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Abstract—Visual representations are ubiquitous in STEM disciplines. Yet, students’ difficulties in learning with visual representations

are well documented. Therefore, to succeed in STEM, students need representational competencies—the ability to use visual

representations for problem solving and learning. Educational technologies that support students’ acquisition of representational

competencies can significantly enhance their success in STEM disciplines. Current design frameworks for educational technologies do

not offer sufficient guidance to develop supports for representational competencies. This paper presents a new design framework that

describes an iterative, step-by-step approach for the design of educational technologies that support representational competencies

(SUREC) in a way that aligns with the demands specific to the target discipline. The paper illustrates how this framework was used to

inform the design of an intelligent tutoring system for undergraduate chemistry. An evaluation study suggests that the SUREC

framework yielded an effective educational technology that enhances students’ learning of content knowledge.

Index Terms—Educational technologies, multiple representations, representational competencies, discipline-based research

Ç

1 INTRODUCTION

LEARNING of content knowledge in science, technology,
engineering, and mathematics (STEM) disciplines

depends on students’ ability to think in terms of visual rep-
resentations [1], [2]. For example, astronomers visualize the
solar system, engineers visualize machines, and chemists
visualize atoms and electrons. Content knowledge in the
STEM disciplines is often inherently visuo-spatial [1], [3], [4].
To make new content accessible to students, instructional
materials in STEM tend to rely on visual representations,
such as the ones shown in Fig. 1 for atoms in chemistry. Usu-
ally, a single visual representation does not suffice to depict
the complexity of the content [5], [6], [7], [8]. Hence, instruc-
tion typically uses multiple visual representations, where dif-
ferent representations emphasize complementary aspects of
the to-be-learned content. Indeed, the educational psychology
literature provides evidence thatmultiple representations can
lead to higher learning outcomes of content knowledge than a
single representation [7], [9].

Yet, prior research documents that learning with multiple
visual representations is challenging because students may
fail to understand the visual representations or may fail to
integrate information from multiple visual representations
[10], [11], [12]. This phenomenon is known as the representa-
tion dilemma [13]: On the one hand, students learn new con-
tent from visual representations theymay not yet understand.
On the other hand, students have to learn about visual repre-
sentations that show content they do not yet understand. To
resolve the representation dilemma, research within the
Learning Sciences field has focused on representational

competencies: capabilities that enable students to learn with
multiple visual representations, including the ability to select
and produce appropriate visual representations to solve
tasks, to reason about concepts, and to use visual representa-
tions to discuss ideaswith others [1], [2], [14], [33].

Failure to acquire critical representational competencies can
severely impede students’ learning of content knowledge
[8], [15], [16]. Unfortunately, many instructors have an edu-
cational blind spot about representational competencies [14]:
students’ lack of representational competencies often goes
unnoticed because instructors tend to assume that students
can interpret and navigate the multiplicity of visual repre-
sentations [6], [8], [14], [16].

To address these issues, prior research has investigated
how best to help students acquire representational compe-
tencies. The main conjecture of this research is that enhanc-
ing students’ representational competencies enhances their
learning of content knowledge [2], [7]. Indeed, a consider-
able number of empirical studies in the STEM disciplines
show that instructional support for representational compe-
tencies can improve students’ learning of content knowl-
edge e.g., [9], [17], [18].

Educational technologies can be particularly effective in
supporting representational competencies. First, they offer
effective ways to augment visual representations through
means such as color highlighting [19], dynamic linking [20],
[21], and animations [22]. Second, educational technologies
can provide opportunities for problem solving with interac-
tive visual representations, which has been shown to be
effective in STEM disciplines [23], [24]. Third, they can pro-
vide adaptive feedback on these interactions, which can be
effective in enhancing representational competencies and
content knowledge [25], [26]. Finally, educational technolo-
gies can model and trace students’ representational compe-
tencies and adapt instruction accordingly, for instance by
selecting problems or visual representations of appropriate
difficulty [27], [28].
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Despite these advantages, current design frameworks
provide little guidance for the development of educational
technologies that support representational competencies.
On the one hand, a number of design frameworks focus on
the development of educational technologies e.g., [29], [30],
[31], [32]. However, they do not take representational com-
petencies into account. As detailed in the following section,
the design of support for representational competencies
requires a different design methodology than described
in existing design frameworks. On the other hand, a few
design frameworks focus on support for representational
competencies e.g., [7], [33]. However, they tend to describe
broad principles for learning with visual representations
but fail to provide concrete guidance for iterative design
processes that align educational technologies with the spe-
cific demands of the target discipline.

Consequently, instructional designers may fail to incorpo-
rate support for representational competencies altogether.
Even if they do incorporate support for representational com-
petencies, they have to rely on ad-hoc approaches to design
such support. Yet, research on the educational blind spot e.g.,
[15], [16] suggests that instructional designers may overesti-
mate students’ representational competencies. Therefore, ad-
hoc approaches may yield inadequate or even missing sup-
port for students’ representational competencies, which may
jeopardize students’ learning of content knowledge [10], [11].

To address this issue, I describe a new framework that
provides principled guidance for the design of educational
technologies that provide support for representational com-
petencies (SUREC). The following section describes existing
frameworks that the SUREC framework builds on. Next,
I describe how the SUREC framework expands prior frame-
works. To this end, I detail design approaches that are spe-
cific to representational competencies and illustrate SUREC
framework with an educational technology for chemistry,
Chem Tutor. I conclude with a discussion of implications
for the design of educational technologies with multiple
visual representations.

2 EXISTING DESIGN FRAMEWORKS

2.1 Educational Technologies

In general, the goal of educational technology design frame-
works is twofold. One goal is to align educational technolo-
gies with the educational goals of the target discipline (e.g.,
learning of content knowledge, achievement on standardized
tests). A second goal is to align educational technologies with
the given educational context (e.g., classroom, homework). To
achieve this alignment, design frameworks typically use itera-
tive, step-by-step approaches. A careful analysis of the educa-
tional goals and the context is typically followed by a
development phase, which is followed by another analysis
phase to test the technology (or a prototype) in the field,which

is again followed by a development phase, and so forth. In
essence, educational technology design frameworks provide
detailed guidance for instructional designers to engage in the
steps involved in this iterative design process.

Many frameworks focus on aligning educational technolo-
gies with discipline-specific educational goals [19], [29], [30],
[31], [32], [34], [35], [36], [37]. These frameworks tend to use a
learner-centered approach: they provide guidance for analyz-
ing cognitive requirements of the learning tasks while build-
ing on students’ prior knowledge. For example, the Analysis
Design Development Implementation Evaluation (ADDIE)
model [29], [30] describes five iterative steps in which instruc-
tional designers analyze an educational issue, design and
develop an intervention,which is then implemented and eval-
uated with formative and summative methods. Another
example is the Four-Component Instructional Design (4C/ID)
model [35], which describes which instructional methods are
best suited for knowledge of different levels of complexity,
and how such instructionalmethods should be sequenced.

Several design frameworks put an additional emphasis on
the educational context. These user-centered design app-
roaches focus on enhancing the usability of the technology
[31], [32], [38], [39], [40], [41], [42]. They provide guidance for
the design of educational technologies that align with the
given classroom practices. For example, the ASSURE model
[31] includes students and teachers into the design process
that involves analyzing educational standards and classroom
culture, creating lesson plan state these goals, selecting soft-
ware that meets these goals, using the software while requiring
student participation, and evaluating attainment of goals.
Another example is described by [32], who present an
approach that helps developers navigate design conflicts that
result from the fact that educational technologies have multi-
ple stakeholders with sometimes conflicting needs, such as
teachers’ needs to organize a classroom and students’ needs
for entertainment.

An advantage of these frameworks is that they are
widely applicable: they are often agnostic to the discipline
(e.g., math, chemistry) and to the knowledge type (e.g., pro-
cedural, conceptual knowledge). This broad applicability is
made possible by learner-centered and user-centered meth-
ods that discover potential obstacles to students’ learning in
a bottom-up (i.e., data-driven) fashion.

However, these bottom-up approaches are suboptimal
for discovering challenges that result from lack of represen-
tational competencies. As mentioned, the literature on the
educational blind spot documents that most people (includ-
ing instructors, instructional designers, and students) are
not aware that representational competencies pose a major
obstacle to students’ learning [13], [14]. Therefore, bottom-
up approaches may fail to reveal that representational com-
petencies pose an issue for students’ learning, and may fail
to detect students’ difficulties in acquiring representational
competencies. Hence, a limitation of current educational
technology design frameworks is that their methods are
suboptimal for educational technologies that support repre-
sentational competencies.

2.2 Support for Representational Competencies

The goal of design frameworks for the support of represen-
tational competencies is to create instructional interventions

Fig. 1. Multiple visual representations of atoms: Lewis structure, Bohr
model, energy diagram, and orbital diagram for oxygen.
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that help students acquire representational competencies.
Ainsworth’s Design, Functions, and Tasks (DeFT) frame-
work [7] describes a number of competencies that students
need to acquire to learn with visual representations. DeFT
describes principles for the design of instructional support
that helps students acquire these competencies. For exam-
ple, students need to make connections among multiple
visual representations. To this end, instruction should help
students explain connections between visual features that
show corresponding concepts (e.g., the dots in the Lewis
structure and the green dots in the Bohr model both show
valence electrons).

diSessa’s metarepresentation competence (MRC) frame-
work [33] describes discipline-specific considerations for
instruction that supports representational competencies. It
emphasizes the importance of meta-cognitive knowledge
about representations (e.g., which visual representation is
appropriate for which type of concept or task). For example,
the MRC framework suggests that in addition to helping stu-
dents understand the strengths and limitations of conven-
tional representations by asking students to critique
representations, students should also modify existing repre-
sentations and invent their own.

A major advantage of these frameworks is that they are
applicable to a broad range of disciplines; both the DeFT
and the MRC framework describe general representational
competencies that play a role in any STEM discipline. How-
ever, the broad applicability of these frameworks also yields
a major limitation. Even though many representational
competencies are important across disciplines [43], they are
used in discipline-specific ways because different disci-
plines use different types of visual representations for dif-
ferent purposes [9], [44]. For example, an important cross-
cutting representational competency involves understand-
ing that visual representations are used in science to model
real-world phenomena [43], but that they are limited in their
capability to capture the complexity of these phenomena.
Yet, the visual representations and the real-world phenom-
ena are specific to the given discipline. Hence, instructional
support for representational competencies needs to be tai-
lored to the demands of the target discipline. Existing
frameworks for representational competencies do not pro-
vide guidance for iterative, step-by-step design processes
that guide development of supports for representational
competencies that tailor to the target discipline.

3 DESIGN FRAMEWORK FOR SUPPORT OF

REPRESENTATIONAL COMPETENCIES (SUREC)

This brief review of existing design frameworks shows that
there is a gap between (1) frameworks that provide step-by-
step guidance for iterative design processes to align educa-
tional technologies with discipline-specific demands without
focusing on representational competencies, and (2) frame-
works that focus on representational competencies without
providing guidance for step-by-step design processes to tai-
lor to discipline-specific demands. The goal of this paper is to
close this gap by providing a new design framework for edu-
cational technologies that provide support for representa-
tional competencies. The SUREC framework provides step-
by-step guidance for an iterative design process that tailors

support for representational competencies to discipline-
specific demands. It builds on the existing design frame-
works just reviewed, but differs from them in taking putting
a stronger emphasis on top-down (i.e., theory-driven)
approaches to identify obstacles related to representational
competencies.

To illustrate the SUREC framework, I use the develop-
ment of Chem Tutor as an example. I chose this example
from chemistry for two reasons. First, chemistry is a suitable
discipline to illustrate the framework because representa-
tional competencies play a major role in chemistry learning.
Chemistry instruction uses visual representation to illustrate
phenomena that cannot be observed with the regular eye
[45], [46]. Because different visual representations provide
complementary insights [4], [47], chemistry instruction typi-
cally uses multiple visual representations. For example,
when learning about atomic structure, students typically
encounter the representations in Fig. 1. To integrate the infor-
mation presented by these representations to learn about
atomic structure, students need to understand how each of
them depicts concepts and to make connections among them
[4], [48]. There is much evidence that students’ difficulties in
learning chemistry concepts are related to their difficulties in
acquiring these representational competencies [24], [49], [50].

A second reason why chemistry is a suitable discipline to
illustrate the SUREC framework is that the role of represen-
tational competencies for learning of content knowledge in
chemistry is similar to other STEM disciplines. As in most
STEM disciplines, representational competencies are impor-
tant because multiple visual representations provide com-
plementary views on important concepts [51], [52]. If
students rely on only one visual representation, they may
miss important conceptual aspects, which can severely
interfere with their learning [47]. Thus, the need for support
for representational competencies in chemistry stems from
the fact that different representations provide complemen-
tary information [4], [53]—just like it does in other STEM
disciplines [54], [55], [56]. Therefore, the illustration of the
SUREC framework described is likely applicable to other
STEM disciplines.

In the following, I describe the SUREC framework in
“steps”. However, I note that these steps are iterative and
non-linear. For example, the insights gained through
research in one step may yield new questions about the pre-
vious step. As a result, it may be necessary to engage in sev-
eral iterations across these steps. I will discuss:

Step 1: Identify which visual representations are typically
used in the target discipline to depict relevant con-
cepts, using top-down approaches that involve the
review of discipline-based research and common
educational materials, and/or (semi-) structured
interviews or surveys with educators and students.

Step 2: Identify candidate representational competencies,
using top-down approaches that involve the review
of literatures on theories of learning and discipline-
based research.

Step 3: Test whether these representational competencies are
indeed distinguishable competencies, and whether
they relate to the target content knowledge, combining
top-down and bottom-up approaches.
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Step 4: Investigate which problem-solving behaviors are
associated with these representational competencies
(e.g., students’ explanations of commonly used visual
representations, student-generated representations),
combining top-down and bottom-up approaches.

Step 5: Use iterative design and pilot-testing methods to
develop the educational technology, combining top-
down and bottom-up approaches.

Step 6: Evaluate the effectiveness of components of the edu-
cational technology for target learning outcomes,
using controlled experiments.

Step 7: Evaluate the effectiveness of the educational technol-
ogy in the context for which it was designed, using
field experiments.

In the following, I detail each step while illustrating how
they were carried out in the design of Chem Tutor.

3.1 Step 1: Identify Visual Representations
and Relevant Concepts

A first step in developing an educational technology for rep-
resentational competencies is to investigate which visual
representations are used in educational and professional
contexts within the target discipline. Because these repre-
sentations are generally used to illustrate abstract concepts,
this investigation will document relevant concepts that the
educational technology should target.

Given the educational blind spot on representational
competencies [13], [14], I recommend to rely on top-down
approaches that are guided by educational practice guides
that describe cross-cutting representational competencies
[14], [43] and discipline-specific education literature on
representational competencies. For many STEM disciplines,
research documents which visual representations best com-
municate which concepts and which representations may
help students overcome common misconceptions. The liter-
ature review will yield a list of representations that are
used for particular concepts. It will describe which repre-
sentations are used throughout the curriculum, which rep-
resentations are used for particular concepts, and which
representations are most important.

Following the literature review, I suggest reviewing edu-
cational materials commonly used in the target context (e.g.,
textbooks). This review can verify and augment the list of
visual representations and concepts. For example, it is pos-
sible that some materials use additional visual representa-
tions to illustrate particular concepts or that some visual
representations are not used at all.

Further, I recommend conducting interviews or surveys
with educators and students. Structured or semi-structured
interviews can be used to identify educator preferences for
particular visual representations. Educators may skip par-
ticular visual representations used in textbooks, and they
may provide additional visual representations not covered
in the textbook. Similarly, students may prefer particular
visual representations, or they may search other resources
for additional visual representations. Information from
interviews and surveys should be used to alter the list of
visual representations and concepts. The outcome of Step 1
is an overview of which visual representations are used for
which concepts.

3.1.1 Representations and Concepts in Chemistry

To design Chem Tutor, I reviewed chemistry education
research as well as high school and undergraduate curricula.
Although Chem Tutor targets undergraduates, I included
high school curricula because they offer insights into
students’ prior instructional experiences. Knowing about
representations students have encountered in prior instruc-
tion is important because these representations can some-
times introduce misconceptions. I then used semi-structured
interviews with college educators to address questions that
emerged from these reviews.

My review suggests that the visual representations
depicted in Fig. 1 are commonly used in instruction on atomic
structure. The Lewis structure (Fig. 1, left) is the most com-
monly used visual representation [57], [58]. Lewis structures
are ubiquitous in high school and undergraduate curricula
[59], [60], [61], [62], [63], [64], [65], [66]. Although Lewis struc-
tures are highly abstract, they contain visuo-spatial informa-
tion that can be used to make predictions about reactive
behaviors and substance properties [57]. Bohr models (Fig. 1,
center-left) are used extensively at the high school level, but
not at the undergraduate level [47], [58], [67]. Although they
are intuitive, they have been criticized for being simplistic
and misleading [47], [67] because they do not accurately
reflect the probabilistic nature of electron arrangement.

Two visual representations are commonly used to
address misconceptions about the probabilistic nature of
electrons being located in orbitals. First, energy diagrams
(Fig. 1, center-right) are commonly used at both the high
school and undergraduate levels. They depict electrons
with an up-spin or down-spin as arrows, and they use lines
to show orbitals [67]. Energy diagrams are often used to
illustrate hybridization [67]. Second, orbital diagrams (Fig. 1,
right) are used at the undergraduate level, but only infre-
quently at the high school level. They show electron density
functions rather than the electrons themselves [68], [69].
Such statistical models yield a density function that essen-
tially describes the shape of an electron cloud that corre-
sponds to the orbital of an atom.

This review yielded specific questions about the use of
Bohr models in undergraduate instruction. To address these
questions, I interviewed college educators about their views
on Bohr models. All college educators viewed Bohr models
as historic rather than scientific models. Some of them were
not aware that Bohr models are prevalent in high school
curricula. The interviews suggested that college educators
seem to expect that high school instruction addresses the
shortcomings of Bohr models, although they acknowledged
that misconceptions consistent with the Bohr model are
prevalent among undergraduate students, which is consis-
tent with the chemistry education literature [47], [67].

3.1.2 Implications for Chem Tutor

Based on the review of chemistry education research and of
chemistry curricula, the four visual representations depicted
in Fig. 1 were included in the Chem Tutor curriculum. Apart
from the Bohr model, none of the visual representations are
controversial with respect to their educational merit. The
decision to include the Bohr model may be controversial
because it has been blamed for misconceptions [47], [67].
Yet, given that students encounter Bohr models in high
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school chemistry instruction, it seems important to help
them understand the limitations of Bohr models so that they
can incorporate more advanced concepts of atomic structure
into their mental models [24], [70]. Hence, Chem Tutor
includes Bohr models and features activities that highlight
the limitations of this particular visual representation
through comparisons to other representations (as detailed
below).

3.2 Step 2: Identify Representational Competencies

Now that visual representations have been identified based
on the fact that they depict domain-relevant concepts, we
need to ask what representational competencies students
need in order to learn these concepts. Given the educational
blind spot on representational competencies, I again recom-
mend to use top-down approaches to address this question.

First, I recommend conducting a thorough literature
review on representational competencies in general and of
representational competencies in the target discipline. Liter-
atures on domain expertise can further provide useful
insights into the function of visual representations in the tar-
get discipline. For example, some disciplines view visual
representations as “training wheels” that make abstract con-
cepts accessible to learners, but that are no longer used by
experts [9]. In other disciplines, visual representations are
considered a “visual language” that is essential for expert
problem solving and in communication in scientific and
professional communities [9].

The literature review will yield a list of representational
competencies that are considered (often implicitly) to be
important learning goals. For example, in “training wheel”
disciplines, the ability to map a visual representation to
abstract concepts may be a particularly important represen-
tational competency. In a “visual language” discipline, the
ability to fluently use a given visual representation to solve
a large variety of problems may be an important representa-
tional competency.

Second, guided by the review, I recommend conducting
a theoretical cognitive task analyses on educational materi-
als [71], [72]. Cognitive task analysis is a method that uses
interviews and observations to describe the knowledge and
skills experts use to solve tasks. Cognitive task analysis can
be used to describe which representational competencies
are relevant for particular topics, concepts, and problem-
solving tasks. It can also reveal additional competencies
that students need to understand a specific concept given a
particular visual representation.

The outcome of Step 2 is an overview of representational
competencies that students need in order to learn the target
concepts.

3.2.1 Representational Competencies in Chemistry

My review of cognitive theories of learning (e.g., [7], [73],
[74], [75]), socio-cultural theories of learning (e.g., [76], [77]),
research on expertise [78], [79], and the chemistry education
literature (e.g., [4], [48]) suggests that two representational
competencies play a particularly important role for chemis-
try learning: conceptual sense making of connections and
perceptual fluency in connection making [9], [80].

Conceptual Sense-Making of Connections. Domain experts
have the ability to conceptually make sense of connections [4],

[7], [9], [53], [55]: they can relate visual features of different
representations that show corresponding concepts. Sense-
making processes are verbally mediated explanation-based
processes by which students reason about principles [73],
[81]. When students conceptually make sense of connec-
tions, they seek to understand which features of different
representations show the same information and how repre-
sentations differ in what information they show. For exam-
ple, in Fig. 1, both Lewis structure and Bohr model show
the valence electrons as dots, but the Bohr model shows all
electrons, whereas the Lewis structure shows only the
valence electrons. Conceptual sense making is important
because it allows students to integrate information shown
by different representations into one mental model about
the target concepts (e.g., the concept that valence electrons
reside on the atom’s outer shell). The importance of concep-
tual connection-making processes is widely recognized in
STEM education [54], [55], [56] and chemistry education
[48], [49], [82].

Perceptual Fluency in Connection Making. A second
important representational competency is perceptual flu-
ency in making connections among visual representations
[78], [79], [83]. Experts can quickly and effortlessly map
visual features of one representation to another. Percep-
tual fluency allows students to “just see” whether two
visual representations show the same information and to
combine information from representations without any
perceived mental effort. For example, consider again the
Lewis structure and Bohr model of oxygen shown in
Fig. 1. A student who is perceptually fluent will quickly
see that the number of electrons on the outer shell of the
Bohr model equals the number of valence electrons in the
Lewis structure. Because the student makes these connec-
tions quickly and automatically, without much perceived
mental effort, he/she has the cognitive capacity to think
about higher-order concepts. For instance, perceptual flu-
ency might free cognitive capacity to think about the fact
that oxygen, indicated by the “O” in the Lewis structure, is
in the second row of the periodic table, and therefore has
two shells, as shown in the Bohr model. The importance of
perceptual connection-making processes is widely recog-
nized in STEM education [4], [9], [48], [84] and chemistry
education [9], [48], [85], [86].

3.2.2 Implications for Chem Tutor

The literatures just reviewed suggest that both conceptual
sense making of connections and perceptual fluency in
connection making are particularly important represen-
tational competencies in chemistry. Thus, it seems reason-
able to propose that Chem Tutor should provide
instructional support for students (1) to conceptually
make sense of connections among representations that are
typically used in chemistry education and in chemistry
professional practices, and (2) to become perceptually
fluent in making connections. Yet, the goal to develop sep-
arate types of instructional support for these two represen-
tational competencies relies on the assumption that
conceptual sense making and perceptual fluency in con-
nection making are indeed different, distinguishable com-
petencies. I investigated the accuracy of this assumption
in Step 3.
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3.3 Step 3: Test If Competencies Are Distinct
Competencies that Relate to Content
Knowledge

After having identified candidate representational compe-
tencies, we need to empirically test whether these compe-
tencies are distinct from one another, and whether they
relate to the target content knowledge. To do so, I recom-
mend developing and evaluating tests that assess the target
representational competencies, to evaluate that the tests
assess distinguishable competencies, and to test whether
they indeed correlate with content knowledge.

To develop the tests, I recommend a combination of top-
down and bottom-up approaches. Top-down approaches
can draw on the literature on representational competencies
in the given discipline and / or cognitive task analyses con-
ducted as part of Step 2. The literature can be used to
develop the test items themselves. Bottom-up approaches
use empirical data obtained from interviews or think-aloud
studies with advanced students and experts [87], [88], [89]
to gain detailed insights into the nature of representational
competencies and content knowledge. Top-down and bot-
tom-up approaches can be combined by using the literature
review to develop interview questions or coding schemes
for empirical data.

If the goal of the educational technology is to target mul-
tiple representational competencies (e.g., conceptual and
perceptual connection making), the next step is to evaluate
whether tests can differentiate between these representa-
tional competencies. To this end, I recommend conducting
a factor analysis on data from students of the target pop-
ulation. Specifically, different factor models should be
compared to test whether the different representational
competencies load on different (as opposed to the same) fac-
tors (hypothesis 1). For example, if the hypothesis is that
there are two distinguishable representational competen-
cies, the factor analysis should compare a one-factor model
that assumes that the competencies are not distinguishable
and a two-factor model that assumes that the two compe-
tencies are distinguishable.

Next, the goal is to test whether the representational
competencies are associated with content knowledge
(hypothesis 2). To this end, I recommend conducting regres-
sion analyses that test whether students’ performance on
the representational competency tests predicts their perfor-
mance on a content knowledge test. Significant, positive
regression weights indicate that students with higher repre-
sentational competencies have higher content knowledge.
This correlation provides (correlational, not causal) evi-
dence for the major assumption underlying the develop-
ment of an educational technology for representational
competencies: that supporting representational competen-
cies can enhance students’ learning of content knowledge.

3.3.1 Developing Tests for Chem Tutor

To investigate whether conceptual sense making of connec-
tions and perceptual fluency in connection making among
multiple visual representations selected for Chem Tutor, I
developed tests that assess these competencies. Further, to
investigate whether these competencies relate to students’
content knowledge, I developed a test to assess knowledge
about atomic structure.

Development of the Conceptual Connections Test. The concep-
tual connections test was designed to assess students’ ability
to make sense of connections among visual representations of
atomic structure. To develop this test, I combined top-down
approaches with bottom-up approaches. I used the review
of research on representational competencies from Step 2
(i.e., top-down) to develop materials for an interview study
(i.e., bottom-up). The interview contained open-ended ques-
tions that presented participants with two visual representa-
tions at a time. For each representation pair, participants were
asked two questions: (1) “What are similarities between
[representation 1] and [representation 2] of [atom]?” and (2)
“What are differences between [representation 1] and [repre-
sentation 2] of [atom]?” Participants were five Ph.D. students
who had experience as teaching assistants, and 21 undergrad-
uate students with varying levels of exposure to chemistry
courses. All responseswere transcribed.

To develop a coding scheme for the interview data, I drew
on the chemistry education literature and research on con-
nection-making (i.e., top-down). These literatures provided
descriptions of concepts related to atomic structure and com-
mon student misconceptions, and coding schemes for con-
nection-making [11]. In addition, I reviewed the transcripts
obtained from the interview study (i.e., bottom-up), so as to
identify concepts they refer to when making connections
among representations, as well as misconceptions about
atomic structure. This approach yielded a matrix of surface-
level connections, conceptual similarities, conceptual differ-
ences, inferences, and misconceptions for seven chemistry
concepts.

Finally, building on this matrix, I developed a multiple-
choice test that assessed students’ ability to conceptually
make sense of the similarities and differences between visual
representations with respect to how they depict chemistry
concepts. Specifically, correct choices used language adapted
from correct explanations of conceptual similarities, concep-
tual differences, and inferences obtained from Ph.D. stu-
dents and undergraduate students. Incorrect choice options
were developed based on statements that corresponded to
surface-level connections ormisconceptions.

Development of the Perceptual Connections Test. The percep-
tual connections test was designed to assess students’
ability to fluently translate among multiple visual represen-
tations of atomic structure. To this end, I combined a top-
down approach with a bottom-up approach. The top-down
approach entailed reviewing Kellman and colleagues’
research on perceptual connection making [85]. They pro-
vide students with one representation and ask them to
select another representation that shows the same informa-
tion from a number of choice options. The bottom-up
approach entailed reviewing chemistry curricula to identify
commonly used visual representations and commonly used
atoms. Next, I created test items in which students were
given one visual representation (e.g., a Bohr model), and a
selection of six other visual representations (e.g., Lewis
structure, energy diagram, orbital diagram). Their task was
to select all other visual representations that show the same
atom. So as to not force students to select any visual repre-
sentations, they had the option to select “none of the above.”

Development of the Chemistry Knowledge Test. The chemis-
try knowledge test was designed to assess students’
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conceptual understanding of atomic structure regardless
of the representational competency involved. To this end,
I combined a top-down and bottom-up approach. The top-
down approach entailed reviewing the chemistry education
literature on important concepts and common misconcep-
tions related to atomic structure. Further, I reviewed test
items in chemistry curricula, as well as assessments used
in introductory undergraduate chemistry courses. The
bottom-up approach involved incorporating the concepts
identified as part of the interviews with Ph.D. students and
undergraduates, just described. Based on these approaches,
I developed multiple-choice test items and open-ended
items designed to assess students’ knowledge about atomic
structure.

Test Evaluation. Next, the goal was to test whether the
conceptual and perceptual connections tests assess distin-
guishable aspects of students’ representational competen-
cies (hypothesis 1), whether performance on the conceptual
connections test is positively associated with chemistry
knowledge (hypothesis 2a), and whether performance on
the perceptual connections test is positively associated with
chemistry knowledge (hypothesis 2b). To this end, the tests
were administered to N ¼ 72 undergraduate students
enrolled in an introductory chemistry course.

To test hypothesis 1, I compared two factor models using
SPSS AMOS. The two-factor model distinguished between
conceptual sense making of connections and perceptual flu-
ency in making connections, whereas the one-factor model
did not. Following [90], [91], a model has a good fit if it has an
RMSEA of < .06, a TLI and CFI of > .90, and a Cmin/df of
< 2.5. Results show that the two-factor model (RMSEA ¼
.066, TLI¼ .94, CFI¼ .96, Cmin/df¼ 1.95) had a better model
fit than the one-factormodel (RMSEA¼ .107, TLI¼ .84, CFI¼
.88, Cmin/DF ¼ 3.46). Thus, the results are in line with
hypothesis 1 and support the notion that conceptual sense
making of connections and perceptual fluency in connection
making are distinguishable representational competencies.

To test hypotheses 2a and 2b, I conducted a regression
analysis with students’ performance on the chemistry knowl-
edge test as a dependent measure, and students’ performance
on the conceptual and the perceptual connections tests as pre-
dictors. Results showed that both performance on the concep-
tual connections test (b ¼ :338, p < :01) and performance
on the perceptual connections test (b ¼ :454, p < :01) were
significant predictors of students’ performance on the chemis-
try knowledge test, explaining altogether 52.6 percent of the
variance of students’ performance on the chemistry knowl-
edge test. Thus, the results are in line with hypotheses 2a and
2b and support the assumption that conceptual sense making
of connections and perceptual fluency in connection making
with the chosen visual representations relate to students’
knowledge about atomic structure.

3.3.2 Implications for Chem Tutor

Before we develop instructional support for different repre-
sentational competencies, we have to verify the assumptions
underlying this goal. For Chem Tutor, I first had to establish
that conceptual sense making of connections between multi-
ple visual representations of atomic structure and perceptual
fluency in making connections are indeed distinguishable
representational competencies. Furthermore, I had to verify

the assumption that these representational competencies are
related to students’ understanding of chemistry concepts
related to atomic structure. The results from the test analysis
support these assumptions and—consequently—the goal of
developing separate learning activities that support students’
acquisition of representational competencies related to (1)
conceptual sense making of connections and (2) perceptual
fluency inmaking connections.

3.4 Step 4: Investigate Problem-Solving Behaviors
Associated with Representational
Competencies

Building on the identification of distinguishable representa-
tional competencies, we can now design instructional sup-
ports that help students acquire these competencies.
Effective instructional support should help students use
visual representations adequately to solve problems. Ide-
ally, students should learn to use and construct visual repre-
sentations in the same way as experts in the target
discipline. Instructional support will be most effective if it
focuses on problem-solving behaviors that students of the
target population do not spontaneously engage in; if they
did, they would not require instructional support for these
behaviors. Furthermore, instructional support should help
students overcome particular difficulties they are likely to
encounter when solving problems with visual representa-
tions. The goal of Step 4 is therefore to identify “desirable”
problem-solving behaviors that (1) characterize the repre-
sentational competencies experts use to solve problems
with visual representations but (2) that are uncommon or
particularly difficult for students.

To this end, I recommend combining top-down and bot-
tom-up approaches to investigate how experts and students
use visual representations to solve problems. Think-aloud
studies and interviews with experts and students can serve
to identify problem-solving behaviors common among
experts and students while they use premade visual repre-
sentations or create the own representations to solve prob-
lems (i.e., bottom-up). These problem-solving behaviors can
be mapped to the representational competencies and
concepts from Step 2 (i.e., top-down). Identifying problem-
solving behaviors that are common among experts but not
among students should be supported by the educational
technology.

When gathering data, a particular focus should be on
identifying how experts and students attend to visual fea-
tures that are conceptually relevant. Eye-tracking data [92],
[93], [94] or a combination of eye-tracking and think-aloud
techniques [95], [96] can provide useful information about
visual attention behaviors. Visual attention behaviors that
are associated with high-quality reasoning behaviors may
indicate which visual features the educational technology
should draw students’ attention to.

In sum, the goal of Step 4 is to identify the “knowledge
gap” that the educational technology seeks to close with
respect to how students should use visual representations
to solve problems in the target discipline.

3.4.1 Problem-Solving Behaviors for Chem Tutor

The design of Chem Tutor drew on a combination of think-
alouds, interviews, and eye-tracking methods. I describe
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how these methods informed the conceptual sense-making
and perceptual fluency-building problems.

Conceptual Sense-Making. One goal the Chem Tutor is to
present students with problems that help them engage in
conceptual reasoning about why two commonly used visual
representations depict the same atom, how the representa-
tions differ in what they show about atoms, and how repre-
sentations show corresponding information about atoms.
To inform the design of these problems, I investigated
which concepts about atomic structure are particularly diffi-
cult for chemistry undergraduate students (research ques-
tion 1). In addition, I was interested in identifying which
reasoning behaviors are common among experts (i.e., Ph.D.
students in chemistry) but uncommon in the target popula-
tion (i.e., among undergraduates; research question 2). Fur-
ther, I investigated which visual attention behaviors
indicate low and high quality reasoning about chemistry
concepts (research question 3).

To address these questions, I made use of the interview
study described above, in which Ph.D. students (n ¼ 5) and
undergraduate students (n ¼ 21) were asked to describe
similarities and differences between visual representations
of atoms. As part of this study, students’ visual attention
behaviors were recorded with an eye-tracker. Students were
asked to think about how to respond to the interview ques-
tion, indicate that they are ready to respond (allowing the
experimenter to annotate the eye-tracking data), and then
verbally respond to the interview question. This procedure
has been evaluated in usability research on educational
technologies, and has been shown to maintain the quality of
the eye-tracking data while yielding valid insights in cogni-
tive mechanisms of problem solving [97]. To analyze the
interview data, I used the matrix coding scheme described
above.

To address research question 1 (which concepts about
atomic structure are particularly difficult for the target pop-
ulation), and research question 2 (which reasoning behav-
iors are common among Ph.D. students but not among
undergraduates), I compared undergraduates to the Ph.D.
students in the following way. I assumed that concepts and
reasoning patterns are important if they occur frequently
among Ph.D. students. Further, I assumed that, if these con-
cepts and reasoning patterns occur infrequently among
undergraduate students, they are difficult. Hence, differen-
ces between undergraduate and Ph.D. students yield the
“knowledge gap” that Chem Tutor would seek to close. I
used chi-square tests to compare the frequency with which
undergraduates versus Ph.D. students mentioned the con-
cepts and reasoning behaviors identified above. The analy-
sis identified several reasoning behaviors that were more
frequent among Ph.D. students than among undergraduate
students.

To explore which visual attention behaviors are associ-
ated with high quality reasoning about chemistry concepts
(research question 3), I considered visual attention meas-
ures that are commonly used in research on learning with
visual representations. Specifically, I considered the fre-
quency of switching between visual representations,
because switching between conceptually relevant parts of
the instructional materials is often used to indicate that stu-
dents attempt to conceptually integrate these parts [98],

[99]. I computed switches between visual representations as
the number of times an eye-gaze fixation on one representa-
tion was followed by fixation on another representation.
Further, I considered first-fixation durations and second-fix-
ation durations on visual representations. First-fixation
durations are often considered to indicate initial processing
of material [100], [101], [102], whereas second-fixation dura-
tions (i.e., re-inspecting the material after the first fixation)
are considered to reflect intentional processing to integrate
the information with previously attended information [100],
[101], [102]. I computed first-fixation durations as the sum
of fixation durations when students first attended to a visual
representation. I computed second-fixation durations as the
sum of durations of all except the first fixations on the
representations.

I then conducted regression analyses that tested whether
the visual attention measures are predictive of students’
conceptual sense-making and reasoning about chemistry
concepts (assessed based on the coding scheme described in
section 3.3.1). Results from the regression analyses show
that second-inspection durations are predictive of both pro-
ductive and unproductive verbal reasoning behaviors. On
the one hand, students may spend their inspection time to
think about surface-level connections that are conceptually
irrelevant, which reduces their chances of noticing concep-
tually relevant differences between visual representations.
On the other hand, students may spend their inspection
time to think about conceptually relevant differences
between visual representations. Making sense of differences
between representations leads students to think about infer-
ences they can make about atoms in a way that goes beyond
what the representations explicitly show. Frequency of
switching between representations was not predictive of
students’ verbal reasoning about visual representations.
Taken together, these findings suggest that it is the content
of students’ processing rather than what they visually
attend to that predicts the quality of their reasoning about
visual representations. It seems that reasoning about how
given visual representations differ with respect to which
information they depict about chemistry concepts is most
important for students’ ability to make sense of connections.

Perceptual Fluency-Building. Another goal of Chem Tutor
is to present students with problems that help them become
more efficient in their perceptual processing of visual repre-
sentations so that they can make connections without hav-
ing to invest much mental effort. In developing these
problems, I drew on the principles established by prior
research on perceptual learning, described above. Accord-
ing to Kellman and colleagues’ perceptual learning para-
digm [75], [103], [104], fluency-building problems help
students induce relevant visual features by exposing them
to many examples of visual representations. Students are
asked to select corresponding representations from choices
that present contrasting cases. Contrasting cases vary irrele-
vant visual features that students are likely distracted by to
draw their attention to features that are conceptually rele-
vant for connection making.

To identify which features the perceptual fluency-building
problems should include, I conducted an empirical study that
investigated which visual features lead students to make
incorrect connections. Visual features thatmislead students to
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make incorrect connections are the visual features that stu-
dents must learn not to attend to. Hence, these visual features
should be included in contrasting cases in perceptual fluency-
building problems. For the study, prototypes of the percep-
tual fluency-building problems were created. Each problem
presented a visual representation of an atom (e.g., a Lewis
structure of oxygen) and four choice options that showed
atoms in one other visual representation (e.g., a Bohrmodel of
carbon, a Bohr model of oxygen, a Bohr model of hydrogen, a
Bohr model of chlorine). Students had to select which choice
shows the same atom. The problems were created for all pos-
sible pairings of the four visual representations shown in
Fig. 1, for 18 atoms (i.e., atoms in the first three rows of the
periodic table). Participants were 65 undergraduates enrolled
in a chemistry course.

To test which visual features lead students to make incor-
rect connections, I defined which visual features each visual
representation contains (e.g., the Bohr model of oxygen
shows two shells, eight electrons, six valence electrons).
Second, I created contingency tables for each pair of two
visual representations that mapped those visual features
onto one another that denote incorrect mappings. For exam-
ple, an incorrect mapping might be between the valence
electrons shown in the Lewis structure and the total elec-
trons shown in the Bohr model.

The contingency tables for incorrect mappings allowed
identifying which visual features students lead to incorrect
connections. This analysis revealed a number of features
that account for students’ incorrect choices between pairs of
representations. Overall, connections between representa-
tions that shared many features were easier than connec-
tions between representations that shared few features.
Further, for some pairs of representations, the direction of
the translation mattered (e.g., given a Bohr model, select a
Lewis structure versus given a Lewis structure, select a
Bohr model). The analysis revealed why these visual fea-
tures might be distracting. First, students seem likely to mis-
interpret particular features. Second, students seem to rely
too strongly on some features, failing to take additional fea-
tures into account. Finally, the analysis revealed particular
difficulties students have with particular mappings among
visual features.

3.4.2 Implications for Chem Tutor

For Chem Tutor’s conceptual sense-making problems, the
findings imply that students should be prompted to think
about the complementary functions of the different visual
representations rather than about conceptually relevant
similarities between them. Furthermore, it seems to be
important to draw students’ attention away from surface-
level features that are not conceptually relevant. Instead,
students should be prompted to make inferences about
those aspects of chemistry concepts that are not directly
shown in the visual representations.

For Chem Tutor’s perceptual fluency-building problems,
the findings yielded a number of visual features to be
included in contrasting cases that help them correctly inter-
pret the given visual features and use additional relevant
features to disambiguate the meaning of the given visual
features. In addition, the findings suggested that certain
visual representations are difficult for students, and

therefore students may need to receive conceptual instruc-
tion about these visual representations before they work
on perceptual fluency-building problems with these visual
representations. Finally, the findings on the difficulty of
mappings yield insights into how best to sequence the per-
ceptual fluency-building problems.

3.5 Step 5: Iteratively Design and Pilot-Test the
Educational Technology

Building on the findings from Step 4 about what constitutes
desirable but difficult problem-solving behaviors, we can
now develop the educational technology. In doing so, I rec-
ommend using a process that frequently iterates between
design, pilot-testing, and re-design phases.

Iterative design processes for the development of educa-
tional technologies are detailed elsewhere (e.g., [32], [34],
[106]), so I will review them only briefly. A first step is to
sketch out problem-solving activities on paper. Paper-based
problems should be pilot-tested with students of the target
population and reviewed by instructors. After incorporat-
ing findings from pilot-testing into paper-based problems,
they can be tested again. The second step is to build low-
fidelity prototypes, which can be pilot-tested with the target
population, reviewed by instructors, and redesigned
accordingly. Third, high-fidelity prototypes can be devel-
oped, pilot-tested, reviewed, and redesigned, until a satis-
factory result is reached. Finally, the prototypes should be
turned into the final version by removing any remaining
glitches and inconsistencies.

3.5.1 Iterative Design Process for Chem Tutor

The goal of the iterative design process for Chem Tutor was
to develop an Intelligent Tutoring System (ITS) for under-
graduate students that promotes learning of foundational
chemistry concepts through problem solving, specifically by
helping them acquire the representational competencies
identified above. I used Cognitive Tutor Authoring Tools
(CTAT; [106]), which facilitates iterating between design,
pilot-testing, and redesign. CTAT supports the development
of a different type of ITS than the traditional rule-based ver-
sion, called example-tracing tutors [106]. Example-tracing
tutors have the same functionalities as traditional ITSs: they
use a cognitive model of students’ problem-solving steps to
provide individualized step-by-step guidance at any point
during the problem-solving process [27], detect multiple
strategies a student might use to solve a problem [106], and
provide detailed feedback and (on the student’s request)
hints on how to solve the next step [107]. In contrast to tradi-
tional ITSs, example-tracing tutors use a cognitive model
that is not based on production rules but instead rely on gen-
eralized examples of correct and incorrect problem solutions.
Building on problem solutions to develop a cognitive model
has several advantages. First, it allows to directly draw on
the problem-solving behaviors (successful and unsuccessful
ones) discovered in Step 4. Second, it allows for rapid itera-
tions of prototyping and pilot-testing because changes to
the cognitive model can be easily and quickly implemented
and tested.

In developing Chem Tutor, I followed the iterative
design processes for the development of educational tech-
nologies just described. I engaged in several rounds of
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sketching out problems on paper, trying them out with
undergraduate students, and reviewing them with chemis-
try instructors. I incorporated changes based on their feed-
back. Second, I built low-fidelity prototypes using CTAT.
The low-fidelity prototypes allowed the user to solve
problems, but did not yet include hints or error feedback
functionalities. Again, I tested these prototypes with under-
graduate students and reviewed them with chemistry
instructors and made changes according to their sugges-
tions. Furthermore, I observed errors made by undergradu-
ate students and engaged in in-promptu interviews about
what led them to make certain mistakes. This information
was used to inform the design of error feedback messages.
Third, and building on Step 4, I developed high-fidelity pro-
totypes, which featured all functionalities common to ITSs:
detection of multiple solution paths, step-specific hints on
demand, and error feedback based on detection of certain
misconceptions. Again, the high-fidelity prototypes were
tested with undergraduate students and reviewed by chem-
istry instructors. At this stage, pilot-testing focused on the
way in which feedback and hints were provided to stu-
dents, and on whether Chem Tutor detected common cor-
rect and incorrect problem-solving strategies. Based on
findings from high-fidelity prototyping, I developed the
final version of Chem Tutor.

3.5.2 Final Version of Chem Tutor

The final version of Chem Tutor is available online (https://
chem.tutorshop.web.cmu.edu). It provides a number of
problem types that use the visual representations identified
in Step 1, that target the representational competencies iden-
tified in Step 2, and that foster the problem-solving behav-
iors identified in Step 4.

Introduction to Chem Tutor. Students first receive a brief
introduction into the topic of atomic structure, and into the
visual representations. Specifically, the introduction
explains what information each of the visual representa-
tions (see Fig. 1) show about atomic structure. To this end, it
emphasizes which visual features show relevant concepts
and what inferences they allow about properties of the
atom at the macroscopic level.

In light of the findings from Step 4, particular attention
was given to explaining how one particular visual represen-
tation depicts atoms: orbital diagrams. To this end, the
introduction section included an interactive exercise in
which students plot imaginary location coordinates of elec-
trons in a hydrogen atom, to illustrate how the orbital shape
reflects the probabilistic nature of electron density (i.e., the
likelihood of an electron occupying a certain space). The
design of this problem was informed by a practice problem
that one of the interviewed chemistry instructors uses to
introduce orbital diagrams. Fig. 2 shows a sequence of
screen shots from this introductory tutor problem, illustrat-
ing that students are asked to re late what they know about
atoms and electrons to the way in which the orbital diagram
depicts the hydrogen atom. Furthermore, this sequence of
screen shots illustrates how the student-generated plot of
electron locations morphs into the 2-dimensional and then
into the 3-dimensional orbital diagram.

Conceptual Sense-Making Problems. Chem Tutor provides
problems designed to help students conceptually make
sense of how different representations provide correspond-
ing and complementary information about chemistry con-
cepts. Fig. 3 shows an example problem in which students
make sense of connections between the Bohr model and the
energy diagram for the chlorine atom. Based on principles
established by the review of prior research on conceptual
sense making of connections carried out as part of Step 2,
the problems ask students to explicitly compare visual rep-
resentations, and prompt students to self-explain connec-
tions between the visual representations. First, students are
given the visual representation of an atom (here, the Bohr
model for chlorine) and are asked to use an interactive tool
to construct a different representation of the same atom (the
energy diagram). Students receive error feedback while
they are constructing the visual representations. The error
feedback messages were designed based on the review of
common student misconceptions about the given visual
representations in Steps 1 and 2, on the observations of
problem-solving behaviors in Step 4, as well as on observa-
tions from pilot testing in Step 5.

Second, students are prompted to self-explain which con-
cepts are depicted in both representations (e.g., both show
the total number of electrons) or on what information is
shown in one representation but not in the other (e.g., the
energy diagram shows the energy level of electrons

Fig. 2. Introductory problem in which students construct an orbital dia-
gram for hydrogen. Students first plot locations of electrons in a coordi-
nate system. They are prompted to reason about the properties of the
electron cloud and about the number of electrons it contains.
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occupying each orbital, but the Bohr model does not).
The self-explanation prompts in these problems use a fill-
in-the-gap format with menu-based selection. Menu-based
prompts have been shown to support self-explanation in
several empirical studies with ITSs [108], [109], [110], and
have been shown to be more effective in enhancing learning
outcomes than open-ended prompts [17], [111], [112]. The
self-explanation prompts were designed in alignment with
prior research on learning with multiple representations,
and on the observation of problem-solving behaviors in
Step 4. Specifically, based on the findings on students’ ver-
bal reasoning strategies, the self-explanation prompts were
designed so as to draw students’ attention to the differences
between visual representations. Further, in light of the
observation that Bohr models are used in high school but
not at the undergraduate level (see Step 1), the self-explana-
tion prompts for this particular problem (i.e., making sense
of connections between the Bohr model and the energy dia-
gram) were designed to draw students’ attention to

limitations of the Bohr model. Also, the sense-making prob-
lems focus on those concepts that Ph.D. students were
shown to mention more frequently than undergraduates in
(see Step 4). Finally, the wording of the prompts was based
on actual student statements obtained in Step 4.

Perceptual Fluency-Building Problems. Chem Tutor pro-
vides problems that foster inductive learning processes to
help students develop perceptual experience in making con-
nections among multiple visual representations. Fig. 4
shows two example problems in which students are pre-
sented with one visual representation and have to select one
out of four representations that shows the same atom. These
two examples illustrate how Chem Tutor’s perceptual
fluency-building problems embody principles for percep-
tual learning, identified as part of the review of prior
research in Step 2. First, the perceptual problems are des-
igned to foster non-verbal, inductive learning processes.
Each problem involves a one-step discrimination and classi-
fication task, and students receive numerous of these

Fig. 4. Example of a perceptual fluency-building probem. Students receive many rapid classification tasks. They are prompted to solve these tasks
fast, based on perceptual strategies. The choice options use contrasting cases to emphasize relevant visual features. Students receive immediate
feedback.

Fig. 3. Example of a conceptual sense-making problem. Students first construct a different visual representation of the same atom, then receive
sense-making prompts to reflect on differences and limiations of the two visual representations.
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problems in a row. To foster non-verbal rather than verbal
strategies, Chem Tutor prompts students to solve these
problems fast, without overthinking them. Second, students
receive immediate correctness feedback. Third, the percep-
tual fluency-building problems embody the contrasting
cases principle because the four alternative representations
emphasize features that students should learn to pay atten-
tion to (e.g., an incorrect representation might show the
same number of shells as the correct representation but a
different number of valence electrons). In choosing the alter-
native representations, I drew on the results from the obser-
vations of problem-solving behaviors in Step 4: the different
representations show variations of irrelevant features and
contrast visual features that provide relevant information
(e.g., geometry, location of the local charges). In summary,
the perceptual fluency-building problems are designed to
help students become faster and more efficient at extracting
relevant information from visual representations based on
repeated experience with a large variety of problems.

3.6 Step 6: Evaluate Effectiveness of Components
that Support Representational Competencies

The key assumption in designing different types of instruc-
tional support for the target representational competencies
is that each type of support will enhance students’ learning
of content knowledge. To empirically evaluate this assump-
tion, I recommend conducting an experiment under con-
trolled conditions to test whether different types of
instructional support for the identified representational
competencies enhance students’ learning of the target
domain knowledge. To this end, the experiment should test
the hypothesis that adding support for each of the represen-
tational competencies enhances the effectiveness of the edu-
cational technology. Ideally, students should be randomly
assigned to different versions of the educational technology
that do or do not contain the components that support
students’ acquisition of representational competencies.
Students’ domain knowledge should be assessed before and
after the intervention. The hypothesis is supported if stu-
dents in the experimental condition with instructional sup-
port for the representational competencies show higher
learning gains than students in the control condition with-
out such support.

3.6.1 Controlled Evaluation of Chem Tutor

For Chem Tutor, the main underlying assumption is that
conceptual sense-making problems designed to enhance
students’ ability to make sense of multiple visual represen-
tations of atoms, and perceptual fluency-building problems
designed to enhance students’ perceptual fluency in making
connections will foster students’ conceptual understanding
of atomic structure. To test this assumption, I conducted a
controlled experiment that tested the hypothesis that a ver-
sion of Chem Tutor that provides conceptual and percep-
tual problems enhances students’ learning of chemistry
knowledge more than a version of Chem Tutor without
these problems.

One-hundred and seventeen undergraduate students par-
ticipated in the experiment (for a detailed description, refer to
[113]). The experiment used a 2 (conceptual sense-making
problems: yes/no) x 2 (perceptual fluency-building

problems: yes/no) experimental design to investigate the
hypotheses. Students were randomly assigned to one of four
conditions, which differed in the components they contained.
All students worked through Chem Tutor’s introduction.
Students in the no-conceptual / no-perceptual condition
worked on problems designed to resemble regular textbook
exercises. In these problems, they used only one visual repre-
sentation at a time and did not receive support for connection
making. Students in the conceptual / no-perceptual condition
worked on regular problems and conceptual connection-
making problems. Students in the no-conceptual / perceptual
condition worked on regular problems and perceptual con-
nection-making problems. Students in the conceptual / per-
ceptual condition worked on regular problems, conceptual
connection-making problems, and perceptual connection-
making problems. Students’ chemistry knowledge was
assessed before and after their workwith ChemTutor.

Results revealed significant learning gains, F ð2; 232Þ ¼
37:31, p < :01, p: h2 ¼ :24. Results show that the main
effect of conceptual sense-making problems was not signifi-
cant, F ð1; 109Þ ¼ 1:39, p > :10. There was a positive main
effect of perceptual fluency-building problems, F ð1; 109Þ ¼
6:28, p < :05, p: h2 ¼ :06. The interaction of conceptual
and perceptual support was significant, F ð1; 109Þ ¼ 4:05,

p < :05, p: h2 ¼ :04, such that perceptual support was
effective only if provided in combination with conceptual
support: Students who did not receive conceptual sense-
making problems had significantly lower learning outcomes
if they received perceptual support than without perceptual

support, F ð1; 110Þ ¼ 9:34, p < :01, p: h2 ¼ :08. By con-
trast, students who received conceptual support had signifi-
cantly higher learning outcomes if they received perceptual
support than without perceptual support, F ð1; 110Þ ¼ 9:34,

p < :01, p: h2 ¼ :08. Finally, there was a marginally signifi-
cant advantage of the conceptual / perceptual condition
over the no-conceptual/no-perceptual condition, F ð1; 110Þ
¼ 2:69, p ¼ :10, p: h2 ¼ :05.

These results support the hypothesis that conceptual and
perceptual problems enhance the effectiveness of Chem
Tutor. (A detailed discussion of the interaction effect is pro-
vided in [113].)

3.6.2 Implications for Chem Tutor

The experiment tested the overall assumption that provid-
ing students with conceptual sense-making problems and
with perceptual fluency-building problems would enhance
their learning of chemistry. The results are in line with this
assumption: combining support for sense-making of con-
nections and for perceptual fluency enhances their learning
of chemistry.

3.7 Step 7: Evaluate Effectiveness of Support for
Representational Competencies in the Field

A limitation of any controlled experiment is that it likely
does not represent the context for which the educational
technology was designed. The experiment with Chem
Tutor, for example, was conducted in a research lab, even
though Chem Tutor was designed for the use in introduc-
tory undergraduate courses. Therefore, a final step is to
evaluate the educational technology in the field. To this
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end, the experiment should test the hypothesis that the edu-
cational technology enhances students’ learning of the con-
tent knowledge in the target educational context. A field
evaluation should assess students’ domain knowledge
before and after they work with the educational technology
in the target educational context. If possible, a control condi-
tion that corresponds to “business as usual” should not
receive the educational technology. Instead, the students in
the control condition may work on regular instructional
activities. The hypothesis is supported if students in the
experimental condition show significant learning gains.

3.7.1 Field Evaluation of Chem Tutor

Even though the controlled experiment just described estab-
lished the effectiveness of the different modules in Chem
Tutor, it remains an open question whether Chem Tutor is
effective in the target context. To address this question, I
conducted a field study.

The tests were the same as the ones used in the controlled
experiment, described in Step 6. Participants were 62 under-
graduate students enrolled in a general chemistry for non-
science majors. All students worked on introduction, regu-
lar problems, conceptual sense-making problems, and per-
ceptual fluency-building problems, which corresponds to
the most successful version of Chem Tutor from the experi-
ment in Step 6. Students accessed all materials (i.e., Chem
Tutor and the tests) online, with a personal user account
that was created for the purpose of the study. Students were
invited to participate in the study one month before semes-
ter end. Students were free to use the system at any time
and to take breaks whenever they wanted to, but they
had to finish their work by the end of the semester. Results
showed significant learning gains, F ð2; 122Þ ¼ 10:38,

p < :01, p: h2 ¼ :15.

3.7.2 Implications for Chem Tutor

The field study suggests that working with Chem Tutor
yields significant and large learning gains. These results
were obtained in a natural context, in which undergraduate
students used Chem Tutor as they normally would use an
online educational technology as part of a chemistry course.
Thus, the findings suggest that Chem Tutor may add value
to common undergraduate chemistry instruction: support-
ing students’ representational competencies can enhance
their learning of chemistry knowledge in the educational
context the technology was designed for.

4 CONCLUSION

Visual representations are ubiquitous learning tools across
all STEM disciplines [1], [2]. Yet, learning with visual repre-
sentations is difficult because students often face the
representation dilemma: they have to learn new content from
new visual representations [13]. Their learning of content
knowledge therefore depends on their representational
competencies; that is, the ability to understand how visual
representations depict the to-be-learned content and to use
visual representations for problem solving [1], [2], [14].
Much research documents students’ difficulties in acquiring
representational competencies [6], [7], [8], [10], [11], which
impedes their success in STEM disciplines [16], [18], [58],

[74], [84], [114], [115], [116], [117]. Instructors and content
developers have an educational blind spot about representa-
tional competencies and are often not aware of students’
difficulties in acquiring representational competencies and
tend to assume that students “see” what a visual representa-
tion means [6], [7], [8], [15]. Given the critical role of repre-
sentational competencies, it is important that to design
educational technologies that support representational
competencies.

Existing design frameworks do not provide adequate
guidance for the development of educational technologies
that support representational competencies. One the one
hand, design frameworks for educational technologies lack a
focus on representational competencies. Due to the educa-
tional blind spot about representational competencies, the
emphasis on bottom-up (i.e., learner-centered, user-centered)
methods in educational technology frameworks may be inad-
equate for the design of support for representational compe-
tencies. On the other hand, frameworks for representational
competencies do not describe detailed step-by-step processes
to align instructional support with specific demands of the
target discipline and educational context.

To close this gap, the goal of this paper was to describe a
new design framework for educational technologies that
provide instructional support for representational compe-
tencies (SUREC). Compared to prior frameworks for educa-
tional technologies, the SUREC framework puts a stronger
emphasis on top-down approaches, so as to ensure that
learning obstacles related to representational competencies
receive attention in the design process. Compared to prior
frameworks for representational competencies, the SUREC
framework provides an iterative step-by-step process that
can be used to align the educational technology with spe-
cific difficulties students have with representational compe-
tencies in the target discipline and with educational goals
and educational practices of the target discipline. Therefore,
the SUREC framework closes the gap between prior frame-
works for educational technologies and prior frameworks
for representational competencies. I illustrated the SUREC
framework at the example of an ITS for undergraduate
chemistry: Chem Tutor. Data from a controlled lab-based
evaluation and a field evaluation suggests that the SUREC
framework yielded a successful educational technology.

The SUREC framework can be used for other STEM dis-
ciplines than chemistry and for additional representational
competencies than the ones the present Chem Tutor prob-
lems focus on. Because representational competencies are a
critical aspect of students’ learning of content knowledge
across all STEM discipline, the goal of developing educa-
tional technologies for representational competencies is rel-
evant across STEM disciplines. The iterative step-by-step
approach ensures that the educational technology aligns
with the specific demands of the target discipline. This is
important because the way in which visual representations
are used varies by discipline [6], [8] because the design of
the visual representations themselves as well as how they
are used within the discipline is shaped by the cultural his-
tory of discipline discourse [4], [6], [53], [76]. Even though I
illustrated the SUREC framework in chemistry and further
illustrations of the success of the SUREC framework in other
disciplines are pending, the fact that chemistry is similar to
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many other STEM disciplines suggests that the SUREC
framework may be widely applicable. In particular, chemis-
try instruction heavily relies on multiple visual representa-
tions because different visual representations provide
complementary information about key concepts. This role
of visual representations is similar to instruction in other
STEM disciplines [1], [2], [14], [15], [114].

In sum, the SUREC framework closes a gap in prior
design frameworks by describing an iterative, step-by-step
process to ensure that educational technologies help stu-
dents acquire representational competencies that are spe-
cific to the target discipline. Visual representations are
pervasive in all STEM disciplines, and students’ docu-
mented difficulties in learning with visual representations
impede their success in STEM. The SUREC framework may
have a significant impact on STEM education because (1)
educational technologies that enhance students’ representa-
tional competencies have the potential to enhance students’
learning of content knowledge in a variety of STEM
domains, and (2) because such technologies can be easily
disseminated to large student populations via course man-
agements such as Moodle.
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