context(a),
48 .milk.outlined.g,
49 SumCombine);
50 }
51 }

(d) Logical transformation overview.

Figure 4: DRAM-conscious Clustering transformation.

cessing, 3-D loop nests in physical simulations, etc.). Leav-
ing the outer loop structure to programmers allows further
algorithm-specific optimizations, such as use of bit vectors,
Bloom filters, priority queues, etc. Further knowledge about
power-law data distributions can be used to maximize load
balance in parallel loop nests, or to identify accesses that are
likely to be cached. Domain-specific frameworks that apply
user-supplied Map functions over the input can be built on
top of our milk primitives.

3.1 Collection, Distribution, and Delivery
In the Collection and Distribution phases, Milk plans

memory accesses by grouping references into cache-sized par-
titions. In the Delivery phase, the reordered memory refer-
ences and deferred dependencies are applied. These phases
are a generalization of cache partitioning [45] used in heav-
ily optimized database hash-join [5,8,26,30,45,49,51], with
additional DRAM optimizations shown in Section 5.2.

Figure 4d shows a logical overview of the DRAM-conscious
Clustering transformation to Collection, Distribution, and
Delivery phases. The transformation for line 4 in f() shows
how a tag index is collected, while the more complex case of
line 14 in g() also includes a payload value, and a combiner
function.

During Collection, indirect reference expressions are eval-
uated as tags, e.g., ind[i] on lines 4 and 11. If additional
per-reference state is needed, it is also collected with pack as
a payload; an optional combiner enables coalescing of pay-
loads targeting the same tag (e.g., line 12). Tag and pack
variables can be initialized with any dynamically evaluated
expression and can have side effects (e.g., queue iterators
can consume items), since they are written to temporary
buffers.

During Distribution, tags are partitioned into clusters such
that maximum cache line and DRAM page locality can be
achieved for accesses during Delivery. Depending on the
range of tag values, if too many partitions would be needed,
multiple Distribution passes are required. Each additional
Distribution pass uses only sequential transfers to DRAM.

During Delivery, an outlined program slice from the origi-
nal code is executed using a dynamically constructed context
valid for each Delivery thread. Milk captured statements al-
low arbitrary C++ expressions and function calls, e.g., arbi-
trary containers can be accessed during Delivery. Figure 4c
shows the outlined functions created to capture the deferred
execution of lines 4 and 14, respectively, on lines 19 and 24.

Distribution phases are always fused with the previous
or next processing stage: the first Distribution pass is fused
with Collection, and the final Distribution pass is fused with
Delivery. The three distinct phases shown as functions are
coroutines, i.e., Collection receives one element at a time
to pass to Distribution, and early Delivery can be triggered
at any time if memory for temporary buffers is exhausted.
Unlike inspector/executor-style [40] preprocessing, the three
phases are distinct only logically, and different threads and
different tags may be in different phases at the same time.

3.2 Performance Model
A simple model predicts Milk DRAM bandwidth sav-

ings as a high order estimate of performance on bandwidth-
bound applications. Let us take a workload that makes m
random read-modify-writes to n distinct location, e.g., pro-
cessing a graph with n vertices and m edges. Assume n is

302
Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 19:15:03 UTC from IEEE Xplore. Restrictions apply.

Original MILK

Collection Distribution Delivery

L2 8m 128m

DRAM 128m 8m 8m+8n

Table 1: Milk reduction of DRAM bandwidth in bytes, for
m random references to n locations.

much larger than the cache size, and that updated values,
indices, and payloads are 4 bytes. If n�m, the Milk version
uses 8× less bandwidth than the original.

Table 1 summarizes the bandwidth required by the trans-
formed workload and overheads of Milk phases. Original
references read and write back a random cache-line on each
update. The transformed updates are within L2 caches and
use DRAM bandwidth only for compulsory cache-fill and
write-back of accessed cache lines. When spatial locality is
high, as seen earlier in Figure 1, these use 2n · 4B. Collection
arranges tag and pack records in L1/L2 caches, and Distri-
bution and Delivery write and read DRAM sequentially.

3.3 Milk Correctness Conditions
All BSP-model [50] applications are correct under Milk, as

are some non-BSP programs allowed under the more relaxed
Milk execution model. Correctness proofs of BSP algorithms
hold for Milk execution. The only difference is the number
of virtual processors, i.e., tens of threads vs. millions of
cache lines. Loops in which read and write sets do not over-
lap will not change behavior when split in Milk supersteps.
For non-BSP programs, a loop may read results produced
within the same step. Programs that produce externally de-
terministic [12] output but vary intermediate results (e.g.,
Connected Components in Figure 9a) may incur more per-
iteration work or a lower convergence rate with Milk but will
be correct.

Programs with read/write dependencies, which produce
non-deterministic outputs under OpenMP, have to be vali-
dated or modified for Milk. Domain knowledge may allow di-
vergence from sequential semantics, e.g., in traditional bank
check processing all checking account debits are processed
or bounced first, and only then any account credits are ap-
plied. Splitting a loop into separate parallel loops to break
dependence chains allows the alternative sequential execu-
tion, OpenMP, and Milk to all agree on the output.

4. MILK SYNTAX AND SEMANTICS
The Milk compiler allows programmers to use the Milk

execution model for C/C++ programs with OpenMP ex-
tensions and loop annotations. Adding a milk clause to a
loop directive is often sufficient to enable optimizations. To
achieve further optimization control, programmers can se-
lect which references in a loop should be deferred by adding
a milk directive and its clauses. A tag clause selects the
destination, while pack clauses specify the values necessary
for deferred dependent statements. The if clause allows
programmers to express dynamic knowledge about data dis-
tribution by deferring only references that are unlikely to
be cached. Additional language and library features sup-
port safe avoidance of synchronization, deterministic per-
formance, and deterministic outputs with minimal overhead.
Table 2 summarizes the clauses of the pragma milk direc-
tive and extended OpenMP directives.

Directive Clause Section
milk if 4.1.1
milk pack(v

[
:all

]
) 4.1.3

milk pack(v:+
∣∣*∣∣min∣∣max∣∣any) 4.1.4

milk pack(v:first
∣∣last) 4.1.4, 4.4

milk tag(i) 4.1.2
atomic if 4.3
for milk 4.1
ordered milk 4.4

Table 2: milk OpenMP extensions.

01 void BFS_Depth(Graph &g, int current,
02 int depths[]) {
03 #pragma omp parallel for milk
04 for (Node u=0; u<g.num_nodes(); u++)
05 if (depths[u] == current)
06 for (Node v : g.out_neigh(u))
07 #pragma milk
08 if(depths[v] == -1)
09 depths[v] = current + 1;
10 }

Figure 5: Breadth-First Search (BFS) with milk.

4.1 milk Directive and Clause
milk directives within a milk loop afford fine-level con-

trol when Collecting indirect accesses. This use is similar
to the OpenMP ordered loop clause and the identically
named directive used in the loop body; we borrow the same
nesting and binding rules [3]. Figure 5 illustrates this an-
notation syntax for a Breadth-First-Search traversal (BFS),
which produces a vector of depths from the source node.
Sequential access on line 5 can be processed directly, but
random accesses on lines 8–9 are deferred with milk.

4.1.1 if Filters
Milk optimizations are effective only when locality ex-

ists within a superstep, but is beyond the reach of hardware
caches. When programmers can cheaply determine effective-
ness, they can provide such a hint as a superstep property, or
as a dynamic property of each indirect reference. A loop can
be marked for execution without deferral if programmers can
determine that the optimization will be ineffective because
the range of accesses is small, there are too few requests, or
if little locality is expected. For example, a parallel for
can be marked with OpenMP 4.5 if: syntax, e.g.:
#pragma omp milk for if(milk: numV<cacheSize).

Individual milk directives can be tagged with an if clause
when domain-specific knowledge can cheaply determine that
a specific address is likely in cache. For example, in graph
algorithm implementations where graph nodes are ordered
by degree, the high-degree nodes that are in cache can be
skipped, e.g.: #pragma milk if(v>hot).

4.1.2 tag Clause
The tag clause can make explicit the definition of the

index variable used in the following statement or block, as
seen in Figure 4b. The clause takes as an argument the
identifier of a variable that programmers should define to use
the smallest possible type for supported inputs. An explicit
tag is also required when using user-defined collections that
do not use the subscript operator [].

303
Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 19:15:03 UTC from IEEE Xplore. Restrictions apply.

4.1.3 pack Clause
The pack clause explicitly specifies data needed for cor-

rect continuation execution. It takes a list of variables that
must be carried as a different payload for every tag. Pro-
grammers should minimize the number of variables when-
ever it is possible to evaluate expressions early (e.g., lines 47
and 98 on Figures 8b and 9c).

Reducing the size of pack variables also directly reduces
overhead. The performance of traditional indirect reference-
bound kernels is a function of the number of cache lines
touched regardless of the amount of data. The costs are
identical whether 1 bit or 2 doubles are written: a random
DRAM read, and a random DRAM writeback upon cache
eviction. Reducing precision is ineffective traditionally if the
reduced working set is still larger than cache. Milk transfor-
mations, however, are bandwidth bound. Thus, the smallest
type for the expected range should be used for pack vari-
ables. Floating point variables can be cast to lower precision
types, e.g., users can explore the non-standard bfloat16
communication type from TensorFlow [4], which is simply a
16-bit bitcast of float.

4.1.4 pack Combiners
For each packed variable, a combiner function can be

specified, e.g., pack(u:min), pack(value:+), etc., which
may be used to combine pack payloads before Delivery.
When a combiner is used, programmers must ensure the
program is correct, whether all, one, or a subset of all items
is delivered. Valid combiners can be defined for all applica-
tions we study in Section 6.

Combiners are optional, as their performance advantage
depends on the data distribution and access density for each
partition. For uniform distributions, for example, early eval-
uation of combiners will not discover temporal locality to
match tags. Combiners evaluated immediately before ex-
ecuting the continuation allow faster processing of all up-
dates targeting a given tag. While not saving bandwidth,
late combiner execution enables deterministic outputs, e.g.,
with min/max combiners.

The default binary operations supported include the stan-
dard OpenMP reductions, e.g., +, *, min. When OpenMP
4.0 user defined reductions [3] are supported by clang, we
will also allow similar syntax for user defined combiner ex-
pressions. While OpenMP reduction clauses for scalars
(or short dense arrays in OpenMP 4.5) use unit value ini-
tializers (e.g., 0, 1, INT_MAX), the explicit initialization in-
curs significant overhead on large and sparsely accessed data.
Therefore, Milk combiners are assigned or copy/move con-
structed only on first access.

Additional pre-defined pack combiner identifiers include
all, any, first, and last. Specifying all explicitly doc-
uments that each value must be delivered without a com-
biner. When any value can be used in any order, any marks
that duplicate pack values can be dropped. Alternatively,
first and last select one pack value in the respective or-
der it would be collected in serial execution.

4.2 Elision Version Semantics
Same-source programs can be compiled in several versions

– traditional serial, OpenMP parallel, and Milk (serial or
parallel) – dispatched depending on input size. Eliding Milk
annotations produces valid serial programs. Milk programs
without atomics are succinct and easier to reason about

01 CountDegrees(vector<Edge>& edges) {
02 vector<Node> degrees(n, 0);
03 #pragma omp parallel for milk
04 for (Edge e : edges) {
05 #pragma omp atomic if(!milk)
06 degrees[e.u] += 1;
07 if (!directed)
08 #pragma omp atomic if(!milk)
09 degrees[e.v] += 1;
10 }
11 }
Figure 6: CountDegrees with multiple atomic updates.

than OpenMP parallel programs. Parallel non-Milk pro-
grams, however, may be desired for efficient execution on
small cache-resident inputs. When correctness of parallel
non-Milk versions requires additional synchronization, inte-
gration with OpenMP allows correct and efficient execution.

4.3 Atomic Accesses
When unnecessary for milk loops, synchronization can

be eliminated by marking omp atomic if(!milk). This
OpenMP syntax extension allows an if clause in atomic.

All threads updating data concurrently must be in the
same milk loop. As a safe default, we preserve the be-
haviour of unmodified omp atomic directives to use atom-
ics, in case they were intended for synchronization with other
thread teams, or with external threads via shared memory.
During Delivery, atomic operations operate on cache resi-
dent data and are executed by a single thread. Such atom-
ics are faster than DRAM resident or contended cache data
with expensive cache-to-cache transfers. However, atomics
still drain store buffers and destroy instruction and memory
parallelism, incurring 3× overhead. When possible, unnec-
essary atomics should be eliminated.

Milk safely allows either only reads or only writes to the
same array. Mixing reads and writes, or atomic capture
clauses may change non-BSP program semantics. Currently,
loops with internal producer-consumer dependencies should
be transformed manually to unidirectional accesses per ar-
ray per loop to ensure program semantics does not change.
Deferring an atomic update can be treated as a write and
requires no semantic change.

Read-modify-write update operations that do not peek
into results can issue in parallel. For example, the CountDe-
grees kernel – used for building a graph in GAPBS – shown
in Figure 6 can access two edges with an atomic update.

4.4 Deterministic and Ordered Extensions
Adding an ordered clause ensures deterministic outputs

by restricting milk processing order. This improves pro-
grammer productivity and enables new application use cases,
e.g., database replication and fault tolerance. Milk process-
ing can give deterministic execution guarantees very effi-
ciently: there are very few thread synchronization points
during Distribution, while the cost of enforcing determinis-
tic order is amortized across thousands of individual memory
references. The main concern in deterministic execution is
that it exacerbates load imbalance during a Collection work-
sharing loop, therefore programmers have to explicitly mark
these after addressing load imbalance.

304
Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 19:15:03 UTC from IEEE Xplore. Restrictions apply.

5. COMPILER AND RUNTIME LIBRARY
The Milk compiler and runtime library are implemented

within the LLVM [27] framework, as Abstract Syntax Tree
(AST) transformations in Clang and code generation of LLVM
IR. Collection and Delivery phases are implemented as AST
lowering phases emitting specializations of the Distribution
container library. Table 3 summarizes additional programmer-
facing intrinsics.

5.1 Dynamically Constructed Closure
Milk Delivery’s indirect memory references are logically

separate continuations, but we dynamically construct the
full context using four classes of data: a static context shared
among all continuations for each deferred block, a tag to
construct address references to one or more arrays, an op-
tional payload carried with each tag, and optional thread-
local variables.

While similar to C++ lambda expressions, continuations
need to allow access to out-of-scope variables across different
threads. Compared to delegate closures in distributed
systems [34], we minimize per-item overhead by optimizing
for space and capturing only unique values across iterations.
Explicit uses of tag and pack define the only variables that
are unique per tag and packaged as payloads. All variables
other than globals used in a continuation must be captured
in a shared context.

5.1.1 Shared Context
To minimize space overhead, we use a single closure to

capture the original block and all variable references neces-
sary for execution during Delivery of continuations.

Variables that are independent of the iteration variable are
simply captured by reference only once for all iterations, e.g.,
the array base and value in {m[ind[i]] += val;} can
capture m and val as long as they are not aliased. If m may
change, however, programmers should either add pack(m),
or recompute m in the continuation.

Loop-private variables cannot be passed by reference for
Delivery; if programmers can hoist them out of the loop,
they are automatically stored in the shared context. Other-
wise, variables need to be either explicitly passed by value
with pack, or recomputed.

5.1.2 Tags
Each block must have a single implicit or explicit tag,

but multiple references based on the same tag can access
different arrays, vectors, or C++ objects with overloaded
operator[], e.g., if (a[v]) b[v]++. Therefore, tags
stored in Collection are indices, not pointers.

5.1.3 Pack payloads
Initialization of variables in pack clauses is evaluated dur-

ing Collection. Variables are not added automatically to
pack clauses; any non-packed variable reference that is not
in the shared context results in a compile-time error. Cur-
rently, programmers have to decide whether an expression
should be evaluated during Collection, Delivery, or in both.

Evaluation during Collection is best for expressions that
make sequential accesses, or can be packed as a compact
payload, e.g.: bool b = (a[i]>1); Pack(b){...}. (The
Pack macro expands to _Pragma("milk pack")).

Evaluation during Delivery is favorable when indices are
smaller than values and refer to cache-resident data, or ex-

Intrinsic Section and Use
milk_collect_thread_num 5.1.4 Collecting thread ID
milk_deliver_thread_num 5.1.4 Delivering thread ID
milk_set_max_memory 5.2.2 Maximum memory
milk_set_strict_bsp 5.2.2 Superstep splitting
milk_touch 5.2.2 Working set estimate

Table 3: Milk API summary.2

pressions have larger size, e.g.:
Pack(i) {double ai=a[i], r = 1.0/i; ...}.

Evaluation on both sides trades memory bandwidth for
arithmetic unit cycles; programmers must explicitly recom-
pute any shadowed variables, e.g.:
double d = f*f; Pack(f) {double d = f*f; ...}.

5.1.4 Thread-Local Variables
Thread-local variable expressions may be expected to be

exclusive to their owner, but are now accessed in both Col-
lection and possibly different Delivery threads. Thread-local
variables here refers both to OpenMP threadprivate global
variables and to indirection via CPUID, thread ID (TID),
or omp_get_thread_num.

TID references in left-hand expressions in continuations
are usually intended to use variables of Delivery threads. A
common use for thread-local variables is to implement reduc-
tions manually, e.g., lines 32 and 103 in Section 6. The alias
milk_deliver_thread_num explicitly documents the in-
tent that omp_get_thread_num should use Delivery thread
local variables. When user-defined reductions [3] are explic-
itly declared, thread-local references use Delivery threads.

TID references in right-hand expressions may have to be
evaluated in the Collect threads. For const references,
the intrinsic milk_collect_thread_num should replace
TID references. This helps reduce payload size as many re-
quests share the same source TID value. Thread-local vari-
ables cannot be passed by non-const reference to contin-
uations, as multiple Delivery threads may update the same
item. To guarantee correct execution without atomics, ex-
pressions can be evaluated and packed during Collection,
e.g., to generate unique ID’s in a pre-allocated per thread
range: {m[ind[i]] = state[TID].id++;}.

5.2 Milk Containers and Distribution
Milk Distribution fuses a nested multi-pass radix parti-

tioning optimized for all levels of the memory hierarchy from
registers to DRAM. Distribution is a generalization of cache
partitioned join [45], and TLB-aware radix join [30], ad-
justed for the capacity and access costs of modern hardware
memory hierarchy with additional optimizations for max-
imizing DRAM bandwidth. Naively appending to a per-
partition buffer in DRAM would require 2 · 64B random up-
dates, and negate any cache partitioning benefits. The inter-
nal Distribution coalesces updates in full cache lines using
a container library specialized for transportation of differ-
ent sized tags and payloads. As illustrated in Figure 7, for
each partition there is a jug and/or a pail, and a list of tubs.
These append-only two-dimensional structures are logically
simple, but they require careful choice of widths (i.e., num-
ber of elements), heights (i.e., fan-out), address placement
and access patterns.

A jug is an L1-cache-resident container, optimized for fast
writes with low register pressure. Branch misprediction im-

2Milk’s API reference is at milk-lang.org/api.html

305
Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 19:15:03 UTC from IEEE Xplore. Restrictions apply.

…

jugs pails tubs vat

p

Collection Distribution Delivery

L1 DRAM L2L2

Figure 7: Containers for DRAM-conscious clustering.

pact on jug overflow can be reduced with wider jugs, but
that increases total L1 cache occupancy, thus typical widths
are 32–512 bytes. A full jug is emptied into one or two pails.

A pail is an L2-cache-resident container primarily designed
to build full cache lines with streaming stores to the next
stage. Pails are optimized for cache capacity, and further
optimized to avoid cache associativity conflicts. Addition-
ally, when appending to a pail unused bits can be trimmed,
e.g., when partitioning into 256 pails with a bit mask, only
the remaining 24-bits need to be stored. When compiled
for Haswell, streaming and partition indexing can take ad-
vantage respectively of 256-bit Advanced Vector Extensions
(AVX2) instructions and Bit Manipulation Instructions (BMI).

A tub is a large DRAM-resident container used for multi-
pass processing. When full or finalized, tubs are linked into
thread-local lists and eventually added to global lists. Tubs
are tagged with the creating thread-ID if access to thread-
local variables is needed in a captured continuation. TLB
reach and fan-out constrain the maximum size of a single
tub. All active tubs for each thread are TLB-reachable,
achieved at the cost of additional memory fragmentation.

A vat is a random access cache-resident container for mix-
ing tubs targeting a fixed output subset. Depending on the
expected spatial or temporal locality different variants are
selected. The simplest vat handles the case of expected high
spatial locality with dense range updates, e.g., when every
cache line is used and the full content of each cache line is
overwritten. Other specializations handle low density or low
coverage cases, e.g., sparse cache-line writes when few cache
lines within a range are modified, or when partial cache line
content is either preserved or can be overwritten.

Milk containers are by default emptied in Last-In First-
Out (LIFO) order to maximize cache locality. LIFO order is
acceptable, when the sequential consistency of a parallel
for is acceptable. Even if deterministic, this order does not
match serial program semantics when that may be desirable,
e.g., for a[ind[i]] = i to observe the last write. If
ordered processing is requested, containers are emptied in
First-In First-Out (FIFO) order, and a Milk program can
match the output of a serial program.

5.2.1 Container Sizing to Hardware
For a desired cache level and a given cache budget, the to-

tal number of partitions (i.e., height) has priority over pail
width. The height and the range of valid indices determine
the number of partitioning passes, e.g., we can partition us-
ing 9-bit partitioning at every pass with height 512, while
height 256 uses 8-bit partitioning that may require an addi-
tional pass to partition the full input.

Wider pails improve DRAM row hits on writes to tubs, as
these are otherwise random cache-line writes. Pails width,
however, is limited by cache capacity, including the need
to fit cache resident additional application data and code
during Collection.

Tubs are limited by memory capacity. Memory manage-
ment is a simple linked list of chunks. Tub layout is guided
by low-level optimization opportunities: the TLB entries
are a per-core resource, thus the threads on a core fit all
their active tubs within TLB reach; the DRAM banks are a
global resource, thus the active tubs are interleaved across
all threads on a socket to maximize DRAM open page hits.

5.2.2 Container Sizing for Applications
The maximum memory that can be allocated for tempo-

rary space during Distribution is the most important at-
tribute, set with milk_set_max_memory. If memory lim-
its are reached this will force compaction and/or BSP super-
step splitting. Applications targeting Milk-only execution
can eschew double-buffering and disallow superstep splitting
with milk_set_strict_bsp.

Tuning hints that limit the container sizes are expressed
from the perspective of the user program, i.e., L1, L2, L3
cache sizes and TLB entries that should be reserved for cache
resident data and code that are not managed by Milk. Con-
tainer implementation details do not need to be exposed to
users. When optimal cache-resident size cannot be inferred,
tuning hints (i.e., bytes touched per tag) control the num-
ber of partitions and fan-out. External library footprint can
be summarized with the milk_touch intrinsic, e.g., a call
to a function that touches 3 floats on average for the ex-
pected data distribution can be accompanied by a call to
milk_touch(3*sizeof(float)).

6. APPLICATIONS
To demonstrate the applicability and performance im-

provements provided by MILK, we use the five fundamental
graph applications from the GAP Benchmark Suite [10, 11]
building on the high performance OpenMP reference imple-
mentations.

In Figure 8 and Figure 9, we show the concise milk imple-
mentations of the inner loops of the kernels. These are also
valid serial programs without milk, but parallel variants
need additional compare-and-swap (CAS) logic as noted on
lines 16, 31, and 102, e.g., line 102 replaces ten lines of
a compare-and-swap loop in the reference implementation.
Thread-local data structures are accessed using the deliv-
ery thread’s ID, therefore the TID macro on lines 17, 32,
and 103 is simply omp_get_thread_num.

Betweenness Centrality (BC). BC is an important
graph algorithm that analyzes the relative importance of
nodes based on the number of shortest paths going through
each, e.g., to identify critical nodes in power grids, terrorist
communication networks, or HIV/AIDS propagation [15,28].
BC is also an integral building block for many state-of-the-
art community detection algorithms [35].

The forward- and backward- step kernels of BC are shown
in Figure 8b. The continuation block line 28 defers random
access to the neighbors of u, and packs the number of paths
to be added. An optional sum combiner can accumulate the
contributions along all incoming edges of v. For backward
propagation line 50, we use a similar floating point combiner
for each contribution.

306
Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 19:15:03 UTC from IEEE Xplore. Restrictions apply.

01 Graph<Node> g;
02 Queue<Node> queue; // global
03 Queue<Node>* lqueue; // per-thread
04

05 vector<Node> parent;
06 long outedges;
07 void BFS_TopDown(int depth) {
08 #pragma omp parallel for milk \
09 reduction(+ : outedges)
10 for (Node u : queue)
11 for (Node v : g.out_neigh(u))
12 #pragma milk pack(u : min) tag(v)
13 {
14 Node curr = parent[v];
15 if (curr < 0) {
16 parent[v] = u; // CAS
17 lqueue[TID].push_back(v);
18 outedges += -curr;
19 }
20 }
21 }

(a) Breadth-First Search with milk

22 vector<Node> paths, depths;
23 void Brandes_Forward(int depth) {
24 #pragma omp parallel for milk
25 for (Node u : queue) {
26 Node pathsU = paths[u];
27 for (Node v : g.out_neigh(u))
28 #pragma milk pack(pathsU : +) tag(v)
29 {
30 if (depths[v] == -1) {
31 depths[v] = depth; // CAS
32 lqueue[TID].push_back(v);
33 }
34 if (depths[v] == depth)
35 #pragma omp atomic if(!milk)
36 paths[v] += pathsU;
37 }
38 }
39 }
40 vector<Queue<Node>::iterator> wave;
41 vector<float> deltas;
42 void Brandes_Reverse(int d) {
43 #pragma omp parallel for milk
44 for (auto it = wave[d-1];
45 it < wave[d]; it++) {
46 Node v = *it;
47 float contribV = (1 + deltas[v]) /
48 paths[v];
49 for (Node u : g.in_neigh(v)) {
50 #pragma milk pack(contribV : +) tag(u)
51 if (depths[u] == d - 1)
52 #pragma omp atomic if(!milk)
53 deltas[u] += paths[u] * contribV;
54 }
55 }
56 }

(b) Betweenness Centrality with milk
Figure 8: Modified BFS-traversal kernels from GAPBS [10]

57 vector<Node> comp;
58 bool change;
59

60 void ShiloachVishkin_Step1() {
61 #pragma omp parallel for milk
62 for (Node u = 0; u < g.num_nodes(); u++) {
63 Node compU = comp[u];
64 for (Node v : g.out_neigh(u))
65 #pragma milk pack(compU : min) tag(v)
66 if ((compU < comp[v]) &&
67 (comp[v] == comp[comp[v]])) {
68 comp[comp[v]] = compU;
69 change = true;
70 }
71 }
72 }

(a) Connected Components with milk

73 vector<float> contrib, new_rank;
74

75 void PageRank_Push() {
76 #pragma omp parallel for milk
77 for (Node u=0; u < g.num_nodes(); u++) {
78 float contribU = contrib[u];
79 for (Node v : g.out_neigh(u))
80 #pragma milk pack(contribU : +) tag(v)
81 #pragma omp atomic if(!milk)
82 new_rank[v] += contribU;
83 }
84 }

(b) Page Rank with milk

85 WeightedGraph<Node> wg;
86 vector<Weight> dist;
87

88 Weight delta;
89 vector<Node> frontier;
90 vector<vector<Node>>* lbins; // per-thread
91

92 void DeltaStep_Relax(int bin) {
93 #pragma omp parallel for milk
94 for (Node u : frontier) {
95 if (dist[u] < delta * bin)
96 continue;
97 for (WEdge e : wg.out_neigh(u)) {
98 Weight newDist = dist[u] + e.weight;
99 Node v = e.dest;

100 #pragma milk pack(newDist : min) tag(v)
101 if (dist[v] > newDist) {
102 dist[v] = newDist; // CAS
103 lbins[TID][newDist/delta].push_back(v);
104 }
105 }
106 }

(c) Single Source Shortest Path with milk
Figure 9: Modified kernels from GAPBS [10]

307
Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 19:15:03 UTC from IEEE Xplore. Restrictions apply.

Breadth-First Search (BFS). BFS traversal is an im-
portant component of larger graph kernels, such as BC. BFS
is also used in path analytics on unweighted graphs. Fig-
ure 8a shows a milk version of TopDown, which tracks the
parent of each vertex. Unlike the traversal in BC above,
or the variant in Figure 5 which tracks only depths of each
vertex, this variant tracks parents for validation. Therefore,
source vertex id is packed along each visited edge, while a
min combiner ensures deterministic results. Adaptive opti-
mizations in state of the art implementations [9] also depend
on a sum reduction of the outdegrees of all vertices added
to the BFS frontier.

Connected Components (CC). CC is critical for un-
derstanding structural properties of a graph. It finds con-
nected components in a large graph by propagating the same
label to all vertices in the same connected component.

Our baseline implements Shiloach-Vishkin’s algorithm [46]
with optimizations [7]. The milk implementation of CC is
shown in Figure 9a. While the output of CC is deterministic,
traditional implementations have non-deterministic perfor-
mance, i.e., the number of iterations is dependent on race
resolution of line 68, and results in 20% run-to-run variation.
While the BSP model does not allow a synchronous step to
observe updates within the same step, Milk allows updates
during Delivery, e.g., comp[v] references can still observe
simultaneous updates by other neighbors. A min combiner
allows deterministic performance.

PageRank (PR). PageRank is an iterative algorithm for
determining influence within a graph, initially used to sort
web search results [37]. The PageRank-Delta variant [29]
more efficiently propagates updates from vertices that re-
ceive large deltas between iterations. The commonly bench-
marked in prior work, however, traditional algorithm propa-
gates till convergence contributions from all vertices in every
iteration as shown in Figure 9b.

Single-Source Shortest Paths (SSSP). For weighted
graphs, SSSP computes the distance from a start vertex to
all reachable vertices, e.g., travel distance or travel time on
a road network. ∆-stepping [31] is among the few parallel
SSSP variants that outperform a well-optimized serial Dijk-
stra algorithm. Figure 9c shows ∆-stepping with milk.

According to the benchmark specifications all non-pointer
data types are 32-bit, therefore all tag keys are 32-bit in-
tegers, and pack values are 32-bit integer or floating point
numbers. We do not modify the precision of floating point
numbers in pack types or combiner accumulators.

7. EVALUATION
We compare the performance of Milk on top of clang 3.7

to an OpenMP baseline, on the graph applications from
GAPBS [10, 11] v0.8 using the modified kernels shown in
Section 6 with milk extensions. We report end-to-end per-
formance gains while exploring the effects of varying num-
bers of vertices and edges, as well as sensitivity to available
temporary memory.

7.1 System Characterization
Table 4 summarizes the characteristics of the evaluated

platform which has high memory bandwidth per core, as well
as low latency. We measured achievable read and streaming
write bandwidths using all cores to be >90% of 6.5 GB/s
per-core DRAM theoretical bandwidth. Idle and loaded
latencies are measured using MLC [33]. We cross-checked

Cores Cache TLB

L2 L3 Shared Entries Reach
4 256 KB 8 MB 1024 2 GB

Core DRAM Bandwidth Latency

Frequency Peak Read Write Read
4.2 GHz 26 GB/s 92 % 98 % 58–130 ns

Table 4: System specifications [2] and measurements.

Sp
ee
du
p

0x

0.5x

1x

1.5x

2x

2.5x

3x

BC BFSd BFSp CC PR SSSP

2M 4M 8M 16M 32M

Figure 10: Overall speedup with Milk on random graphs
with 2—32 million vertices, d=16(uniform), 8 MB L3.

with perf that these measurements match the average L1
miss latency of 452 cycles on DRAM-bound references, e.g.,
PageRank on uniform graphs, which sustains Memory Level
Parallelism (MLP) of 8 outstanding L1 misses.

The Haswell microarchitecture has much improved TLB
reach compared to previous generations: each core can reach
up to a 2 GB working set with low TLB overhead. For larger
working sets, 2 MB page table entries are cache resident, and
a TLB miss does not access DRAM.

7.2 Speedup
We show end-to-end speedups, ranging from 1.4× on CC

and 2× for BFS, to 2.7× on PR, and analyze Milk’s perfor-
mance on synthesized random graphs with variable working
set size and temporal and spatial locality.

Figure 10 shows speedups when vertices range from V=221

to V=225, with an average degree of 16 in uniform degree dis-
tribution (i.e., Uniform〈21..25〉). We show two BFS variants
– BFSd from Graph500 [21] (in Figure 5), as well as BFSp
from GAPBS (Figure 8a). The two variants help compare
effects of payload size: the BFSd variant has no payload as it
only tracks the constant per superstep depth of each vertex,
while the BFSp variant uses more bandwidth as it needs to
pack the parent ID. On CC, Milk per-iteration speedup is
stable, however, CC is sensitive to vertex labeling and race
resolution. These effects result in non-deterministic itera-
tion count and per-iteration time, the former may vary by
up to 20% in the baseline. All other applications have under
2% noise between runs.

Figure 10 also shows the characteristic transition from L3
to DRAM-bound references with a corresponding increase
in Milk speedups. The randomly accessed data per vertex
varies for the different benchmarks, e.g., either 1 or 3 random

308
Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 19:15:03 UTC from IEEE Xplore. Restrictions apply.

Sp
ee
du
p

0x

1x

2x

3x

4x

5x

1 2 4 8 16 32 64

16M
32M

Average Degree

Figure 11: Milk Speedup on Histogram, counting degree of
16M or 32M vertices with 16M–2B edges.

references to 32-bit values in BC, vs. a single 32-bit value in
the other benchmarks. At V = 2M the total working set is
already larger than cache size for BC, while for the other ap-
plications requests are mostly served by the L3 cache. Once
the working set size more than doubles the cache capac-
ity, very little locality is captured by hardware caches and
the baseline random accesses run at DRAM latency, while
Milk’s access time per indirect reference remains constant.

In Figure 11, we compare performance while varying ver-
tex degrees to show sufficient spatial locality can be ex-
ploited even at a low average degree. We use the Count-
Degree (Histogram) kernel of Graph500, shown in Figure 6,
which is used to construct a graph data structure from a
list of edges in graph applications, and is critical in other
applications [25]. Figure 11 shows speedups on Histogram
in uniform distributions with average degrees from 1 to 64.
Low degree graphs have lower temporal and spatial locality,
and only 2.5× speedup. When the average degree is larger
than 16, however, all vertices have an incident edge, and spa-
tial locality reaches 100%, i.e., all words accessed per cache
line are useful. At degree 16 and higher, we gain 4.2×–4.4×.

Most real-world web and social graphs have much higher
degrees than 16, even within subgraphs of graphs partitioned
across distributed systems. Characterization of actual social
network graphs [6, 14] shows that Twitter’s ∼300 million
users have ∼200 followers on average, and Facebook’s ∼1.5
billion users have 290 friends on average.

Real-world graphs also exhibit better cache hit rates than
synthetic uniformly random graphs, due to power law struc-
ture, and to a lesser extent due to graph community struc-
ture. While current hardware caches are able to capture
some locality in power law graphs [11], the actual social
and web graphs are orders of magnitude larger than public
datasets. We tested on 8 MB L3 cache size in order to sim-
ulate the effects of larger graphs while preserving the graph
structure. On Twitter(V =62M, d=24) we observe 20–50%
L3 hits, and only 5–20% L2 hits.

We evaluated performance while varying the size of syn-
thetic power law graphs – R-MAT [13] used for Graph500
benchmarks as a proxy for real-world graph structure. On
RMAT25 (V =32M,d=16) CountDegree achieves 3.2× speedup.
Spatial locality is lower here since half of the generated ver-
tices have degree 0, while the hottest vertices are cache-
resident, e.g., the top 3% of vertices have 80% of the edges.
Although the majority of edges are incident on hot vertices,
processing hot vertex edges is faster than handling indirect

%
 o

f T
ot

al
 C

yc
le

s

0%

20%

40%

60%

80%

100%

L2 miss stalls L3 miss stalls

baseline milk

Figure 12: Stall cycle reduction with Milk on PR, V=32M ,
256 KB L2, 8 MB L3.

C
ac

he
 M

iss
 %

0%

20%

40%

60%

80%

100%

L2.all L3.all L3.load L3.RFO

baseline milk

Figure 13: Cache miss rate reduction with Milk on PR,
V=32M , 256 KB L2, 8 MB L3. L3 miss rates show all ref-
erences (including prefetches), non-prefetch loads, and non-
prefetch store Requests For Ownership (RFOs).

references that miss caches. Speedups on RMAT25 are com-
parable to speedups on smaller size uniform graphs; e.g., BC
goes from 1.9× speedup on Uniform25 to 1.3× on RMAT25,
and SSSP goes from 2.5× to 2.2×.

Filtering accesses to hot references is necessary for effec-
tive use of both hardware caches and Milk. In graphs, hot
references to high-degree vertices are easy to identify as de-
scribed in Section 4.1.1.

7.3 Performance Analysis
Cache miss rates and cycles stalled metrics based on hard-

ware performance counters indicate that Milk effectively
converts random DRAM references into cache hits.

Figure 12 shows that effective blocking at L2-cache sized
partitions dramatically reduces cycles stalled on L2 and L3
misses. While a Haswell core can execute 4 µops per cycle
at ideal ILP, these measurements show cycles with complete
execution stalls while there is a pending cache miss, i.e.,
waiting on L3 or DRAM.

Figure 13 further breaks down L3 misses by access type
– indirect memory references appear as demand loads and
stores, while most sequential accesses are prefetched. With
Milk, demand accesses are no longer a major contributor
to cache misses, and most misses are on sequential requests.

7.4 Space Overhead
Milk’s maximum space overhead is proportional to the

number of references per superstep, but even within a frac-
tion of the maximum space, applications with ample spatial

309
Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 19:15:03 UTC from IEEE Xplore. Restrictions apply.

Kernel Overhead pack Tag + Pack
% Resident Type Bytes

BC 104 % int/float 8
BFS Depth 58 % — 4
BFS Parent 113 % int 8
CC 176 % int 8
PR 184 % float 8
SSSP 4 % int 8

Table 5: Maximum memory overhead of Milk. Measured
as maximum resident size over baseline for V=32M . tag
clauses, and where needed pack, use 32-bit variables.

locality attain good performance. For example, at only 12%
memory overhead PageRank maintains > 2.7× speedup. For
graph applications, the number of indirect references is a
function of the number of active edges accessed during each
iteration. Most algorithms make a different number of in-
direct references during each iteration: few edges are pro-
cessed in BC/BFS, very few in SSSP, and only CC and PR
always touch all edges. If less memory than the maximum
required is available, a superstep will have to be forcefully
divided, and may not be able to capture all available locality.
Superstep splitting has minimal performance impact when
temporal locality is high, e.g., as shown in Figure 11 where
splitting is required on graphs with degree 64.

Table 5 shows the maximum additional memory required
on the evaluated kernels without memory limits, compres-
sion, filters, or combiners. Baseline memory consumption
varies based on the graph representation and other algo-
rithm overheads, e.g., unweighted graph plus 1 bit per edge
for BC vs. a weighted graph plus additional 4 bytes per
edge for SSSP. Milk memory consumption is primarily a
function of the number of indirect references per superstep,
multiplied by the size of the pack and tag variables. For
example, BC forward traversal carries an int, and backward
traversal – a float. Small additional overhead is added by
bookkeeping and internal fragmentation in Milk containers.

8. RELATED WORK
Milk’s distribution phases are most similar to the heavily

optimized table join operations in relational databases. The
two best join methods are to sort both database relations,
or to build a hash table with tuples of one relation and then
probe the hash table for each tuple of the other relation.
Increasing data sizes and perennial hardware changes have
fueled continuous innovation: Shatdal et al. [45] demon-
strated hash join with cache partitioning, further improved
to consider TLB impact [30], and to optimize for SIMD,
NUMA, non-temporal write optimizations, software buffer-
ing, etc [5,8,26,49,51]. Our runtime library data structures
and compiler generated code are designed for modern mi-
croarchitectures (e.g., on Haswell TLB overhead is less crit-
ical), and focus on avoiding increasingly important DRAM
contention and turnaround delays. Milk’s compiler support
for indirect expressions is more general than database join,
and we are the first to use similar techniques to accelerate
graph applications.

Graph processing is an important application that we have
shown significantly benefits from Milk optimizations. Graph
applications expose irregular access patterns that render tra-
ditional compiler optimizations ineffective [39]. Creating ef-
ficient shared memory graph frameworks [36, 47] has re-

ceived considerable research attention, but overheads and
abstraction mismatch lead to significant slowdown compared
to hand-optimized code [43]. Milk allows optimized by hand
iterators and algorithm-specific data structures to use famil-
iar and concise indirect array accesses.

The inspector/executor [40] family of two-phase optimiza-
tions inspect indirect references before an alternative exe-
cution. The original optimization [40] rearranged the base
array A in A[ind[i]] not the index, as it targeted bet-
ter scheduling for message passing machines. Follow-up re-
search explored two main directions: either very cheap per-
step index array analysis (like determining bounding box
(min/max) for MPI and NUMA boundary exchanges [48]),
or very expensive data reorganizations to be applied as pre-
processing steps. Coalescing references targeting different
cores to reduce MPI messaging overhead is explored for
the HPCC RandomAccess benchmark [20]. The workload
is similar to Histogram of degree 4 (Figure 11) but disallows
BSP semantics. Since the benchmark allows at most tens
of requests per core to be reordered, short coalescing buffers
are needed, yet cache resident buffers can discover very lit-
tle locality in DRAM-sized working sets. In shared-memory
settings, sharding memory and coalescing requests to own-
ing cores eliminate atomics at the cost of message-passing
overhead. Inexpensive methods, however, do not improve
the performance of DRAM indirect references.

Expensive locality reorganization methods have not been
able to amortize costs within a single iteration, and they are
limited to applications that repeatedly process the same ref-
erences, e.g., rearranging the index array [17,32] and remap-
ping all arrays in a loop, or graph partitioning [22, 23] or
cheaper reorderings with lower benefits (e.g., space filling
curves). Recent inspector/executor work [18] traded lower
cache hit rate for improvement of DRAM row buffer hits
for 14% net gains. Milk achieves up to 4× gains on static
reference loops, and pays off in one iteration to also allow
dynamic references.

9. CONCLUSION
We introduced the milk C/C++ language extension in

order to capture programmer’s intention when making in-
direct memory references, while the compiler and runtime
system choose the most efficient access order. As demon-
strated, the annotations can easily be added across a suite
of popular graph applications and when compiled with Milk
enable performance gains of up to 3×.

We believe the right level of abstraction to enable high-
performance applications for graph analytics, machine learn-
ing, or in-memory databases is not necessarily a domain spe-
cific framework, nor an optimized collection of algorithms —
i.e., hash vs. sort join, nor a data structure — i.e., bit vector
vs. hash table. Instead, best performance and flexibility are
enabled by the most broadly relied upon low-level primitive
— the indirect memory reference — and just adding milk.

Acknowledgments
We thank our anonymous reviewers and our shepherd Bronis
de Supinski for their helpful probing questions and their
specific suggestions for improving our presentation. This
research is based upon work supported by NSF grant CCF-
1533753, and DOE awards DE-SC008923 and DE-SC014204.

310
Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 19:15:03 UTC from IEEE Xplore. Restrictions apply.

10. REFERENCES
[1] Intel 64 and IA-32 Architectures Optimization

Reference Manual. http://www.intel.com/content/
www/us/en/architecture-and-technology/
64-ia-32-architectures-optimization-manual.html.

[2] Intel Core i7-4790K Processor (8M Cache, up to
4.40 GHz). http://ark.intel.com/products/80807/
Intel-Core-i7-4790K-Processor-8M-Cache-up-to-4
40-GHz.

[3] OpenMP Application Program Interface 4.0.
http://openmp.org/wp/openmp-specifications/, 2013.

[4] M. Abadi, A. Agarwal, P. Barham, E. Brevdo,
Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,
M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and
X. Zheng. TensorFlow: Large-scale machine learning
on heterogeneous systems, 2015. Available at
tensorflow.org.

[5] M.-C. Albutiu, A. Kemper, and T. Neumann.
Massively parallel sort-merge joins in main memory
multi-core database systems. Proc. VLDB Endow.,
5(10):1064–1075, June 2012.

[6] L. Backstrom, P. Boldi, M. Rosa, J. Ugander, and
S. Vigna. Four degrees of separation. In Proceedings of
the 4th Annual ACM Web Science Conference, WebSci
’12, pages 33–42, New York, NY, USA, 2012. ACM.

[7] D. A. Bader, G. Cong, and J. Feo. On the
architectural requirements for efficient execution of
graph algorithms. In Parallel Processing, 2005. ICPP
2005. International Conference on, pages 547–556,
June 2005.

[8] C. Balkesen, J. Teubner, G. Alonso, and M. T. Özsu.
Main-memory hash joins on modern processor
architectures. IEEE Trans. Knowl. Data Eng.,
27(7):1754–1766, 2015.

[9] S. Beamer, K. Asanović, and D. Patterson.
Direction-optimizing breadth-first search. In
Proceedings of the International Conference on High
Performance Computing, Networking, Storage and
Analysis, SC ’12, pages 12:1–12:10, Los Alamitos, CA,
USA, 2012. IEEE Computer Society Press.

[10] S. Beamer, K. Asanović, and D. A. Patterson. The
GAP benchmark suite. CoRR, abs/1508.03619, 2015.

[11] S. Beamer, K. Asanović, and D. A. Patterson. Locality
exists in graph processing: Workload characterization
on an Ivy Bridge server. In 2015 IEEE International
Symposium on Workload Characterization, IISWC
2015, Atlanta, GA, USA, October 4-6, 2015, pages
56–65, 2015.

[12] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and
J. Shun. Internally deterministic parallel algorithms
can be fast. In Proceedings of the 17th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPOPP 2012, New Orleans,
LA, USA, February 25-29, 2012, pages 181–192, 2012.

[13] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT:
A recursive model for graph mining. In Proceedings of

the Fourth SIAM International Conference on Data
Mining, Lake Buena Vista, Florida, USA, April 22-24,
2004, pages 442–446, 2004.

[14] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and
S. Muthukrishnan. One trillion edges: Graph
processing at Facebook-scale. Proceedings of the
VLDB Endowment, 8(12):1804–1815, 2015.

[15] T. Coffman, S. Greenblatt, and S. Marcus.
Graph-based technologies for intelligence analysis.
Commun. ACM, 47(3):45–47, Mar. 2004.

[16] J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. In Proceedings of the
6th Conference on Symposium on Opearting Systems
Design & Implementation - Volume 6, OSDI’04, pages
10–10, Berkeley, CA, USA, 2004. USENIX
Association.

[17] C. Ding and K. Kennedy. Improving cache
performance in dynamic applications through data
and computation reorganization at run time. In ACM
SIGPLAN Notices, volume 34, pages 229–241. ACM,
1999.

[18] W. Ding, M. Kandemir, D. Guttman, A. Jog, C. R.
Das, and P. Yedlapalli. Trading cache hit rate for
memory performance. In Proceedings of the 23rd
International Conference on Parallel Architectures and
Compilation, PACT ’14, pages 357–368, New York,
NY, USA, 2014. ACM.

[19] M. Frigo, C. E. Leiserson, and K. H. Randall. The
implementation of the Cilk-5 multithreaded language.
In Proceedings of the ACM SIGPLAN 1998
Conference on Programming Language Design and
Implementation, PLDI ’98, pages 212–223, New York,
NY, USA, 1998. ACM.

[20] R. Garg and Y. Sabharwal. Optimizing the HPCC
RandomAccess benchmark on Blue Gene/L
supercomputer. In Proceedings of the Joint
International Conference on Measurement and
Modeling of Computer Systems, SIGMETRICS
’06/Performance ’06, pages 369–370, New York, NY,
USA, 2006. ACM.

[21] Graph500. Graph 500 benchmark.
http://www.graph500.org/specifications.

[22] H. Han and C.-W. Tseng. Improving compiler and
run-time support for irregular reductions using local
writes. In Languages and Compilers for Parallel
Computing, pages 181–196. Springer, 1998.

[23] H. Han and C.-W. Tseng. Exploiting locality for
irregular scientific codes. IEEE Transactions on
Parallel and Distributed Systems, 17(7):606–618, July
2006.

[24] JEDEC. DDR3 SDRAM Standard. http://www.jedec.
org/standards-documents/docs/jesd-79-3d.

[25] W. Jung, J. Park, and J. Lee. Versatile and scalable
parallel histogram construction. In Proceedings of the
23rd International Conference on Parallel
Architectures and Compilation, PACT ’14, pages
127–138, New York, NY, USA, 2014. ACM.

[26] C. Kim, T. Kaldewey, V. W. Lee, E. Sedlar, A. D.
Nguyen, N. Satish, J. Chhugani, A. Di Blas, and
P. Dubey. Sort vs. hash revisited: Fast join
implementation on modern multi-core CPUs. Proc.
VLDB Endow., 2(2):1378–1389, Aug. 2009.

311
Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 19:15:03 UTC from IEEE Xplore. Restrictions apply.

[27] C. Lattner and V. Adve. LLVM: A compilation
framework for lifelong program analysis and
transformation. CGO ’04, San Jose, CA, USA, Mar
2004.

[28] F. Liljeros, C. R. Edling, L. A. N. Amaral, H. E.

Stanley, and Y. Åberg. The web of human sexual
contacts. Nature, 411(6840):907–908, 2001.

[29] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin,
A. Kyrola, and J. M. Hellerstein. Distributed
GraphLab: A framework for machine learning and
data mining in the cloud. Proc. VLDB Endow.,
5(8):716–727, Apr. 2012.

[30] S. Manegold, P. Boncz, and M. Kersten. Optimizing
main-memory join on modern hardware. IEEE Trans.
on Knowl. and Data Eng., 14(4):709–730, July 2002.

[31] U. Meyer and P. Sanders. ∆-stepping: A parallelizable
shortest path algorithm. J. Algorithms, 49(1):114–152,
Oct. 2003.

[32] N. Mitchell, L. Carter, and J. Ferrante. Localizing
non-affine array references. In Parallel Architectures
and Compilation Techniques, 1999. Proceedings. 1999
International Conference on, pages 192–202. IEEE,
1999.

[33] MLC. Intel Memory Latency Checker v3.0.
https://software.intel.com/en-us/articles/
intelr-memory-latency-checker.

[34] J. Nelson, B. Holt, B. Myers, P. Briggs, L. Ceze,
S. Kahan, and M. Oskin. Latency-tolerant software
distributed shared memory. In Proceedings of the 2015
USENIX Conference on Usenix Annual Technical
Conference, USENIX ATC ’15, pages 291–305,
Berkeley, CA, USA, 2015. USENIX Association.

[35] M. E. J. Newman. Detecting community structure in
networks. The European Physical Journal B -
Condensed Matter and Complex Systems,
38(2):321–330, 2004.

[36] D. Nguyen, A. Lenharth, and K. Pingali. A
lightweight infrastructure for graph analytics. In
Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, SOSP ’13, pages
456–471, New York, NY, USA, 2013. ACM.

[37] L. Page, S. Brin, R. Motwani, and T. Winograd. The
PageRank citation ranking: Bringing order to the
web. Technical Report 1999-66, Stanford InfoLab,
November 1999.

[38] I. Papazian, S. Kottapalli, J. Baxter, J. Chamberlain,
G. Vedaraman, and B. Morris. Ivy Bridge server: A
converged design. Micro, IEEE, 35(2):16–25, Mar
2015.

[39] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher,
M. A. Hassaan, R. Kaleem, T.-H. Lee, A. Lenharth,
R. Manevich, M. Méndez-Lojo, D. Prountzos, and
X. Sui. The tao of parallelism in algorithms. In
Proceedings of the 32nd ACM SIGPLAN Conference
on Programming Language Design and
Implementation, PLDI ’11, pages 12–25, New York,
NY, USA, 2011. ACM.

[40] J. Saltz, K. Crowley, R. Michandaney, and
H. Berryman. Run-time scheduling and execution of
loops on message passing machines. Journal of Parallel
and Distributed Computing, 8(4):303–312, 1990.

[41] Samsung. DDR3L SDRAM 240pin Registered DIMM
M393B2G70BH0 datasheet:. http://www.samsung.
com/global/business/semiconductor/file/product/ds
ddr3 4gb b-die based 1 35v rdimm rev16-5.pdf, 2012.

[42] Samsung. DDR4 SDRAM 288pin Registered DIMM
M393A2G40DB1 datasheet. http://www.samsung.
com/semiconductor/global/file/product/DS 8GB
DDR4 4Gb D die RegisteredDIMM Rev15.pdf, 2015.

[43] N. Satish, N. Sundaram, M. M. A. Patwary, J. Seo,
J. Park, M. A. Hassaan, S. Sengupta, Z. Yin, and
P. Dubey. Navigating the maze of graph analytics
frameworks using massive graph datasets. In
Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’14,
pages 979–990, New York, NY, USA, 2014. ACM.

[44] H. Schweizer, M. Besta, and T. Hoefler. Evaluating
the cost of atomic operations on modern architectures.
San Francisco, CA, 2015. Parallel Architectures and
Compilation Techniques (PACT’15).

[45] A. Shatdal, C. Kant, and J. F. Naughton. Cache
conscious algorithms for relational query processing.
In Proceedings of the 20th International Conference on
Very Large Data Bases, VLDB ’94, pages 510–521,
San Francisco, CA, USA, 1994. Morgan Kaufmann
Publishers Inc.

[46] Y. Shiloach and U. Vishkin. An O(log n) parallel
connectivity algorithm. Journal of Algorithms, 3(1),
1982.

[47] J. Shun and G. E. Blelloch. Ligra: A lightweight graph
processing framework for shared memory. In
Proceedings of the 18th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming,
PPoPP ’13, pages 135–146, New York, NY, USA,
2013. ACM.

[48] J. Su and K. Yelick. Automatic support for irregular
computations in a high-level language. In Proceedings
of the 19th IEEE International Parallel and
Distributed Processing Symposium (IPDPS’05) -
Papers - Volume 01, IPDPS ’05, Washington, DC,
USA, 2005. IEEE Computer Society.

[49] J. Teubner, G. Alonso, C. Balkesen, and M. T. Ozsu.
Main-memory hash joins on multi-core CPUs: Tuning
to the underlying hardware. In Proceedings of the 2013
IEEE International Conference on Data Engineering,
ICDE ’13, pages 362–373, Washington, DC, USA,
2013. IEEE Computer Society.

[50] L. G. Valiant. A bridging model for parallel
computation. Commun. ACM, 33(8):103–111, Aug.
1990.

[51] J. Wassenberg and P. Sanders. Engineering a
multi-core radix sort. In Proceedings of the 17th
International Conference on Parallel Processing -
Volume Part II, Euro-Par’11, pages 160–169, Berlin,
Heidelberg, 2011. Springer-Verlag.

312
Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 19:15:03 UTC from IEEE Xplore. Restrictions apply.

