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Abstract—An artificial neural network is one of the most
important models for training features in a voice conversion task.
Typically, Neural Networks (NNs) are not effective in processing
low-dimensional F0 features, thus this causes that the perfor-
mance of those methods based on neural networks for training
Mel Cepstral Coefficients (MCC) are not outstanding. However,
F0 can robustly represent various prosody signals (e.g., emotional
prosody). In this study, we propose an effective method based on
the NNs to train the normalized-segment-F0 features (NSF0) for
emotional prosody conversion. Meanwhile, the proposed method
adopts deep belief networks (DBNs) to train spectrum features
for voice conversion. By using these approaches, the proposed
method can change the spectrum and the prosody for the
emotional voice at the same time. Moreover, the experimental
results show that the proposed method outperforms other state-
of-the-art methods for voice emotional conversion.

I. INTRODUCTION

Recently, the study of Voice Conversion (VC) is being

widely attracted attention in the field of speech processing.

This technology can be widely applied to various application

domains. For instances, voice conversion [1], emotion conver-

sion [2], speaking assistance [3], and other applications [4] [5]

are related to VC. Therefore, the need for this type of

technology in various fields has continued to propel related

research forward each year.

Many statistical approaches have been proposed for spectral

conversion during the last decades [6] [7]. Among these

approaches, a Gaussian Mixture Model (GMM) is widely

used. However, there are several shortcomings with the GMM

spectral conversion method. First, GMM-based spectral con-

version is a piece-wise linear transformation method, but the

mapping relationship between humans voice conversion is

generally non-linear, so non-linear voice conversion is more

compatible with voice conversion. Second, the features which

are trained using GMMs are usually low-dimensional features

which may lost some important spectral details for speech

spectra. The high-dimensional features, such as Mel Cepstral

Coefficients (MCC) [8] which are widely used in automatic

speech and speaker recognition, are more compatible with

deep architecture learning.

A number of improvements have been proposed in order to

cope with these problems such as integrating dynamic features

and global variance (GV) into the conventional parameter

generation criterion [9], using Partial Least Squares (PLS)

to prevent the over-fitting problem encountered in standard

multivariate regression [10]. There are also some approaches

to construct non-linear mapping relationships, such as using

artificial neural networks (ANNs) to train the mapping dictio-

naries between source and target features [11], using a con-

ditional restricted Boltzmann machine (CRBM) to model the

conditional distributions [12], or using deep belief networks

(DBNs) to achieve non-linear deep transformation [13].

These models improve the conversion of spectrum features.

Nevertheless, almost of the related works in respect to VC

focus on the conversion of spectrum features, yet the seldom of

those focus on F0 conversion, because F0 cannot be processed

by deep architecture NNs well. But F0 is one of the most im-

portant parameters for representing emotional speech, because

it can clearly describe the variation of voice prosody from

one pitch period to another. For emotional voice conversion,

some prosody features, such as pitch variables (F0 contour

and jitter), and speaking rate have already been analyzed [14].

There were approaches forced on the simulation of discrete

basic emotions. But, these methods are not compatible with

the complex human emotional voices which are non-linear

convert. There are also some works using a GMM-based VC

technique to change the emotional voice [15] [16]. As above-

mentioned, recently acoustic voice conversion usually uses the

non-linear suitable models (NNs, CRBMs, DBNs, RTRBMs)

to convert the spectrum features, it is difficult to use the GMM

to deal with F0 made by these frameworks. To solve these

problems, we propose a new approach.

In this paper, we focus on the F0 features conversion and

transformation of the spectrum features. We propose a novel

method that uses the deep belief networks (DBNs) to train

MCC features for constructing the mapping relationship of

spectral envelopes between source and target speakers. Then,

we adopt the neural networks (NNs) to train the normalized-

segment-F0 features (NSF0) for converting the prosody of the

emotional voice. Since the deep brief networks are effective

to spectral envelopes converting [13], in the proposed model,

we train the MCC features by using two DBNs for the source

speaker and the target speaker, respectively, then using the

NNs to connect the two DBNs for converting the individuality

abstractions of the speakers. As it has been shown that the

bottleneck features are effective to improve the accuracy and

naturalness of synthesized speech [17], we construct the three-
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Fig. 1. Emotional voice conversion framework. Spec s and Spec t mean the
spectral envelopes of source and target voice obtained from the STRAIGHT.
F0s and F0t are the basic frequency of source and target speech. W s

spec,

W t
spec, W s

F0
and W t

F0
are dictionaries of source spectrum, target spectrum,

source F0 and target F0, respectively.

layers DNBs (24-48-24) for both the source voice and target

speakers. Hereby, the unit of middle-layer (48) is larger than

the input-layer (24) and output-layer (24). We adopt the two

three-layers DNBs and the connect NNs to build the six-layer

deep architecture learning model.

For the prosody conversion, F0 features are used. Although

many researchers have adopted the F0 features for emotional

VC [18][19], the F0 features used in these approaches were

mostly extracted by the STRAIGHT [20]. Since the F0 features

extracted from the STRAIGHT were one-dimension features,

which were not suitable for the NNs. Hence, in this study, we

propose the normalized-segment-F0 (NSF0) features to trans-

form the one-dimension F0 features into multiple-dimensions

features. By so doing, the NNs can robustly process prosody

signals that is presented on F0 features so that the proposed

method can obtain high-quality emotional conversion results,

which form the main contribution of this paper.

In the remainder of this paper, we describe the proposed

method in Sec. II. Sec. III gives the detailed stages of process

in experimental evaluations and conclusions are drawn in

Sec. IV.

II. PROPOSED METHOD

The proposed model consists of two parts. One part is the

transformation of spectral features using the DBNs, and the

other is the F0 conversion using the NNs. The emotional voice

conversion framework transforms both the excitation and the

filter features from the source voice to the target voice as

shown in Fig.1. In this section, we briefly review the process

based on STRAIGHT for extracting features from the source

voice signal and the target voice signal, while we introduce

the spectral conversion part and F0 conversion part.

A. Feature extraction

To extract features from a speech signal, the STRAIGHT

model speech is frequently adopted. Generally, the

pitch-adaptive-time-frequency smoothing spectrum and

instantaneous-frequency-based F0 are derived as excitation

features for every 5ms [20] from the STRAIGHT. As shown

in Fig. 1, the spectral features are translated into Mel

Frequency Cepstral Coefficents (MFCC) [21], which are

known as working well in many areas of speech technologies

[9][22]. To have the same number of frames between the

source and target, a Dynamic Time Wrapping (DTW) method

is used to align the extracted features (MFCC and F0) of

source and target voices. Finally, the aligned features that

have been processed by Dynamic Programming are used as

the parallel data. Before training them, we need to transform

the MFCC features to MCC features for the DBNs model

and transform the F0 features to the normalized-segment-F0

features (NSF0), respectively. We will describe the transform

methods and the training models of spectral and F0 in

Sec. II.B and Sec. II.C.

B. Spectral features conversion

In this section, we will introduce the spectral conversion

conducted by DBNs. DBNs have an architecture that stacks

multiple Restricted Boltzmann Machines (RBMs) which com-

pose a visible layer and a hidden layer. For each RBM, there

are not connections among visible units or hidden units, yet

it is connected by the bidirectional connections between the

visible unit and hidden unit. As an energy-based model, the

energy of a configuration (v, h) is defined as:

E (v, h) = −aT v − bTh− vTWh, (1)

where W ∈ RI×J , a ∈ RI×1, and b ∈ RJ×1 denote the

weight parameter matrix between visible units and hidden

units, a bias vector of visible units, and a bias vector of

hidden units, respectively. The joint distribution over v and

h is defined as:

P (v, h) =
1

Z
e−E(v,h). (2)

The RBM has the shape of a bipartite graph, with no

intra-layer connections. Consequently, the individual activation

probabilities are obtained via

P (hj = 1|v) = σ

(
bj +

m∑
i=1

wi,jvi

)
, (3)

P (vi = 1|h) = σ

⎛
⎝ai +

n∑
j=1

wi,jhj

⎞
⎠ . (4)

In our model, σ denotes a standard sigmoid function, i.e.,

(σ (x) = 1/(1 + e−x)). For parameter estimation, RBMs are

trained to maximize the product of probabilities assigned to

some training set data V (V is a matrix, each row of that is

treated as a visible vector v). To calculate the weight parameter

matrix, we use the RBM log-likelihood gradient method as

follows:
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L (θ) =
1

N

N∑
n=1

logPθ

(
v(n)

)
−

λ

N
‖W‖ . (5)

To differentiate the L (θ) via (6), we can obtain W when

making the L (θ) be the largest.

∂L (θ)

∂Wij

= EPdata
[vihj ]− EPθ

[vihj]−
2λ

N
Wij . (6)

In this study, we use the 24-dimentional MCC features

for spectral training. As shown in Fig. 1, we transfer the

parallel data which concludes the aligned spectral features of

source and target voices to MCC features. Meanwhile, we

respectively use the MCC features of the source and target

voice as the input-layer data and output-layer data for DBNs.

Fig. 2 shows the architecture of the DBNs convert spectral

features, which indicates two different DBNs for source speech

and target speech (DBNsou and DBNtar) so as to capture

the speaker-individuality information and connect them by the

NNs. The numbers of each node from input x to output y in

Fig. 2 were [24 48 24] for DBNsou and DBNtar. XN×D and

YN×D represent N examples of D-dimensional source feature

and target feature training vectors, respectively. XN×D and

YN×D are defined in (7) (D=24).

XN×D = [x1, ..., xm, ..., xN ] , xm = [x1, ..., xD]
T

YN×D = [y1, ..., ym, ..., yN ] , ym = [y1, ..., yD]T .
(7)

In summary for the above discussions, the whole training

process of the DBNs can be conducted as follows three steps.

1) Train two DBNs for source and target speakers. In the

training of DBNs, the hidden units computed as a conditional

probability (P (h|v)) in (3) are fed to the following RBMs,

and trained layer-by-layer until the highest layer is reached.

2) After training two DBNs, we connect the DBNsou and

DBNtar and train them by using NNs. Weight parameters of

NNs are estimated so as to minimize the error between the

output and the target vectors.

3) Finally, each parameter of the whole networks (DBNsou,

DBNtar and NNs) is fine-tuned by back-propagation using the

MCC features.
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Fig. 3. Log-normalized F0 (A) and interpolated log-normalized F0 (B). The
red curve: target F0; The blue curve: source F0.

C. F0 features conversion

For prosody conversion, F0 features are usually adopted.

In conventional methods, a logarithm Gaussian normalized

transformation [23] is used to transform the F0 from the

source speaker to the target speaker as follows:

log (f0conv) = μtgt +
σtgt

σsrc

(log (f0src)− μsrc) (8)

where μsrc and σsrc are the mean and variance of the F0 in

logarithm for the source speaker, respectively. μtgt and σtgt

are for the target speaker. f0src is the source speaker pitch

and f0conv is the converted pitch frequency for the target

speaker. As mentioned in the introduction section, non-linear

conversion models are more compatible with the complex

human emotional voices. Therefore, we use the NNs models

to train the F0 features in our proposed methods. The reason

why we choose different models for F0 conversion and spectral

conversion is that the spectral features and F0 features are not

closely correlated and the F0 features are not as complex as

spectral features. As shown in Fig. 3, the F0 feature obtained

from STRAIGHT is one dimensional feature and discrete.

Before training the F0 features by NNs, we need to transform

the F0 features into the Normalized Segment F0 features

(NSF0). We can transform F0 features into high-dimension

data through the following two steps.

1) Normalizing the F0 features by Z-score normalization

model, we can obtain the rescaled features that are normalized

by the mean and variance (0, 1). The standard score of the

samples is calculated as follows:

z =
x− μ

σ
, (9)

where μ is the mean and σ is the standard deviation.

2) Transform the normalized F0 features to the segment-level

features which are high-dimension ones. We form the segment-
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Fig. 4. NNs model and curves of activation function

level feature vector by stacking features in the neighboring

frames as follows:

XN×(2w+1) = [x1, ..., xm, ..., xN ]
T
,

x (m) = [z (m− w) , ..., z (m) , ..., z (m+ w)]
T
,

(10)

where w is the window size on each side. (10) represents

N examples of 2w + 1-dimensional source features. In the

proposed model, we set w = 12. To guarantee the coordination

between the initial source and conversion signals, we adopt the

same approach for the target features transformation.

After transforming F0 features to the NSF0 features, we

convert the 25-dimentional NSF0 features by NNs. As shown

in Fig.4A, we used the 4-layers NNs model to train the NSF0

features. The numbers of nodes from the input layer x to the

output layer are [25 48 48 25]. Fig.3 shows that the curve of

the F0 features are changed sharply during the whole time.

Unlike the smooth curve of the spectral features, we adopt the

tanh activation function:

f (x) = tanh (x) =
e2x − 1

e2x + 1
, (11)

which is different from the sigmoid function used in the DBNs

with spectral features training models. As shown in Fig.4B,

the tanh function has stronger gradient and the values are in

the range [−1, 1]. These mean that the tanh function is more

compatible to the sharply changed curve of F0 features.

III. EXPERIMENTS

A. Database

We used a database of emotional Japanese speech con-

structed in [24]. From this database, we selected the angry

voices, happy voices and sad voices of speaker (FUM) for the

source, and the neutral voices of speaker (FON) for target. For

each emotional voice, 50 sentences were chosen as training

data. We made the datasets as happy voices to neutral voices,

angry voices to neutral voices and sad voices to neutral voices.

B. Spectral features conversion

For the training and validation sets, we resampled the

acoustic signals to 16kHz, extracted STRAIGHT parameters

and used a Dynamic Time Wrapping (DTW) method to align

the extract features. The aligned F0 features and MFCC

(conducted by spectral features) were used as the parallel

data. In our proposed method, we used the MCC features for

training the DBNs models. Since the NNs model [11] proposed

by Desai is the well-known voice conversion method based on

Artificial Neural Network and the recurrent temporal restricted

Boltzmann machines (RTRBMs) model [25] is the new and

effective approach about voice conversion. We used NNs

model and RTRBMs model to train the MCC features from

the emotional voices to neutral voices for comparison. DBNs,

NNs and RTRBMs are trained by using the MCC features

of all datasets because considering the different emotion from

FUM to the neural emotion of FON may influence the spectral

conversion.

C. F0 features conversion

We used 4-layers NNs to convert the aligned NSF0 features.

For comparison, we also used the Gaussian normalized trans-

formation method to convert the aligned F0 features extracted

from parallel data. The datasets are the different emotional

voices from FUM to the neural voice of FON (angry to neural,

happy to neural and sad to neural). For making the training

data, each set concludes 50 sentences. For the validation, 10

sentences were arbitrarily selected from the database.

D. Results and discussion

Mel Cepstral Distortion (MCD) was used for the objective

evaluation of spectral conversion:

MCD = (10/ ln 10)

√√√√2
24∑
i=1

(mcti −mcei )
2 (12)

where mcti and mcei represent the target and the estimated mel-

cepstral, respectively. Fig.5 shows the result of the MCD test.

As shown in this figure, our proposed DBNs model can convert

the spectral features better than the NNs, and no significant

difference with the RTRBMs. But the training time of the

DBNs method is much faster than the RTRBMs. Although

our training datasets are all from the FUM to FUN and the

content of the sentences are the same. We can also see that the

MCD evaluations from different emotional voices conversion

to the neutral voice are a little different. The result confirms

that different emotions in the same speech can influence the

spectral conversion and DNBs models proved to be the fast

and effective method in the spectral conversion of emotional

voice.

For evaluating the F0 conversion, we used the Root Mean

Squar Error (RMSE):

RMSE =

√√√√ 1

N

N∑
i=1

(log (F0ti)− log (F0ci))
2 (13)

where F0ti and F0ci denote the target and the converted F0

features, respectively. Fig. 6 shows that our proposed method

obtains a better result than the traditional Gaussian normalized

transformation method in the all datasets. (angry to neutral,

happy to neutral, sad to neutral.)
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Fig. 6. Root mean squared error evaluation of F0 features conversion

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a method using DBNs to train

the MCC features to construct mapping relationship of the

spectral envelopes between source and target speakers, using

NNs to train the NSF0 features which are conducted by the

F0 features for prosody conversion. Comparison between the

proposed method and the conventional methods (NNs and

GMM) has shown that our proposed model can effectively

change the acoustic voice and the prosody for the emotional

voice at the same time.

There are still some problems in our proposed VC method.

This method needs to conduct the parallel speech data that

will limit the conversion only one to one. Recently, there are

researches using the raw waveforms for deep neural networks

training [26][27]. In the future work, we will apply the DBNs

model which can straightly use the raw waveform features.
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[18] Š. Beňuš, U. D. Reichel, and J. Šimko, “F0 discontinuity as a marker

of prosodic boundary strength in lombard speech,” 2015.
[19] M. Ma, K. Evanini, A. Loukina, X. Wang, and K. Zechner, “Using f0

contours to assess nativeness in a sentence repeat task,” in Sixteenth

Annual Conference of the International Speech Communication Associ-

ation, 2015.
[20] H. Kawahara, “Straight, exploitation of the other aspect of vocoder:

Perceptually isomorphic decomposition of speech sounds,” Acoustical

science and technology, vol. 27, no. 6, pp. 349–353, 2006.
[21] T. Ganchev, N. Fakotakis, and G. Kokkinakis, “Comparative evaluation

of various mfcc implementations on the speaker verification task,” in
Proceedings of the SPECOM, vol. 1, 2005, pp. 191–194.

[22] H. Zen, K. Tokuda, and A. W. Black, “Statistical parametric speech
synthesis,” Speech Communication, vol. 51, no. 11, pp. 1039–1064,
2009.

[23] K. Liu, J. Zhang, and Y. Yan, “High quality voice conversion through
phoneme-based linear mapping functions with straight for mandarin,”
in Fuzzy Systems and Knowledge Discovery, 2007. FSKD 2007. Fourth

International Conference on, vol. 4. IEEE, 2007, pp. 410–414.
[24] H. Kawanami, Y. Iwami, T. Toda, H. Saruwatari, and K. Shikano,

“Gmm-based voice conversion applied to emotional speech synthesis.”
IEEE Trans Speech Audio Proc, vol. 7, pp. 2401–2404, 2003.

[25] T. Nakashika, T. Takiguchi, and Y. Ariki, “High-order sequence mod-
eling using speaker-dependent recurrent temporal restricted boltzmann
machines for voice conversion,” in Fifteenth Annual Conference of the

International Speech Communication Association, 2014.
[26] T. N. Sainath, R. J. Weiss, A. Senior, K. W. Wilson, and O. Vinyals,

“Learning the speech front-end with raw waveform cldnns,” in Sixteenth

Annual Conference of the International Speech Communication Associ-

ation, 2015.
[27] M. Bhargava and R. Rose, “Architectures for deep neural network based

acoustic models defined over windowed speech waveforms,” in Sixteenth

Annual Conference of the International Speech Communication Associ-

ation, 2015.

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 20,2024 at 17:15:57 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


