
Automated Analysis and Verification of TLS 1.3:
0-RTT, Resumption and Delayed Authentication

Cas Cremers, Marko Horvat
Department of Computer Science

University of Oxford, UK

Sam Scott, Thyla van der Merwe
Information Security Group

Royal Holloway, University of London, UK

Abstract—After a development process of many months, the
TLS 1.3 specification is nearly complete. To prevent past
mistakes, this crucial security protocol must be thoroughly
scrutinised prior to deployment.

In this work we model and analyse revision 10 of the
TLS 1.3 specification using the Tamarin prover, a tool for
the automated analysis of security protocols. We specify and
analyse the interaction of various handshake modes for an
unbounded number of concurrent TLS sessions. We show that
revision 10 meets the goals of authenticated key exchange in
both the unilateral and mutual authentication cases.

We extend our model to incorporate the desired delayed
client authentication mechanism, a feature that is likely to be
included in the next revision of the specification, and uncover
a potential attack in which an adversary is able to successfully
impersonate a client during a PSK-resumption handshake.
This observation was reported to, and confirmed by, the IETF
TLS Working Group.

Our work not only provides the first supporting evidence
for the security of several complex protocol mode interactions
in TLS 1.3, but also shows the strict necessity of recent sugges-
tions to include more information in the protocol’s signature
contents.

1. Introduction

The TLS protocol is used globally by millions of users on
a daily basis, serving as the core building block for Internet
security. However, TLS is also a very complex protocol with
many possible variants and use cases, which has complicated
thorough cryptographic analysis for decades. Although TLS
has received much attention since its deployment by Netscape
as SSL in 1995, it was not until the double menace of BEAST
[19] in 2011 and CRIME [20] in 2012 that the protocol
became the subject of intense analysis and academic study;
prior to the release of these attacks, we see a number of
relevant works spanning almost two decades [6], [7], [15],
[16], [28], [29], [31], [43], [44], [45], [54], [55]. Post-2011,
we see a comparable number of works in less than 5 years [2],
[3], [4], [5], [10], [11], [12], [13], [14], [18], [23], [26], [27],
[30], [34], [35], [37], [40], many representing great advances

This work was supported by the Engineering and Physical Sciences Research
Council [grant numbers OUCL/2013/MH, EP/K035584/1].

on both the manual and automated fronts and resulting in
the discovery of many weaknesses.

The various flaws identified in TLS 1.2 [17] and be-
low, be they implementation- or specification-based, have
prompted the TLS Working Group to adopt an ‘analysis-
before-deployment’ design paradigm in drafting the next
version of the protocol, TLS 1.3 [48]. Most notably, the
cryptographic core of the new TLS handshake protocol is
largely influenced by the OPTLS protocol of Krawczyk and
Wee [35], a protocol that has been expressly designed to offer
zero Round-Trip Time (0-RTT) exchanges and ensure perfect
forward secrecy. Its simple structure lends itself to analysis
via manual and automated means, a benefit that was deemed
desirable for TLS 1.3. Although the logic of the protocol has
been simplified, the addition of 0-RTT functionality as well
as the new resumption and client authentication mechanisms
has introduced new complexity.

The overall complexity of TLS 1.3 implies that to perform
a truly complete cryptographic analysis (either manual or
tool-supported) of the entire protocol would be a substantial
undertaking, and unlikely to be completed in time for the
release of TLS 1.3.

However, given the critical importance of TLS, it is
paramount that the TLS 1.3 protocol design is critically
analysed before the protocol is finalised and deployed, to
minimise the number of potential flaws. Our work based on
tool-supported, symbolic verification of the TLS 1.3 security
guarantees contributes towards this goal.

1.1. Contributions

Our main contribution is a more comprehensive treatment
of the TLS 1.3 specification than previous works [18], [30],
[35]. Additionally, our formal model of TLS 1.3 serves as a
tool that can be extended and modified for future releases, and
therefore results in a longer-lasting benefit to the designers
of the TLS protocol. We detail our contributions below.

Comprehensive analysis. One of the most relevant and
up-to-date analyses pertaining to TLS 1.3 is arguably the
analysis of OPTLS by its designers [35]. The authors note
that their analysis is not intended to cover the full TLS 1.3
specification. In particular, they only consider the different
handshake modes in isolation. Also, they include neither

2016 IEEE Symposium on Security and Privacy

2375-1207/16 $31.00 © 2016 IEEE

DOI 10.1109/SP.2016.35

470

2016 IEEE Symposium on Security and Privacy

© 2016, Cas Cremers. Under license to IEEE.

DOI 10.1109/SP.2016.35

470

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 08:44:53 UTC from IEEE Xplore.  Restrictions apply. 



client authentication nor resumption. It is precisely this gap
that we aim to fill with our work.

We formally model and analyse TLS 1.3 revision 10
(henceforth referred to as draft-101). Since the main
decisions on the TLS 1.3 design have been made by now, we
expect to be able to incorporate any future changes directly
into our analysis.

Our analysis complements the work from [35] and
previous works [18], [30] by covering the following aspects:

• The security of, and secure interaction of, the fol-
lowing handshake modes: regular (EC)DHE mode,
(Pre-Shared Key) PSK mode, PSK-DHE mode and
0-RTT mode.

• The PSK-resumption handshake when composed
with any acceptable initial handshake, namely, an
(EC)DHE handshake, a PSK handshake, a PSK-DHE
handshake and a 0-RTT handshake.

• The security of the proposed delayed authentication
mechanism in the context of all previous modes.

• A near-complete coverage of the state transitions in
the standard. Previous works have abstracted away
message components or subprotocols, or were devel-
oped before the newer mechanisms have crystallised.

For our analysis, we use the Tamarin prover [51], a state-of-
the-art tool for the symbolic analysis of security protocols.
The Tamarin framework enables us to precisely specify and
analyse the secrecy and complex authentication properties
of the various handshake modes. Furthermore, Tamarin’s
multiset-rewriting semantics is well-suited for modelling
the complex transition system implied by the TLS 1.3
specification; the tool allows for analysing the interaction
of the assorted handshake modes as well as an unbounded
number of concurrent TLS sessions.

We consider a Dolev-Yao adversary model in which
the adversary can also reveal long-term private keys of
honest parties. Our Tamarin model includes both the client
authentication mechanism and session resumption, so our
property specifications go well beyond the basic session key
secrecy considered in [35].

We find that draft-10 achieves the standard goals of
authenticated key exchange. In particular, we show that a
client has assurances regarding the secrecy of the established
session key, as well as assurances regarding the identity
of the server with whom it has established this key. The
server obtains equivalent assurances when authenticating
the client in both the standard way, and when using the
newly introduced 0-RTT mechanism. Our analysis confirms
perfect forward secrecy of session keys and also covers the
properties of handshake integrity and secrecy of early data
keys. We verify these desirable properties in the presence
of composable handshake modes and an unbounded number
of concurrrent TLS sessions, something which has not been
done in previous TLS 1.3 analyses.

The discussion arising from the TLS Working Group
suggested a new delayed authentication mode was likely

1. We borrow this naming convention from [18].

to appear in the next revision. Our exploration of the
initial proposal for this option [46] has resulted in the
discovery of a potential attack. Specifically, an adversary is
able to impersonate a client when communicating with a
server owing to a vulnerability in the client authentication
mechanism of the PSK-resumption handshake. Our attack
highlights the strict necessity of creating a binding between
TLS 1.3 handshakes.

.

Future prospects. The scope of our model and analysis
goes well beyond draft-10. As the final modifications
are made to the TLS 1.3 specifications, the model will be
updated further and the analysis re-run. This will ensure
that no new errors are introduced with respect to current
properties, and will substantially simplify the analysis of
any new properties that may arise. Thus, we expect that our
analysis will help to inform and guide the final stages of the
TLS 1.3 design.

Acknowledgements. We would like to thank Eric Rescorla
and Martin Thomson of Mozilla and the TLS Working Group
for their invaluable inputs to this work by way of numerous
clarifying conversations.

1.2. Related work on TLS 1.3

The 0-RTT mechanism of OPTLS, and hence of TLS 1.3,
is similar to that of Google’s Quick UDP Internet Connec-
tions (QUIC) protocol [36]. Lychev et al. introduce a security
model for what they term Quick Connections (QC) protocols
and analyse QUIC within this framework [39]. Although
they do not focus on TLS 1.3, they do point out that the
0-RTT mode of TLS fits the definition of a QC protocol.
Fischlin and Günther also provide an analysis of QUIC [22]
by developing a Bellare-Rogaway style model for multi-stage
key exchange protocols.

Both QUIC and the TLS 1.3 handshake protocol can be
viewed as multi-stage key exchange protocols because the
communicating parties establish multiple session keys during
an exchange, potentially using one key to derive another.
Fischlin and Günther show QUIC to be secure within this
model and in work by Dowling et al. [18], two TLS 1.3
drafts, specifically draft-05 and draft-dh are analysed
using this framework. Although the authors showed that keys
output by the handshake protocol could be securely used by
the record protocol, at the time of writing, the TLS drafts did
not include a 0-RTT mode and resumption had not yet been
merged with the PSK mode. Kohlweiss et al. also produced
an analysis of draft-05 using a constructive-cryptography
approach [30].

Although there were changes including a reduction in
handshake latency, removal of renegotiation and a switch to
AEAD ciphers in the earlier drafts of TLS 1.3, it is not until
draft-07 that we see a radical shift in the design of the
protocol away from TLS 1.2. Hence, we argue that the results
described above may not easily transfer to later drafts. From
draft-07 onwards, we see the adoption of the OPTLS

471471

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 08:44:53 UTC from IEEE Xplore.  Restrictions apply. 



protocol of Krawczyk and Wee [35] as the foundation for
TLS 1.3. Not only is there the inclusion of 0-RTT support and
a switch to a semi-ephemeral Diffie-Hellman exchange as is
the case in OPTLS, but also the new resumption mechanism
that makes use of PSKs.

1.3. Paper organisation

In Section 2 we introduce the main new features of the
TLS 1.3 protocol and its stated security goals. We describe
how we formally model the protocol and its complex set of
behaviours in Section 3. We proceed in Section 4 by formally
specifying a range of secrecy and authentication properties
that apply to different use cases, and analyse the protocol
with respect to these properties. We consider the addition of
client authentication in PSK mode in Section 5. We conclude
in Section 6, where we also discuss future work.

2. TLS 1.3: New mechanisms, stated goals, and
security properties

We introduce the new mechanisms of TLS 1.3 in com-
parison to TLS 1.2. We then present the protocol’s intended
security properties as described by the specification.

2.1. Design

The main design goals for TLS 1.3 include [53]:

• encrypt as much of the handshake as possible,
• re-evaluate the handshake contents,
• reduce handshake latency—one Round-Trip Time

(1-RTT) for full handshakes, zero Round-Trip Time
(0-RTT) for repeated handshakes, and

• update the record protection mechanisms.

We now discuss how TLS 1.3 implements these four
requirements, as well as its key derivation procedures.

Handshake encryption. The motivation behind handshake
encryption is to reduce the amount of observable data to both
passive and active adversaries [53]. In contrast to TLS 1.2,
which only provides communicating entities with session
keys to protect application data, TLS 1.3 provides for the
establishment of additional session keys to be used for
resumption and handshake encryption purposes. Handshake
encryption begins immediately after the handshake keys have
been negotiated via a Diffie-Hellman (DH) exchange.

Handshake contents. As will be discussed in the following
section, the handshake structure has been reworked for
efficiency purposes. An additional server message has been
included to accommodate the event of a parameter mismatch,
and compression has been removed. Static DH and RSA
have been removed in favour of the PFS-supporting finite-
field ephemeral Diffie-Hellman (DHE) and elliptic-curve
ephemeral Diffie-Hellman (ECDHE) key exchange modes.
RSA certificates are still being used for the transcript-signing

keys in both the DHE and ECDHE modes (alongside ECDSA
certificates). Server-side signatures have been mandated in
all handshake modes.

Handshake latency. The TLS 1.2 handshake required a two
Round-Trip Time exchange prior to communicating entities
being able to transmit application data. The handshake has
been reworked in TLS 1.3 to require just 1-RTT if no
parameter mismatches occur.

TLS 1.3 also includes a 0-RTT option in which the
client is able to send application data as part of its first
flight of messages, offering a clear efficiency advantage over
TLS 1.2. This functionality is enabled by a server providing
a long-term (EC)DH share. On future connections to the
same server, a client is able to use this share to encrypt early
data.

Additionally, the pre-existing mechanism for Pre-Shared
Keys (PSKs) has been extended to cover session resumption.
This mode also requires a single round trip, and less
computation than a full handshake. We describe its details
when discussing PSKs and session resumption.

Record protection mechanisms. The earlier versions of
TLS used the MAC-then-Encrypt general composition
scheme as a record protection mechanism. Despite not being
secure in general [9], the particular use of this scheme in
SSL was shown to be safe in practice by Krawczyk [31].
While it is still used today in TLS 1.2, there was a proposal
to replace it by the Encrypt-Then-MAC paradigm (cf. RFC
7366 [24]). Similarly, when Krawczyk [33] announced the
OPTLS protocol on the TLS mailing list, he stated it would
use Encrypt-then-MAC for record protection. Ultimately,
the TLS working group decided that TLS 1.3 would avoid
general composition schemes by only using block ciphers
that can operate in so-called AEAD modes (Authenticated
Encryption with Additional Data, cf. [41]). All non-AEAD
ciphers have thus been removed in TLS 1.3.

Key derivation. In contrast to TLS 1.2, TLS 1.3 employs
the use of handshake traffic keys as well as application
traffic keys. This keying material is derived from two secrets,
namely the ephemeral secret (es) and the static secret (ss).
In the 1-RTT (EC)DHE handshake, the es and the ss are
identical with the secret being derived from the ephemeral
client and server key shares. In a PSK handshake, these two
values are again identical and take on the value of the PSK.
In PSK-DHE mode, the es is derived from the ephemeral
client and server key shares and the ss is the PSK. In a 0-
RTT handshake, the es is again derived from the ephemeral
client and server key shares and the ss is computed using
the server’s semi-static key share and the client’s ephemeral
key share.

The secrets described above are also used as inputs to
the HMAC-based construction, HKDF [21], [32] in order
to derive a master secret ms, a resumption secret rs and a
finished secret fs. These secrets are derived according to
the schematic presented in Figure 1.

472472

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 08:44:53 UTC from IEEE Xplore.  Restrictions apply. 



Figure 1. Key computation hierarchy for draft-10. Image from [49].

Another input to the HKDF is the handshake_hash.
This consists of a hash of all the handshake messages,
including all client and server messages, up to the present
time but excluding the Finished messages. The final value
of the handshake_hash is called the session_hash.
As such, the session keys established are cryptographically
bound to both of the shared secrets negotiated, and rely
on both parties having a matching view of the handshake
transcript.

2.2. New handshake modes

Some of the most significant changes in TLS 1.3 are due
to the newly introduced handshake mechanisms. Here we
provide a brief overview of these different modes, starting
with a description of the regular, initial handshake.

Initial (EC)DHE handshake. The solid message flows in
Figure 2 represent this handshake. Every protocol message
followed by an asterisk can be omitted if only unilateral
(server) authentication is required. Braces of the type { }
indicate encryption under the handshake traffic keys, whereas
braces of the type [ ] indicate encryption under the application
traffic keys.

A client sends a server an offer of cryptographic pa-
rameters, including a client nonce, that are later used
to establish session keys (ClientHello), and freshly
generated Diffie-Hellman (DH) key shares along with
the associated set of groups (ClientKeyShare). The
server responds with its choice of cryptographic parame-
ters, including a server nonce and a selected group from
among those offered by the client (ServerHello). The
server also sends its own freshly generated DH key share
(ServerKeyShare), extensions not used for key establish-
ment (EncryptedExtensions) and an optional semi-
static (EC)DH key share to be used in later handshakes
(ServerConfiguration). Also included in the server’s
first flight are its public key certificate for authentication
purposes (Certificate), an optional request for the
client’s certificate in the case that mutual authentication

C S

ClientHello, ClientKeyShare

HelloRetryRequest

ClientHello, ClientKeyShare

ServerHello, ServerKeyShare, {EncryptedExtensions},
{ServerConfiguration†}, {Certificate}, {CertificateRequest*},
{CertificateVerify}, {Finished}

{Certificate*}, {CertificateVerify*}, {Finished}

[Application data]

Figure 2. Full (EC)DHE handshake

is desired (CertificateRequest), and a signature on
all messages exchanged thus far (CertificateVerify).
The server’s Finished message comprises a MAC over
the entire handshake using a handshake key derived from
the DH key shares. Finally, if the client received a request
for authentication, the client either sends its own certificate
(Certificate) and a signature on the whole handshake
thus far (CertificateVerify), or a blank certificate
representing no authentication. As in the server’s case, the
client’s Finished is a MAC over the entire handshake
using a handshake key derived from the DH key shares. The
purpose of the Finished messages is to provide integrity
of the handshake as well as key confirmation.

If the client does not supply an appropriate key share
in its first flight (it may suggest groups that are unac-
ceptable to the server, for instance), the server transmits
a HelloRetryRequest message in order to entice the
client to change its key share offer. Upon receipt of this
message, the client should send a newly generated key
share. These messages are indicated as dashed arrows
in Figure 2. If no common parameters can be agreed
upon, the server will send a handshake_failure or
insufficient_security alert and the session will be
aborted.

0-RTT. Following the initial handshake in which the
server provides the client with a semi-static (EC)DH
share, the client is able to use this share to encrypt early
data. Figure 3 depicts the 0-RTT handshake. The client’s
EarlyDataIndication value signals a 0-RTT hand-
shake, which the server can choose to ignore (the server
will not process the early data and a 1-RTT handshake will
ensue). Braces of the type ( ) indicate encryption under the
early traffic keys derived from the server’s semi-static key
share and the client’s ephemeral key share.

473473

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 08:44:53 UTC from IEEE Xplore.  Restrictions apply. 



C S

ClientHello, ClientKeyShare, EarlyDataIndication,
(EncryptedExtensions), (Certificate*), (Certificate Verify*),
(ApplicationData)

ServerHello, ServerKeyShare, EarlyDataIndication,
{EncryptedExtensions}, {ServerConfiguration†},{Certificate},
{CertificateRequest*}, {CertificateVerify}, {Finished}

{Finished}

[Application data]

Figure 3. 0-RTT handshake

PSKs and session resumption. TLS 1.3 effectively merges
the PSK and session resumption functionalities of TLS 1.2
into a single handshake mode. There are two possible sources
of PSKs: session tickets and out-of-band mechanisms. While
the former are specified in draft-10, the latter have not
yet been entirely clarified with regards to their intended
implementation or assumed security properties. Figure 4
depicts a PSK handshake following an initial handshake.
Note that a new session ticket is sent by the server directly
after receiving the client’s Finished message in the initial
handshake.

C S

Initial handshake (see Figure 2)

[NewSessionTicket]

[Application data]

ClientHello, ClientKeyShare, PreSharedKeyExtension

ServerHello, PreSharedKeyExtension, {EncryptedExtensions},
{Finished}

{Finished}

[Application data]

Figure 4. PSK-resumption handshake (after an initial handshake)

The client sends a key share in its first flight of the
resumption handshake to allow for the server to decline
resumption and fall back to the full (EC)DHE handshake. The

PreSharedKeyExtension value indicates the identity
of the PSK to be used in the exchange. We note that a
PSK handshake need not only take the form of a resumption
handshake. If a client and a server share an existing secret,
a PSK handshake may be an initial handshake. PSKs may
also be used in conjunction with an EC(DHE) exchange so
as to provide forward secrecy; the corresponding mode is
called PSK-DHE.

2.3. Stated goals and security properties

The TLS record protocol is claimed to provide confiden-
tiality and integrity of application data. The TLS handshake
protocol is claimed to allow unilateral or, optionally, mutual
entity authentication, as well as establishing a shared secret
that is unavailable to eavesdroppers and adversaries who
can place themselves in the middle of the connection. The
handshake is claimed to be reliable: no adversary can modify
the handshake messages without being detected by the
communicating parties.

The security properties thus inferred from draft-10
include:

• unilateral authentication of the server (mandatory),
• mutual authentication (optional),
• confidentiality and perfect forward secrecy of session

keys, and
• integrity of handshake messages.

These properties form the focus of our analysis. Table 1
outlines the full set of desired properties from “Appendix
D: Security Analysis” of [48]. However, we note that this
appendix contains the disclaimer “Todo: Entire security
analysis needs a rewrite”, and has not been updated since
the major changes in draft-07, and hence we expect this
set of properties to be updated in future revisions.

Security property Covered by analysis Source
Unilateral authentication (server) Y D.1.1
Mutual authentication Y D.1.1
Total anonymity N D.1.1
Confidentiality of ephemeral secret Y D.1.1∗
Confidentiality of static secret Y D.1.1∗
Perfect forward secrecy Y D.1.1.1
Integrity of handshake messages Y D.1.3
Protection of application data N D.2
Denial of service N D.3
Version rollback N D.1.2
∗ specification refers to outdated master_secret

TABLE 1. TLS 1.3 DRAFT-10 PROPERTIES.

In addition to the stated goals, there are a few caveats
which are encountered in the specification. For example, the
0-RTT application data and possible client authentication
both come with a warning notice. In the 0-RTT handshake,
the client is the only party to have provided freshness,
therefore these early data messages may be replayed. In
addition, the security of the early data depends on the semi-
static (EC)DH share, which may have a considerable validity
period, and therefore a large attack window. For these reasons,
early data cannot be considered to be forward secure.

474474

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 08:44:53 UTC from IEEE Xplore.  Restrictions apply. 



3. Formally modelling the protocol behaviour

We build a formal model of the handshake and record
protocols of draft-10 in the framework of the Tamarin
prover [51]. Tamarin is well-suited for this type of analy-
sis for several reasons. First, Tamarin’s multiset-rewriting
semantics enable a direct specification of the complex state
machines of TLS, including the complex interactions between
all the handshakes, in a straightforward fashion. Second,
its state-of-the-art support for Diffie-Hellman key exchange
allows for a high degree of precision. Third, its property
specification language (a fragment of first-order logic with
quantification over time-points) lets us model the security
properties intuitively and accurately.

3.1. Tamarin fundamentals

Here we provide a brief introduction to Tamarin. For a
more detailed introduction, we suggest reading the Tamarin
manual found at [52], the PhD thesis of Schmidt [50], or
the PhD thesis of Meier [42].

Rules. The Tamarin semantics are based on multiset-
rewriting. A Tamarin model defines a transition system
whose state is a multiset of facts. The allowed transitions
are specified by rules. At a very high level, Tamarin rules
encode the behaviour of participants, as well as adversarial
capabilities. In modelling cryptographic protocols, these
rules play a role similar to oracles in Bellare-Rogaway style
models.

Tamarin rules have a left-hand side (premises), actions,
and a right-hand side (conclusions). The left-hand and right-
hand sides of rules respectively contain multisets of facts.
Facts can be consumed (when occurring in premises) and
produced (when occurring in conclusions). Each fact can
be either linear or persistent (marked with an exclamation
point). While linear facts model limited resources that cannot
be consumed more times than they are produced, persistent
facts model unlimited resources, which can be consumed
any number of times once they have been produced.

A rule can only be executed if its left-hand side can be
matched with facts that are available for consumption in the
current state. For instance, the Fresh rule depicted here
rule Fresh:
[ ]--[ ]->[ Fr(x) ]

has no premises or actions, and every execution of it produces
a single linear Fr(x) fact. Note that only the Fresh rule
can produce Fr facts, each of them unique.

Actions do not influence the transitions, but are “logged”
when rules are triggered as a means of incrementally con-
structing observable action traces that in turn represent a
record of a specific execution. As we will later see, actions
(as part of action traces) form the glue between the defined
transition system and the property specification language.

Cryptographic primitives. The ability to model crypto-
graphic protocols requires the representation of cryptographic
primitives. In Tamarin, symmetric encryption, for instance,

is modelled using two binary functions, senc and sdec,
and an equation of the form

sdec(senc(m, k), k) = m,

where k is a shared secret key and m is a message. As certain
primitives are used repeatedly across many cryptographic
protocols, there are built-in definitions for them. The Tamarin
builtins include equational theories for Diffie-Hellman group
operations, asymmetric encryption, symmetric encryption,
digital signatures and hashing.

The symmetric encryption builtin, for instance, could be
used in this simple rule that models sending encrypted data
out to a network:
rule Send:
[Fr(˜k), Fr(˜data)]--[Send(˜data)]->[Out(senc(˜data,˜k))]

The use of the builtin Out fact, as depicted in the Send rule,
denotes that a message has been sent out to the network, i.e.
senc(˜data,˜k) becomes known to the adversary. Re-
ceiving a message from the network is denoted by the corre-
sponding In fact. In other words, In(senc(˜data,˜k))
could form a premise of the rule which models receiving
encrypted data from the network. Use of the ∼ symbol
denotes a variable of the type Fresh. Other variable types
include Public, denoted by $, and Temporal, denoted
by #.

Security properties as lemmas. Tamarin formulas are spec-
ified in a fragment of first-order logic and therefore offer the
usual connectives (where & and | denote and and or, respec-
tively), quantifiers All and Ex, and timepoint ordering <.
In formulas, the prefix # denotes that the following variable
is of type timepoint. The expression Action(args)@t
denotes that Action(args) is logged in the action trace
at point t, resulting from an instantiation of a rule.

We use the Tamarin property language to encode different
kinds of properties as lemmas. These can include, for exam-
ple, basic state reachability tests as well as security properties.
We follow the common Tamarin modelling approach, in
which lemmas closely resemble properties as defined in
Bellare-Rogaway models. For instance, where a Bellare-
Rogaway definition will typically restrict the set of oracle
queries the adversary can make (e.g., it cannot query for
a decryption of the challenge ciphertext), in Tamarin we
restrict the adversary in the statement of the lemma.

Axioms. The Tamarin tool also allows for the specification
of axioms. These restrict the number of considered traces
during analysis. For example, the following axiom instructs
the Tamarin tool to only consider traces where all equality
checks succeed:
axiom Equality_Checks_Succeed:

"All x y #i. Eq(x,y) @ i ==> x = y".

We typically use axioms to avoid traces where:

• protocol participants initiate sessions with them-
selves,

• large numbers of key pairs are generated for a single
protocol participant, or,

• unnecessary features appear when constructing traces
without these features.

475475

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 08:44:53 UTC from IEEE Xplore.  Restrictions apply. 



3.2. Constructing a protocol abstraction

The first step in the modelling process is to construct an
abstraction of the handshake and record protocols which will
in turn become the subject of our analysis. We attempt
to strike a balance between a completely accurate, yet
potentially complex model, and capturing only the most
important cryptographic and algorithmic aspects of the
protocols.

Perfect cryptography. We discussed the modelling of cryp-
tography through builtins in Section 3.1. This results in the
abstraction that our cryptographic primitives are perfect. For
example, the encryption mechanism reveals nothing about
the underlying plaintext.2 Similarly, we assume:

• signatures are unforgeable,
• hash functions act as random oracles (with zero

collision probability),
• MACs are unforgeable, and
• all parties generate truly random values.

This is one of the possibilities for extending our analysis;
while the builtins assume perfect cryptography, we can
easily weaken these primitives by introducing rules which,
for example, let the adversary create signature and MAC
forgeries.

Configuration parameters. We also note that we sim-
plify our model by treating certain parameters as ab-
stract quantities within the model. For example, the
EncryptedExtensions message of a client in the 0-
RTT handshake will be logically bundled together with all
other messages of this kind and represented by the single
public value exts.

However, since these components comprise part of the
handshake transcript, we establish whether the client and
server agree on these values by the end of the handshake
through the transcript integrity property.

Alert messages. We also do not explicitly model the TLS
alert protocol; our model does not capture errors arising
from deviations in the protocol that would result in the
immediate termination of a connection (fatal alerts), or
acknowledgements of a graceful shutdown (closure alerts).

From the perspective of our model, and the security prop-
erties we are capturing, an alert and subsequent connection
closure is equivalent to a trace which simply does not have
any subsequent rules for that state.

Over-approximations. In certain situations, we assume
that the client/server will send the maximal message load.
For example, the client will always send 0-RTT data.
Similarly, we model the server as always including a
CertificateRequest message in the first flight. How-
ever, the client does not always send authentication pa-
rameters, and the server does not necessarily accept these

2. Our current analysis therefore does not cover Logjam-style attacks [2].

parameters if sent. Therefore, the possible traces we observe
are equivalent to those in which the server optionally sends
the request.

3.3. Encoding our abstract model in the Tamarin
framework

The second step in our modelling involves encoding the
constructed abstract model as Tamarin rules. At a very high
level, rules capture honest party and adversary actions alike.
In the case of legitimate clients and servers, our constructed
model rules generally correspond to all processing actions
associated with respective flights of messages.

For instance, our first client rule captures a client
generating and sending all necessary parameters as part
of the first flight of an (EC)DHE handshake, as well as
transitioning to the next client state within the model. In
Figure 5, the let...in block allows us to perform basic
variable substitutions. In practice, this is useful for enforcing
the type of variables, such as C = $C, or for keeping the rule
computations logically separated. We use the variable tid to
name the newly created client thread. The action DH(C,˜a)
allows us to map the private DH exponent ˜a to the client C.
The Start(tid, C, ’client’) action signifies the
instantiation of the client C in the role of ’client’ and
the Running(C, S, ’client’, nc) action indicates
that the client C has initiated a run of the protocol with
the server S, using the fresh value nc as what is known as
the client_random value in TLS. The C1 action simply
marks the occurrence of the C_1 rule with its associated
tid. The St_C_1_init fact encodes the local state of
thread tid, which doubles as a program counter by allowing
the client to recall sending the first message in thread tid.
The Out fact represents sending the first client message to
the network, whereafter it becomes adversarial knowledge.

Overview of client handshake rules. Figures 6 and 7
capture all relevant model rules and represent the union
of all the options that a client and a server have in a single
execution. We explain the client-side behaviour and map
it to the corresponding transitions while briefly mentioning
the intended server interaction. The client can initiate three
types of handshake: an (EC)DHE handshake (C_1), a PSK
handshake (C_1_PSK) and a 0-RTT handshake (C_1_KC);
we use KC (an abbreviation for Known Configuration) to
denote 0-RTT handshakes. In the (EC)DHE handshake, the
server may reject the client parameters due to a possible
mismatch, whereafter the client needs to provide new param-
eters (C_1_retry). Additionally, the client may optionally
authenticate in the 0-RTT case (C_1_KC_Auth). While
the (EC)DHE and 0-RTT handshakes only have a single
continuation (respectively C_2 and C_2_KC), the PSK
handshake has two different modes: plain PSK (C_2_PSK)
and PSK with DHE (C_2_PSK_DHE). The latter is used to
obtain PFS guarantees by means of adding an ephemeral
(EC)DH value to the applicable key derivations.

We model the server as always requesting client authen-
tication, but allow traces to capture when the server accepts

476476

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 08:44:53 UTC from IEEE Xplore.  Restrictions apply. 



c0start

c1−dhe

c1−psk

c1−kc

c2a c2 c3

ClientHello Receive ServerHello/Finished +
Send ClientFinished

Client
authentication

C
1

C 1 PSK

C
1 KC

C 2 PSK

C 2 PSK DHE

C 1 KC Auth

C 1 retry

C
2

C
2 KC

C 2 NoAuth

C 2 Auth C 3

C 3 NST

C send

C recv

Figure 6. Partial client state machines for draft-10 as modelled in our Tamarin analysis. The diagram represents the union of all the options for a client
in a single execution. Not depicted are the additional transitions representing a client starting a new handshake using either a PSK established by C_3_NST
or a ServerConfiguration for a 0-RTT handshake. Note that the C_1_KC_Auth edge may only occur once per handshake.

s0start

s1a−psk

s1a

s1 s2 s3

S
1

S
1

KC

S
1

KC
RecvAuth

S
1

PSK

S
1

PSK
DHE S

1
PSK

Auth
S

1
PSK

NoAuth

S
1

NoAuth

S
1

AuthReq

S 1 retry

S 2

S 2 RecvAuth

S 2 Auth

S 3

S 3 NST

S send

S recv

Process ClientHello +
Send ServerHello

Update authen-
tication state

Receive ClientFinished
(with authentication)

Update authentication status

Figure 7. Partial server state machines for draft-10 as modelled in our Tamarin analysis. The diagram represents the union of all the options for a
server in a single execution. Not depicted are the additional transitions representing a server starting a new handshake using either a PSK established by
S_3_NST or a ServerConfiguration for a 0-RTT handshake. Note that the S_2_Auth edge may only occur at most once per handshake.

authentication or not. If the client decides to authenticate,
it sends the authentication messages along with the client
Finished message (C_2_Auth). Otherwise, only the
Finished message is transmitted (C_2_NoAuth). The
handshake concludes with the client either receiving a new
session ticket (C_3_NST), which can be used for resumption
in a later PSK handshake, or doing nothing (C_3). The client
can then proceed to send (C_Send) and receive (C_Recv)
any finite number of application data messages.

We note that the figure represents a ‘snapshot’ in time
beyond the initial establishment of a connection. Conse-

quently, it lacks certain states and transitions in which the
client initiates or the server responds to a newly established
connection. We list the omissions here as rules that can
follow a previously executed rule:

• C_2→C_1_KC
• C_2_KC→C_1_KC
• S_1→S_1_KC
• S_1_KC→S_1_KC
• S_1→S_1_KC_RecvAuth
• S_1_KC→S_1_KC_Recvauth
• C_3_NST→C_1_PSK
• S_3_NST→S_1_PSK
• S_3_NST→S_1_PSK_DHE

477477

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 08:44:53 UTC from IEEE Xplore.  Restrictions apply. 



rule C_1:
let

// Default C1 values
tid = ˜nc

// Client Hello
C = $C
nc = ˜nc
pc = $pc
S = $S

// Client Key Share
ga = ’g’ˆ˜a

messages = <nc, pc, ga>
in

[ Fr(nc)
, Fr(˜a)
]

--[ C1(tid)
, Start(tid, C, ’client’)
, Running(C, S, ’client’, nc)
, DH(C, ˜a)
]->
[ St_C_1_init(tid, C, nc, pc, S,

˜a, messages, ’no_auth’)
, Out(<C, nc, pc, ga>)
]

Figure 5. Rule C 1 in our Tamarin model of TLS 1.3 draft-10

Managing model complexity. The complexity of TLS 1.3
presents an interesting challenge for automated symbolic
analysis. As Figures 6 and 7 demonstrate, the introduction of
new handshake modes has dramatically increased the number
of state transitions in comparison to TLS 1.2.

In software engineering, conditional branches are a fairly
mundane part of code. For example, the code might perform
the check: “if received client authentication then verify
signature and set client status to authenticated else do
nothing”. However, in Tamarin we require two distinct state
transitions representing these two possibilities.

The TLS handshake exhibits such conditional branching.
Ideally, branches would be represented by as few rules as
possible, which can be done by merging some of the resulting
states into one. For example, by the end of the server’s
first phase, the state needs to contain a transcript of the
received messages, the computed values of ss and es, and
the authentication status of the client.

While all four handshake modes will compute these
values in a different way, from the point of computation
onwards the server’s behaviour does not depend on the
handshake mode. Therefore these can be merged into the
resulting s1 state.

With this approach, we can create simple rules that ensure
the composability of the various protocol modes and closely
follow the original specification. For example, the numbering
of states (c1, c2, etc.) corresponds to message flights. In some
cases, we require two rules to construct a single message
flight, e.g., C_2 and C_2_Auth, wherein a client optionally
adds a signature to its final handshake message.

3.4. Examples of complex interactions

By defining the client and server rules as outlined above,
we now have the ability to model the interaction of an

unbounded number of interleaved handshakes. That is, while
we express properties in terms of a client and a server,
there may exist an unbounded number of other interacting
agents, which the adversary may additionally compromise
through revealing their long-term keys. The adversary can
then impersonate these agents, leading to an increase in the
number of possible interactions.

Consider the following scenario: a client and a server
have derived session keys after agreeing to use a PSK. We
know that at some point the client must have authenticated
the server (assuming the PSK is not from the out-of-band
mechanism). However, we potentially need to resolve an
unbounded number of handshakes before we arrive at the
initial handshake in which the client verified the server’s
signature. The Tamarin prover allows us to reason induc-
tively about such scenarios, facilitating the verification of
important security properties that are typically out of reach
of backwards unfolding.

Our Tamarin model is available for inspection at [1].

4. Formal analysis of the model

In this section, we provide the details of our analysis. In
particular, we describe our threat model, the required security
properties and how we formally model them in Tamarin. We
then give our analysis results, reflect on our findings and
provide recommendations for the TLS Working Group.

4.1. General approach and threat model

Our aim is to analyse the core security properties of the
TLS 1.3 protocol. The work on TLS 1.3 to date generally
considers subprotocols in isolation. Our work, as explained
in the previous section, also considers all the possible
complex interactions between the various subprotocols. For
these interactions, we prove both secrecy and authentication
properties.

The threat model that we consider in our analysis is an
active network adversary that can compromise the long-term
keys of agents. In particular, we consider adversaries that can
compromise the long-term keys of all agents after the thread
under attack ends (to capture PFS) as well as the long-term
keys of agents that are not the actor or the intended peer
of the attacked thread, at any time (to capture Lowe-style
MITM attacks and to contain the consequences of long-term
key compromise). Moreover, we include limited support for
Actor Key Compromise [8] by allowing the adversary to
reveal the long-term keys of the client when verifying the
unilateral authentication properties and the secrecy of early
data keys.

Similarly to standard AKE models, our threat model
has two components: the Tamarin rule that encodes the full
capability (i.e., the ability to compromise an agent’s long-
term private key) and a restriction on the security notion
that prevents the adversary from compromising all the keys
(corresponding to the fresh/clean predicates in AKE models).
We give the rule here, and return to the restrictions when
we describe the specific properties.

478478

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 08:44:53 UTC from IEEE Xplore.  Restrictions apply. 



rule Reveal_Ltk:
[ !Ltk($A, ˜ltkA) ] --[ RevLtk($A) ]-> [ Out(˜ltkA) ]

This rule can be triggered if a long-term private key ˜ltkA
was previously generated for the agent $A. The right-hand
side of the rule encodes that ˜ltkA is sent on the network,
effectively adding it to the adversary’s knowledge. Addition-
ally, we log the action RevLtk($A), which will enable us
to restrict this capability in the property specifications.

The model described in this and the previous section
describes the behaviour of the TLS 1.3 protocol in the
presence of an active network adversary. The Tamarin model
assumes the standard black-box cryptography assumption,
as outlined in Section 3.2. This view simplifies the proofs
and enables the analysis of many different security contexts.

In the two following sections, we model and verify the
required secrecy and authentication properties.

4.2. Secrecy properties and results

We formally model and analyse two main secrecy prop-
erties. The first is the secrecy of session keys that implies
perfect forward secrecy in the presence of an active adversary.
The formal property that we verify is:
lemma secret_session_keys:
(1) "All actor peer role k #i.
(2) SessionKey(actor, peer, role, <k, ’authenticated’>)@i
(3) & not ((Ex #r. RevLtk(peer)@r & #r < #i)

|(Ex #r. RevLtk(actor)@r & #r < #i))
(4) ==> not Ex #j. KU(k)@j"

Intuitively, the above property requires that for all protocol
behaviours and for all possible values of the variables on
the first line (All) (1): if an authenticated session key k is
accepted (encoded by the occurrence of the SessionKey
action) (2), and the adversary has not revealed the long-term
private keys of the actor or the peer before the session key
is accepted (3), then the adversary can not derive the key k
(4).

Our way of modelling this property is very flexible. In the
unilaterally authenticated mode, only the client establishes a
session key with the flag authenticated. In the mutually
authenticated mode, both roles log this action. These actions
can also be used to verify the appropriate secrecy properties.
As we will see later, this is also suitable for the more flexible
delayed client authentication modes that will be allowed in
the final TLS 1.3 specification.

The second property that we prove is that the client’s
early data keys are secure as long as the long-term private
key of the server is not revealed.
lemma secret_early_data_keys:
(1) "All actor peer k #i.
(2) EarlyDataKey(actor, peer, ’client’, k)@i
(3) & not (Ex #r. RevLtk(peer)@r)
(4) ==> not Ex #j. KU(k)@j"

In particular, each time (1) that a client logs that it has
produced an early data key (2) and the peer’s long-term
private keys are not compromised (3), then the adversary
does not know the early data key (4).

Proof approach in Tamarin. Many of the security proper-
ties of TLS stem from the secrecy of the shared secrets, i.e.

the ephemeral secret (es) and the static secret (ss). Proving
the secrecy of these components initially seems simple; at
its core, the main TLS mechanism includes an authenticated
Diffie–Hellman exchange. However, complications arise due
to the interactions between different handshake modes in
an unbounded number of sessions and connections, and
powerful adversarial interference.

As a first step, it is necessary to prove a few fundamental
invariant properties. These help all future proofs by either
reducing the number of contradictory dead-ends which
the prover would otherwise explore, or to help skip some
common intermediate steps. In particular, it is essential to
apply some straightforward inductive proofs to avoid falling
into the many infinite loops present.

From here, simple auxiliary lemmas can be constructed.
These lemmas help us piece together the more complicated
proofs in a modular way. For example, a common deduction
uses the fact that knowledge of the PSK implies that the
adversary must also have knowledge of some (ss, es) pair
from a previous handshake.

Ideally, the auxiliary lemmas are sufficiently small and
incremental that they can be proved automatically. Since
each describes a small property which is likely to remain
consistent throughout model changes, these can be used
to quickly incorporate changes and reproduce proofs. The
proofs for secrecy of ss and es follow from the auxiliary
lemmas in a more manageable way than would otherwise be
the case. The main burden of proof is to unravel the client
and server states to a point where the adversary needs to
break the standard Diffie-Hellman assumptions, or else the
secrecy follows from inductive reasoning.

Finally, the proof of session-key secrecy then follows
from the secrecy proofs for the ss and es values, which
are both used as key-derivation inputs. Using this approach,
we successfully verify these properties in Tamarin for the
full interaction between the modes modelled.

We note that the construction of the auxiliary lemmas
and the proving of the secrecy of ss and es requires an
intimate knowledge of TLS 1.3 and a great deal of ingenuity;
this part of the analysis is not a straightforward application
of the Tamarin tool. Considerable interaction with the tool
is required so as to correctly guide it through the proof trees
of the respective ss and es lemmas.

Separation of properties. One of the decisions made when
specifying the security properties was to separate the secrecy
and authentication requirements. Note that we could have
equally combined both into a single property, as commonly
defined in AKE models.

The benefit of this approach is twofold. First of all,
separating the properties results in a richer understanding of
the security of the protocol. For example, the structure of the
proof confirms the intuition that the secrecy of session keys
depends largely on the use of a Diffie-Hellman exchange.

The second benefit of this approach is to provide a better
foundation for future analysis. While our current model
considers the security of all handshake modes equally, there
are some discrepancies in the guarantees provided by the

479479

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 08:44:53 UTC from IEEE Xplore.  Restrictions apply. 



various handshake modes. For example, if we were to allow
adversarial compromise of semi-static secrets such as PSKs
and server semi-static DH exponents, we would discover
that the secrecy of the static secret is not immediate in all
handshake modes. By keeping the properties separate, it will
be easier to move to a more nuanced security model in the
future.

4.3. Authentication properties and results

We model authentication properties as agreement on
certain values, such as agent identities and nonces. This is a
standard way of defining authentication [38].

The first property that we model is that when a client
assumes there is a peer with whom it shares nonces, then this
is actually the case. The concrete formula is the following:
lemma entity_authentication:
(1) "All actor peer nonces #i.
(2) CommitNonces(actor, peer, ’client’, nonces)@i
(3) & not (Ex #r. RevLtk(peer)@r)
(4) ==> (Ex #j peer2.
(5) RunningNonces(peer, peer2, ’server’, nonces)@j
(6) & #j < #i)"

In detail, it specifies that when the client logs that it has
observed certain nonces at the end of its thread and thinks
it is communicating with a specific peer (1,2), and the long-
term private key of this peer was not compromised (3), then
there existed a thread (4) of that peer in the server role that
agrees on the nonces (5) earlier (6).

Note that we would like to perhaps verify that peer2 is
equal to actor, but in the unilaterally authenticated mode,
no such guarantee can be obtained.

The second property encodes that not only do the actor
and the peer agree on the nonces and who the server is, they
in fact agree on the complete transcript.
lemma transcript_agreement:
"All actor peer transcript #i.
CommitTranscript(actor, peer, ’client’, transcript)@i
& not (Ex #r. RevLtk(peer)@r)
==> (Ex #j peer2.
RunningTranscript(peer, peer2, ’server’, transcript)@j
& #j < #i)"

The above two properties only provide guarantees for
the client, as in the main use case where only the server is
authenticated.

We now turn to the (optional) server guarantees. We
have equivalent properties in the mutually authenticated case.
However, since both parties authenticate each other, we can
achieve a stronger notion of authentication, but with the
restriction that the adversary cannot reveal either long-term
key.

The third property represents the authentication guarantee
for the server, which can be obtained if the server performs
the mutually authenticated handshake or requests client
authentication.
lemma mutual_entity_authentication:
"All actor peer nonces #i.
CommitNonces(actor, peer, ’server’, nonces)@i
& not ((Ex #r. RevLtk(peer)@r)

|(Ex #r. RevLtk(actor)@r))
==> (Ex #j.
RunningNonces(peer, actor, ’client’, nonces)@j
& #j < #i)"

The fourth property is analogous to the second, and en-
sures that the server obtains a guarantee on the agreement on
the transcript with the client, after it has been authenticated.

lemma mutual_transcript_agreement:
"All actor peer transcript #i.
CommitTranscript(actor, peer, ’server’, transcript)@i
& not ((Ex #r. RevLtk(peer)@r)

|(Ex #r. RevLtk(actor)@r))
==> (Ex #j.
RunningTranscript(peer, actor, ’client’, transcript)@j
& #j < #i)"

Implicit authentication. In building the series of lemmas
which lead to the final security properties, the most prob-
lematic areas coincided with the PSK modes. In particular,
the security of the PSK handshake relies on knowing that
the resumption secret can only be known by a previous
communication partner. This is the implicit authentication
property.

While we were able to overcome this challenge and
eventually prove that this property holds, it does identify a
potentially troublesome component to analyse. As we will
see in the next section, the PSK mode certainly requires
close attention.

We note that there are a plethora of entity authentication
algorithms which could be used to add an explicit authenti-
cation step to the session resumption mechanism, some of
which can be found in [25].

4.4. Analysis conclusions

Our model from Section 3 covers many possible complex
interactions between the various modes, for an unbounded
number of sessions. When combined with the security proper-
ties in this section, this gives rise to very complex verification
problems. Nevertheless, we managed to successfully prove
the main properties. Our results imply the absence of a large
class of attacks, many of which are not covered by other
analysis methods, e.g., attacks that exploit the interaction
between the various modes. This is a very encouraging result,
since it shows that the core design underlying draft-10
is solid.

Despite this, the late addition of new functionalities can
still be problematic, as will become clear in the next section.

5. Enabling client authentication in PSK mode

While draft-10 does not yet appear to permit
certificate-based client authentication in PSK mode (and
in particular in resumption using a PSK), we extended our
model as specified in one of the proposals for this intended
functionality [46].

By enabling client authentication either in the initial
handshake, or with a post-handshake signature over the
handshake hash, our Tamarin analysis finds an attack. The
result is a violation of client authentication, as the adversary
can impersonate a client when communicating with a server.

480480

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 08:44:53 UTC from IEEE Xplore.  Restrictions apply. 



Client Alice Charlie

(As server Charlie) (As client Alice)

Server Bob

Reuse psk id
Initial handshake 1

Client not authenticated, PSK1 exchanged

Initial handshake 2
Client not authenticated, PSK2 exchanged

Generate nc

Start PSK1 resumption Start PSK2 resumptionReuse nc, psk id

client_random = nc
session_ticket = psk id

client_random = nc
session_ticket = psk id

Generate ns

Accept PSK2 resumptionAccept PSK1 resumption Recompute Finished

Reuse ns server_random = nsserver_random = ns

PSK1 resumption done PSK2 resumption doneRecompute Finished

Compute session keys
based on PSK1

Compute session keys
based on PSK1, PSK2

Compute session keys
based on PSK2

Client authentication requestClient authentication request Re-encrypt

Client authentication Client authenticationRe-encrypt

Certificate = CertAlice

CertificateVerify =
sign(nc, ns, psk id,CertAlice, . . .)

Certificate = CertAlice

CertificateVerify =
sign(nc, ns, psk id,CertAlice, . . .)

Alice is in a session with me (Bob).

Only Alice knows the session keys.

Application data exchange

Charlie impersonates Alice

Figure 8. Client impersonation attack on TLS 1.3 draft-10 if delayed client authentication allowed in PSK mode. The attack involves two handshakes,
two resumptions, and a client authentication request. A full explanation is given in Section 5.1.

481481

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 08:44:53 UTC from IEEE Xplore.  Restrictions apply. 



5.1. The attack

We note that the attack as described here is for the
delayed authentication setting, but can easily be adapted for
authentication as part of the handshake.

We now describe the attack depicted in Figure 8 in more
detail: Alice plays the role of the victim client, and Bob the
role of the targeted server. Charlie is an active man-in-the-
middle adversary, whom Alice believes to be a legitimate
server. In the interest of clarity we have omitted message
components and computations which are not relevant to the
attack. The full attack can be reproduced using our code at
[1].

The attack proceeds in three main steps, each involving
different TLS subprotocols.

Step 1: Establish legitimate PSKs. In the first stage of the
attack, Alice starts a connection with Charlie, and Charlie
starts a connection with Bob. In both connections, a PSK
is established. At this point, both handshakes are computed
honestly. Alice shares a PSK denoted PSK1 with Charlie,
and Charlie shares a PSK denoted PSK2 with Bob.

Note that Charlie ensures the session ticket (psk id) is
the same across both connections by replaying the value
obtained from Bob.

Step 2: Resumption with matching freshness. In the next
step, Alice wishes to resume a connection with Charlie using
PSK1. As usual, Alice generates a random nonce nc, and
sends it together with the PSK identifier, psk id.

Charlie re-uses the value nc to initiate a PSK-resumption
handshake with Bob, using the same identifier, psk id. Bob
responds with a random nonce ns, and the server Finished
message, computed using PSK2.

Charlie now re-uses the nonce ns, and recomputes the
server Finished message using PSK1. Alice returns her
Finished message to Charlie, who recomputes it using
PSK2.

At this point, Alice and Charlie share session keys (i.e.,
application traffic keys) derived from PSK1, and Charlie and
Bob share session keys derived from PSK2. Note that the
keys that Charlie shares with Alice and with Bob respectively,
are distinct.

Step 3: Delayed client authentication. Following the re-
sumption handshake, Charlie attempts to make a request to
Bob over their established TLS channel. The request calls for
client authentication, so Charlie is subsequently prompted
for his certificate and verification3. Charlie re-encrypts this
request for Alice.

To compute the verification signature, Alice uses the
session_hash value, which is defined as the hash of
all handshake messages excluding Finished messages. In
particular, the session hash will contain nc, ns, and the
session ticket psk id.

3. This is one of the main use cases for the delayed client authentication
mode [46].

Notice that this session hash will match the one of Charlie
and Bob. Therefore, this signature will also be accepted
by Bob. Hence, Charlie re-encrypts the signature for Bob,
who accepts Alice’s certificate and verification as valid
authentication for Charlie.

Charlie has therefore successfully impersonated Alice to
Bob, and even has full knowledge of the session keys. This
enables Charlie to impersonate Alice in future communica-
tion with Bob, allowing him to fake messages or to access
confidential resources, for instance, and violate the secrecy
of messages that Bob tries to send to Alice. Thus, the attack
completely breaks client authentication.

5.2. Underlying cause and mitigation

The above attack is possible due to the absence of a
strong binding of the client signature to the server identity.
Therefore, the attacker is able to reuse the signature it receives
to impersonate the client to a server. The second component
of the attack is that the attacker is able to force the two
resumption sessions to have matching transcripts.

This suggests several potential ways to mitigate the
attack. The most direct route would be to include the server
certificate in the handshake hash. A similar fix is done in
the 0-RTT case, where the server certificate is bound to the
semi-static DH share. However, this is not ideal, because it
complicates the out-of-band mechanism.

Another potential route might be to implement an explicit
authentication step as part of the PSK mechanism, as
suggested in Section 4.3.

In parallel to our analysis, the TLS Working Group has
proposed several modifications to draft-10 in the move
towards draft-11. One of these proposals is PR#316 [47]
(which takes a different approach to [46]), which explicitly
allows client authentication in the context that we analyse.
Additionally, PR#316 redefines the client signature based on
a new Handshake Context value, which includes the server
Finished message. Intuitively, this new definition appears
to address the attack because the adversary will need to force
the Finished messages to match across the two sessions.
However, the Finished message is bound to the PSK,
which is derived from a previously authenticated session,
whether using certificates or out-of band mechanisms.

Our discussions with members of the TLS Working
Group reveal that they were previously not aware of the
possibility of our attack, and the resulting strict necessity
for a stronger binding between the client certificate and the
security context that emerges from combining the PSK mode
with client authentication.

6. Conclusions and future work

We model TLS 1.3 draft-10 in the Tamarin prover
framework. We verify the core security properties of the
protocol in a complex setting where an unbounded number
of concurrent connections interact in various protocol modes.
We consider the unilateral and mutual authentication modes

482482

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 08:44:53 UTC from IEEE Xplore.  Restrictions apply. 



with respect to an active Dolev-Yao adversary capable of
long-term key reveal, and consider perfect forward secrecy.
We provide the first supporting evidence for the security
of several complex protocol mode interactions. Our results
imply the absence of a large class of attacks, many of which
are not covered by other analysis methods, especially attacks
that exploit the interaction between the various modes. This
is a very encouraging result, since it shows that the core
design underlying draft-10 is solid.

However, we find an attack on the delayed client au-
thentication mechanism if it can be combined with a PSK-
resumption handshake along the lines of the proposal in [46].
The attack that we find showcases the complex interactions
that are covered by our Tamarin analysis: the attack involves
two initial handshakes, two PSK-resumption handshakes,
and a client authentication exchange in which the adversary
re-encrypts messages.

Recommendations. Since the TLS Working Group aims to
include the functionality exploited by the attack, steps must
be taken to ensure the resulting mechanism is secure. Our
analysis suggests that some proposed changes to the signature
contents (cf. PR#316, [47]) can prevent the attack. The TLS
Working Group has confirmed that they were unaware that
including the Finished messages in the client authentication
was necessary to prevent this attack The question remains
if the proposed remedy of adding the Finished messages
to the handshake context of the client signature is indeed
effective in preventing all such attacks. While we plan to
give a conclusive answer to this question in the near future,
we currently wish to support the suggested inclusion.

We believe that a complete state machine, which would
contain considerably more states and transitions to account
for all the possible side-cases contained in draft-10,
should be added to the final specification to avoid any kind of
ambiguity when the protocols will be implemented or anal-
ysed. Such ambiguities can lead to incorrect implementations
and the inadvertent introduction of serious vulnerabilities,
as is pointed out in [10].

Future work. Our Tamarin model is at the stage where it
allows for checking both that basic security properties are
maintained, and that further tweaks and new functionalities
achieve their goals. This places us in a position of being able
to provide valuable feedback to the TLS Working Group
with regards to suggested protocol changes and consequently
helps to accelerate the development process. Our rigorous
analysis provides additional confidence in draft-10 and
its successors, which is critical for such an important and
elaborate protocol design.

Our analysis cannot cover all aspects of TLS 1.3. For
example, the treatment of specific ciphers is beyond the
scope of our current model. This is also why our work is
just one part of a larger, concerted effort to use all kinds
of different approaches in investigating the many different
facets of TLS 1.3.

We would also like to note that the protocol has not yet
been entirely finalised. However, many of the announced

changes, such as reordering the arguments to hashes or
merging/splitting some extensions, can be rapidly integrated
into our analysis, mostly thanks to our flexible modelling
and automation support for a large number of proofs. This
enables us to continue to help shape and support the choices
in the design of TLS 1.3 through to its completion.

References

[1] Archive with TLS 1.3 Rev 10 models and property specifica-
tions for the Tamarin prover, 2015. http://tls13tamarin.github.io/
TLS13Tamarin/.

[2] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green,
J. A. Halderman, N. Heninger, D. Springall, E. Thom, L. Valenta,
B. VanderSloot, E. Wustrow, S. Zanella-Bguelin, and P. Zimmermann.
Imperfect Forward Secrecy: How Diffie-Hellman Fails in Practice,
2015. https://weakdh.org/imperfect-forward-secrecy.pdf.

[3] N. J. AlFardan, D. J. Bernstein, K. G. Paterson, B. Poettering, and
J. C. N. Schuldt. On the Security of RC4 in TLS. In Proceedings of
the 22th USENIX Security Symposium, Washington, DC, USA, August
14-16, 2013, pages 305–320, 2013.

[4] N. J. AlFardan and K. G. Paterson. Plaintext-Recovery Attacks
Against Datagram TLS. In 19th Annual Network and Distributed
System Security Symposium, NDSS 2012, San Diego, California, USA,
February 5-8, 2012, 2012.

[5] N. J. AlFardan and K. G. Paterson. Lucky Thirteen: Breaking the TLS
and DTLS Record Protocols. In 2013 IEEE Symposium on Security
and Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013, pages
526–540, 2013.

[6] G. V. Bard. The Vulnerability of SSL to Chosen Plaintext Attack.
IACR Cryptology ePrint Archive, 2004:111, 2004.

[7] G. V. Bard. A Challenging but Feasible Blockwise-Adaptive Chosen-
Plaintext Attack on SSL. In SECRYPT 2006, Proceedings of the
International Conference on Security and Cryptography, Setúbal,
Portugal, August 7-10, 2006, SECRYPT is part of ICETE - The
International Joint Conference on e-Business and Telecommunications,
pages 99–109, 2006.

[8] D. Basin, C. Cremers, and M. Horvat. Actor key compromise:
Consequences and countermeasures. In Proc. of the 27th IEEE
Computer Security Foundations Symposium (CSF), 2014.

[9] M. Bellare and C. Namprempre. Authenticated Encryption: Relations
among Notions and Analysis of the Generic Composition Paradigm.
In T. Okamoto, editor, Advances in Cryptology ASIACRYPT 2000,
volume 1976 of Lecture Notes in Computer Science, pages 531–545.
Springer Berlin Heidelberg, 2000.

[10] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet,
M. Kohlweiss, A. Pironti, P. Strub, and J. K. Zinzindohoue. A Messy
State of the Union: Taming the Composite State Machines of TLS. In
2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose,
CA, USA, May 17-21, 2015, pages 535–552, 2015.

[11] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Pironti, and
P. Strub. Triple Handshakes and Cookie Cutters: Breaking and Fixing
Authentication over TLS. In 2014 IEEE Symposium on Security and
Privacy, SP 2014, Berkeley, CA, USA, May 18-21, 2014, pages 98–113,
2014.

[12] K. Bhargavan, C. Fournet, R. Corin, and E. Zalinescu. Verified
Cryptographic Implementations for TLS. ACM Trans. Inf. Syst. Secur.,
15(1):3, 2012.

[13] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, and P. Strub.
Implementing TLS with Verified Cryptographic Security. In 2013
IEEE Symposium on Security and Privacy, SP 2013, Berkeley, CA,
USA, May 19-22, 2013, pages 445–459, 2013.

483483

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 08:44:53 UTC from IEEE Xplore.  Restrictions apply. 



[14] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, P. Strub, and
S. Z. Béguelin. Proving the TLS Handshake Secure (as it is). IACR
Cryptology ePrint Archive, 2014:182, 2014.

[15] D. Bleichenbacher. Chosen Ciphertext Attacks Against Protocols
Based on the RSA Encryption Standard PKCS #1. In Advances in
Cryptology - CRYPTO ’98, 18th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 23-27, 1998,
Proceedings, pages 1–12, 1998.

[16] B. Canvel, A. P. Hiltgen, S. Vaudenay, and M. Vuagnoux. Password
Interception in a SSL/TLS Channel. In Advances in Cryptology -
CRYPTO 2003, 23rd Annual International Cryptology Conference,
Santa Barbara, California, USA, August 17-21, 2003, Proceedings,
pages 583–599, 2003.

[17] T. Dierks and E. Rescorla. The Transport Layer Security (TLS)
Protocol Version 1.2. RFC 5246 (Informational), August 2008.

[18] B. Dowling, M. Fischlin, F. Günther, and D. Stebila. A Cryptographic
Analysis of the TLS 1.3 Handshake Protocol Candidates. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, Denver, CO, USA, October 12-6, 2015,
pages 1197–1210, 2015.

[19] T. Duong and J. Rizzo. Here Come the ⊕ Ninjas. Unpublished
manuscript, May 2011.

[20] T. Duong and J. Rizzo. The CRIME Attack. Ekoparty Security
Conference presentation, 2012.

[21] P. Eronen and H. Krawczyk. HMAC-based Extract-and-Expand Key
Derivation Function (HKDF). RFC 5869 (Informational), May 2010.

[22] M. Fischlin and F. Günther. Multi-stage key exchange and the case of
google’s QUIC protocol. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, Scottsdale,
AZ, USA, November 3-7, 2014, pages 1193–1204, 2014.

[23] F. Giesen, F. Kohlar, and D. Stebila. On the security of TLS
renegotiation. In 2013 ACM SIGSAC Conference on Computer and
Communications Security, CCS’13, Berlin, Germany, November 4-8,
2013, pages 387–398, 2013.

[24] P. Gutmann. Encrypt-then-MAC for Transport Layer Security (TLS)
and Datagram Transport Layer Security (DTLS). RFC 7366 (Infor-
mational), September 2014.

[25] International Organization for Standardization, Genève, Switzerland.
Information technology – Security techniques – Entity authentication
– Part 2: Mechanisms using symmetric encipherment algorithms.
ISO/IEC 9798-2:2008/Cor 3:2013, 2013.

[26] T. Jager, F. Kohlar, S. Schäge, and J. Schwenk. A Standard-Model
Security Analysis of TLS-DHE. IACR Cryptology ePrint Archive,
2011:219, 2011.

[27] T. Jager, J. Schwenk, and J. Somorovsky. On the Security of TLS
1.3 and QUIC Against Weaknesses in PKCS#1 v1.5 Encryption. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, Denver, CO, USA, October 12-6, 2015,
pages 1185–1196, 2015.

[28] J. Jonsson and B. S. Kaliski Jr. On the Security of RSA Encryption
in TLS. In Advances in Cryptology - CRYPTO 2002, 22nd Annual
International Cryptology Conference, Santa Barbara, California, USA,
August 18-22, 2002, Proceedings, pages 127–142, 2002.

[29] V. Klı́ma, O. Pokorný, and T. Rosa. Attacking RSA-Based Sessions in
SSL/TLS. In Cryptographic Hardware and Embedded Systems - CHES
2003, 5th International Workshop, Cologne, Germany, September 8-10,
2003, Proceedings, pages 426–440, 2003.

[30] M. Kohlweiss, U. Maurer, C. Onete, B. Tackmann, and D. Venturi.
(De-)Constructing TLS. IACR Cryptology ePrint Archive, 2014:20,
2014.

[31] H. Krawczyk. The Order of Encryption and Authentication for
Protecting Communications (or: How Secure Is SSL?). In Advances
in Cryptology - CRYPTO 2001, 21st Annual International Cryptology
Conference, Santa Barbara, California, USA, August 19-23, 2001,
Proceedings, pages 310–331, 2001.

[32] H. Krawczyk. Cryptographic extraction and key derivation: The HKDF
scheme. In Advances in Cryptology - CRYPTO 2010, 30th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 15-19, 2010.
Proceedings, pages 631–648, 2010.

[33] H. Krawczyk. OPTLS: Signature-less TLS 1.3. TLS mailing list,
November 2014. http://www.ietf.org/mail-archive/web/tls/current/
msg14385.html.

[34] H. Krawczyk, K. G. Paterson, and H. Wee. On the Security of the
TLS Protocol: A Systematic Analysis. In Advances in Cryptology -
CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2013. Proceedings, Part I, pages 429–448,
2013.

[35] H. Krawczyk and H. Wee. The OPTLS Protocol and TLS 1.3. IACR
Cryptology ePrint Archive, 2015:978, 2015.

[36] A. Langley and W. Chang. QUIC Crypto, June 2013.
Available at https://docs.google.com/document/d/1g5nIXAIkN
Y-7XJW5K45IblHd L2f5LTaDUDwvZ5L6g/.

[37] Y. Li, S. Schäge, Z. Yang, F. Kohlar, and J. Schwenk. On the
Security of the Pre-shared Key Ciphersuites of TLS. In Public-Key
Cryptography - PKC 2014 - 17th International Conference on Practice
and Theory in Public-Key Cryptography, Buenos Aires, Argentina,
March 26-28, 2014. Proceedings, pages 669–684, 2014.

[38] G. Lowe. A Hierarchy of Authentication Specifications. In Proceedings
of the 10th IEEE Workshop on Computer Security Foundations, CSFW
’97, pages 31–, Washington, DC, USA, 1997. IEEE Computer Society.

[39] R. Lychev, S. Jero, A. Boldyreva, and C. Nita-Rotaru. How Secure
and Quick is QUIC? Provable Security and Performance Analyses. In
2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose,
CA, USA, May 17-21, 2015, pages 214–231, 2015.

[40] N. Mavrogiannopoulos, F. Vercauteren, V. Velichkov, and B. Preneel.
A cross-protocol attack on the TLS protocol. In the ACM Conference
on Computer and Communications Security, CCS’12, Raleigh, NC,
USA, October 16-18, 2012, pages 62–72, 2012.

[41] D. McGrew. An Interface and Algorithms for Authenticated Encryp-
tion. RFC 5116 (Informational), January 2008.

[42] S. Meier. Advancing automated security protocol verification, 2013.
Doctoral thesis, ETH Zurich, Switzerland.

[43] P. Morrissey, N. P. Smart, and B. Warinschi. A Modular Security
Analysis of the TLS Handshake Protocol. IACR Cryptology ePrint
Archive, 2008:236, 2008.

[44] K. G. Paterson, T. Ristenpart, and T. Shrimpton. Tag Size Does Matter:
Attacks and Proofs for the TLS Record Protocol. In Advances in
Cryptology - ASIACRYPT 2011 - 17th International Conference on the
Theory and Application of Cryptology and Information Security, Seoul,
South Korea, December 4-8, 2011. Proceedings, pages 372–389, 2011.

[45] L. C. Paulson. Inductive Analysis of the Internet Protocol TLS. ACM
Trans. Inf. Syst. Secur., 2(3):332–351, 1999.

[46] A. Popov. TLS 1.3 client authentication. In Meeting proceedings of
the IETF-93 Workshop, Prague. Retrieved from https://www.ietf.org/
proceedings/93/slides/slides-93-tls-2.pdf, 2015.

[47] E. Rescorla. TLS 1.3 specification pull request: Wip client auth
revision #316. https://github.com/tlswg/tls13-spec/pull/316/.

[48] E. Rescorla. The Transport Layer Security (TLS) Protocol Version
1.3 (draft, revision 10), October 2015. Available at https://tools.ietf.
org/html/draft-ietf-tls-tls13-10.

[49] E. Rescorla. TLS 1.3 status. In Meeting proceedings of the IETF-93
Workshop, Prague. Retrieved from https://www.ietf.org/proceedings/
93/slides/slides-93-tls-8.pdf, 2015.

[50] B. Schmidt. Formal analysis of key exchange protocols and physical
protocols, 2012. Doctoral thesis, ETH Zurich, Switzerland.

[51] B. Schmidt, S. Meier, C. Cremers, and D. Basin. Automated Analysis
of Diffie-Hellman Protocols and Advanced Security Properties. In
S. Chong, editor, 25th IEEE Computer Security Foundations Sym-
posium, CSF 2012, Cambridge, MA, USA, June 25-27, 2012, pages
78–94. IEEE, 2012.

484484

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 08:44:53 UTC from IEEE Xplore.  Restrictions apply. 



[52] Tamarin prover GitHub repository (develop branch). https://github.
com/tamarin-prover/tamarin-prover, 2015.

[53] Transport Layer Security Charter, February 2014. https://datatracker.
ietf.org/wg/tls/charter.

[54] S. Vaudenay. Security Flaws Induced by CBC Padding - Applications
to SSL, IPSEC, WTLS . In Advances in Cryptology - EUROCRYPT
2002, International Conference on the Theory and Applications of
Cryptographic Techniques, Amsterdam, The Netherlands, April 28 -
May 2, 2002, Proceedings, pages 534–546, 2002.

[55] D. Wagner and B. Schneier. Analysis of the SSL 3.0 Protocol. In In
Proceedings of the Second UNIX Workshop on Electronic Commerce,
pages 29–40. USENIX Association, 1996.

485485

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 26,2024 at 08:44:53 UTC from IEEE Xplore.  Restrictions apply. 


