
SoK: Lessons Learned From Android Security Research
For Appified Software Platforms

Yasemin Acar∗, Michael Backes∗†, Sven Bugiel∗, Sascha Fahl∗, Patrick McDaniel‡, Matthew Smith§
∗CISPA, Saarland University, †MPI-SWS, ‡Pennsylvania State University, §University of Bonn

Abstract—Android security and privacy research has boomed
in recent years, far outstripping investigations of other appified
platforms. However, despite this attention, research efforts are
fragmented and lack any coherent evaluation framework. We
present a systematization of Android security and privacy re-
search with a focus on the appification of software systems. To put
Android security and privacy research into context, we compare
the concept of appification with conventional operating system
and software ecosystems. While appification has improved some
issues (e.g., market access and usability), it has also introduced a
whole range of new problems and aggravated some problems
of the old ecosystems (e.g., coarse and unclear policy, poor
software development practices). Some of our key findings are
that contemporary research frequently stays on the beaten path
instead of following unconventional and often promising new
routes. Many security and privacy proposals focus entirely on the
Android OS and do not take advantage of the unique features and
actors of an appified ecosystem, which could be used to roll out
new security mechanisms less disruptively. Our work highlights
areas that have received the larger shares of attention, which
attacker models were addressed, who is the target, and who has
the capabilities and incentives to implement the countermeasures.
We conclude with lessons learned from comparing the appified
with the old world, shedding light on missed opportunities and
proposing directions for future research.

I. INTRODUCTION

Over the last couple of years, the appification of software

has drastically changed the way software is produced and con-

sumed and how users interact with computer devices. With the

rise of web and mobile applications, the number of apps with

a highly specialized, tiny feature set drastically increased. In

appified ecosystems, there is an app for almost everything, and

the market entrance barrier is low, attracting many (sometimes

unprofessional) developers. Apps are encouraged to share

features through inter-component communication, while risks

are communicated to users via permission dialogs. Based on

the large body of research available for Android as the pioneer

of open source appified ecosystems, we center this paper’s

scope on Android security and privacy research. This choice

allows us to focus on the dominant appified ecosystem with a

large real-world deployment: Android.

Motivation for a Systematization of Android/Appification
Security. The large body of literature uncovered a myriad of

appification-specific security and privacy challenges as well

as countermeasures to face these new threats. As with all new

fields of endeavor, there is no unified approach to research. As

a consequence, efforts over the last half decade necessarily

pioneered ways to examine and harden these systems. A

problem with this approach is that there are lots of fragmented

efforts to improve security and privacy in an appified platform,

but no unified framework or understanding of the ecosystem as

a whole. Therefore, we believe that it is time to systematize the

research work on security and privacy in appified platforms,

to offer a basis for more systematic future research.

Challenges and Methodology of the Systematization. While

the fragmentation of the Android security research is our

main motivation, it is at the same time our biggest challenge.

Contributions to this research field have been made in many

different areas, such as static code analysis, access control

frameworks and policies, and usable security for end users as

well as app and platform developers. To objectively evaluate

and compare the different approaches, our first step will be to

create a common understanding of the different security and

privacy challenges and a universal attacker model to express

these threats. Security solutions are by default designed with

a very specific attacker model in mind. We found that in

most Android research, this attacker model has been only

implicitly expressed. However, to understand the role of a

(new) approach within the context of Android’s appified

ecosystem, it is also important to understand which attacker

capabilities it does not cover and how different approaches

can complement each other. By studying the evaluation details

of many representative approaches from the literature, we

create a unified understanding of attacker capabilities. This

forms the basis for analyzing the security benefits of different

solutions and lays the groundwork for comparing approaches

with respect to their role in the overall ecosystem.

One insight from our analysis of the challenges in Android’s

appified ecosystem, is that some security issues are new and

unique to Android, as caused by the appification paradigm

or the result of design decisions of its architects. Other well-

known problems are aggravated by appification, while many

security issues are lessened or solved by the appification

paradigm. Such understanding is key to transcending Android

to develop a broader picture of the future of software systems

and the environments they will be placed in.

In particular, the tight integration of many non-traditional

actors in the appified ecosystem creates interesting problems

as well as opportunities. Platform developers, device vendors,

app markets, library providers, app developers, app publishers,

toolchain providers and end users all have different capabilities

and incentives to contribute (in)securely to the ecosystem. Our

systematization makes the important contribution of showing

how previous research has interacted with these actors, iden-

tifying contributing factors to our research community’s work

creating a real-world impact.

Based on our systematization of this knowledge, we draw

2016 IEEE Symposium on Security and Privacy

2375-1207/16 $31.00 © 2016 IEEE

DOI 10.1109/SP.2016.33

433

2016 IEEE Symposium on Security and Privacy

© 2016, Yasemin Acar. Under license to IEEE.

DOI 10.1109/SP.2016.33

433

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 05,2024 at 04:42:57 UTC from IEEE Xplore. Restrictions apply.

lessons learned from our community’s security research that

provide important insights into the design and implementation

of current and future appified software platforms. We also

create an overview of which areas have received focused

attention and point out areas where research went astray.

Finally, we address underrepresented areas that could benefit

from or require further analysis and effort.

Please note that we are not discussing plausible problems

and benefits of research solutions for adoption by Google or

other vendors. Such factors can be manifold, such as technical

reasons (e.g., backwards compatibility), business decisions

(e.g., interference with advertisement networks), protection

of app developers (e.g., intrusion of application sandboxes),

or usability aspects. However, without concrete first-hand

knowledge, any such discussion would merely result in spec-

ulation, which we do not consider a tangible contribution of

a systematization of knowledge.

Systematization Methodology

There is a huge body of research work on Android security

with (conservatively) over 100 papers published. Since we

aim to systematize this research as opposed to offering a

complete survey [1], we extracted key aspects and key papers

to create a foundation for our systematization. The focus of

our systematization is on security issues and challenges in

the context of appification and the app market ecosystem. We

include both offensive works (i. e. papers that uncovered new

security issues or classes of attacks) as well as defensive ones

(i. e. papers that focus on countermeasures or new security

frameworks). However, we do not focus on malware on appi-

fied platforms, as this has been dealt with in prior work [2].

We also exclude hardware-specific or other low level problems

on mobile platforms, such as CPU side-channels, differential

power analysis, or base-band attacks, which are independent

from appification.

We selected the research based on the following criteria:

• Unique/Pioneering—Security issues which are unique to

the Android ecosystem, i.e. never been seen before.

• Aggravated—Security issues which have greater impact

on an appified ecosystem than on traditional computing.

• Attention—Research on aspects that received more atten-

tion (i. e. many papers dealt with this specific aspect or

the papers received high citation counts).

• Impact—Security research that affected a large number

of users (or devices).

• Scope—Security issues which involve a large fraction of

the appified world’s actors. We include these issues since

they are particularly hard to fix.

• Open Challenges—Research worked on issues or coun-

termeasures that remain “unfinished” and highlight inter-

esting and important areas of future work.

In the following, we systematize the research using the

above rubric, extract a unified attacker model and evaluate the

work both in terms of content and also on its placement within

the Android ecosystem. We identify actors that are responsible

for the problems, would benefit from solutions, and/or have the

capability to implement and deploy them.

II. PROBLEM AND RESEARCH AREAS

To identify important problem and research areas, we com-

pare aspects of traditional software ecosystems with appified

platforms, mainly focusing on Android.

A. Conventional Software Ecosystem vs. Appified Platform
(Android)

We start our systematization by categorizing and summariz-

ing key security challenges and issues that have been identified

in the literature in both conventional software ecosystems and

the appified world. Our intention for systematizing the key

security challenges is to provide a systematic approach to help

security researchers understand the (old and new) challenges

that have been identified and to lay the foundation for a

discourse on addressing these challenges.

1) Defining the Access to Resources: Controlling access

to resources on a computer system requires 1) accurate def-

inition of the security principals and protected resources in

the system; 2) a non-bypassable and tamper-proof validation

mechanism for any access (reference monitor); and 3) a sound

security policy that governs, for all requested accesses in any

system state, whether access is allowed or should be denied.

Android deviates from conventional OSes in all three aspects:

a) System Security Principals: Conventional systems are

primarily designed as multi-user systems with human users

that have processes executing on their behalf. A small number

of dedicated user IDs is assigned to system daemons and

services that do not execute on behalf of a human user.

Appified security models build on the classic multi-user

system: not only is the human user of the system considered a

principal, but in fact all app developers that have their app(s)

installed on the system are considered as security principals.

Developers are represented by their app, which receives a

distinct user ID (UID), exactly like the pre-installed system

apps receive a UID. In recent Android versions with multi-

(human)-user support, the traditional UID scheme is further

extended: the UID is now a two-dimensional matrix that

identifies the combination of the app UID (i.e., developer) and

human user ID under which the app is currently running.

b) Implementation of the Reference Monitor: Conven-

tionally, reference monitoring is typically managed by the OS,

e.g., the file system and network stack, so that user processes

can build their access control on top.

Appified ecosystems also use the OS for low-level access

control. However, the extensive application frameworks on

top of which apps are deployed provide a different interface:

following the paradigm of IPC-based privilege separation

and compartmentalization in classical high assurance systems,

security- and privacy-critical functionality is consolidated into

dedicated user-space processes. Exposed IPC interfaces en-

force access control on calling processes.

434434

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 05,2024 at 04:42:57 UTC from IEEE Xplore. Restrictions apply.

c) Security Policy: In conventional software systems,

multiple privilege level(s) for a process are defined: Processes

can run as superuser (root), system services, with normal

user privileges, guest privileges, and so on. All processes

running under a certain privilege level share the same set of

permissions and may access the same set of resources.

Modern appified ecosystems make a clearer distinction

between system and third-party apps: Direct access to security-

and privacy-sensitive resources (e.g., driver interfaces or

databases) is only permitted to selected applications and

daemons of the application framework. This policy is imple-

mented, as in the conventional platforms, in the OS access con-

trol policies (i.e., discretionary and mandatory access control).

However, system apps may request access to permissions that

are not available to third-party apps. Third-party apps have by

default no permissions set, but may request their permissions

from a set commonly available to all third-party apps.

2) Sharing Functionalities: In conventional operating sys-

tems, third-party apps are usually self-contained and heavily

used to incorporate external functionalities as libraries (e.g.

the OpenSSL library to make TLS available in a program).

In addition to third-party libraries, in the appified world,

apps also share functionality through inter-component com-

munication (ICC), i.e., by providing a Service that can be

accessed through Intents or persistent IPC connections. ICC is

heavily used to access system apps such as the map, phone, or

Play app, but also popular third-party services, e.g., as offered

by the Facebook and Twitter apps.

3) Software Distribution: Conventionally, software is dis-

tributed in a decentralized way: It can be downloaded from

websites, purchased in online stores or shipped on physical

media such as USB sticks or CDs. Software comes either

in compiled binaries or, in case of open source software, as

source code that needs to be compiled before installation.

Appified ecosystems often make use of centralized stores

that distribute software/apps. These app stores allow devel-

opers to upload and distribute their software in a highly

organized way. The app markets provide search, feedback and

review interfaces for users and allow for centralized security

mechanisms that can be enforced by the markets directly.

We distinguish between commercial app markets such as

Google Play and central software repositories that are widely

used in different Linux distributions. In addition to simply

distributing software by streamlining the process of searching

and installing apps, commercial app markets have additional

responsibilities such as billing, DRM (e.g., forward locking on

Android) and in-app purchasing.

4) Software Engineering:
a) Development Process: Previously, single developers/-

companies developed software and in many cases distributed

it themselves. They followed agreed-on rules (e.g., IDE,

libraries, or frameworks to use) and could outsource in a

regulated way to contracted (sub-)companies. In appified

ecosystems, a chain of actors is responsible for the distribution

of software, which is much more loosely coupled than the

more stringent traditional development chains: The original

developer, (often) a publisher, and increasingly development

frameworks are involved.

b) Programming Environment: In conventional operating

systems, developers can choose what programming language

they want to use (within the design space that the project leaves

them), and a wide range of programming languages and frame-

works are usually available to implement software. Appified

ecosystems dictate programming languages and frameworks

to enforce compatibility with their application framework and

hence robustness of the deployed applications. Android devel-

opers, for instance, are required to use Java and the Android

SDK/NDK. App creators play a crucial role in modern appified

ecosystems: They provide easy-to-use clickable interfaces to

produce software that can be run on multiple platforms.

5) Present Classes of Programming Errors: Programming

errors, such as logic errors and run-time errors, are the

dominant sources of software vulnerabilities in conventional

software ecosystems. While recent years have demonstrated

that they are also present in mobile platforms with the same

devastating effects, the API-dependent design of apps has

introduced a new range of problems into the appified world

as a direct consequence of misuse of programming APIs of

the surrounding application framework. This differs from the

traditional ecosystem, where this class of errors is limited

mostly to library APIs, since the application framework API

is a necessity to make apps operational.

6) Webification: In conventional software ecosystems, soft-

ware is mainly self-contained and its primary functionality

does not depend on the availability of remote resources such

as web services. The appification paradigm has seen a shift

towards increasingly web service-oriented architectures that

depend on server backends to provide their promised function-

ality. At the end of the spectrum are apps that consist merely

of a webview component that appears to be local app logic,

but in fact is not much more than a restricted web browser for

the service’s backend web servers.

7) Software Update Mechanisms: Conventional OS updates

are centrally organized, while the updating process for third-

party software takes, in contrast, a greater effort: Every

program needs to be updated (and hence, often started and

restarted) separately. Only systems with a central software

distribution channel improve on this situation (e.g., Linux

distributions). The situation for updates in appified ecosystems

is currently the exact opposite. Fragmentation is a huge issue

in appified ecosystems, such as Android, and impedes the

OS update process. As many different network providers and

device vendors customize parts of the operating system, they

need to manage OS updates on their own, resulting in lengthy

and complicated update procedures. As a result, many Android

devices do not receive OS updates at all. In contrast, app

updates are straightforward and fast, as centralized app stores

push updates immediately to their users.

III. ANDROID/APPIFIED ECOSYSTEM

As an example for appification, we provide an overview of

the Android ecosystem, the actors involved and their impact

435435

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 05,2024 at 04:42:57 UTC from IEEE Xplore. Restrictions apply.

on the ecosystem’s overall security. We use Figure 1 as our

reference to introduce the actors and their interaction patterns.

A. Ecosystem Overview
At the core of appification ecosystems are the app develop-

ers, producing the millions of apps available for the end users.
The number of Android app developers is vastly larger than

for the traditional desktop software ecosystem. For instance,

in the current Play market1 roughly 460,000 distinct developer

accounts have published applications, where an account can

also belong to an entire company or team of developers.

These app developers rely on the rich APIs of the platform

SDK, which is provided by the platform developers. These

APIs provide access to core functionalities (e.g., telephony,

connectivity and sensors like accelerometers) as well as to user

data (e.g., contact management, messaging, picture gallery).
Developers can request access to those functionalities by

requesting permissions in their app’s manifest file (e.g. the

CONTACTS permissions grants access to the user’s address

book). End users are presented permission dialogs at install

time. Those dialogs present all the permissions previously

requested by a developer and inform users about an app’s

resource access. Since version 6 (Marshmallow), Android

also introduced, like iOS has done several iterations before,

the concept of dynamic permissions: a small subset of all

permissions are granted by the user at runtime when an app

requests access to protected interfaces instead of statically

at install time, and those selected permissions can also be

revoked again by the user. It is also possible for developers

to define custom permissions that can grant access to their

app’s functionality to other apps written by the same developer,

system apps, or all apps installed on the device.
Android apps are composed of Java code (compiled to

bytecode format for the CPUs of mobile platforms) and of

native code in the form of C/C++ shared libraries. Library
providers such as advertisement networks support develop-

ers in creating ad-supported apps by offering dedicated ad
libraries that apps can rely on, thus firmly integrating the ad

library in the final application package. Many apps connect

to web-services (e.g., cloud-based services or other backends)

and use web-technologies such as HTML, CSS and Javascript.

This move to web apps is typical for the appification paradigm.
Typically for the shift to appification is the way monetiza-

tion works: App developers can sell their apps to end users for

fixed one-time prices (using central app stores such as Google

Play), they can collaborate with advertisement networks by

displaying advertisements in their apps and receiving shares of

the advertisement revenues, or they can offer in-app purchases,

e.g., users can buy additional features of the app. Those

options are not mutually exclusive, but conventionally paid

apps refrain from displaying ads. Together they lower the

economic burden on developers and streamline the process

of purchasing and installing apps for end users [3].
Unlike other current appified ecosystems, Android allows

(and actually encourages) inter-component communication

1Approximately 1.5 million free apps crawled in February 2016.

TABLE I
ALL ACTORS IN THE ECOSYSTEM AND THE IMPACT OF THEIR SECURITY

DECISIONS ON THE REMAINING ACTORS.

Actor O
S

D
ev

el
o
p
er

H
ar
d
w
ar
e
V
en

d
o
r

L
ib
ra
ry

P
ro
v
id
er

S
o
ft
w
ar
e
D
ev

el
o
p
er

T
o
o
lc
h
ai
n
P
ro
v
id
er

S
o
ft
w
ar
e
P
u
b
li
sh

er

S
o
ft
w
ar
e
M

ar
k
et

E
n
d
U
se
r

OS Developer

Hardware Vendor

Library Provider

Software Developer

Toolchain Provider

Software Publisher

Software Market

End User

= fully applies; = partly applies, = does not apply at all.

(ICC), which prompts developers to divide their apps into

smaller parts (e.g., plugins) and allows them to act as service

providers (e.g., Facebook app, Play app, etc.). Technically, ICC

is based on the Linux kernel’s inter-process communication—

primarily via a new IPC mechanism called Binder. However,

since logical communication occurs between application com-

ponents such as databases, user interfaces, and services, this

Android-specific IPC has been coined as Inter-Component
Communication in the literature [4].

B. Involved Actors

Software ecosystems involve a number of actors that each

have their own rights and duties, which differ between appified

and conventional ecosystems in some aspects. We differentiate

these actors as groups of ecosystem participants, describe

their primary task(s), their power to influence the security and

privacy of the ecosystem with their decisions, and then give

concrete examples of each class of actors. Table I illustrates

the different actors, their influence on the ecosystem’s security

and privacy, and their interaction with each other.

Although feedback loops can be established between any

number of actors, in the following discussion we focus on the

potential direct impact of a security decision made by one user

on all other actors. We do not consider indirect impact, e.g.,

when users protest against or boycott certain apps and thus

force app or platform developers to react.

1) Platform Developers: Platform developers are responsi-

ble for providing the Android Open Source Platform (AOSP).

They make basic system and security decisions and all other
actors build on their secure paradigms. Library providers and

app developers are bound to the provided SDK, and app mar-

kets have to rely on Android’s open approach (instead of, for

436436

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 05,2024 at 04:42:57 UTC from IEEE Xplore. Restrictions apply.

Ecosystem Security Impact

3rd Party App
3rd Party App

Google Play 3rd Party Market

Application Framework

Advertisement
Networks

Web Services

App Developers

Inter-Process Communication

Android Platform

Sideloading

Market Operators

App Developers /
Library Providers

End User

Platform Developer /
OS Vendor

Android Middleware

Linux

Install

Access Android API

Publish AppPublish App

IPC IPC

N
et

w
or

k

Library (e.g. Ads)

Tool Chain
Provider

Uses tool chain
Tool Chain Providers

Fig. 1. The Android ecosystem: Actors and their impact on the ecosystem’s security.

example, Apple’s walled-garden ecosystem). An exception is

that device vendors can implement their own security decisions

and need not adhere to Android’s paradigms. In reality, though,

they mostly build upon the provided foundations.

2) Device Vendors: Device vendors adopt the AOSP and

customize it for their different needs. A variety of device

vendors currently share the market for mobile devices using

Android [5]. Besides adaptation of the basic Android soft-

ware stack to the vendor-specific hardware platforms, vendors

customize in order to distinguish their Android device from

their competitors’. Thus, many versions of vendor-specific

apps and modified versions of Android’s original user in-

terface are being distributed with Android-based platforms.

The impact of device vendors on the ecosystem’s security

is significant: Although, naturally, their customizations only

affect their customers, this user-base can be large in case

of big vendors such as Samsung or HTC. Device vendors

can adopt security decisions from the platform developers

or add their own solutions (cf. Samsung KNOX [6]) on

which library and app developers can build. However, device

vendors cannot change the way apps are published in markets,

which is why their impact on publishers and markets is very

limited—e.g. they could not enforce CA-signed instead of self-

signed certificates for app signing practices without breaking

Android’s guidelines.

3) Library Providers: Based on the platform’s API, library

providers build their own APIs to offer new features such as

ad services or to make the use of (possibly unnecessarily)

complicated platform APIs easier for app developers. Libraries

exist for UI components (they can but need not be attached to

network tasks) as well as for ads or crash reports. Library

developers have the power to make all apps that include

them either more or less secure. Library developers suffer or

benefit from security decisions made by platform developers

and device vendors. However, their decisions do not affect the

platform security in general. Their positive/negative security

decisions propagate to app developers who choose to use their

libraries—they can, for example, wrap badly designed pro-

gramming interfaces from platform developers. Their decisions

affect neither app publishers nor markets directly. Typically,

library providers offer ad services, networking features or app
usage evaluation features.

4) App Developers: App developers write apps using the

APIs defined by platform developers and of those libraries

they choose to include. They can opt to write code themselves

or use existing third-party code. In theory, they can make

essential contributions to security. In practice, they make

unsafe choices and implement features in the least laborious

way, which is frequently not the most secure choice.

While app developers can break secure default interfaces

provided by platform developers/device vendors (e.g. crypto

primitive API misuse), this has no effect on the platform

security in general. Their decisions neither affect app pub-

lishers nor markets directly. Still, app developers may impact

libraries’ security (e.g. as fraud is a frequently evaluated issue).

5) Toolchain Providers: Toolchain providers offer helpful

tools for app developers (e.g. the Eclipse ADT for Android

app development). They can implement many analysis tools

that help discover API misuse. Toolchain providers can fix

some weaknesses introduced by platform providers and device

vendors (e.g. confusing permission descriptions, or hard-to-use

APIs). All app developers and their users benefit/suffer from

good/bad toolchain provider support.

6) App Publishers: App publishers are professional service

providers that help developers publish their apps to certain

markets. They receive either binary or source code, add certain

properties like ads, and distribute the app to one or more app

markets. In theory, they can run preliminary analyses on the

code and report or fix bugs, as well as filter malware. If app

signing is delegated to the app publishers, they could also

437437

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 05,2024 at 04:42:57 UTC from IEEE Xplore. Restrictions apply.

surreptitiously insert malicious code. Several app publishers

maintain substantial numbers of apps [7] and thereby may sub-

stantially impact markets’ security. Hence, a single publisher’s

impact on the ecosystem’s security is rather impressive.

7) App Markets: App markets—Google Play is the most

popular one—distribute apps from developers to the end users.

Users as well as app developers rely on them to make sure that

the apps are distributed in a consistent, unchanged, reliable,

and benign way. In theory, app markets have the potential

to find not only malware, but also buggy and unsafe code.

To do this, they can apply various kinds of security analyses

techniques—such as static or dynamic code analysis—on all

apps they distribute. For example, Google Play runs suppos-

edly multiple tests on apps prior to distribution, including

static/dynamic analysis and machine learning [8]. However,

they do not run deeper checks to detect dangerous misuse of

the Android API. No app market runs (theoretically possible)

runtime tests, nor do they exclude apps signed with the same

key corresponding to different developers.

8) Users: Users are app consumers in the ecosystem. They

can make the decision to install (non-pre-installed) apps, and

have to confirm the permissions that apps request. They are

the most likely target of attacks. In theory, they can make safe

choices, as well as choose not to use important credentials.

However, a single user’s impact on the ecosystem’s security is

negligible. Users as a group have to rely on security decisions

made by all other actors in the ecosystem.

C. Global Attacker Model

We provide a taxonomy for attacker capabilities on An-

droid. This taxonomy reflects the threat models we extracted

during our systematization in Section IV and helps to later on

compare proposed countermeasures.

When considering the attacker capabilities, we had the

options to order them across capability categories or within
categories. We decided to order them within categories, since
our categories depend on too many distinct factors to be

comparable and since we base our systematization on those

categories. For instance, a user connecting frequently to public

Wi-Fi access points is susceptible to network attacks, but this

behavior does not influence other capability categories like,

e.g., piggybacking apps. We order the attacker capabilities

vertically, i.e., we rate the power of attackers in specific

capability categories. We use the following semantics to note

attacker capabilities in each category: Solid circles () denote

strong capabilities corresponding to a weak attacker model.

Half-filled circles () denote common attacker capabilities,

while hollow circles () describe the absence of any capability

in the category, strengthening the attacker model.

Next, we introduce our categories for attacker capabilities,

informally define the exact capabilities attackers may have in

each category, and explain our ordering of those capabilities.

C1—Dangerous permissions: The attacker has code run-

ning on the victim device, which has been granted dangerous
permissions () that give access to privacy sensitive user data

or control over the device that can negatively impact the user.

Dangerous permissions must be explicitly granted by the user

during app installation. We assume normal permissions ()

when the attacker has been granted only permissions that are

of lower risk and automatically granted by the system.

C2—Multiple apps: Attacker-controlled apps are running

on the user device. Full capability indicates that the attacker

has two or more apps running on the victim device (). This

would enable collusion attacks via overt and covert channels.

Half-capability () means that only one attacker-controlled app

is running on the device. In general, the capability of having at

least one app on the user device enables the attacker to engage

in ICC with other apps on the device or to scan the local file

system to the extent the attacker-controlled apps’ permissions

allow this.

C3—Piggybacking apps: The attacker re-packages other

apps and is able to modify the existing code or include new

code (). A limited piggybacking capability () is assumed if

the attacker provides code that is intentionally loaded by app

developers into their apps (e.g., libraries). Limited piggyback-

ing is assumed to be the weaker capability, because libraries

used by developers are hosted by the app (i.e., share the host

sandbox) limiting the attacker to the host app’s permissions.

In contrast, re-packaging apps allows the attacker to request

more permissions for the repackaged app.

C4—Native code: The attacker has an app containing native

code, i.e., shared libraries. This requires having at least one

app on the device under control (C2.). Native code that

implements exploit payload, native programs, or zipper/crypto

routines for obfuscation are considered as full capability ().

Non-exploit code that still provides the means to modify

the app’s memory space is assumed as half-capability ().

Although Android’s design permits all apps to contain native

code, there are apps that contain none ().

C5—Dynamic code loading: The attacker is able to dy-

namically load code at run-time () into an app (e.g., using

the Java reflection API). This requires having at least one

app on the device under control (C2.). Half-capability ()

is assumed if the attacker can inject code into another, benign

but insecure app. Dynamic code loading is assumed to be a

stronger capability than code injection, since dynamic loading

allows the attacker to use obfuscation techniques to execute

the attack surreptitiously.

C6—Network attacks: The attacker is capable of mod-

ifying/interrupting/forging the Wi-Fi and cellular network

communication of the end user device (). We assume a

passive attacker () if the attacker is only able to eavesdrop

on the communication. Technically, a network attack can be

accomplished as in traditional attacker models by, e.g., setting

up a rogue access point or base station. On Android, an

attacker can gain the same capability through a malicious VPN

app, through which all network traffic of all processes is routed

when it is activated by the user. This requires at least C2. .

438438

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 05,2024 at 04:42:57 UTC from IEEE Xplore. Restrictions apply.

T
A
B
L
E

II
S
E
C
U
R
IT

Y
C
H
A
L
L
E
N
G
E
S

IN
T
H
E

A
P
P
IF

IE
D

E
C
O
S
Y
S
T
E
M
,
A
C
T
O
R
S

C
A
P
A
B
L
E

O
F

R
E
D
R
E
S
S
IN

G
T
H
E

P
R
O
B
L
E
M

S
,
A
N
D

A
T
T
A
C
K
E
R

C
A
P
A
B
IL

IT
IE

S
C
O
N
S
ID

E
R
E
D

IN
T
H
R
E
A
T

M
O
D
E
L
S

O
F

D
IF

F
E
R
E
N
T

P
R
O
B
L
E
M

A
R
E
A
S
.C
au

sativ
e
A
cto

rs
F
ix
ab

le
b
y

A
ttack

er
cap

ab
ilities

Problem
area

Focus
R

eferences

Discussed in Section

A1. Platform Developers

A2. Device Vendors

A3. App Markets

A4. Library Providers

A5. App Developers

A6. App Publishers

A7. Toolchain Providers

A8. End Users

R1. Platform Developers

R2. Device Vendors

R3. App Markets

R4. Library Providers

R5. App Developers

R6. App Publishers

R7. Toolchain Providers

R8. End Users

C1. Sensitive permissions

C2. Multiple apps

C3. Piggybacking apps

C4. Native code

C5. Dynamic code loading

C6. Network attacks

P
erm

issio
n
-b
ased

A
ccess

C
o
n
tro

l
an

d
L
east

P
riv

ileg
e

P
erm

issio
n

A
tten

tio
n

an
d

C
o
m
p
reh

en
sio

n
b
y
E
n
d
U
sers

[9
],

[1
0
],

[1
1
]

IV
-A

1
a

P
erm

issio
n
C
o
m
p
reh

en
sio

n
b
y

A
p
p
D
ev

elo
p
ers

[1
2
],

[1
3
],

[1
4
],

[1
5
],

[1
6
],

[1
7
]

IV
-A

1
b

P
erm

issio
n

A
tten

tio
n

b
y

A
p
p

D
ev

elo
p
ers

[1
7
],

[1
8
],

[1
9
],

[2
0
],

[2
1
],

[2
2
],

[2
3
],

[2
4
],

[1
5
]

IV
-A

1
b

M
issin

g
P
riv

ileg
e
S
ep

aratio
n

[2
5
],

[2
6
],

[2
7
],

[2
8
],

[2
9
],

[3
0
],

[3
1
]

IV
-B

1
a

M
issin

g
E
ffi
cacy

o
f

S
ecu

rity
A
p
p
s

[2
],

[3
2
],

[3
3
]

IV
-B

1
b

W
eb

ifi
catio

n
Issu

es
—

[3
4
],

[3
5
],

[3
6
],

[3
7
],

[3
8
],

[3
9
]

IV
-C

1

A
P
I
M

isu
se

o
f
A
p
p
D
ev

el-
o
p
m
en

t
F
ram

ew
o
rk
s

—
[4
0
],

[4
1
],

[4
2
],

[4
3
],

[4
4
],

[3
0
],

[4
5
]

IV
-D

1

S
o
ftw

are
D
istrib

u
tio

n
C
h
an

n
els

A
p
p

P
iracy

an
d

M
alw

are
In
-

cen
tiv

es
[4
6
],

[4
7
],

[3
2
],

[4
8
],

[4
9
],

[5
0
]

IV
-E

1
a

A
p
p
licatio

n
S
ig
n
in
g
Issu

es
[1
1
],

[7
]

IV
-E

1
b

V
en

d
o
r

C
u
sto

m
izatio

n
s

an
d

F
rag

m
en

tatio
n

o
f
th
e

E
co

sy
stem

—
[2
4
],

[1
5
],

[5
1
],

[5
2
],

[5
3
]

IV
-F

1

=
fu
lly

ap
p
lies;

=
p
artly

ap
p
lies,

=
d
o
es

n
o
t
ap

p
ly

at
all.

439439

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 05,2024 at 04:42:57 UTC from IEEE Xplore. Restrictions apply.

TABLE III
CATEGORIZATION OF PROPOSED ANDROID SECURITY COUNTERMEASURES, THEIR POTENTIAL IMPLEMENTERS, AND THEIR ADDRESSED ATTACKER

MODEL.

Possible implementers Considered attacker model

Problem area Focus Solution Reference R
1
.
P
la
tf
o
rm

D
ev

el
o
p
er

R
2
.
D
ev

ic
e
V
en

d
o
r

R
3
.
A
p
p
M

ar
k
et

R
4
.
L
ib
ra
ry

P
ro
v
id
er

R
5
.
A
p
p
D
ev

el
o
p
er

R
6
.
A
p
p
P
u
b
li
sh

er

R
7
.
T
o
o
lc
h
ai
n
P
ro
v
id
er

R
8
.
U
se
r

C
1
.
S
en

si
ti
v
e
p
er
m
is
si
o
n
s

C
2
.
M

u
lt
ip
le

ap
p
s

C
3
.
P
ig
g
y
b
ac
k
in
g
ap

p
s

C
4
.
N
at
iv
e
co

d
e

C
5
.
D
y
n
am

ic
co

d
e
lo
ad

in
g

C
6
.
N
et
w
o
rk

at
ta
ck

s

Permission evolution

(Section IV-A)

System Security Extension

Kirin [17]

TaintDroid [54]

Apex [55]

Sorbet [21]

QUIRE [56]

IPC Inspection [20]

XManDroid [57]

SDK / Tool-chain Extension

Stowaway [13]

PScout [14]

Curbing Permissions [58]

HCI Modifications
Decision making process [59]

Using personal information [60]

(Meta) Data Analysis

WHYPER [61]

AutoCog [62]

DescribeMe [63]

User study Permissions remystified [64]

Permission revolution

(Section IV-B)

System Security Extension

Saint [65]

CRePE [66]

TISSA [67]

SE Android [68]

TrustDroid [69]

FlaskDroid [70]

ASM [71] ()‡ ()‡ ()‡ ()‡ ()‡

Compac [72]

AdDroid [27]

AdSplit [73]

LayerCake [74]

Binary modifications

Aurasium [75]

Dr. Android,Mr. Hide [76]

I-ARM Droid [77]

AppGuard [78]

Boxify [79]

Webification

(Section IV-C)

System Security Extensions Morbs [35]

SDK / Tool-chain Modification
NoFrak [34]

NoInjection [38]

Programming-induced leakage

(Section IV-D)

SDK / Tool-chain Extension

MalloDroid [40]

CryptoLint [43]

SSL API Redesign [42]

App Analysis

SMV-Hunter [41]

CHEX [22]

SCanDroid [80]

AndroidLeaks [81]

FlowDroid [82]

Software Distribution

(Section IV-E)

Market solution

Meteor [83]

MAST [84]

Application Transparency [7]

(Meta) Data Analysis

DroidRanger [32]

DNADroid [49]

RiskRanker [85]

CHABADA [86]

Collaborative Verification [87]

MassVet [88]

SDK / Tool-chain Extension AppInk [89]

Software Update Mechanism (Section IV-G) (Meta) Data Analysis SecUp [51] ()†

= actor must implement solution/attacker capability fully addressed; = actor should/can participate in solution/attacker capability partially addressed

= actor not involved/attacker capability not addressed.

† Requests sensitive permissions and attributes defined by a future Android OS version; ‡ Depends on loaded security module

440440

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 05,2024 at 04:42:57 UTC from IEEE Xplore. Restrictions apply.

IV. SYSTEMATIZATION OF RESEARCH AREAS IN APPIFIED

ECOSYSTEMS

Building on the differences between conventional and appi-

fied ecosystems as well as the actor and global threat model

of the Android ecosystem, we now identify fields of research

that we think need to be systematized, considering a number

of representative research papers for each field. We discuss

challenges in the respective fields, regarding the global actor

model, identifying the involved actors, their respective roles

in causing a specific problem and their potential in resolving

it. Referring to the global threat model, we summarize the

attacker capabilities assumed in the threat models required

to exploit the problem areas. Moreover, we present selected,

representative Android security countermeasures if available.

We do not claim that our systematization is all-encompassing,

nor that it includes all problem fields ever identified for

Android nor all countermeasures to known problems; however,

we took great care to choose a representative selection (see

Section I).

A. Permission Evolution

The concept of permission-based access control for priv-

ileged resources is one of the cornerstones of Android’s

security design and has received a lot of attention by the

security research community.

1) Challenges: We sub-categorize the identified problems

and challenges according to the most affected actors in the

ecosystem: the end users and app developers.

a) Permission Comprehension and Attention by End
Users: To effectively inform end users about the privacy

risks that an app imposes, it is imperative that end users

are capable of correctly perceiving the risk of granting the

access rights requested by apps. Pioneering work showed that

only a very small fraction of users could correctly associate

privacy risks with the respective permissions [9]. One potential

root cause for this lack of understanding seems to be that

permissions communicate resource access, but do not explain

how accessed data is processed and distributed [10]. Hence,

users tend to underestimate the risks ("the app will not misuse

its permissions") or overestimate the risks ("the app will steal

all my private information") [9]. A lack of user comprehension

of permissions allows attackers to create malicious apps that

request all necessary sensitive permissions for their operations

(as demonstrated, e.g., by the Geinimi Trojan [90]).

Apps published after Android v6.0 may request a small

subset of privacy-related permissions during runtime instead

of at installation. Requesting permissions dynamically when

they are required by the app should provide users with more

contextual information and help them in their decision making

process. However, Wijesekera et al. [64] have shown that this

desired contextual integrity—i.e., personal information is only

used in ways determined appropriate by the users—is not

necessarily provided by dynamic permissions and runtime con-

sent dialogs: A majority of privacy-related permission requests

occur when the user is not interacting with the requesting

application or even with the phone, and, moreover, requests

occur at a frequency that prohibits involving the user in every

decision making process. As a consequence, users failed to

establish the connection between the permission request and

the apps’ functionality and consent dialogs are only shown

during first request to grant access until manually revoked by

the users although subsequent permission checks might occur

in a different privacy-context than the initial request.

b) Permission Comprehension and Attention by App De-
velopers: Android’s security design requires app developers

to contribute to platform security by requesting, defining, and

properly enforcing permissions in order to retrieve and protect

sensitive user data. Thus, even more than for end users, it is

imperative that app developers understand permissions and the

security tools at their disposal.

Permission Comprehension by App Developers. A number

of studies [12], [13], [14], [16], [17] give insight into how app

developers comprehend permissions and, in particular, how the

SDK supports them in their task to realize least-privileged

apps (e.g., considering the stability of the permission set

or the extent to which permission-protected APIs are well-

documented). Between 30% [13] and 44.8% [12] of the

studied apps requested unnecessary permissions, i.e., were

over-privileged and in clear violation of the least-privilege

principle. Moreover, several apps have been found that request

non-existent or even wrong permissions. Even developers of

system apps, who have access to the highest privileged and

highly dangerous API functions, did not exhibit a significantly

better understanding of permissions [15].

To understand the root causes behind the developers’ incom-

prehension of permissions, the studies analyzed the Android

API documentation, finding that the API is insufficiently

documented and does not identify all permission-protected

APIs. Even worse, the documentation also contained errors,

e.g., describing the wrong permission required for an API

function. Confusing permission names also contribute to these

misconceptions. These inconsistencies and the instability of

the API impede a clear and well-developed documentation

and thereby contribute to the developers’ incomprehension of

permissions and to confusion about permission usage.

Permission Attention by App Developers. Besides develop-

ers’ (lack of) comprehension of permissions, the thoughtful-

ness of developers when enforcing permissions was studied,

as well as their level of comprehension of the mechanisms

at their disposal to accomplish this task. Although Android’s

security design incorporates important lessons learned from

prior operating system security research [91], the fact that

it allows and even encourages differently privileged apps

to communicate with each other has piqued the security

research community’s interest in how this can be exploited

by unprivileged apps to escalate their privileges [17], [18],

[19], [20], [21], [22], [23], [24], [15]. In particular, various

works have identified an increase in failure of app developers

to properly protect their app’s IPC-exposed (or exported)
interfaces and to transitively enforce permissions [20]. This

441441

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 05,2024 at 04:42:57 UTC from IEEE Xplore. Restrictions apply.

opens the attack surface for confused deputy attacks2 to, e.g.,

initiate phone calls [17], hijack ICC [19], or exfiltrate sensitive

user data [23], [22]. The root cause of many of those identified

vulnerabilities is that application components were by default

exported to be IPC-callable and thus require that the devel-

opers either explicitly protect them with permissions or hide

the components. As indicated by the uncovered vulnerabilities,

most developers are unaware of these conditions. To phrase

this in the terms of Saltzer’s and Schroeder’s secure design

principles [91]: Android failed to implement fail-safe defaults.
2) Countermeasures: Recent changes [94] in the default

installer app for Google Play aim to improve permission

perception for users. Installers present permissions with low

granularity in groups, while some commonly requested per-

missions, like INTERNET, are not presented at all anymore.

This shift in permission presentation can be viewed as a

pure user experience decision, not as an enabler of user

comprehension.
Research has made several suggestions to enhance the

usability of permissions for both end users and developers:

Kelley et al. [59] propose to enrich permission dialogs with

more detailed privacy-related information to help users make a

more informed decision. Porter Felt et al. [95] propose making

the permission-granting mechanism dependent on the kind of

permission that is requested, e.g., auto-granting non-severe

permissions with reversible side-effects, trusted UI for user-

initiated or alterable requests, or confirmation dialogs for non-

alterable, app-initiated requests that need immediate approval.

A concrete realization of trusted UI are access control gadgets

by Roesner et al. [96] that allow a user-driven delegation of

permissions to apps whenever such widgets can be effectively

integrated into the apps’ workflows. Wijesekera et al. [64]

suggest more intelligent systems that learn about their users’

privacy preferences and only confront users with consent

dialogs when a permission request is unexpected for the user.

This consent dialog should provide sufficient contextual cues

for users, e.g., clearly indicating the app requesting the access

to protected resources as well as clearly communicating why

the resource is accessed. Liu et al. [97] propose eliminating

the burden of understanding the enormous list of permissions

by using a limited set of privacy profiles including certain

permissions instead; and Felt et al. [13] propose to improve

API documentation to simplify permission requests for app

developers.
Multiple system extensions have been suggested to enhance

the permission system: The seminal Kirin [17] OS extension

used combinations of permissions requested by an app to de-

tect potential misuse of permissions and also revealed confused

deputy apps on AOSP. Apex [55] introduced dynamic and con-

ditional permission enforcement to Android. TaintDroid [54]

used dynamic taint tracking to reveal for the first time how

apps actually use permission-protected data and uncovered

a number of questionable privacy practices that motivated

2The literature has yet to agree on a fixed term. Other works designate this
attack category as permission re-delegation [20], as component hijacking [22],
or as capability leaks [24], [92]. We use the term confused deputy [93].

enhancements to the permission system and access control

on ICC. Sorbet [21] was first to model Android permissions

and uncovered problems with desired security properties (like

controlled delegation of privileges) on Android.

Some system extensions specifically aim at mitigating con-

fused deputies: XManDroid [57] primarily augments the per-

mission enforcement with policy-driven access control, where

policies specify confused deputy and collusion attacks [18],

[98] states. QUIRE [56] establishes provenance information

along ICC call paths, enabling callees to evaluate their trust

in the caller. IPC inspection [20] reduces the privileges of

callees to the privileges of the caller.

WHYPER [61] and AutoCog [62] apply NLP techniques

to automatically derive the required permissions from app

descriptions, taking developers out of the loop, and check

whether described functionality and actually requested per-

missions correspond. DescribeMe [63] takes the opposite track

and generates security-centric app descriptions from analysis

of app code in order to increase user understanding of the app.

3) Actors’ Roles: Platform developers (A1.) and market

operators (A3.) are fully responsible for the permission

comprehension problems, as the platform enforces use of the

current permission system, and the platforms’ and the markets’

installers communicate the privacy risks of installing appli-

cations to users. Library providers (A4.) contribute to this

problem through their permission requests. App developers

(A5.) tend to over-privilege their apps (either for their own

needs, or on behalf of library providers their apps use), making

apps appear unnecessarily dangerous. End users (A8.) tend to

pay little attention to permissions [9], and only have the option

of accepting everything or not installing the app at all.3 Thus,

while end users’ behavior eventually opens the door to misuse

by malware, end users have limited options and capabilities to

detect whether permissions are being misused.

This problem could potentially be fixed by platform devel-

opers (R1.) by changing their access control paradigm and

avoiding conditions for some of the identified vulnerabilities

(e.g. failing to implement fail-safe defaults). Additionally, by

helping app developers (R5.) and library providers (R4.)

in realizing security best practices for defensive programming

through tool support [13], [58] (R7.), this indirectly helps

end users. App markets (R3.) could make their permission

dialogs more comprehensive, demand justification from app

developers and run static analyses on received app packages

to adjust permissions accordingly.

4) Lesson Learned: In conventional ecosystems, neither

developers nor users were involved in the process of requesting

or granting fine-grained permissions to access resources on

a computer. Allowing developers to request and define fine-

grained permissions and presenting end users permission di-

alogs is a good idea in theory. However, research illustrates

that this approach overburdens both: Developers tend not

to focus their efforts on the selection process for permis-

3While this has changed with Android v6.0, developers nullify this change
by making their apps compatible with older Android versions.

442442

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 05,2024 at 04:42:57 UTC from IEEE Xplore. Restrictions apply.

sions [13], while end users neither understand nor pay much

attention to Android’s permission dialogs [9], [99]. Research

has strived to improve permission dialogs [59], [64], [97], but

none of these approaches has solved the two-sided usability

and comprehension problem. Permission dialogs have issues

similar to warning messages: They fail to lead to the desired

effect, as users tend to click through them, misunderstand their

purpose, and hence do not benefit from them.

Instead of continuing the current line of research, we

propose a clean break and a shift towards taking both users and

developers out of the loop: Approaches that try to automati-

cally derive the required permissions for an app based on its

category, description, and similarity to other apps seem to take

a more promising track [61], [62], [63]. Another promising

alternative seems to be authorizing entire information flows

instead of only access to resources. Although not new [100],

[101], this idea seems worth being re-investigated for appified

platforms that put the burden of granting permissions onto

their end users.

Our assessment (Permission Evolution): The decision

to realize permissions as implemented by Android was

understandable at Android’s launch, but the concept has

failed in practice, and was presumably doomed to fail

from the beginning.

B. Permission Revolution

A dedicated line of research has investigated the possibilities

of extending alternative access-control models to the Android

platform to establish more flexible, fine-grained, and manda-

tory control over system resources and ICC. This research

followed two major directions: OS extensions and Inlined

Reference Monitoring (IRM).

1) Challenges:
a) Missing Privilege Separation: The most common

third-party code distributed with apps is analytic and adver-

tisement libraries that display ads in order to monetize the app

(cf. Section III-A) [29]. More than 100 unique ad libraries are

available for the different ad networks included in more than

half of all apps [25], [26], [27], [28], [29].

The host app and third-party libraries engage in a symbiotic

relationship that currently requires mutual trust. Libraries

execute in the context of their host app’s sandbox and inherit

all privileges of their host app. However, ad libraries tend

to exploit these privileges and exhibit a variety of dangerous

behaviors, including misconduct such as insecure loading of

code from web sources [30] as well as collecting users’

private information [26]. Inversely, developers of host apps

have a strong interest in monetizing their apps. Fraudulent

app developers can exploit the symbiotic relationship [31] to

surreptitiously steal money from the ad network by faking

click events [31]. Android’s design failed to provide privilege

separation between these two principals [91], worsening the

privacy threat of ad libraries to users’ data in comparison to

conventional browser-based ads [28].

b) Ineffective Security Apps: Android follows the mantra

that "all applications are created equal" [102]. However, this

also implies that apps by external security vendors, such as

anti-virus apps, do not have higher privileges than other apps.

Studies have investigated to what extent this philosophy influ-

ences the efficacy of such security apps [2], [32], [33]. Prior

systematization of existing Android malware has evaluated

the effectiveness of existing anti-virus apps for Android and

reported that detection rates vary from 54.7%-79.6% [2], [33],

[32]. One study [33] suggests that platform support for anti-

virus apps is essential to improve their efficacy.

c) Lack of Support for Mandatory Access Control:
Mobile devices are often used in fields with strong security re-

quirements, such as enterprises and government sectors. Con-

ventional operating systems in those contexts apply advanced

access control models that protect more sensitive information

(e.g., non-interference between two distinct security levels).

The support for mandatory access control is a cornerstone of

the platform security of such established systems. Conversely,

Android lacks any support for mandatory access control.

While the requirement of supporting advanced access con-

trol schemes is intuitive and plausibe, we are not aware of

any academic security requirements analysis that focuses on

those particular stakeholders (i.e., enterprise and government

sectors) on mobile devices and that could describe the particu-

lar challenges that come with enabling support for such access

control schemes on mobile devices. Only governmental guide-

lines have been published, e.g., by NIST [103]. Consequently,

academic research has explored the particular challenges of

adding mandatory and alternative access control models to

Android from different angles, not all of which directly relate

to high-security deployment.

2) Countermeasures: To provide advanced access control

models and robust defenses against malware on Android,

research has followed two main directions for adding access

control to Android based on the responsible deployment actor.

a) Alternative Access Control Models: Early work [65],

[66], [67] explored how access control within Android’s appli-

cation framework can be more semantically rich and dynamic

and introduced mechanisms that have since been adopted by

several follow-up works. The seminal Saint [65] architecture

allows app developers to define policy-based restrictions and

conditions on ICC to and from their app. CRePE [66] ex-

tended Android with context-related access control for system

resources, where context is defined as the device state and

senseable environment. TISSA [67] introduced access control

mechanisms for fine-grained data sharing, such as returning

filtered, fake, or empty data from calls to framework APIs.

More recently, the SE Android [68] project solved the tech-

nically complex challenge of porting SELinux-based manda-

tory access control from the desktop domain to Android. While

SE Android focused on the Android OS, FlaskDroid [70]

demonstrated how SELinux’ type enforcement can be ex-

tended into the userspace components of the Android applica-

tion framework and benefit privacy protection.

443443

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 05,2024 at 04:42:57 UTC from IEEE Xplore. Restrictions apply.

Prior work specifically addressed the lack of privilege sep-

aration between the different security principals on Android.

AdDroid [27] and AdSplit [73] both propose separating adver-

tisement code into separate processes. LayerCake [74] inves-

tigated the more general problem of secure cross-application

interface embedding on Android, e.g., integrating ad libraries

or social network plugins into the host app’s UI while miti-

gating common threats such as click fraud, overlays, or focus

stealing. Compac [72] demonstrates the applicability of stack

inspection in conjunction with ICC tagging to establish per-

component access control for Android apps.

b) Inlined Reference Monitoring: A parallel line of

work [75], [76], [77], [78] has investigated inline reference

monitoring [104] for enforcing more fine-grained and dynamic

access control policies for privacy protection. These works

were mainly motivated by the deployability benefits of binary

rewriting as a foundation for IRM in contrast to OS modi-

fications, which empower end users to enhance their privacy

independently from platform developers and device vendors.

IRM solutions on Android currently make the inherent

tradeoff of abandoning a strong security boundary between

untrusted code and reference monitor, and hence their attacker

model focuses on curious-but-benign applications rather than

on malicious code. Moreover, modifying third-party code

involves legal considerations. Most recent advances in this

field [79] introduce application virtualization techniques to

Android to avoid third-party code modifications and separate

the reference monitor from untrusted code.

3) Actors’ Roles: The platform developers are able (A1. ,

R1. and R2.) to integrate more advanced access control

models, to offer better privilege separation between third party

security principals, and to provide means to integrate external

security apps. The lack of support for third-party security

apps is particularly noticeable for the platform developer actor,

since Android’s security philosophy shifts responsibility for

privacy protection to end users by forcing them to grant/deny

permission requests and by allowing them to load applications

from arbitrary sources (i.e. to bypass controlled distribution

channels like markets). Furthermore, the problem of missing

privilege separation could also be alleviated by ad network

providers (A4. , R4.) by refraining from clearly unacceptable

behavior and by implementing security best practices.

Binary rewriting solutions for IRM currently need to be

deployed by end users (R8.), who also need to configure

policies. Their technical approach would also allow software

distribution channels or toolchain providers to implement IRM

solutions for apps they distribute/create (R2. and R7.).

4) Lesson Learned: Android adopted design principles

from earlier high-assurance systems, and research has pro-

posed valuable access control extensions to their implementa-

tions on Android. Although most of the proposed OS exten-

sions are not based on a concrete requirements analysis but

rather on postulated challenges, the recent developments of

Google’s AOSP have a posteriori validated this research; and,

in fact, research results can be found in current real-world

deployments within the bounds imposed by Google’s business

model (for instance, SELinux MAC & KNOX [105], dynamic

permissions, AppOps, VPN apps, after-market ROMs). Re-

search ideas for privilege separation within app sandboxes, in

contrast, should be pushed to maturity and have to be brought

to the attention of platform developers. Like mash websites

that combine various security principals that are now privilege

separated by the browser’s sandboxing mechanims, mobile

apps that mash various security principals require an adequate

privilege separation. IRM solutions are an interim idea, but do

not take the user out of the loop (see Section IV-B) and are

limited in their security guarantees.

Since access control enforcement on Android has been

well studied, the research community should shift focus to

the canonical challenges of policy generation and verification.

Almost no attention has been given to developing useful and

real policies. Drawing from experience on desktop systems,

policies are moving targets that require decades to develop;

research for mobile systems should support this process. In

particular, Android’s strong requirement for sharing func-

tionality between apps and the shift to privacy protection

are unexplored for global policies. Moreover, at the moment

enforcement mechanisms on Android are implemented as best-

effort, and the history of OS security has shown the need for

verifying complex enforcement mechanisms and their policies.

Our assessment (Permission Revolution): Retrofitting

Android with mandatory access control has created valu-

able ideas that influenced real-world deployments. Better

privilege separation of apps should be pushed to maturity.

The research community should now refocus on open

challenges for policy generation and system verification.

C. Webification

An ongoing trend for mobile apps is webification, the inte-

gration of web content into mobile apps through technologies

like WebView. Seamless integration of apps with HTML and

JavaScript content provides portability advantages for app

developers. Through its APIs, WebView allows apps a rich,

two-way interaction with the hosted web content: Apps can

invoke JavaScript within the web page, and also monitor and

intercept events in the page as well as register interfaces that

web content can invoke to use app-local content outside the

WebView sandbox. By now, mobile web apps make up 85%

of the free apps on Play [39], [37].

1) Challenges: The webification of apps raises new security

challenges that are unique to appified mobile platforms.

Foremost, the two-way interaction between a host app and

its embedded web content requires app developers to relax the

WebView sandboxing. This enables app-to-web and web-to-

app attacks [39], [37], [34]. In app-to-web attacks, malicious

apps can inject JavaScript into hosted WebViews to extract

sensitive user information and use the WebView APIs to

navigate the WebView to untrusted websites. In web-to-app

attacks, untrusted web content (possibly also injected into an

insecure HTTP/S connection [39]) can leverage the JavaScript

bridge to the host app to escalate its privileges to the level

444444

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 05,2024 at 04:42:57 UTC from IEEE Xplore. Restrictions apply.

of its hosting app’s process to access local system resources.

In particular, popular web app creator frameworks, such as

PhoneGap, open a large attack surface for those kind of attacks

through their large web-to-app and app-to-web interfaces. [34]

Further,it has been shown [35], [39] that data flows between

apps that host different web origins can cross domains through

the default Android ICC channels, enabling cross-site scripting

and request forgery attacks by malicious apps or untrusted

web content within an app. Specifically on mobile platforms,

various means enable code to be injected into web content and

cross-site scripting attacks to be conducted [38].

2) Countermeasures: To solve the new security challenges

raised by webification, different defense strategies have been

proposed: NoFrak [34] extends the PhoneGap framework with

capability-based access control for web origins to restrict

access by web content to the functionality of the JavaScript

bridge. Along the same lines, NoInjection [38] adds saniti-

zation to the bridge of PhoneGap to prevent code injections.

Morbs [35] proposes an extension to the Android application

framework to attach origin information on ICC channels that

can cross origin between apps, thus enabling apps to apply a

same-origin policy and prevent the reported cross site scripting

and request forgery attacks. Additionally, different modifica-

tions to the Android WebView and Android IDEs have been

discussed [35], [39], such as supporting whitelisting of web

origins that have access to the JavaScript bridge; displaying

the security of WebView connections to the end user; or lint

tools to warn app developers about insecure TLS certificate

validation in WebViews.

3) Actors’ Roles: Fundamentally, platform developers are

required to integrate better isolation of web origins in Web-

Views and support origin-based access control on data flows

(R1.). Additionally, providers of web app frameworks and

app publishers are responsible for securing their web-to-app

and app-to-web bridges (R4. and R6.).

4) Lesson Learned: The trend towards web apps and usage

of web technologies lowered the hurdle for writing apps even

more. However, some of the same mistakes known from web

applications in browsers were replicated and new problems

arose. Cross-origin and web-to-app/app-to-web vulnerabilities

constitute serious security challenges for the move towards

web apps. However, since such issues are fixable by platform

developers and do not require tens of thousands of developers

or millions of end users to adopt new security mechanisms,

we think this trend is worth pushing in the future.

Our assessment (Webification): Using standard web

technology for building apps has proven satisfactory, if

somewhat initially shaky. After well-known web security

issues have been fixed and integrated with the platform’s

app sandboxing, this trend should continue.

D. Programming-induced Leaks

This section deals with challenges and countermeasures

regarding data leaks caused by developer errors for apps,

frameworks, and libraries.

1) Challenges: Android provides a comprehensive set of

APIs for app developers. A fraction of these APIs are security-

related and provide interfaces for Android’s permission sys-

tem, secure network protocols and cryptographic primitives.

Prior work has investigated the quality of security-related API

implementations: Fahl et al. [40] investigated security issues

with customized TLS certificate validation implementations in

Android apps and found widespread, serious problems with

how developers used TLS. In follow-up work, they conducted

developer interviews to learn the root causes of misusing

Android’s integrated TLS API and found that the current API

is too complex for many developers [42]. Although Android

provides safe defaults, in ≈95% of the cases app developers

decided to implement customized certificate validation mech-

anisms, the result being an active MITMA vulnerability.

An analysis on the programming quality of cryptographic

primitives such as block ciphers and message authentication

codes in Android apps by Egele et al. [43] found that 88% of

the analyzed apps made at least one mistake when using those

primitives. The authors came to the conclusion that Android’s

default configuration for cryptographic primitives is not safe

enough and that the API documentation in this area is poor.

It was also found that apps load code via insecure channels

(e.g., http) without verification of the loaded code [30]. Of

the hereby analyzed apps, 9.25% are vulnerable to insecure

code loading, meaning attackers can inject malicious code into

benign apps and turn them into malware. The authors came to

the conclusion that this is an API issue, since Android’s API

does not provide secure remote code loading.

2) Countermeasures: MalloDroid [40] is a static analysis

tool to detect broken TLS certificate validation implementa-

tions in Android apps. Fahl et al. [42] propose a redesign

of Android’s middleware/SDK to prevent developers from

willfully or accidentally breaking TLS certificate validation.

SMV-Hunter [41] is a similar approach, additionally applying

dynamic code analysis techniques. CryptoLint [43] is a static

analysis tool to detect misuse of cryptographic APIs on

Android. CHEX [22] is a static analysis tool to automatically

detect component hijacking vulnerabilities. ScanDroid [80] is

a modular data flow analysis tool for apps, which tracks data

flows through and across components. AndroidLeaks [81] is

a large-scale analysis tool to detect privacy leaks in apps

with the intention to reduce the overhead for manual security

audits. FlowDroid [82] applies static taint analysis techniques

to detect (un-)intentional privacy leaks in Android apps.

3) Actors’ Roles: Apps that misuse the above security

related APIs leave their apps vulnerable to other apps installed

on the device (C2.), to malicious dynamic code loading

(C5.) or network attacks (C6.).

A common conclusion of the above API misuse studies

is that Android’s API design does not provide safe defaults

(A1.) in many cases [43]) and when it does, these defaults

often do not match the average developer’s needs [42] (A4. ,

A5.). A study to identify the root causes of these issues

conducted with Android developers [42] suggests a redesign

of existing security related APIs with the developer’s needs

445445

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 05,2024 at 04:42:57 UTC from IEEE Xplore. Restrictions apply.

in mind (R1.). Better toolchain support to support secure

API usage (R7.) could help the developers of apps (R5.)

and library providers (R4.) to write more secure code. App

markets (R3.) could run analyses on apps to prevent insecure

apps from being installed on end users’ devices.

4) Lesson Learned: Previous research uncovered numerous

programming issues. A high number of (new) developers code

(mobile/web) apps, and security APIs seem to pose a severe

challenge for many of them. Developer interviews illustrated

that many inexperienced developers write (mobile/web) apps

and struggle to provide the basic functionality, which leaves

no room for security and privacy considerations. Many of the

provided security APIs allow for very detailed configurations,

which seem to overwhelm the average developer and result

in insecure/improper selection of security options. Developers

are on the front line of the security battle and many of them

are currently overburdened. However, user studies with de-

velopers [42] illustrate that platform developers could modify

the current API design to achieve better security by making

APIs more developer-friendly. We argue that it should become

common practice to use developer studies to test and improve

security and privacy APIs.

Our assessment (Programming-induced Leaks): Ex-

isting work on redesigning and simplifying usage of

APIs and security-related tools should be extended and

complemented by research on currently unexplored areas

of developer usability.

E. Software Distribution

Software distribution in the appified world has changed from

a decentralized to a centralized model.

1) Challenges: Android’s ecosystem has piqued the interest

into investigating the impact of its software distribution chan-

nels for the protection of end users against malicious apps. A

second challenge is the protection of app developers against

common problems such as piracy.

a) App Piracy and Malware Incentives: Pioneering work

investigated the incentives of malware developers and the state

of malware for modern smartphone operating systems like

iOS and Android [46]. The authors discovered that the most

common malware activities were collecting user information

and sending premium-rate SMS messages. This work predicted

that in the future, with proliferation of the app markets and

advertisement networks for mobile platforms, ad fraud will

be a major incentive for malware authors. This prediction

has been proven accurate by different follow-up studies [47],

[32], [48], [49], [50], [29]. With the exception of a dedicated

malware detection analysis [32], these studies focused on re-
packaged (also noted as cloned [49], [50] or piggybacked [48])

apps, which have been identified as a major malware distri-

bution method. The common bottom-line of all works (except

one [32]) is that markets contain a noticeable number of re-

packaged apps. Although all studies found trojan-like malware

in the markets, the vast majority of re-packaged apps have been

modified to siphon ad revenue from the original app authors

(e.g., by exchanging the ad lib or ad identifier), thus suggesting

that plagiarists of apps are fiscally motivated. Hence, this

majority of re-packaged apps is not strictly malware in the

sense that they harm the end user, but instead financially harm

the affected app developers [50].

The implication of this research is that besides the known

open challenge of protecting end users from malware dis-

tributed over markets, another pressing issue is the protection

of app developers against plagiarism. Both are important

factors in maintaining a healthy appified ecosystem, which

needs to be achieved primarily by app markets. A particular

challenge towards this goal is that plagiarism not only occurs

within a market, but also across markets. To fight plagiarism,

some alternative markets like Amazon’s App Store require

the app developers to participate in their DRM solutions—

with limited success [106]. Moreover, the technical enabler

for re-packaging apps has to be considered: Android apps

are signed by their developers and the signature is used to

verify install-time integrity of the installation package and to

implement a same-origin update policy. Thus, app developer

certificates can be (and are, by default) self-signed certificates

whose signature of app packages can be simply replaced with

a new signature. This allows re-packaging of apps with a low

technical knowledge and effort.

b) Application Signing Issues: Recent work [7] brought

up the central role of app markets in appified ecosystems as a

new threat for their users. Due to their central role and power

when distributing apps, app markets have enormous potential

to cheat on their users by withholding apps or updates. A

central security mechanism for software distribution is the

prior mentioned app signing with self-signed certificates. In-

vestigations [11], [7], [84] illustrate that the way app develop-

ers and publishers handle the current app signing mechanism

undermines the mechanism’s intention: Many developers and

publishers use one single key to sign up to 25,000 apps.

Without having effective revocation mechanisms at hand, such

practices are a serious threat to Android users. For instance,

Android allows developers to define permissions that are only

available to apps with the same origin (i.e., signing key) in

order to establish secure ICC. This same-origin assumption

(and with it secure ICC) is defeated by these inappropriate

app certification practices.

2) Countermeasures: Different market-enabled solutions

have been proposed to address the malware problem: Me-
teor [83] addresses security issues arising from multi-market

environments by providing the same security semantics as

for single-markets (e.g. kill switches and developer name

consistency). MAST [84] ranks apps based on their attributes

and helps targeting scarce malware analysis resources to apps

with highest potential of being malicious. Application Trans-
parency [7] addresses Android’s application signing issues. It

introduces different kinds of cryptographic proofs that allow

users to verify the authenticity of apps offered on app markets.

Naturally, different analysis methods evolved to identify

malware: DNADroid [49] is an approach to detect pirated

apps in markets by applying program dependency graphs

446446

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 05,2024 at 04:42:57 UTC from IEEE Xplore. Restrictions apply.

for methods in candidate apps. RiskRanker [85] proposes a

proactive zero-day malware detection. CHABADA [86] takes a

different approach from the prior malware detection tools by

relying on anomaly detection: by grouping apps from same

categories (e.g., games) by their protected API usage patterns,

malicious apps stick out as outliers from those sets.

Ernst et al. [87] divert from the adversarial trust assumptions

between app vendor and market operator in prior works by

relying on a collaborative verification. Assuming that benign

developers will co-operate by annotating their code such that

it can be effectively verified, while malicious apps can be

reliably rejected, this could enable high-assurance app stores.

AppInk [89] aims at deterring app repackaging through

dynamic watermarking of apps. Through an IDE extension,

app developers can encode watermarks as triggerable code in

their app that can be checked dynamically by a companion

app to confirm authorship.

3) Actors’ Roles: Platform developers (A1. , R1.) are

responsible for fixing key signing issues and allowing for

secure distribution of apps in the ecosystem, for instance,

distribution of encrypted application packages and full support

for PKIs. Additionally, end users (R8.) could run malware

detection software on their devices. However, this would

require more effective support for malware detection from the

platform developers (see Section IV-B).

App markets (A3. , R3.) with their central role in the soft-

ware distribution process have an enormous impact on security.

To prove their correct operations, they can add accountability

features [7]. However, also app developers (A5. , R5.) and

publishers (A6. , R6.) bear full responsibility for misusing

app signing recommendations and have the potential to fix

these issues in the future.

4) Lesson Learned: Appification has created an interesting

paradigm shift here. Software distribution and installation have

become highly centralized. Users typically go to a single app

market to search for and install their apps. With their central

role in the appified ecosystem, app markets’ impact on overall

security is enormous. They serve as a line of defense in the

fight against malware and could also implement one or more

of the many proposed app vetting technologies to protect their

users against buggy apps. On the other hand, app markets can

also serve as powerful attackers against their own users. They

can act as malware distributors or withhold apps or updates.

Although app markets are in a very powerful position, not

many of the security and privacy mechanisms proposed by

researchers have been adopted by app markets as of today.

However, when it comes to privacy, it is potentially not in

the best interest of an app market to protect its users. App

markets’ major motive is monetization by selling apps to their

users. As was shown in our systematization, particularly the

solutions proposed by researchers to improve users’ awareness

and control of privacy issues often would require the app

markets’ cooperation. However, less installs and less lucrative

advertising potential could potentially harm app markets’

interests. Thus, one result of our work is that researchers

should look for additional actors in the ecosystem that could

assist in improving users privacy. In particular, app publishers

and generators as a strongly emerging pattern for software

distribution [7] have not yet received any attention, although

their influence on the ecosystem can be considerable. It is

unclear to which extent publishers and app generators are

trustworthy or are harming the security of apps (e.g., following

security best practices) and the privacy of users (e.g., adding

tracking code).

Our assessment (Software Distribution): Centralizing

software distribution has proven successful for protecting

end users against malicious software and for fighting

piracy, and should be retained. The threat of malicious

app markets is manageable, with countermeasures (al-

most) ready to be deployed for market-scale application

sets. Trustworthiness of app publishers and generators as

emerging actors has to be evaluated and established.

F. Vendor Customization/Fragmentation

Fragmentation in appified ecosystems is a wide spread phe-

nomenon since many hardware and software vendors compete

for the customer base in the ecosystem.

1) Challenges: The Android ecosystem is fragmented at

two different levels: First, Android devices are shipped with

different OS versions customized by different vendors. Second,

vendors ship their devices with custom system apps. Different

works investigated the impact of vendor customizations on the

permission enforcement on Android [24], [15], [51], [52], [53]

that led to a large number of overprivileged system apps [15].

Moreover, vendor customization significantly increases the

phone’s attack surface. Vendors introduce higher-privileged

apps that act as confused deputies [52] or misconfigurations

at framework layer [53], both of which allow unprivileged

apps access to protected functionality. Recently, the impact

of vendor customizations of the device drivers [107] has

been investigated and the study reports very similar results:

customizations of Android to fit the vendor-specific hardware

have significantly increased the attack surface of the platform

and provided attackers access to highly sensible functionality.

2) Countermeasures: As of today no research has been

conducted to investigate countermeasures to challenges that

stem from fragmented appified ecosystems.

3) Actors’ Roles: Vendor customizations, and thus device

vendors, are responsible for the security degradations caused

by fragmentation and customization (A2. , R2.).

4) Lesson Learned: Android’s open ecosystem, in contrast

to tighter controlled ecosystems like Apple’s iOS, allows

vendor customization and fosters the fragmentation that comes

along with such customizations. Hence, Android’s ecosystem

illustrates the potential security risks that such an open ap-

proach can induce and should be a warning to concurrent or

future appified platforms.

Another lesson to be learned from Android is encouraging

vendors to use (system) apps instead of OS patches to provide

custom hardware support and force Android to become more

modular. Forcing vendors to patch the OS was mainly driven

447447

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 05,2024 at 04:42:57 UTC from IEEE Xplore. Restrictions apply.

by having only two different privilege levels for apps: system

and third party. Eliminating the need for OS patches and

allowing vendors to define more privilege levels to integrate

customization purely at user space level could reduce frag-

mentation and drastically reduce the attack surface caused by

OS modifications. Although prior works found that vendor app

developers make the same mistakes as third-party developers,

e.g., over-requesting permissions, bugs in more privileged

vendor apps could be more efficiently fixed via the standard

app update mechanism in contrast to OS updates. Since vendor

app and third party app developers presumably make the same

classes of errors, efforts to fix those error classes could be

focused instead of having to fight two challenges—apps and

OS patches.

Our assessment (Vendor Customization/Fragmenta-
tion): Allowing different vendors to customize their

devices fueled the adoption process of Android as an

appification platform. However, customizing the OS core

raised new challenges for platform developers and device

vendors. Hence, future fragmentation should focus on

system apps rather than OS patches.

G. Software Update Mechanism

Due to centralization of software distribution, app updates

are straight forward and can be pushed to millions of users si-

multaneously. However, fragmentation of the ecosystem makes

OS updates very challenging.

1) Challenges: Application life-cycles are very fast paced

and updates for actively maintained apps are published in

high frequency to markets [29] from where automated update

mechanisms distribute them to end users. This is even pushed

forward with centralizing updates of security critical libraries

such as WebView. In contrast, the situation at OS and appli-

cation framework level is rather bleak. Thomas et al. [108]

present a field study of 20,400 Android devices to measure

the prevalence of Android platform specific bugs in the wild.

They define a metric to rank the performance of device

manufacturers and network operators, based on their provision

of updates and exposure to critical vulnerabilities. Their central

finding is a significant variability in the timely delivery of

security updates across different device manufacturers and

network operators, since at least 87% of all investigated

devices were vulnerable to at least 11 different vulnerabilities.

In addition, the complexity of upgrading the Android OS

version induced problems in the permission management

across OS versions [51]. This attack class is currently unique to

permission-based mobile systems, such as Android, since the

attacker does not corrupt the current system or update image,

but instead strategically requests permissions and attributes

that are available on the future OS version.

2) Countermeasures: No research has thus far investigated

countermeasures for challenges that stem from software update

mechanisms as implemented on Android. Apart from research,

Google has with their latest Android versions changed their

update strategy for their Nexus devices [109], [110]. It remains

to be seen if other vendors adopt this strategy. Moreover,

the SecUp [51] app can detect apps that exploit the above

mentioned privilege-escalation attack through OS updates.

3) Actors’ Roles: Providing OS updates is responsibility

of device vendors (A2. , R2.). Platform developers (A1. ,

R1.) are responsible for introducing the upgrade privilege

escalation attack.

4) Lesson Learned: Many researchers expect the platform

developer to implement their countermeasures. However, even

if that should happen—which is rare, as of today devices

are not long-term and frequently maintained by vendors ex-

cept Google—this expectation is causing slow adaption of

new mechanisms and contributes to the fragmentation of

the ecosystem [5], [108]. This also opens a large window

of opportunity for attackers to compromise the system. In-

terestingly, appified platforms like Android already have a

modularization of software at the application layer. This is

inspired by classical high-assurance systems like EROS [111]

and in fact, the Binder IPC of Android establishes something

like a microkernel-like concept on top of the Linux kernel in

userspace. We would like to see this modularization extended

to allow modular updates of the system so that security updates

can be deployed faster to the end user without requiring a full

system update. This is an area where appified platforms are

way behind traditional operating systems.

Our assessment (Software Update Mechanism): Since

most proposed countermeasures rely on OS updates, and

OS fragmentation make these very cumbersome, the plat-

form developers should create better update mechanisms,

so that security fixes and countermeasures can be more

easily deployed.

V. CONCLUSION

The central conclusion we draw from this systematization

is that, like many new technologies, Android is a story of both

victory and defeat. New security mechanisms were introduced

without a clear understanding of how these applications would

be developed and used, and well-established security mecha-

nisms were re-used to meet the expected security needs of the

new general purpose computing platform. Some of the these

techniques were a great success, while others failed almost

entirely. We draw the following meta-conclusion:

Our meta-assessment: Some aspects worked out beau-

tifully, e.g., centralizing software distribution helps to

tackle critical security issues and makes fighting piracy

and malware easier. Other approaches had initial difficul-

ties, but are now more or less on track after research has

helped to identify and bridge them. Examples comprise

easier-to-use APIs that have started to replace hard-to-use

but well-intended security APIs over the last few years, as

well as the concept of Webification that has enabled more

developers to produce their own apps. However, some

approaches should be re-thought from the beginning and

448448

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 05,2024 at 04:42:57 UTC from IEEE Xplore. Restrictions apply.

arguably abandoned for designs of future OSes: Permis-

sion dialogs for end users should be removed entirely,

since they failed for the same reasons warning messages

have failed since the dawn of computing.

ACKNOWLEDGEMENTS

This work was supported by the German Federal Ministry

for Education and Research (BMBF) through funding for the

Center for IT-Security, Privacy and Accountability (CISPA) via

the projects BASE (#16KIS0344) and VFIT (#16KIS0345).

REFERENCES

[1] Sufatrio, D. J. J. Tan, T.-W. Chua, and V. L. L. Thing, “Securing
Android: A survey, taxonomy, and challenges,” ACM Comput. Surv.,
vol. 47, no. 4, pp. 58:1–58:45, May 2015.

[2] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization
and evolution,” in Proc. 33rd IEEE Symposium on Security and Privacy
(SP’12). IEEE, 2012.

[3] P. McDaniel and W. Enck, “Not so great expectations: Why application
markets haven’t failed security,” Security Privacy, IEEE, vol. 8, no. 5,
pp. 76–78, Sept 2010.

[4] W. Enck, M. Ongtang, and P. McDaniel, “Understanding android
security,” IEEE Security and Privacy, vol. 7, no. 1, pp. 50–57, 2009.

[5] Open Signal, “Android fragmentation visualized (august 2015),” http:
//opensignal.com/reports/2015/08/android-fragmentation/, last visited:
11/06/2015.

[6] Samsung, “Knox,” Online: https://www.samsungknox.com, last visited:
11/13/2015.

[7] S. Fahl, S. Dechand, H. Perl, F. Fischer, J. Smrcek, and M. Smith,
“Hey, NSA: Stay Away from my Market! Future Proofing App Mar-
kets against Powerful Attackers,” in Proc. 21st ACM Conference on
Computer and Communication Security (CCS’14). ACM, 2014.

[8] Google, “Google Report: Android Security 2014 Year in Review,”
2014.

[9] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner,
“Android permissions: User attention, comprehension, and behavior,”
in Proc. 8th Symposium on Usable Privacy and Security (SOUPS’12).
ACM, 2012.

[10] A. P. Felt, S. Egelman, and D. Wagner, “I’ve got 99 problems, but
vibration ain’t one: A survey of smartphone users’ concerns,” in Proc.
2nd ACM CCS Workshop on Security and Privacy in Mobile Devices
(SPSM’12). ACM, 2012.

[11] D. Barrera, J. Clark, D. McCarney, and P. C. van Oorschot, “Under-
standing and improving app installation security mechanisms through
empirical analysis of android,” in Proc. 2nd Workshop on Security and
Privacy in Smartphones and Mobile Devices (SPSM ’12). ACM, 2012.

[12] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos, “Permission evolution
in the Android ecosystem,” in Proc. 28th Annual Computer Security
Applications Conference (ACSAC’12). ACM, 2012.

[13] A. Porter Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in Proc. 18th ACM Conference on Computer
and Communication Security (CCS’11). ACM, 2011.

[14] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: analyzing
the android permission specification,” in Proc. 19th ACM Conference
on Computer and Communication Security (CCS’12). ACM, 2012.

[15] L. Wu, M. Grace, Y. Zhou, C. Wu, and X. Jiang, “The impact of vendor
customizations on android security,” in Proc. 20th ACM Conference on
Computer and Communication Security (CCS’13). ACM, 2013.

[16] D. Barrera, H. G. Kayacik, P. C. Van Oorschot, and A. Somayaji,
“A methodology for empirical analysis of permission-based security
models and its application to android,” in Proc. 17th ACM Conference
on Computer and Communication Security (CCS’10). ACM, 2010.

[17] W. Enck, M. Ongtang, and P. McDaniel, “On lightweight mobile phone
application certification,” in Proc. 16th ACM Conference on Computer
and Communication Security (CCS’09). ACM, 2009.

[18] L. Davi, A. Dmitrienko, A. Sadeghi, and M. Winandy, “Privilege
escalation attacks on Android,” in Proc. 13th Information Security
Conference (ISC’10). Springer-Verlag, 2010.

[19] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing
inter-application communication in Android,” in Proc. 9th Interna-
tional Conference on Mobile Systems, Applications, and Services
(MobiSys’11). ACM, 2011.

[20] A. Porter Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin,
“Permission re-delegation: Attacks and defenses,” in Proc. 20th Usenix
Security Symposium (SEC’11). USENIX Association, 2011.

[21] E. Fragkaki, L. Bauer, L. Jia, and D. Swasey, “Modeling and enhancing
android’s permission system,” in Proc. 17th European Symposium on
Research in Computer Security (ESORICS’12). Springer-Verlag, 2012.

[22] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: statically vetting
android apps for component hijacking vulnerabilities,” in Proc. 19th
ACM Conference on Computer and Communication Security (CCS’12).
ACM, 2012.

[23] Y. Zhou and X. Jiang, “Detecting passive content leaks and pollution
in android applications,” in Proc. 20th Annual Network and Distributed
System Security Symposium (NDSS’13). The Internet Society, 2013.

[24] M. Grace, Y. Zhou, Z. Wang, and X. Jiang, “Systematic detection of
capability leaks in stock Android smartphones,” in Proc. 19th Annual
Network and Distributed System Security Symposium (NDSS’12). The
Internet Society, 2012.

[25] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A Study of An-
droid Application Security,” in Proc. 20th Usenix Security Symposium
(SEC’11). USENIX Association, 2011.

[26] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi, “Unsafe ex-
posure analysis of mobile in-app advertisements,” in Proc. 5th ACM
Conference on Security and Privacy in Wireless and Mobile Networks
(WiSec’12). ACM, 2012.

[27] P. Pearce, A. Porter Felt, G. Nunez, and D. Wagner, “AdDroid: Priv-
ilege separation for applications and advertisers in Android,” in Proc.
7th ACM Symposium on Information, Computer and Communication
Security (ASIACCS’12). ACM, 2012.

[28] R. Stevens, C. Gibler, J. Crussell, J. Erickson, and H. Chen, “Inves-
tigating user privacy in android ad libraries,” in Proc. 2012 Mobile
Security Technologies Workshop (MoST’12). IEEE, 2012.

[29] N. Viennot, E. Garcia, and J. Nieh, “A measurement study of google
play,” in Proc. 2014 ACM International Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS’14). ACM, 2014.

[30] S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel, and G. Vigna,
“Execute this! analyzing unsafe and malicious dynamic code loading
in android applications,” in Proc. 21st Annual Network and Distributed
System Security Symposium (NDSS’14). The Internet Society, 2014.

[31] J. Crussell, R. Stevens, and H. Chen, “MAdFraud: Investigating Ad
Fraud in Android Applications,” in Proc. 12th International Conference
on Mobile Systems, Applications, and Services (MobiSys’14). ACM,
2014.

[32] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get off
of my market: Detecting malicious apps in official and alternative
android markets,” in Proc. 19th Annual Network and Distributed System
Security Symposium (NDSS’12). The Internet Society, 2012.

[33] V. Rastogi, Y. Chen, and X. Jiang, “DroidChameleon: evaluating An-
droid anti-malware against transformation attacks,” in Proc. 8th ACM
Symposium on Information, Computer and Communication Security
(ASIACCS’13). ACM, 2013.

[34] V. S. Martin Georgiev, Suman Jana, “Breaking and fixing origin-
based access control in hybrid web/mobile application frameworks,” in
Proc. 21st Annual Network and Distributed System Security Symposium
(NDSS’14). The Internet Society, 2014.

[35] R. Wang, L. Xing, X. Wang, and S. Chen, “Unauthorized origin
crossing on mobile platforms: Threats and mitigation,” in Proc. 20th
ACM Conference on Computer and Communication Security (CCS’13).
ACM, 2013.

[36] E. Chin and D. Wagner, “Bifocals: Analyzing webview vulnerabilities
in android applications,” in Proc. Information Security Applications.
Springer-Verlag, 2014.

[37] T. Luo, H. Hao, W. Du, Y. Wang, and H. Yin, “Attacks on WebView
in the Android system,” in Proc. 27th Annual Computer Security
Applications Conference (ACSAC’11). ACM, 2011.

[38] X. Jin, X. Hu, K. Ying, W. Du, H. Yin, and G. N. Peri, “Code injection
attacks on html5-based mobile apps: Characterization, detection and
mitigation,” in Proc. 21st ACM Conference on Computer and Commu-
nication Security (CCS’14). ACM, 2014.

449449

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 05,2024 at 04:42:57 UTC from IEEE Xplore. Restrictions apply.

[39] P. Mutchler, A. Doupé, J. Mitchell, C. Kruegel, and G. Vigna, “A
Large-Scale Study of Mobile Web App Security,” in Proc. 2015 Mobile
Security Technologies Workshop (MoST’15). IEEE, 2015.

[40] S. Fahl, M. Harbach, T. Muders, M. Smith, L. Baumgärtner, and
B. Freisleben, “Why Eve and Mallory love Android: An analysis
of Android SSL (in) security,” in Proc. 19th ACM Conference on
Computer and Communication Security (CCS’12). ACM, 2012.

[41] D. Sounthiraraj, J. Sahs, G. Greenwood, Z. Lin, and L. Khan, “Smv-
hunter: Large scale, automated detection of ssl/tls man-in-the-middle
vulnerabilities in android apps,” in Proc. 21st Annual Network and
Distributed System Security Symposium (NDSS’14). The Internet
Society, 2014.

[42] S. Fahl, M. Harbach, H. Perl, M. Koetter, and M. Smith, “Rethinking
ssl development in an appified world,” in Proc. 20th ACM Conference
on Computer and Communication Security (CCS’13). ACM, 2013.

[43] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An empirical
study of cryptographic misuse in android applications,” in Proc. 20th
ACM Conference on Computer and Communication Security (CCS’13).
ACM, 2013.

[44] S. Fahl, M. Harbach, M. Oltrogge, T. Muders, and M. Smith, “Hey,
You, Get Off of My Clipboard,” in Proc. 2013 Financial Cryptography
and Data Security (FC’13). Springer-Verlag, 2013.

[45] E. Y. Chen, Y. Pei, S. Chen, Y. Tian, R. Kotcher, and P. Tague,
“Oauth demystified for mobile application developers,” in Proc. 21st
ACM Conference on Computer and Communication Security (CCS’14).
ACM, 2014.

[46] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, “A survey
of mobile malware in the wild,” in Proc. 1st ACM CCS Workshop on
Security and Privacy in Mobile Devices (SPSM’11). ACM, 2011.

[47] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged
smartphone applications in third-party android marketplaces,” in Proc.
2nd ACM Conference on Data and Application Security and Privacy
(CODASPY’12). ACM, 2012.

[48] W. Zhou, Y. Zhou, M. Grace, X. Jiang, and S. Zou, “Fast, scalable
detection of "piggybacked" mobile applications,” in Proc. 3rd ACM
Conference on Data and Application Security and Privacy (CO-
DASPY’13). ACM, 2013.

[49] J. Crussell, C. Gibler, and H. Chen, “Attack of the clones: Detecting
cloned applications on android markets,” in Proc. 17th European Sym-
posium on Research in Computer Security (ESORICS’12). Springer-
Verlag, 2012.

[50] C. Gibler, R. Stevens, J. Crussell, H. Chen, H. Zang, and H. Choi,
“Adrob: Examining the landscape and impact of android application
plagiarism,” in Proc. 11th International Conference on Mobile Systems,
Applications, and Services (MobiSys’13). ACM, 2013.

[51] L. Xing, X. Pan, R. Wang, K. Yuan, and X. Wang, “Upgrading your
android, elevating my malware: Privilege escalation through mobile os
updating,” in Proc. 35th IEEE Symposium on Security and Privacy
(SP’14). IEEE, 2014.

[52] A. Moulo, “Android OEM’s applications (in)security and
backdoors without permission,” http://www.quarkslab.com/dl/

Android-OEM-applications-insecurity-and-backdoors-without-permission.
pdf.

[53] Y. Aafer, N. Zhang, Z. Zhang, X. Zhang, K. Chen, X. Wang, X. Zhou,
W. Du, and M. Grace, “Hare hunting in the wild android: A study on the
threat of hanging attribute references,” in Proc. 22nd ACM Conference
on Computer and Communication Security (CCS’15). ACM, 2015.

[54] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “Taintdroid: An information-flow tracking system for
realtime privacy monitoring on smartphones,” in Proc. 9th Usenix Sym-
posium on Operating Systems Design and Implementation (OSDI’10).
USENIX Association, 2010.

[55] M. Nauman, S. Khan, and X. Zhang, “Apex: Extending Android
permission model and enforcement with user-defined runtime con-
straints,” in Proc. 5th ACM Symposium on Information, Computer and
Communication Security (ASIACCS’10). ACM, 2010.

[56] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach, “Quire:
Lightweight provenance for smart phone operating systems,” in Proc.
20th Usenix Security Symposium (SEC’11). USENIX Association,
2011.

[57] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R. Sadeghi, and
B. Shastry, “Towards taming privilege-escalation attacks on Android,”
in Proc. 19th Annual Network and Distributed System Security Sym-
posium (NDSS’12). The Internet Society, 2012.

[58] T. Vidas, N. Christin, and L. Cranor, “Curbing Android permission
creep,” in Proc. Workshop on Web 2.0 Security and Privacy 2011
(W2SP’11). IEEE, 2011.

[59] P. G. Kelley, L. F. Cranor, and N. Sadeh, “Privacy as part of the
app decision-making process,” in Proc. SIGCHI Conference on Human
Factors in Computing Systems (CHI’13). ACM, 2013.

[60] M. Harbach, M. Hettig, S. Weber, and M. Smith, “Using personal
examples to improve risk communication for security and privacy de-
cisions,” in Proc. SIGCHI Conference on Human Factors in Computing
Systems (CHI’14). ACM, 2014.

[61] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, “WHYPER:
towards automating risk assessment of mobile applications,” in Proc.
22nd Usenix Security Symposium (SEC’13), 2013.

[62] Z. Qu, V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and Z. Chen, “Autocog:
Measuring the description-to-permission fidelity in android applica-
tions,” in Proc. 21st ACM Conference on Computer and Communi-
cation Security (CCS’14). ACM, 2014.

[63] M. Zhang, Y. Duan, Q. Feng, and H. Yin, “Towards automatic gener-
ation of security-centric descriptions for android apps,” in Proc. 22nd
ACM Conference on Computer and Communication Security (CCS’15).
ACM, 2015.

[64] P. Wijesekera, A. Baokar, A. Hosseini, S. Egelman, D. Wagner,
and K. Beznosov, “Android permissions remystified: A field study
on contextual integrity,” in Proc. 24th USENIX Security Symposium
(SEC’15). USENIX Association, 2015.

[65] M. Ongtang, S. E. McLaughlin, W. Enck, and P. McDaniel, “Semanti-
cally rich application-centric security in Android,” in Proc. 25th Annual
Computer Security Applications Conference (ACSAC’09). ACM, 2009.

[66] M. Conti, V. T. N. Nguyen, and B. Crispo, “CRePE: Context-related
policy enforcement for Android,” in Proc. 13th Information Security
Conference (ISC’10). Springer, 2010.

[67] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh, “Taming information-
stealing smartphone applications (on android),” in Proc. 4th Interna-
tional Conference on Trust and Trustworthy Computing (TRUST’11).
Springer-Verlag, 2011.

[68] S. Smalley and R. Craig, “Security Enhanced (SE) Android: Bringing
Flexible MAC to Android,” in Proc. 20th Annual Network and Dis-
tributed System Security Symposium (NDSS’13). The Internet Society,
2013.

[69] S. Bugiel, L. Davi, A. Dmitrienko, S. Heuser, A.-R. Sadeghi, and
B. Shastry, “Practical and lightweight domain isolation on android,”
in Proc. 1st ACM CCS Workshop on Security and Privacy in Mobile
Devices (SPSM’11). ACM, 2011.

[70] S. Bugiel, S. Heuser, and A.-R. Sadeghi, “Flexible and fine-grained
mandatory access control on Android for diverse security and pri-
vacy policies,” in Proc. 22nd Usenix Security Symposium (SEC’13).
USENIX Association, 2013.

[71] S. Heuser, A. Nadkarni, W. Enck, and A.-R. Sadeghi, “Asm: A
programmable interface for extending Android security,” in Proc. 23rd
USENIX Security Symposium (SEC’14). USENIX Association, 2014.

[72] Y. Wang, S. Hariharan, C. Zhao, J. Liu, and W. Du, “Compac: Enforce
component-level access control in android,” in Proc. 4th ACM Confer-
ence on Data and Application Security and Privacy (CODASPY’14).
ACM, 2014.

[73] S. Shekhar, M. Dietz, and D. S. Wallach, “Adsplit: Separating smart-
phone advertising from applications,” in Proc. 21st Usenix Security
Symposium (SEC’12). USENIX Association, 2012.

[74] F. Roesner and T. Kohno, “Securing embedded user interfaces: Android
and beyond,” in Proc. 22nd Usenix Security Symposium (SEC’13).
USENIX Association, 2013.

[75] R. Xu, H. Saïdi, and R. Anderson, “Aurasium: Practical policy en-
forcement for android applications,” in Proc. 21st Usenix Security
Symposium (SEC’12). USENIX Association, 2012.

[76] J. Jeon, K. K. Micinski, J. A. Vaughan, A. Fogel, N. Reddy, J. S. Foster,
and T. Millstein, “Dr. Android and Mr. Hide: fine-grained permissions
in android applications,” in Proc. 2nd ACM CCS Workshop on Security
and Privacy in Mobile Devices (SPSM’12). ACM, 2012.

[77] B. Davis, B. Sanders, A. Khodaverdian, and H. Chen, “I-arm-droid:
A rewriting framework for in-app reference monitors for android
applications,” in Proc. 2012 Mobile Security Technologies Workshop
(MoST’12). IEEE, 2012.

[78] M. Backes, S. Gerling, C. Hammer, M. Maffei, and P. von Styp-
Rekowsky, “Appguard – enforcing user requirements on Android apps,”
in Proc. 19th International Conference on Tools and Algorithms for the

450450

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 05,2024 at 04:42:57 UTC from IEEE Xplore. Restrictions apply.

Construction and Analysis of Systems (TACAS ’13). Springer-Verlag,
2013.

[79] M. Backes, S. Bugiel, C. Hammer, O. Schranz, and P. von Styp-
Rekowsky, “Boxify: Full-fledged app sandboxing for stock android,”
in Proc. 24th USENIX Security Symposium (SEC’15). USENIX
Association, 2015.

[80] A. Chaudhuri, A. Fuchs, and J. Foster, “SCanDroid: Automated se-
curity certification of Android applications,” University of Maryland,
Tech. Rep. CS-TR-4991, 2009.

[81] C. Gibler, J. Crussell, J. Erickson, and H. Chen, “Androidleaks:
automatically detecting potential privacy leaks in android applications
on a large scale,” in Proc. 5th International Conference on Trust and
Trustworthy Computing (TRUST’12). Springer-Verlag, 2012.

[82] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise con-
text, flow, field, object-sensitive and lifecycle-aware taint analysis for
Android apps,” in Proc. ACM SIGPLAN 2014 Conference on Program-
ming Language Design and Implementation (PLDI’14). ACM, 2014.

[83] D. Barrera, W. Enck, and P. C. V. Oorschot, “Meteor: Seed-
ing a security-enhancing infrastructure for multi-market application
ecosystems,” in Proc. 2012 Mobile Security Technologies Workshop
(MoST’12). IEEE, 2012.

[84] S. Chakradeo, B. Reaves, P. Traynor, and W. Enck, “Mast: Triage for
market-scale mobile malware analysis,” in Proc. 6th ACM Conference
on Security and Privacy in Wireless and Mobile Networks (WiSec’13).
ACM, 2013.

[85] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “Riskranker:
Scalable and accurate zero-day android malware detection,” in Proc.
10th International Conference on Mobile Systems, Applications, and
Services (MobiSys’12). ACM, 2012.

[86] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking app behavior
against app descriptions,” in Proc. 36th IEEE International Conference
on Software Engineering (ICSE’14). ACM, 2014.

[87] M. D. Ernst, R. Just, S. Millstein, W. Dietl, S. Pernsteiner, F. Roes-
ner, K. Koscher, P. B. Barros, R. Bhoraskar, S. Han, P. Vines, and
E. X. Wu, “Collaborative verification of information flow for a high-
assurance app store,” in Proc. 21st ACM Conference on Computer and
Communication Security (CCS’14). ACM, 2014.

[88] K. Chen, P. Wang, Y. Lee, X. Wang, N. Zhang, H. Huang, W. Zou,
and P. Liu, “Finding unknown malice in 10 seconds: Mass vetting for
new threats at the google-play scale,” in Proc. 24th USENIX Security
Symposium (SEC’15). USENIX Association, 2015.

[89] W. Zhou, X. Zhang, and X. Jiang, “AppInk: watermarking android
apps for repackaging deterrence,” in Proc. 8th ACM Symposium on
Information, Computer and Communication Security (ASIACCS’13).
ACM, 2013.

[90] T. Wyatt, “Security alert: Geinimi, sophisticated new android tro-
jan found in wild,” https://blog.lookout.com/blog/2010/12/29/geinimi_
trojan/, 2010, last visited: 11/06/15.

[91] J. H. Saltzer and M. D. Schroeder, “The protection of information in
computer systems,” Proceedings of the IEEE, vol. 63, no. 9, pp. 1278–
1308, 1975.

[92] P. P. Chan, L. C. Hui, and S.-M. Yiu, “Droidchecker: analyzing android
applications for capability leak,” in Proc. 5th ACM Conference on
Security and Privacy in Wireless and Mobile Networks (WiSec’12).
ACM, 2012.

[93] N. Hardy, “The confused deputy: (or why capabilities might have been
invented),” SIGOPS Oper. Syst. Rev., vol. 22, no. 4, pp. 36–38, Oct.
1988.

[94] Google, “Review app permissions thru android 5.9,” https://support.
google.com/googleplay/answer/6014972?hl=en, last visited: 11/13/205.

[95] A. P. Felt, S. Egelman, M. Finifter, D. Akhawe, and D. Wagner, “How
to ask for permission,” in hotsec12. USENIX Association, 2012.

[96] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. J. Wang, and
C. Cowan, “User-driven access control: Rethinking permission granting
in modern operating systems,” in Proc. 33rd IEEE Symposium on
Security and Privacy (SP’12). IEEE, 2012.

[97] B. Liu, J. Lin, and N. Sadeh, “Reconciling mobile app privacy and
usability on smartphones: Could user privacy profiles help?” in Proc.
23rd International Conference on World Wide Web (WWW’14). ACM,
2014.

[98] C. Marforio, H. Ritzdorf, A. Francillon, and S. Čapkun, “Analysis
of the communication between colluding applications on modern

smartphones,” in Proc. 28th Annual Computer Security Applications
Conference (ACSAC’12). ACM, 2012.

[99] E. Chin, A. P. Felt, V. Sekar, and D. Wagner, “Measuring user
confidence in smartphone security and privacy,” in Proc. 8th Symposium
on Usable Privacy and Security (SOUPS’12). ACM, 2012.

[100] A. C. Myers and B. Liskov, “A decentralized model for information
flow control,” in Proc. 16th ACM Symposium on Operating Systems
Principles (SOSP’97). ACM, 1997.

[101] N. Zeldovich, S. Boyd-Wickizer, and D. Mazières, “Securing dis-
tributed systems with information flow control,” in Proc. 5th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI’08). USENIX Association, 2008.

[102] Open Handset Alliance, “Android,” http://www.openhandsetalliance.
com/android_overview.html, last visited: 11/13/2015.

[103] M. Souppaya and K. Scarfone, “NIST Special Publication 800-124
Revision 1: Guidelines for Managing the Security of Mobile Devices
in the Enterprise,” Jun. 2013.

[104] Ú. Erlingsson, “The inlined reference monitor approach to security
policy enforcement,” Ph.D. dissertation, Cornell University, January
2004.

[105] R. Mallempati, “Google i/o recap, part 1:
Google is serious about enterprise mobility,” On-
line: https://www.mobileiron.com/en/smartwork-blog/
google-io-recap-part-1-google-serious-about-enterprise-mobility,
Jun. 2014, last visited: 11/13/2015.

[106] lohan, “Antilvl: android cracking,” http://androidcracking.blogspot.in/
p/antilvl_01.html, last visited: 11/06/15.

[107] X. Zhou, Y. Lee, N. Zhang, M. Naveed, and X. Wang, “The peril of
fragmentation: Security hazards in android device driver customiza-
tions,” in Proc. 2014 IEEE Symposium on Security and Privacy
(SP’14). IEEE Computer Society, 2014.

[108] D. R. Thomas, A. R. Beresford, and A. Rice, “Security metrics for the
android ecosystem,” in Proc. 5th ACM CCS Workshop on Security and
Privacy in Mobile Devices (SPSM’15). ACM, 2015.

[109] Google, “Nexus security bulletins,” https://source.android.com/security/
bulletin/index.html, last visited: 11/13/2015.

[110] R. Brandom, “Android marshmallow’s best security measure
is a simple date,” http://www.theverge.com/2015/9/29/9415313/
android-marshmallow-security-update-vulnerability, 2015, last visited:
11/12/2015.

[111] J. S. Shapiro, J. M. Smith, and D. J. Farber, “EROS: a fast capability
system,” in Proc. 17th ACM Symposium on Operating Systems Princi-
ples (SOSP’99). ACM, 1999.

451451

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 05,2024 at 04:42:57 UTC from IEEE Xplore. Restrictions apply.

