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Abstract—Any individual that re-registers an expired domain
implicitly inherits the residual trust associated with the domain’s
prior use. We find that adversaries can, and do, use malicious re-
registration to exploit domain ownership changes—undermining
the security of both users and systems. In fact, we find that
many seemingly disparate security problems share a root cause
in residual domain trust abuse. With this study we shed light
on the seemingly unnoticed problem of residual domain trust
by measuring the scope and growth of this abuse over the
past six years. During this time, we identified 27,758 domains
from public blacklists and 238,279 domains resolved by malware
that expired and then were maliciously re-registered. To help
address this problem, we propose a technical remedy and discuss
several policy remedies. For the former, we develop Alembic, a
lightweight algorithm that uses only passive observations from the
Domain Name System (DNS) to flag potential domain ownership
changes. We identify several instances of residual trust abuse
using this algorithm, including an expired APT domain that could
be used to revive existing infections.

I. INTRODUCTION

Domain names have become the Internet’s de facto root
of trust. In practice, they are also a root of insecurity as
common security systems depend on the unfounded assump-
tion that domain ownership remains constant; this leaves users
vulnerable to exploitation when domain ownership changes.
For instance, authentication systems often rely on email to
reset user passwords. Such schemes fail when the domain
for that credential changes ownership—e.g., by expiration,
auction, or transfer—and thus is no longer associated with the
original owner. Consequently, an adversary can exploit this
vulnerability to hijack the email address via a malicious re-
registration of the domain.

In this paper, we study the exploitation of domain owner-
ship changes and find that the phenomenon of residual trust
abuse is the underlying cause of many, seemingly disparate,
security issues. Among these, we found vulnerabilities allow-
ing an attacker to maliciously register a domain to: (i) siphon
University traffic and email by exploiting expired nameserver
domains; (ii) hijack Regional Internet Registry (RIR) accounts
and allocate IP addresses using expired email domains; and
(iii) distribute malicious updates for benign software, including
an instance that left users of a major Linux distribution
vulnerable. The preceding examples demonstrate that even a

single instance of residual trust abuse has major implications
for the security of users and systems alike.

Despite the serious consequences of malicious registra-
tions, the scope of the phenomenon has yet to be rigorously
characterized and quantified. Our study seeks to fill this knowl-
edge gap. Using data collected over six years, we show that
adversaries are actively exploiting residual trust. To quantify
this, we analyze the overlap between expired domains and
both (i) hand-curated lists of malicious domains, i.e., public
blacklists; and (ii) domains queried by malware, as such
queries are an indicator of abuse. We find that almost 8.7%
of the domain names that appeared on public blacklists (since
2009) were listed after the domains expired and changed own-
ership. In other words, over the last six years at least 27,758
were abusing residual trust. Similarly, we identified 238,279
domains that expired, were re-registered, and then contacted
by malware—indicating likely malicious registrations. These
domains account for 3.9% of all domains resolved by malware
in our dataset. To put this into perspective, the size of this
set is comparable to the 320,009 domains listed on public
blacklists since 2009. Even more, empirical evidence suggests
this is a rapidly growing problem. We found the exploitation of
ownership changes has grown by orders of magnitude since we
began collecting data. Between 2009 and 2012 there were 784
observed blacklist instances of abuse, but in 2014 alone, that
number increased to over 9,000. We observed similar growth
for expired domains resolved by malware, indicating this trend
is not unique to blacklists.

In light of the increasing abuse of residual trust—e.g.,
malicious re-registration of domain names—better tools and
policies are necessary to ensure the security of both users and
systems. We argue that a comprehensive solution must consider
both technical and non-technical remedies. For the former we
propose Alembic, a lightweight algorithm that can be used to
identify likely changes in ownership. This algorithm scales to
large amounts of traffic, requires only access to historical DNS
data, and ranks likely changes in domain ownership. Using our
algorithm, we were able to identify several cases of potential
residual trust abuse, including a currently expired advanced
persistent threat (APT) domain. The expired APT domain ex-
ample demonstrates how easily domains with negative residual
trust can be used to revive existing infections. For the non-
technical remedies, we discuss several potential policy changes
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and their implementation challenges.

Summarizing, our study makes the following contributions:

• We introduce the concept of residual trust and, us-
ing numerous real world cases of domain misuse,
demonstrate how it is the underlying cause of many
seemingly disparate security problems. Furthermore,
we distinguish between positive and negative residual
trust and discuss how each could be abused or cause
unintended consequences.

• We provide the first large-scale analysis of residual
trust abuse by using several large datasets for expired
domains, passive DNS, network malware traces, and
aggregated public blacklists. Our observations show
malicious parties are actively abusing residual trust
and that it is a growing problem.

• We propose a technical remedy and discuss several
non-technical remedies to help deal with the growing
abuse of residual trust. For the former, we introduce
a lightweight algorithm, Alembic, to help locate likely
ownership changes. Using our algorithm, we find
several previously unidentified instances of abuse,
including an expired APT domain.

While identifying changes in domain ownership would appear
to be straightforward using WHOIS information [26], mining
WHOIS is a challenging and resource-intensive task. Some
researchers are trying to solve this problem with better auto-
mated solutions [36], but this does not address the problem that
simply obtaining WHOIS information is expensive and hard to
scale. Further, WHOIS information is rarely available in bulk.
It is common for registry access to be limited to just a handful
of queries (less than 1000) per day from a given host. While
there are commercial companies offering limited API-based
access to WHOIS information [16], [4], [15], they are cost-
prohibitive and lack external validation. Due to the previously
mentioned WHOIS limitations, it is outside the capabilities
of most practitioners, research groups, and all but a handful
of organizations to generate a comprehensive set of historic
WHOIS records through which domain ownership changes can
be identified.

These above constraints make building a traditional detec-
tion system for domain ownership changes extremely difficult.
Therefore, we chose to create an efficient and highly scalable
algorithm that helps find potential domain ownership changes
using only DNS information.

II. BACKGROUND

We define the term residual trust as the historical reputation
of a domain that is implicitly transferred with changes in
ownership. In this section, we detail the process governing
a domain’s expiration. In the following sections, we explain
how these expired domains can be exploited by abusing the
domain’s residual trust.

Domain names are registered, owned, and expired using
processes created by Internet Corporation for Assigned Names
and Numbers (ICANN) in conjunction with registry operators
and registrars. With a few exceptions, domains are typically

registered for a period of one or more years, after which the
registrant (i.e., owner) has the option to renew.

As a domain registration approaches its expiration date, it
begins the formal ICANN expiration process. For generic top-
level domains (such as .com, .net, and .info) the expiration
process is governed by ICANN’s Expired Registration Recov-
ery Policy (ERRP) [33]. We summarize this process in Figure 1
and discuss the details below.

ICANN’s expiration process is intended to address several
past and potential abuses such as “domain sniping”, whereby
a vigilant “domainer” would register the domain seconds after
expiration and extort a price to transfer the domain back to the
former owner. Under the current process, domainers hoping to
speculate on expired and lapsed domains must now wait until
the release event, giving the current registrant time to renew
the registration even after the domain expires.

Specifically, the ERRP requires registrars attempt to notify
the lapsed owners (twice prior to expiration, once after).
However, in practice, many owners cannot be reached due
to a variety of reasons including inaccurate registration in-
formation, general neglect, or “tucked” domains. The latter
reason, tucked domains, refers to situations where the contact
information for the domain resides entirely under the expiring
DNS zone itself. For instance, the registrar contact information,
WHOIS information, and start of authority SOA RNAME [38]
may be entirely under the expiring zone.

After the domain expires, the registrar will delete the
domain from the TLD zone causing it to enter a 30-day
Redemption Grace Period (RGP). Typically, deletion occurs
within 1–45 days after expiration, but the exact length of time
may vary due to extenuating circumstances or provisions in
the myriad registrar and registry agreements. While in the
grace period, the expired domain may still be renewed by the
previous registrant, but this is typically at a higher cost. The
domain is released five days following the conclusion of the
RGP and becomes available for re-registration by others.

There are other variations of the domain expiration process.
For example, the Canadian Internet Registration Association
uses a “To Be Released” (TBR) process where expiring
domains are listed along with all homonyms. For example,
cardreaders.ca is TBR listed along with all accented
variations such as çardreaders.ca, cárdreaders.ca,
and other permutations. The 30-day process includes a short
advance bid auction followed by general release.

Since many expiring domains are valuable brands, large
groups of “drop-catchers” pool their resources to attempt
registration in the first seconds after release. In order to prevent
DDoS-style events against the registries, many providers stag-
ger the release of expiring domains and publish the specific
hour (and often the specific minute) during which a given do-
main will become available. Since valuable dropped domains
are generally acquired within seconds, this strategy minimizes
the period over which large volumes of registration attempts
are directed against the registry.

Despite the post-expiration deletion phase, during which
the domain is typically unreachable, third party users will
often still attempt to connect to the domain. Increasingly, these
connections are through automated tools, and users are often
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Fig. 1: Timeline of a domain expiration.

unaware the domain is even absent from DNS. For example,
operating systems may attempt to update installed packages
through an automated (e.g., cron, launchd) process. Browser
plugins may contact home sites upon application startup.
Software sharing tools may create connections to numerous
file sharing sites on startup in order to obtain timely updates
and routing tables stored in distributed hash tables. All of the
domains associated with these automated activities can and do
expire. Therefore, the party acquiring the expired domain has
thousands and even millions of users contacting the site. We
discuss specific examples and the security implications of this
phenomenon in the next section.

III. ABUSING RESIDUAL TRUST

In this section, we discuss five real world examples of
residual trust abuse that exploit expired domains previously
used for a variety of Internet functions and services—including
university DNS servers, CIDR allocations from Regional
Internet Registries (RIRs), browser extensions, open source
software, and promotional media content. These case studies
demonstrate the unintended consequences that result from the
residual trust placed upon domains by both users and systems.
Our goal is to introduce the reader to the scope and severity
of the problems caused by expired domains with concrete
examples. Furthermore, these examples demonstrate that many
seemingly disparate security issues actually share a common
underlying cause: residual trust in domains.

A. Expired Nameserver Domains

In our first example, one of the DNS nameserver domains
for the Benedictine University expired—potentially leaking
sensitive university emails to the domain’s new owners. Ac-
cording to our passive DNS sources, the ben.edu domain
owned by Benedictine University used the following name-
servers, among others, in 2012:

ben.edu. IN NS ns1.bobbroadband.com.

ben.edu. IN NS ns2.bobbroadband.com.

In other words, the hosts under bobbroadband.com

provided secondary NS service for the university. It is com-
mon for organizations to rely on secondary DNS services
from other organizations, often in different TLDs, to provide
power and geographic diversity for their DNS. Consequently,

the expiration of bobbroadband.com did not disrupt res-
olution of ben.edu as other DNS authorities were still
available. Then, on October 25, 2012, the nameservers for
bobbroadband.com were switched to the following:

bobbroadband.com. IN NS ns1.pendingrenewaldeletion.com.

bobbroadband.com. IN NS ns2.pendingrenewaldeletion.com.

The zone pendingrenewaldeletion.com is a spe-
cial zone used by the registrar to manage the final stages of
the domain through to the redemption grace period. The reader
should note that the redemption grace period (described in
Section II) is designed to cause an outage as a final way
to notify a domain owner of an expiration. In this case,
however, the redemption grace period process did not disrupt
the university’s DNS because other nameservers were still
providing service. Ironically, the resiliency of DNS prevented
the redemption grace period process from providing one last
notice-through-outage to users.

After the domain expired completely, it was purchased
by a search engine optimization (SEO) company that then
responded to all domain queries with a wild-card answer. This
directed all traffic destined for ben.edu (e.g., HTTP traffic,
email, etc.) to an advertising site. These events are summarized
in Figure 2.

This change is especially subtle because it was the domain
of one of the nameservers for ben.edu that expired and not
the university’s own DNS record. Furthermore, the university
still had other nameservers that would direct traffic to the
school’s servers, preventing the outage from occurring after
every TTL for a given record. Thus, the outage intermittently
manifested itself only if the nameserver handling a resolution
was the one controlled by the SEO company—not one of the
remaining authorities operated by the school.

Given the legal protections generally afforded to student
emails, the ad company likely had no right to the traffic despite
owning the domain. Clearly, there existed residual trust in
the expired bobbroadband.com domain since an entire
university depended upon it.

In a subsequent survey of the edu TLD, we identified
nearly a hundred expired zones under the TLD. We offered our
survey results of possible outages, similar to ben.edu, to the
DNS community. An enterprise DNS company now provides
secondary services for schools that formerly relied on expired
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Fig. 2: Residual Trust Exploitation in University DNS Servers

or expiring secondary nameservers. While the problems caused
in this example were many, the underlying cause was simple:
residual trust in domains.

B. Expired Email Domains

In our second case study, we show how expired domain
names could affect Regional Internet Registries (RIRs) op-
erators. The RIRs locally administer the allocation of IP
addresses [31] and maintain a database of which individuals
have been allocated a specific Classless Inter-Domain Routing
(CIDR) network. Stolen or hijacked RIR credentials can,
therefore, lead to serious security incidents.

Account information for the RIR is protected using email as
a trust anchor, and therefore, trust is effectively placed in who-
ever owns the domain specified by an email address. A simple
check of the RIR databases yields all of the email addresses
for CIDR operators, and registration checks on these domains
indicated that hundreds of technical and administrative point-
of-contact (PoC) listings were under expired domains.1

In all cases of expired contact details, we found either
the notify or abuse-mailbox fields for inetnum and
aut-num RIR objects contained emails under expired do-
mains. One could simply register these domains, request a
password reset, and log into the management interface to
manage the allocated CIDRs. Indeed, there are several cases
where this technique was abused to send spam [47].

We were in the process of notifying the various RIRs of
our discovery when other researchers made public a technical
report on this general problem [44]. Their work focused just
on RIR objects, but we believe it supports our general focus
on techniques to identify and manage expired domains. We
continue to work through our RIR notification process and,
therefore, omit listing the affected domains.

Like the previous case study, the underlying cause of this
problem is residual trust. Email is regularly used as a trust
anchor for online services and email addresses fundamentally

1To verify the expiration of each domain, we used a domain reseller account
to access the parent registry via Extensible Provisioning Protocol (EPP) [32].
This step was necessary as DNS lookups resulting in RCODE=3 or NXDOMAIN
merely indicate the absence of records in a zone, not the availability of the
record for registration. For a discussion of EPP use, we refer the reader to [30].

rely on domains. Consequently, possession of a domain is often
sufficient to demonstrate ownership of RIR CIDR allocations.

C. Expired Browser-Related Domains

Residual trust also offers an avenue for exploiting software.
For example, many browser plugins contact one or more
domains on startup to load both settings and content. To
quantify this problem, we inspected approximately forty thou-
sand plugins (many with different versions) from the Mozilla
store. Specifically, we examined the online credentials of the
authors, sites contacted by the plugins, and the author’s contact
information in the XPI manifest files. We found some 159
expired domains available for immediate registration.

Anyone could register one of these expired domains used
by popular web browser plugins, some with tens of thousands
of installations. This creates the possibility for a new owner to
push updates to the plugin or to potentially take ownership of
the associated developer account. While users may have trusted
the original plugin developer, this trust should not extend to the
new owners of the domains used by the plugin. This problem
is exacerbated by the fact that users will be unaware of such
ownership changes. Given that browser plugins can modify
browser settings and behavior, this leads to potential security
problems that are difficult to diagnose.

Our goal here is not to simply identify another browser
plugin vulnerability. Other researchers have addressed other
security aspects of browser extensions [21], [22], [35], [24]
by analyzing the behavior and structure of browser plugins.
Indeed, our analysis of this space was aided by the tools
and frameworks noted above. Rather, this case identifies yet
another instance of the unintended consequences caused by
residual trust in domains. While existing work may stop
potential abuse of this vector, we argue that the change in
ownership of plugin domains is better dealt with by addressing
the root cause: residual trust in domains.

D. Expired Open Source Software Domains

Residual trust from domain expirations also affects soft-
ware repositories. Recently, the photo editing tool Gimp failed
to renew its domain name, gimp.org. Fortunately, users
noted the outage (days after the failed registration) [45] and
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reported the problem. This allowed the domain to be recovered
during the grace period—before a malicious registrant could
obtain the domain and offer corrupted versions of the software.

A more disquieting outcome was seen in the recent “De-
bian multimedia” episode. For a while, an unaffiliated party
operated an unofficial Debian repository mirror of multime-
dia applications (many of which did not meet the license
requirements for the official Debian distribution). The do-
main debian-multimedia.org became popular and was
linked to by various blogs, HOWTO articles, and software
sites. Consequently, the site was added to the Advanced
Packaging Tool mirror list for many Debian users. After
some discussion with the maintainers of the official Debian
distribution, the debian-multimedia.org owner agreed
to create a new domain called deb-multimedia.org to
avoid any indication of official endorsement. The previous
debian-multimedia.org site later expired and was reg-
istered by a party unknown to the Debian community.

In effect, the new site owner had the ability to push
software updates. This capability could be used to offer updates
for even non-multimedia related packages such as the kernel or
the base system. While a repository key system offered users
the option to protect their updates, many users may choose
to ignore warnings or may not have installed a key for the
old site. This risk compelled the Debian maintainers to release
a warning to end users instructing them to manually remove
the old repository domain [48]. The notice alerted us to the
problem, which we diagnosed as yet another symptom of a
larger problem: residual trust in domains.

As noted above, there are protections against abuses in
this dimension: software signing, local mirrors, staggered
distributions in networks, rollbacks, and the like. But it is
not clear if these solutions can be universally adopted by end
users—many of whom simply wanted non-free multimedia
software and followed well-intentioned but incomplete Internet
resources. Instead of addressing the specifics of this challeng-
ing security area (the signing and verification of distributed
software systems), we argue for a root-cause treatment of the
problem: identifying changes in ownership of expired domains
with residual trust.

E. Expired Spam Domains

In the previous cases studies, we examined cases where
positive residual trust could be abused for malicious purposes,
but we have yet to discuss the implications of domains carrying
negative residual trust. Similar to benign domains, domains
used for abuse often expire, and when this happens, they can
be registered by new owners intending to use them for non-
abusive purposes. But what happens when the new owner goes
to share that newly purchased domain? Not surprisingly, the
new owner may be censored by the same automatic safeguards
put in place to protect online communities. Most maintainers
of security lists or products will be completely unaware of
ownership changes, and it may take a considerable amount of
time before a domain is reclassified as non-abusive.

A public instance of this happened back in 2013 when
Kirk Cameron released the film Unstoppable, a Christian
movie targeting religious moviegoers [28]. A domain was
purchased to market the film on the Internet, but this domain

Dataset Cardinalities

DG DM DB DM ∪DB

179,326,265 6,112,964 320,009 6,395,634

Datasets Dataset Intersections

A B %A A ∩B %B
DG ∩ DB 0.1% 101,322 31.7%
DG ∩ DM 0.2% 292,494 4.8%
DM ∩ DB 0.1% 8,075 2.5%
DG ∩ (DM ∪DB) 0.2% 385,741 6.0%

TABLE I: In addition to the relative sizes of each set, this
figure shows the relationships between the datasets of expired
DG, malware DM , and public blacklist DB domains.

had previously been used to send spam—a fact presumably
unknown the film’s creators. Consequently, when this domain
was used to market the film on Facebook, it was blocked
by Facebook’s automated spam detection systems. This led
to heavily publicized outcries of censorship by the movie’s
producer and fans. Even after disclosing that the domain had
been blocked by their automated spam detection systems,
numerous articles decrying Facebook’s censorship practices
remained without update. Such claims of censorship, even after
proven false, are a risk and a liability for a social network with
millions of users of differing beliefs and world views.

Ultimately, this is yet another unintended consequence of
the residual trust placed in domains. This incident could have
been prevented if there were better systems in place to evaluate
the trust associated with domains. Such systems could inform
potential registrants of a domain’s history before purchase or
update security products after domain ownership changes.

IV. MEASURING RESIDUAL TRUST ABUSE

In this section, we take a step back from looking at the
specific cases of abuse and instead analyze the problem of
residual trust abuse at scale. In particular, we analyze expired
domains and malicious re-registrations from the past six years
(2009–2015). We aggregate data from public blacklists, mal-
ware feeds, gTLD zone files, and other sources to measure the
scope and growth of residual trust abuse. In summary:

• Measuring Scope. To measure scope, we identify and
characterize expired domains associated with mali-
cious behavior. In particular, we focus on expired
domain names found on public blacklists or resolved
by malware over the last six years. Our goal, in part,
is to quantify the extent to which expired domains are
exploited via malicious re-registration.

• Measuring Growth. For growth, we study the change
in residual trust abuse over time by leveraging the
temporal properties of our dataset. We measure when
the domains expired and when they were used for
abuse, allowing us to calculate the number of active
instances of residual trust abuse.

Before diving into the results, we begin with a short discussion
of the datasets used for our measurement study.
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A. Measurement Datasets

Restricting our observation period to 2009–2015, we focus
on the domains that were (i) observed to expire, (ii) placed on a
public blacklist, or (iii) resolved by malware. The intersection
between domains that expired and that were used for abuse
yields sets of domains that are likely targets of residual trust
abuse—possibly resulting in a malicious re-registration. In the
following sections, we define these three sets of domains and
provide greater detail about their contents.

1) Expired domains (DG): We calculated the set of expired
domains DG by comparing successive gTLD zone transfers
and recording removals. While the removal of a domain from
a zone is a strong indicator of expiration, we further vetted
such domains through the Extensible Provisioning Protocol
(EPP) [32] using the domain reseller account noted in Sec-
tion III. Finally, we augmented DG with data obtained from a
commercial drop-catch registration service [12].

Our DG set consists of expired domains spanning Novem-
ber 2008 to July 2015 and contains 179,326,265 unique
domains. Most commonly, the DG domains expired due to the
registrant’s failure to re-register the domain. In a few cases, the
domain changed ownership due to a trademark dispute [34],
suspension, or registry action stemming from a court order.

2) Blacklist domains (DB): The set DB is an aggregation
of eight public blacklists (Table II) collected from December
2009 to July 2015. As such, it includes several different
types of malicious behavior from botnets to drive-by down-
loads. Importantly, DB represents a human-curated list of
domains associated with undesirable behavior. In total, there
are 320,009 unique domains in this set. We use temporal
information from our sources to determine whether a domain
was added to a blacklist (DB) before or after it expired (DG).

3) Malware domains (DM ): DM is a set of domains
known to have been queried by malware. This set is compiled
from three dynamic malware execution feeds: one academic
and two commercial. These frameworks employ dynamic
analysis to derive network and system indicators from bina-
ries. These indicators often include URLs used for malicious
purposes, e.g., command and control or advertisement fraud.

This dataset also contains temporal information for the
malware execution (i.e., timestamp and DNS query), allowing
us to determine whether the domain was used by malware
before or after its expiration. DM contains domains from seven
years, occurring between the beginning of 2009 and July 2015,
of malware execution traces from the aforementioned feeds and
contains 6,112,964 unique domain names in total.

While not a guarantee of maliciousness, the domains
logged by these systems adds a useful perspective to our analy-
sis. This is especially true for those domains that appeared in a
dynamic analysis trace after an ownership change. The reader
should perceive this DM set as an indicator, not a guarantee,
of abusive behavior.

4) Potentially abused expired domains (DZ): Finally, we
define the set of all domains that expired and were potential

Blacklist Target Source

Abuse.ch Malware, C&C. [5]
Malware DL Malware. [13]
Blackhole DNS Malware, Spyware. [6]
sagadc Malware, Fraud, SPAM. [10]
hphosts Malware, Fraud, Ad tracking. [8]
SANS Aggregate list. [11]
itmate Malicious Webpages. [9]
driveby Drive-by downloads. [7]

TABLE II: Blacklist sources for DB .

Expired Before Abuse

DZ DG ∩DM DG ∩DB

Num. of Domains 263,847 238,279 27,758
Avg. Days 888 911 692

Abused Before Expiration

DZ DG ∩DM DG ∩DB

Num. of Domains 123,396 54,215 73,564
Avg. Days 364 397 340

TABLE III: A breakdown of how many domains expired before
and after abuse for expired blacklist (DG ∩ DB), malware
(DG ∩ DM ), and all abusive (DZ) domains—as well as the
average number of days between abuse and expiration.

targets of residual trust abuse as DZ = DG ∩ (DM ∪ DB).
2

In the context of this study, DZ acts as an upper bound on
the number of expired domains witnessed between 2009 and
2015 that appeared on human-curated blacklists or that were
resolved by malware. A summary describing the relationships
between each of the above datasets can be seen in Table I. In
total, DZ comprises 385,741 domains.

B. Measuring Active Residual Trust Abuse

In order to measure active instances of residual trust abuse,
we focus on domains that have expired (DG) and also appear
on blacklists (DB) or are resolved by malware (DM ). This set,
DZ , contains domains that are likely candidates for residual
trust abuse through malicious re-registration of the domain.
While the majority, 292,494 (75.8%), of the domains in DZ

were associated with malware resolutions, almost a third,
101,322 (31.7%), appeared on at least one hand-curated public
blacklist. These numbers indicate that a substantial portion
of the expired domains were manually linked with abusive
behavior. This raises an interesting question. Did the expiration
occur before or after abuse?

Table III summarizes the measurement observations behind
the domain names that expired and also appeared in our
public blacklist and malware datasets. From DZ , we observed
123,396 domains that existed in DM ∪DB before appearing in
DG. In short, these domains were used for abusive behavior
before they expired. From this subset, 54,215 (43.9%) were
contacted by malware and 73,564 (59.6%) appeared on public

2The Z in DZ stands for zombie. Similarly, the G in DG stands for
graveyard. These identifiers, as well as the paper’s title, are in reference to the
similarities between reanimated (i.e., re-registered) domains and the depictions
of zombies in popular media.
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blacklists. Additionally, 4,748 (8.8%) of the domains contacted
by malware also appeared on a public blacklist. Given their
historical association with malicious behavior, these domains
represent instances of negative residual trust.

Security practitioners can leverage domains with such trust
for good by using them for different reconnaissance techniques
like sinkholing. It is also important to note that negative
residual trust can be used for malicious purposes as well.
For example, an APT actor could use an expired spam-related
domain to camouflage itself as a different type of threat; this
would likely stymie discovery or attack attribution.

Conversely, we observed 263,847 domains that expired
before appearing in DM ∪ DB . More specifically, 238,279
(90.3%) domains were contacted by malware and 27,758
(10.5%) appeared on public blacklists only after expiring.
Therefore, these domains represent cases of positive residual
trust potentially being used for illicit activities. By registering
expiring domains, bad actors can leverage the benefits of
any positive reputation (such as brand and industry sector
properties) previously held by a domain. Previously, we high-
lighted several concrete instances of this problem (Section III).
This problem is worsened by the fact that benign domains
often remain on whitelists after ownership changes due to the
difficulty of discovering such events. This is highlighted by the
fact that only 3,327 (1.4%) of the domains that expired before
being contacted by malware ever appeared on a PBL.

To better understand the types of malware that might be
abusing residual trust, we categorized some of the different
types of malware observed in DZ . Table V shows the top 10
malware types and families for the malware observed com-
municating with a simple random sample of 10,000 domains
that expired and then were potentially used for abuse. Trojans
are by far the most common type, with many generic types
such as “malware” and “heuristic” following. The families
are similarly dominated by heuristically determined labels
and a few family specific labels. For example, VB.SMIS and
Vobfus are generic labels for obfuscated malware written in
Visual Basic. While there are instances where the MD5 is
flagged as benign by the AV engines, most are malicious. As
more evidence of maliciousness, 915 of the 1,559 registrars
were used for registering privacy protected domain names to
mask the registrant’s email address and name. While there are
legitimate reasons to use such a service, they are commonly
employed by malicious actors to evade WHOIS attribution.

Finally, we provide a breakdown of the top-level domains
(TLDs) in DZ in Table IV. The distribution largely corre-
sponds to the general popularity of each respective TLD.
The potential exception is edu. We observed proportionally
more edu domains being used for malicious purposes after
expiration—possibly due to the inherent trust users place in
the educational TLD.

C. Measuring Temporal Properties of Residual Trust Abuse

Next, we focus our analysis on the temporal properties of
residual trust. We start by referring the reader to Figure 4,
which shows the distribution of deltas between expiration and
first indicator of potential abuse. On average, this delta was
around a year for domains contacted by malware or appeared
on blacklists. The extended length of this dormancy period

Expired to Malicious Malicious to Expired
TLD Count TLD Count

com 214,019 com 85,409
net 27,621 net 15,954
org 9,648 info 9,287
info 5,575 org 5,869
us 2,671 biz 3,226
biz 2,185 us 2,458
ca 846 cn 989
cn 646 mobi 76
co 175 asia 56
edu 146 ca 45
mobi 80 edu 15
asia 35 co 11
de 20 de 1

TABLE IV: TLD frequency for domains in DZ . This includes
all domains that were used for abuse and expired at some point.
In total, we observed 13 TLDs used by these domains.

suggests that it may take a considerable amount of time
before the trustworthiness of the current domain owner can be
ascertained. Therefore, not only must changes in ownership be
detected but such changes should be monitored until the new
owner’s trustworthiness can be determined.

Diving deeper into the domains that expired before being
used for abuse, we find that the delta between the last indicator
of abuse and the expiration event was roughly two years on
average. The full distribution of these deltas can be seen in
Figure 4 and shows two peaks, appearing approximately one
year apart, for domains contacted by malware or appearing
on public blacklists before expiring. The two peaks represent
a small number of domains and are an artifact of shared
expiration events for domains in DM ∩DB .

The long delay between last observed malware commu-
nication and expiration could be due to several factors. For
example, in order to maximize the utility of malicious domains,
malware authors may choose not to allow a domain to expire
until the number of malicious connections to that domain
drops below some threshold (i.e., the domain could still being
monetized by the botmaster). Additionally, a malware author
may choose to prevent a domain from expiring in order to
restrict security practitioners from taking over the domain.

D. Measuring the Growth of Residual Trust Abuse

Figure 3 shows residual-trust abuse is becoming more
common. The number of domains being contacted by malware
after expiration grew from 6,138 between 2009 and 2012 to
over 12,000 in just 2013. Similarly, the number of previously
expired domains subsequently appearing on blacklists has
grown from 784 between 2009 and 2012 to over 9,000 in
2014 alone. Further, more than 100 of these domains were
ranked in the top 10,000 by Alexa on the day they were added
to the blacklist. The horizontal striations in the figure are
an artifact of malware collection and blacklisting processes.
Namely, the feed operator may add many domains (possibly
for the same threat) on the same day. Similarly, the vertical
gap for December 2015 is the result of missing data stemming
from technical issues with our collection framework.
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Fig. 5: Using different components to identify ownership
changes.

other unique attributes of the zone.3 Substantial changes in
both the email and primary name server are strong indicators
in ownership change for a given domain name. We therefore
performed historical queries for SOA records for all the
domains in DZ .

B. Design of Alembic

We now describe how, using the aforementioned datasets,
we identify domain names most likely to have undergone a
change in ownership. We call our algorithm Alembic, after the
still used by alchemists. Alembic lets us distill historical pas-
sive DNS evidence into a ranking of dates, and corresponding
ranges, that are most likely to be associated with a change in
domain ownership.

First, we discuss how we combine temporal changes in in-
frastructure, lookup volume, and SOA records into component
scores. Then, we discuss how we generate the necessary inputs
to compute these scores and how they are used to generate
rankings of likely domain ownership changes.

1) Computing Component Scores: The Alembic algorithm
is based upon the hypothesis that changes in ownership are
highly likely to be accompanied by changes in network in-
frastructure, lookup volumes, and zone structure. While some
users registering expired domains might be able to create the
exact same zone content, host the nameservers at the same
IPs, and generate the same SOA records, it is presumed this
sort of subterfuge is both difficult and rare. This heuristic
therefore comes down to the following conjecture: While one
can perhaps buy any desired domain, one cannot so easily
obtain its old IP address and use the same nameservers to
manage the re-registered domain.

In order to identify these potential changes, the algorithm
uses a temporal sliding window to measure changes in each
component as observed in passive DNS resolutions over time.
An overview of how the window and components fit together
can be viewed in Figure 5. A summary of each individual
component follows below.

Infrastructure Changes. For given a temporal window, W ,
we compute the Jaccard distance between hosts observed dur-
ing the first and second portion of the window; this measures

3Those not familiar with DNS zones and DNS record types may wish to
consult [49].

Algorithm 1 Computing Component Scores

function INFRA-SCORE(hi, hj)
return 1 - JACCARD-INDEX(hi, hj)

end function

function VOL-SCORE(vi, vj)
t val, p val← TTEST(vi, vj)
return 1− p val

end function

function SOA-SCORE(si, sj)
mi, ri ← si
mj , rj ← sj
M ← 1

2
(1− JACCARD(mi,mj))

R← 1

2
(1− JACCARD(ri, rj))

return M +R
end function

the dissimilarity between hosts seen during each period of
time. In Algorithm 1, this measurement is computed by the
INFRA-SCORE function. The computed score will range from
zero to one where zero indicates the sets are exactly the same
and one indicates that the two sets are completely disjoint.

Lookup Volume. Similarly, the distribution of lookup volumes
for a given domain is split into two intervals for the current
temporal window, W . We compute a t-test between the two
distributions to measure if the null hypothesis (i.e., whether
there is no relationship between them) is supported. This
returns both a t-score and a p-value. The p-value ranges
between zero and one with a lower p-value suggesting that
the observed distributions are more likely to be consistent
with the null hypothesis. Thus, a lower p-value suggests that
the distributions are more likely to be different and a higher
p-value suggests that the distributions are more likely to be
similar. The VOL-SCORE function in Algorithm 1 shows that
the volume score is computed as one minus the p-value which
results in dissimilar distributions receiving a higher score.

SOA Differences. Like the previous two cases, we compute a
score based on observations about the difference between the
first and second portion of the current temporal window, W . In
particular, we measure changes to SOA records observed dur-
ing these two intervals. Each SOA record contains two fields
of interest: an authoritative nameserver, MNAME, and an e-mail
address, RNAME, for the individual responsible for the zone.
We measure changes to each of these fields independently
in order to finely measure changes in SOA records. Thus,
we compute the Jaccard distance between the set of MNAMEs
observed in each portion of W , and separately, we compute
the Jaccard distance between the set of RNAMEs observed in
each portion of W . The SOA-SCORE function, in Algorithm 1,
shows how we compute the overall score for changes in SOA
records, and like the previous component scores, higher values
indicate there were more changes between the first and second
portion of the temporal window.

2) Alembic Algorithm: The Alembic algorithm uses the
component scores to generate rankings of likely domain own-
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Algorithm 2 Alembic Algorithm

function ALEMBIC(d, h, v, s)
W ← window size

if |h| ≥W then
hi ←

W
2

records before date d in h
hj ←

W
2

records after date d in h
scoreh ← INFRA-SCORE(hi, hj)

di ← minimum date for record in hi

dj ← maximum date for record in hj

vi ← lookup distribution between [di, d] in v
vj ← lookup distribution between (d, dj ] in v
scorev ← VOL-SCORE(vi, vj)

si ← SOA records seen between [di, d] in s
sj ← SOA records seen between (d, dj ] in s
scores ← SOA-SCORE(si, sj)

return scoreh + scorev + scores
else

return 0
end if

end function

ership changes. Algorithm 2 presents a pseudo-code imple-
mentation of the Alembic algorithm.

The first step in the algorithm is to choose a window W .
This window defines the number of days worth of passive
DNS data, around some date d, required for the algorithm to
compute a change in ownership score. For example, if W =
14, then seven days worth of records before and after d are
necessary for the algorithm to run; if insufficient records are
available, the algorithm simply returns zero. In Algorithm 2,
this process results in hi and hj , which are sets of hosts seen

in A records W
2

days before and after d. These sets are used
as the input to INFRA-SCORE to compute the infrastructure
component score.

Since not all domains will have W contiguous days worth
of records around d, the algorithm tries to pick the W

2
closest

days before and after d. This may result in date ranges of
varying size for each half of W . Therefore, we compute the
date range for a window, W , by finding the minimum date,
di, associated with the records in hi and the maximum date,
dj , associated with the records in hj .

We use the date ranges [di, d] and (d, dj ] to compute the
lookup volume distributions for each portion of W around d.
If we do not have lookup volumes associated with a date in
one of these ranges, we assign it a lookup volume of zero; this
imbues information about how frequently the given domain is
resolved. The lookup volume distributions for each date range,
vi and vj , are given as inputs to the VOL-SCORE to compute
the lookup volume component score.

Next, the SOA records observed between the date ranges
[di, d] and (d, dj ] are placed into two sets, si and sj , and
these sets are given as parameters to SOA-SCORE to compute
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Fig. 6: CDF showing the distance (in days) between an
ownership change and the closest observation in our passive
DNS dataset. For 75% of the ownership changes, there is an
observation in the passive DNS dataset that is less than 20
days away.

the SOA component score.

Finally, the change of ownership score is computed as the
sum of each component score, which results in a value that
ranges between zero and three. This score should be computed
for each date that a passive DNS resolution was seen for a
domain; these scores can then be sorted from highest to lowest
to provide a ranking of dates, and corresponding ranges, which
are most likely associated with changes in domain ownership.

The resulting list can be used to provide additional informa-
tion about domains based on their residual trust. For example,
whitelists can be pruned so that benign sites undergoing an
ownership change can be quickly remapped to another appro-
priate category (e.g, “unknown” or “untrusted”) depending on
the context. Knowledge of ownership changes can be leveraged
to improve existing reputation and detection systems.

C. Efficacy of Alembic

Using the Alembic algorithm and our passive DNS dataset,
we compute the ownership scores for a sample of active
domains in DZ . In our analysis, we define a domain as active
if it was resolved at least W , with W = 14, times over any 120
day period in our dataset. This requirement filters domains for
which the lack of observations would yield unreliable results.
Similarly, we restrict our analysis to domains for which we
were able to acquire ground truth about ownership changes.
In total, we calculated 764,681 ownership scores for 11,564
domain names.

We compared the scores against known ownership changes
gathered from archives of historically collected WHOIS
data [16]: 17,838 changes in total. Figure 6 shows the distance
between actual date of change and the closest observation
date in our dataset. In short, 80% of the confirmed changes
fall within 13 days of an observation in our dataset. This
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Fig. 7: Window timespan required for W observation days
versus the distance between date of change and closest obser-
vation. This figure shows the best Alembic can perform given
the sparse nature of the DNS resolutions for the domains in
DZ .

result is important as the effectiveness of Alembic depends on
the frequency of DNS resolutions for a domain. Specifically,
Alembic requires at least W/2 observation days before and
after the candidate date. In other words, the span of the
observation window depends on the resolution frequency of the
domain. At a minimum, the window may span W consecutive
days, i.e., the domain saw a DNS resolution on all W days. In
the worst case, the domain may only be resolved once over our
dataset’s collection period. As mentioned above, we cap the
date range necessary to collect W days of resolution behavior
at 120 days. We show the date range of the observation window
with respect to the number of days away from an exact match
in Figure 7. In total, we find 4,543 (25.5%) of all changes
fall within an Alembic observation window. Encouragingly,
the bulk of these ownership change events occurred within ten
days of an observation (red line in Figure 7)—even for larger
observation ranges.

We believe our algorithm is a necessary step towards
fostering additional research into domain ownership changes.
Furthermore, our results show that Alembic, which works
without relying on archiving and parsing WHOIS records,
identifies potential changes in ownership. We plan to improve
and refine Alembic to account for multiple ownership changes
and sparsity in the input DNS data. For the latter, we propose
investigation into the relationship between the frequency of
resolutions for a domain and the span of the observation
window required to detect ownership changes. Finally, we plan
to explore other detection signals to use as component scores.

D. Additional Discoveries Using Alembic

We used Alembic to help identify abuses of both positive
and negative residual trust. Here we discuss examples that fall
into each of these categories. For the former, we highlight
previously benign domains which were later used for command
and control (C&C), leveraging the domain’s historic reputation

Date Reg. Name Reg. Email

10/15/08 Marcos Paulo dos
Santos Fortunato

marcos.fortunato

@contato.net
02/07/13 Identity Protection

Service
doctorcompany.net

@identity-protect.org

TABLE VI: Ownership changes to doctorcompany.net

to exploit whitelisting. For negative residual trust, we highlight
a potential attack vector whereby a leftover domain from a
state-sponsored threat could be used to trivially gain access to
sensitive networks where an infection has already occurred.

1) Abuse of Positive Residual Trust: Here we study cases
where Alembic helped identify cases of positive residual trust
abuse. We present a brief look at two of the 263,847 domain
names that were located by Alembic and subsequently became
malicious only after expiring.

First we look at doctorcompany.net. After expiration,
malware began using this domain for command and control
(C&C). Anti-virus analysis from VirusTotal suggests this par-
ticular malware was variant of Win32/Polif [3] (a.k.a. Symmi).
This particular threat is capable of numerous malicious ac-
tivities including downloading and executing arbitrary files,
logging keystrokes and other sensitive data, and exfiltrating
any stolen information.

Using available historic WHOIS data, we estimate that
doctorcompany.net changed owners once between 2008
and 2014. As shown in Table VI, the new owner chose to use
an identity protection service when registering the domain,
a common tactic used to by both legitimate and malicious
users to exclude personal information from WHOIS records.
Throughout the second lifetime of the domain and until its
expiration—listed in the WHOIS record as February 7, 2014—
the domain used the same nameservers, suggesting the owner
remained the same during that year. We confirmed the domain
became available for registration again on April 29, 2014—
81 days after the listed expiry date and long enough to
have passed through the entire expiration process described
in Section II. About a month later on May 25, 2014, we
saw malicious binaries attempting to query this domain. Since
this domain had approximately six years of history without
abuse, subsequent use by malware benefited from the domain’s
positive residual trust.

Similarly, clicky.info was also used for malware
command and control (C&C) only after domain expiration. AV
analysis suggests this particular malware sample is a variant of
Win32/Nivdort [14], a trojan that steals key-presses, browsing
history, credit card information and user-names and passwords.
Using historic WHOIS, the domain’s ownership appears to
have changed eight times over the course of eight years.
A summary appears in Table VII. Using historic WHOIS,
we were able to confirm this domain was in pending delete
status on February 11, 2014, and we subsequently confirmed
its expiration on February 13, 2014 using the techniques
mentioned in Section IV-A. As seen in Table VII, it was
subsequently seen re-registered on March 9, 2014. The first
observed communication by malware to this domain occurred

702702
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Date Reg. Name Reg. Email

03/16/06 Kim Fisher jadothebest@hotmail.com
03/23/07 Derek Giordano Derek@generalrate.com
01/01/09 Anders Oie anders oie@hotmail.com
04/05/10 Rubalier cvx.conts@gmail.com
10/20/10 barry harding bharding777@gmail.com
11/30/12 WANG SONGXU sdwildcat@163.com
11/26/13 del del del@del.del
03/09/14 Jeffrey Aikman Roldvale@aol.com

TABLE VII: Ownership changes to clicky.info

on March 15, 2014—less than a week after being re-registered.
Consequently, malware using this domain is able to leverage
almost eight years of positive residual trust.

The WHOIS data for clicky.info shown in Table VII
also highlights that that ownership changes are not always
preceded by an expiration (domain registrations typically last
at least one year). This further motivates the need for an
algorithm like Alembic that helps locate ownership changes
and illustrates the need for better awareness around the abuse
of residual trust in domains.

2) Abuse of Negative Residual Trust: Next, we highlight
a potential attack vector that leverages expired APT domains.
On June 9, 2014 the security company CrowdStrike publicly
released a report [2] detailing the cyber espionage activity
of PLA Unit 61486. Also known as PUTTER PANDA, Unit
61486 is a branch of the Chinese SIGINT community.4 Their
mission, according to CrowdStrike, is to steal the trade secrets
of corporations in the satellite, aerospace, and communication
industries.

CrowdStrike’s report identifies Chen Ping, as the primary
persona responsible for obtaining domains for Unit 61486’s
C&C infrastructure. This moniker was derived from the reg-
istrant email stored in the WHOIS records, cpyy.chen-
@gmail.com. We leveraged this knowledge to identify us-

reports.net, an expired domain in our dataset that was
previously registered using Chen Ping’s email. We reanimated
the domain, pointed it to a sinkhole, and found that despite
being expired for years (and Unit 61486’s activities being
publicized in high-profile white-papers) our sinkhole began
receiving connection attempts, every three seconds, from a
national government research lab in Taiwan.

It follows that any malicious party with knowledge of the
C&C protocol can capitalize on expired C&C domains to gain
entry into already compromised networks—all for the low
price of domain registration. This raises an important question:
Should domains be available for re-registration after they were
previously used for malicious purposes? We discuss this issue
more in the following section.

VI. DISCUSSION OF POTENTIAL REMEDIES

Throughout this study, we have highlighted malicious re-
registration and residual trust as the root cause of many
seemingly disparate security problems. In Section III, we

4Unit 61486 is distinct from Unit 61398 described in Mandiant’s APT1
report [1].

outlined several attacks and security lapses made possible
by the abuse of this residual trust. Current solutions only
address the symptoms of the underlying problem, not the
cause, resulting in a plethora of techniques that only address
narrow avenues of abuse. Instead, these problems would be
better solved by addressing the underlying abuse vector.

In this section, we discuss potential remedies, both non-
technical and technical, for residual trust abuse. Unfortunately,
there is no single solution that can completely solve the
problem; instead, a comprehensive remedy necessitates discus-
sion and cooperation between all affected stakeholders. Our
analysis of remedies is intended to outline the challenging
nature of the problem with the hope it will foster further
investigation by the security community.

A. Non-Technical Remedies

While any domain may carry residual trust, the severity of
potential abuse is much greater for certain types of domains,
e.g., those previously used by financial institutions or critical
infrastructure. In short, domains that affect large numbers of
users and systems, if abused, would benefit more from greater
protections than other less important domains.

One potential remedy is to restrict critical industries to
specially regulated zones. The idea is to limit who can register
expired domains from one of these protected zones. Indeed,
we already see this type of behavior with zones like gov

and edu. Unfortunately, there are several unresolved questions
and challenges with this solution. First, what criteria must
be met for a domain to be considered critical? Second, how
do we identify the existing critical domains? Third, assuming
such domains could be identified, how do we migrate each
domain from its existing zone? Finally, who is responsible
for creating and managing the critical zones? These questions
are made even more complicated by the global reach of the
Internet; many diverse organizations (with different goals and
motivations) would need to reach a consensus before any
global solution could be adopted.

Rather than rely on custom zones, another potential option
is to have the registrars or registries enforce special registration
policies for critical domains. This solution is attractive as it
could provide protection to critical domains under all zones
and not simply those under a special top-level domain. How-
ever, this requires identification and reporting of all critical
domains to either the registrars or registries and, for many
organizations, this could be a challenging task. It also does
not solve the problem of which domains qualify for protected
registrations. This solution may be further complicated by
the fact that any solution involving the registrars or registries
also presumes that they would be willing participants. Given
their financial interest in selling domains, there is a strong
possibility that they would be reticent to employ any policies
that make domain registration more cumbersome.

The previous two solutions focus on identifying critical do-
mains; however, such solutions do not address the case where
a non-critical domain is used as a trust anchor. For example, in
Section III-B we saw how email addresses for expired domains
were used for account management, thereby opening up the
possibility for an attacker to hijack the account using malicious
re-registration. For these domains, non-technical remedies need

703703

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 25,2024 at 02:27:43 UTC from IEEE Xplore.  Restrictions apply. 



to be augmented with technical ones; we will discuss a couple
such options in detail below.

B. Technical Remedies

When non-technical remedies fail, a technical solution is
needed to mitigate problems. There are innumerable services
that rely on third party domains, either for infrastructure or
from users, and it is unlikely that many of these domains would
fit some strict definition of a critical domain. As such, the non-
technical policies proposed above would not be sufficient.

Instead, these systems should employ some process, such
as Alembic (Section V), for identifying potential ownership
changes. Such changes should be used to expire or revise the
inherent residual trust of the associated domains. For instance,
systems that rely on e-mail should re-evaluate access policies
when e-mails expire or change ownership. A firewall rule that
whitelists a domain should be revised to reclassify domains
in order to avoid missing new attacks. A security information
and event management (SIEM) device that classifies a domain
as “low risk/spam/click-fraud/SEO” may revise the scoring
of domains that have changed ownership. Given the active
role of expired domains in APT attacks, this recommendation
applies equally to forensic analysts and those investigating
post-compromise events.

For smaller numbers of domains, it may be possible to use
WHOIS to identify when the residual trust of domains should
be re-evaluated, but this will not scale due to the complexities
of bulk WHOIS collection. Furthermore, the lack of consistent
formatting, use of privacy protection services, and inconsistent
verification of WHOIS data may cause inferences relying on
it to be unreliable. A system like Alembic could be used
to address some of those concerns. In particular, it could be
used to help identify ownership changes when scaling WHOIS
becomes untenable, and since it relies on underlying network
properties, it may find ownership changes that would be missed
in WHOIS due to unreliable or forged data.

Dealing with residual trust is a challenging problem, but
ignoring it exposes users and systems to a host of security
issues. A comprehensive solution for this problem will require
additional research and discussion by the security community.

VII. RELATED WORK

There has been a wealth of research focused on using
DNS as a tool for detecting malicious behavior. For example,
researchers have previously used elements of DNS to classify
malicious websites [37], [23]. Other researchers have used
DNS information to understand and predict future malicious
behavior [42], [43], [27], [29] and identify previously unknown
malicious domains [19], [17], [18], [51], [40], [41]. In addition
to using DNS for prediction and detection of malicious in-
frastructure, other work has focused on protecting the domain
name system itself from abuse [25], [20]. Even commercial
entities frequently use DNS-based tools to help protect against
known malicious domains through the use of blacklists [46].

Our understanding of expired domain abuse first came from
early research into the fate of failed banking domains by Moore
and Clayton [39]. Their study focused on expired financial
sites and found some instances where old, failed bank web

sites were re-registered and likely used for nefarious purposes.
However, the study authors were narrowly focused on methods
for detecting failed banking domains.

Unlike this previous work, we study how residual trust—
implicitly transferred between owners of a domain name—
affects the security of systems and entities that rely on DNS.
Our multi-year study demonstrates that residual trust abuse is
being actively exploited and the problem is growing. Further,
our work shows that this phenomenon impacts prior work by
the security community and, thereby, demonstrates the need for
more research into residual trust and malicious re-registrations.

VIII. CONCLUSIONS

Domains can change ownership for many reasons (e.g.,
expirations, auction, transfers) and the remaining residual trust
is abused by clever attackers hoping to evade whitelists, hijack
accounts, exploit software systems, or even buy access to
existing infections. In short, we find that residual trust abuse
is the root cause of many security issues on the Internet. At
its core, there are potential policy and technical remedies.
Policy remedies could identify potential avenues for exploiting
residual domain trust and prevent or police re-registrations
as appropriate. When that fails, technical remedies should
actively try to identify ownership changes; we propose one
such algorithm, Alembic.

Using a dataset of 179,326,265 expired domains spanning
from December 2008 to July 2015, we quantify and character-
ize residual trust abuse and malicious re-registration. We found
that 385,741 expired domains were contacted by malware or
appeared on a public blacklist. This intersection contained
almost a third, 101,322 (31.7%), of public blacklists domains
in our dataset, and more troubling, a little over quarter, 27,758
(27.4%), of these domains expired before being blacklisted. In
addition, only 3,327 (1.4%) domains contacted by malware
after expiration ever appeared on a public blacklist. These
findings demonstrate that the residual trust of expiring domains
is being actively exploited. To make matters worse, we observe
that the number of domains showing up on blacklists after
expiration has grown from 784 between 2009 and 2012 to
over 9,000 domains in 2014 alone; this shows that residual
trust abuse is a growing phenomenon.

In order to help the research community flag poten-
tially dangerous reanimated domain names, we developed
a lightweight algorithm to rank potential domain ownership
changes using only features that can be passively collected
from DNS. We used this algorithm to identify several cases
of residual trust abuse; specifically, we identified instances
where re-registered domain names were used as infrastructure
to facilitate attacks and one instance where an expired APT-
related domain name could have been re-registered to gain
access to an overseas government research lab.
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