
Shreds: Fine-grained Execution Units with Private Memory

Yaohui Chen Sebassujeen Reymondjohnson Zhichuang Sun Long Lu

Department of Computer Science

Stony Brook University

{yaohchen, sreymondjohn, zhisun, long}@cs.stonybrook.edu

Abstract—Once attackers have injected code into a victim
program’s address space, or found a memory disclosure vulner-
ability, all sensitive data and code inside that address space are
subject to thefts or manipulation. Unfortunately, this broad type
of attack is hard to prevent, even if software developers wish to
cooperate, mostly because the conventional memory protection
only works at process level and previously proposed in-process
memory isolation methods are not practical for wide adoption.

We propose shreds, a set of OS-backed programming primi-
tives that addresses developers’ currently unmet needs for fine-
grained, convenient, and efficient protection of sensitive memory
content against in-process adversaries. A shred can be viewed as
a flexibly defined segment of a thread execution (hence the name).
Each shred is associated with a protected memory pool, which
is accessible only to code running in the shred. Unlike previous
works, shreds offer in-process private memory without relying on
separate page tables, nested paging, or even modified hardware.
Plus, shreds provide the essential data flow and control flow
guarantees for running sensitive code. We have built the compiler
toolchain and the OS module that together enable shreds on
Linux. We demonstrated the usage of shreds and evaluated their
performance using 5 non-trivial open source software, including
OpenSSH and Lighttpd. The results show that shreds are fairly
easy to use and incur low runtime overhead (4.67%).

I. INTRODUCTION

Many attacks on software aim at accessing sensitive content

in victim programs’ memory, including secret data (e.g.,
crypto keys and user passwords) and critical code (e.g., private

APIs and privileged functions). To achieve the goal, such

attacks succeed as soon as they manage to execute code in

target programs’ process context, which is usually achieved via

remote exploitations or malicious libraries. For instance, the

HeartBleed attack on OpenSSL-equipped software reads pri-

vate keys by exploiting a memory disclosure vulnerability [1];

the malicious libraries found in mobile apps covertly invoke

private framework APIs to steal user data [2]. Obviously, this

whole class of attacks cannot succeed if target programs are

able to protect its sensitive data and code against hostile code

running in the same process, such as injected shellcode and

malicious libraries. We generally refer to this class of attacks

as in-process abuse.

Developers are virtually helpless when it comes to pre-

venting in-process abuse in their programs, due to a lack of

support from underlying operating systems (OS): the memory

isolation mechanisms provided by modern OS operate merely

at the process level and cannot be used to establish security

boundaries inside a process. As a result, protecting sensi-

tive memory content against malicious code inside the same

process remains an open issue, which has been increasingly

exploited by attackers.

To address this open issue, some recent work proposed the

thread-level memory isolation [3], which allows developers

to limit the sharing of a thread’s memory space with other

threads in the same process. However, this line of works faces

three major limitations. First, thread-level memory isolation is

still too coarse to stop in-process abuse because exploitable or

malicious code often run in the same thread as the legitimate

code that needs to access sensitive memory content. Sec-

ond, adopting these solutions requires significant efforts from

developers. Separating application components into different

threads (i.e., scheduling units) demands major design changes,

as opposed to regional code patches, to deal with the added

concurrency. Third, threads with private memory tend to

incur much higher overhead than normal threads due to the

additional page table switches, TLB flushes, or nested page

table management upon context switches. We aim to tackle

these challenges by proposing a practical and effective system

to realize in-process private memory.

In this paper, we present a new execution unit for user-

space code, namely shred, which represents an arbitrarily

sized segment of a thread (hence the name) and is granted

exclusive access to a protected memory pool, namely shred-
private pool (or s-pool). Figure 1 depicts shreds in relation

to the conventional execution units. Upon its creation, a

shred is associated an s-pool, which can be shared among

multiple shreds. Shreds address developers’ currently unmet

needs for fine-grained, convenient, and efficient protection of

sensitive memory content against in-process adversaries. To

prevent sensitive content in memory from in-process abuse,

a developer includes into a shred the code that needs access

to the sensitive content and stores the content in the shred’s

s-pool. For instance, an encryption function can run in a shred

with the secret keys stored in the s-pool; a routine allowed to

call a private API can run in a shred whose s-pool contains

the API code.

We design shreds under a realistically adversarial threat

model. We assume attackers may have successfully com-

promised a victim program, via either remote exploitation

or malicious local libraries. Attackers’ goal is to access the

sensitive content, including both data and code, in the victim

program’s virtual memory space. Further, we expect unknown

vulnerabilities to exist inside shreds (e.g., control flow hijacks

and data leaks are possible). On the other hand, we assume a

clean OS, which serves as the TCB for shreds. The assumption

2016 IEEE Symposium on Security and Privacy

2375-1207/16 $31.00 © 2016 IEEE

DOI 10.1109/SP.2016.12

56

2016 IEEE Symposium on Security and Privacy

© 2016, Yaohui Chen. Under license to IEEE.

DOI 10.1109/SP.2016.12

56

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 19:17:56 UTC from IEEE Xplore. Restrictions apply.

Threads

Shreds

A process

Fig. 1: Shreds, threads, and a process

is reasonable because the attacks that shreds aim to prevent,

in-process abuse, would become unnecessary had attackers

already subverted the OS. In fact, we advocate that, future

OS should support shreds, or more generally, enable private

memory for execution units of smaller granularities than the

scheduling units.

We realize the concept of shreds by designing and building:

(i) a set of easy-to-use APIs for developers to use shreds

and s-pools; (ii) a compilation toolchain, called S-compiler,

automatically verifying, instrumenting, and building programs

using shreds; (iii) a loadable kernel extension, called S-driver,

enabling the support and protection of shreds on commodity

OS. Figure 2 shows an overview of the entire system and

the workflow. A developer creates a shred and associates it

with a selected s-pool by calling the shred enter API and

supplying the s-pool descriptor as the argument. Code inside

a shred may access content in the associated s-pool as if it

were a normal region in the virtual memory space. But the s-

pool is inaccessible outside of the associated shred(s). S-pools

are managed and protected by S-driver in a way oblivious to

developers or applications. With the help of use-define chain

analysis on labeled sensitive variables, shreds can also be

created automatically at compile time.

As shown in Figure 2, while compiling programs that use

shreds, S-compiler automatically verifies the safe usage of

shreds and instruments in-shred code with inline checks. The

verification and instrumentation regulate sensitive data propa-

gation and control flows inside shreds so that unknown vul-

nerabilities inside shreds cannot lead to secret leaks or shred

hijacking. During runtime, S-driver serves as the manager for

s-pools and the security monitor for executing shreds. It creates

and resizes s-pools on demand. It enables a per-CPU locking

mechanism on s-pools and ensures that only authorized shreds

may access s-pools despite concurrent threads.

S-driver leverages an under-exploited CPU feature, namely

ARM memory domains [4], to efficiently realize s-pools and

enforce shred-based access control. Unlike the previously

proposed thread-level memory isolations, our approach neither

requires separate page tables nor causes additional page table

switches or full TLB flushes. Our approach also avoids the

need for a hypervisor or additional levels of address translates

(e.g., nested paging). Although our reference design and

implementation of s-pools are based on ARM CPUs, they

are compatible with future x86 architectures, which will be

equipped with a feature similar to memory domain [5], [6].

Shreds have the following key advantages:

• Shreds are fine-grained. Depending on developers’ needs,

the scope of a shred can range from a few lines of code to

an entire thread, enabling private memory for execution

units of various sizes.

• Shreds are convenient to use. Unlike splitting programs

to processes or threads, creating shreds does not require

major software redesigns to deal with concurrency, syn-

chronization, memory sharing, etc.

• Shreds are efficient. They introduce neither additional

process or thread switches nor scheduling constraints.

We implement S-compiler based on LLVM [7] and S-

driver as a kernel module for Linux. We evaluate shreds’

compatibility and the ease of adoption by manually retrofitting

shreds into 5 non-trivial open source software, including

OpenSSL and Lighttpd. We show that developers can easily

adopt shreds in their code without design-level changes or

sacrifice of functionality. Our evaluation shows that shreds

incurs an average end-to-end overhead of 4.67%. We also

conduct security analysis on shreds, confirming that possible

attacks allowed in our thread model are prevented. Overall,

our results indicate that shreds can be easily adopted in

real software for fine-grained protection of sensitive memory

content while incurring very low overhead.

In summary, our work makes the following contributions:

• We identify and address the open challenges facing

the previously proposed in-process memory protection,

which suffer from rigid granularity, difficult adoption, and

high overhead.

• We propose a new OS primitive, namely shred, which

represents an arbitrary fragment of a user-space thread

execution. Code running inside a shred has access to the

shred’s private memory pool where sensitive data and

code can be stored.

• We build and evaluate the compiler toolchain and the

OS module for realizing shreds and assisting the use

of shreds. We show that shreds are fine-grained, easily

adoptable, and efficient.

• We demonstrate the use cases of shreds in 5 nontrivial

open source software, including OpenSSL and lighthttpd.

We also evaluate the performance of shreds in these

software.

The rest of the paper is organized as follows: in § II we lay

out the background of in-process memory abuse and the exist-

5757

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 19:17:56 UTC from IEEE Xplore. Restrictions apply.

Process
S-compiler

Shred Property
Verification

…
int enc(x) {
…
shred_enter(P1);
// encryption
// logic
shred_exit();
…
}
…

Code
Instrumentation

Thread 1 Thread 2

shred_enter
(P1);

shred_exit();

shred_enter
(P1);
shred_exit();

shred_enter
(P2);
shred_exit();

S-driver

Loader

S-pool
manager

Security
monitor

Proc Memory Space

Development and Build Runtime

……

S-pool: P1

S-pool: P2

Fig. 2: Developers create shreds in their programs via the intuitive APIs and build the programs using S-compiler, which

automatically verifies and instruments the executables (left); during runtime (right), S-driver handles shred entrances and exits

on each CPU/thread while efficiently granting or revoking each CPU’s access to the s-pools.

ing solutions; we also derive the fundamental requirements for

an ideal solution. In § III we discuss the design of our proposed

system, comprising s-compiler and s-driver. We also explain

in details the security properties of shreds and s-pools and

how these properties are enforced. The implementation details

of s-compiler and s-driver are outlined in § IV respectively.

We then examine the security of our system and evaluate its

performance in § V. We contrast the related work in § VI and

conclude the paper in § VII.

II. BACKGROUND

A. In-process Abuse of Memory Content

Ranging from data theft to privilege escalation, a variety

of user-space attacks, launched either remotely or locally,

can succeed because they can freely access (or abuse) target

programs’ memory content once they have penetrated into

targets’ process context.

Stealing secret data: Via either injected shellcode or planted

malicious libraries, attackers may obtain unchecked access

to victim processes’ memory, and in turn, exfiltrate cleart-

ext secrets. Moreover, data thefts may happen without code

injection if memory disclosure vulnerabilities exist in target

programs. Such attacks are often seen in both network-facing

programs and mobile apps. The former, including web servers

and browsers, is often prone to remote secret thefts (e.g.,
the Heartbleed bug) whereas the latter tends to contain many

untrusted libraries (e.g., advertisement and analytics).

Executing private code: Malicious code injected into a victim

process can freely execute the code loaded in the memory

space, including private and privileged functions that are only

intended for a few pieces of code in the same process. For

instance, dlopen is a private API on iOS and is not allowed

to be directly called by apps. However, since iOS runtime

always loads dlopen and other private APIs inside every app

process, malicious apps can stealthily invoke these system-

reserved APIs to escalate privileges or bypass security checks.

Mining memory: In-process malicious code may silently

scan the entire user-space memory for private data, such

as passwords, credit card numbers, and sensitive logs. For

instance, memory-scrapping code are found inside almost all

the recent attacks on POS (Point of Sale) machines. Memory

scrapers are also used for illegally identifying and tracking

users.

Despite their different goals, the aforementioned attacks

all hinge on the same capability to succeed—access to data

or code that belong to other components (e.g., functions,

modules, libraries, etc.) executing in the same process context.

We refer to this essential attacking capability as in-process
memory abuse.

In light of the surging issue of in-process memory abuse

and the lack of effective defense, it becomes obvious that new

memory protection mechanisms are much needed to protect

sensitive data and code against malicious code that manage to

run in a same process context.

B. In-process Private Memory: Requirements and Intuitions

A direct solution to in-process abuse is to enable private

memory in individual processes and allow application devel-

opers to protect their sensitive code and data against malicious

code that manages to enter the same processes. We identify

four basic requirements for such a solution to be useful,

practical, and secure:

R1 - Flexible granularity: A solution needs to recognize

accessing entities at various granularities, from compilation

modules, to functions, and even to sub-routines. This is neces-

sary for developers to define the minimum entities that should

be permitted to access the private memory (i.e., minimizing

the exposure of protected memory). It also narrows the scope

of code that developers need to change when adopting the

solution.

R2 - Easy adoption and deployment: A solution must cover

not only newly developed software but also legacy ones. It

needs to be easily adoptable by developers and practically

deployable in real-world. This requirement boils down to

simple APIs, minimal required code changes, and realistic

deployment restrictions.

5858

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 19:17:56 UTC from IEEE Xplore. Restrictions apply.

R3 - Robustness against attacks: Accessing entities, even

when minimally defined, may still contain vulnerable or faulty

code, which can lead to data leakage from private memory

or code injection into the accessing entities. A solution must

consider and prevent such vulnerabilities or attacks.

R4 - Low overhead: Memory content that need protection

may be frequently used throughout a program’s execution.

Therefore, a solution providing in-process private memory

must not incur high overhead. It should be independent from,

and more efficient than, the conventional paging-based mem-

ory protection.

C. Existing Solutions

Several existing security methods and mechanisms can be

used to mitigate in-process memory abuse. However, they fail

to meet some or all of the above requirements, and therefore,

cannot fully or effectively prevent in-process memory abuse.

Employing privilege separation [8]–[10], developers can

protect the sensitive memory content by executing code of

different levels of privileges in isolated processes. If OS is

not trusted, stronger isolation can be achieved with hardware

support, such as virtualization [11] and SGX [12]. However,

needless to say virtual machines or enclaves, processes are

often too coarse and too restrictive for protecting sensitive

code and data that are tightly integrated and frequently used

in applications. Software fault isolation (SFI) [13] and sim-

ilar techniques can confine untrusted code inside a memory

region and prevent it from adversely impacting the rest of

an application. However, it requires potentially offensive code

to be instrumented and verified during compilation, which is

unrealistic for stealthily injected malicious code that performs

in-process abuse. Some recent works [3] have enabled thread-

level memory isolation. Although taking an important step

towards mitigating in-process memory abuse, the approach still

relies on the scheduling units (e.g., threads and processes) for

memory isolation, which makes the solutions coarse-grained,

cumbersome to adopt, and inefficient. More detailed discussion

about the related works is in § VI.

Motivated by the need for in-process private memory that

meets R1-R4, we design and build the shred system.

III. SYSTEM DESIGN

A. Overview

We introduce a new OS primitive, namely shred, for se-

curely executing certain (sensitive) pieces of application code

against in-process attacks. Shreds are thread segments of

various sizes (Figure 1), which are defined by application

developers. Code running inside a shred can store and access

secrets in an assigned memory pool (s-pool), which is inac-

cessible to the rest of the thread or other threads in the same

process, despite that they all share the same virtual memory

space. By running sensitive code pieces in individual shreds

and storing secrets in associated s-pools, developers prevent

malicious or erroneous code running in the same thread or

process from retrieving the secrets, and in turn, defend against

in-process abuse attacks.

Shreds’ security is guaranteed by three properties:

• P1 - Exclusive access to s-pool: An s-pool is solely ac-

cessible to its associated shreds. Other shreds or threads,

even when running concurrently with the associated

shreds, cannot access the s-pool.

• P2 - Non-leaky entry and exit: Data loaded into s-pools

cannot have copies elsewhere in memory or be exported

without sanitization.

• P3 - Untampered execution: Shred execution cannot be

altered or diverted outside of the shred.

P1 enables the very protection of a shred’s sensitive mem-

ory against other unrelated shreds or out-shred code that run

in the same address space. P2 avoids secret leaks when

data are being loaded into or exported out of s-pools (e.g.,
ensuring that no secret is buffered in unprotected memory as a

result of standard I/O). P3 prevents in-process malicious code

from manipulating shreds’ control flow. Such manipulation can

cause, for instance, ROP that forces a shred to execute out-

shred code and expose its s-pool.

We design and implement a system that enables shreds and

the aforementioned properties for Linux/ARM platforms. Our

system consists of a compilation toolchain (S-compiler) and a

dynamic loadable kernel extension (S-driver). Developers can

adopt shreds in their programs using a set of simple APIs: two

APIs for entering and exiting a shred; two APIs for allocating

and freeing memory in an s-pool. S-compiler is needed to build

programs that contain shreds. S-compiler performs the code

analysis and instrumentation that are necessary to ensure P2
and P3. During runtime, S-driver handles shred creations and

terminations. It manages and protects s-pools in accordance

to P1. Our design makes a novel use of memory domains, an

under-exploited feature in ARM CPUs, to efficiently protect

s-pools and shred executions.

The rest of the section explains the detailed designs of shred

APIs, S-compiler, and S-driver. It then examines the designs

against the requirements (R1-R4).

B. Shred APIs and Usages

Application developers use shreds and s-pools via the fol-

lowing intuitive APIs:

err t shred enter(int pool desc);

err t shred exit();

void * spool alloc(size t size);

void spool free(void *ptr);

These APIs internally make requests to S-driver via ioctl
for managing shreds and s-pools. To explain the API usage,

we use the lightweight open-source web server, Lighttpd, as

an example, where we employ shreds to protect the HTTP

authentication password in Lighttpd’s virtual memory. By

wrapping the code that receives and checks the password

in two shreds and storing the password in an s-pool, the

5959

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 19:17:56 UTC from IEEE Xplore. Restrictions apply.

modified Lighttpd prevents out-shred code, including third-

party and injected code, from accessing the password in

memory. Listings 1-3 show the code snippets that contain the

modifications (lines marked with “+”).

A successful call to shred enter starts a shred execution

on the current thread. It also causes a switch to a secure

execution stack allocated in s-pool, which prevents potential

secret leaks via local variables after the shred exits. The thread

then is given exclusive access to the associated s-pool, which

is specified by the developer using the pool desc parameter

of shred enter. Our design allows developers to associate

an s-pool with multiple shreds by using the same descriptor

at shred creations (e.g., an encryption shred and a decryption

shred may need to share the same s-pool storing keys). The

two shreds in Lighttpd, created on Line 9 in Listing 1 and

Line 3 in Listing 3, share the same s-pool. However, as

a security restriction, shreds in different compilation units

cannot share s-pools. Therefore, even if shreds from different

origins happen to use the same descriptor value, their s-pools

are kept separate.

The shred exit API stops the calling shred, revokes the

current thread’s access to the s-pool, and recovers the original

execution stack. It is called immediately after a self-contained

operation or computation on the s-pool finishes, as shown

on Line 22 in Listing 1 and Line 8 in Listing 3. The shred

enter and exit APIs must be used in pairs without nesting. To

facilitate verification, an enter-exit pair must be called inside a

same function. In principle, a shred should contain a minimum

body of code that corresponds to a single undividable task

requiring access to an s-pool. In the example, since Lighttpd

separates the parsing and processing of HTTP requests, we

naturally used two small shreds, rather than one big shred, to

respectively read the password from network and checks if the

hash value of the password matches with the local hash.

To allocate memory from its associated s-pool, in-shred

code calls spool alloc, in a same way as using libc’s mal-
loc. Similar to regular heap-backed memory regions, buffers

allocated in s-pools are persistent and do not change as code

execution enters or exits shreds. They are erased and reclaimed

by S-driver when in-shred code calls spool free. In the

Lighttpd example, an s-pool named AUTH PASSWD POOL is

used for storing the password that the server receives via

HTTP authentication requests. The password enters the s-pool

immediately after being read from the network stream and

stays there till being erased at the end of its lifecycle.

1 int http_request_parse(server *srv,
2 connection *con) {
3 ...
4 /* inside the request parsing loop */
5 char *cur; /* current parsing offset */
6 + char auth_str[] = "Authorization";
7 + int auth_str_len = strlen(auth_str);
8 + if (strncmp(cur, auth_str, auth_str_len)==0){
9 + shred_enter(AUTH_PASSWD_POOL);

10 + /* object holding passwd in spool */
11 + data_string *ds = s_ds_init();
12 + int pw_len = get_passwd_length(cur);
13 + cur += auth_str_len + 1;
14 + buffer_copy_string_len(ds->key, auth_str,

auth_str_len);
15 + buffer_copy_string_len(ds->value, cur, pw_len)

;
16 + /* add ds to header pointer array */
17 + array_insert_unique(parsed_headers, ds);
18 + /* only related shreds can deref ds */
19 + /* wipe out passwd from input stream */
20 + memset(cur, 0, pw_len);
21 + cur += pw_len;
22 + shred_exit();
23 + }
24 ...
25 }

Listing 1: lighttpd/src/request.c – The HTTP request

parser specially handles the AUTH request inside a shred:

it allocates a data string object in the s-pool (Line 11),

copies the input password from the network stream to the

object (Line 12-15), saves the object pointer to the array of

parsed headers (Line 17), and finally erases the password

from the input buffer before exiting the shred.

1 /* called inside a shred */
2 data_string *s_ds_init(void) {
3 data_string *ds;
4 + ds = spool_alloc(sizeof(*ds));
5 + ds->key = spool_alloc(sizeof(buffer));
6 + ds->value = spool_alloc(sizeof(buffer));
7 ...
8 return ds;
9 }

10

11 /* called inside a shred */
12 void s_ds_free(data_string *ds) {
13 ...
14 + spool_free(ds->key);
15 + spool_free(ds->value);
16 + spool_free(ds);
17 return;
18 }

Listing 2: lighttpd/src/data string.c – We added s-

pool support to the data string type in Lighttpd, which

allows the HTTP parser to save the AUTH password, among

other things, in s-pools and erase them when needed.

1 ...
2 /* inside HTTP auth module */
3 + shred_enter(AUTH_PASSWD_POOL);
4 /* ds points passwd obj in spool */
5 http_authorization = ds->value->ptr;
6 ... // hash passwd and compare with local copy
7 + s_ds_free(ds);
8 + shred_exit();
9 ...

Listing 3: lighttpd/src/mod auth.c – When the

authentication module receives the parsed headers, it enters

a shred, associated to the same s-pool as the parser shred.

It retrieves the password by dereferencing ds, as if the

password resided in a regular memory region (Line 5)

Code included in a shred need to follow two rules. First,

it cannot copy data from an s-pool to unprotected memory

6060

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 19:17:56 UTC from IEEE Xplore. Restrictions apply.

without applying any transformation (e.g., encryption). This

rule prevents unexpected secret leaks from s-pools and is

needed for achieving P2. Second, in-shred code can only

use libraries built using S-compiler. This rule allows all code

inside shreds to be checked and instrumented for P3. Although

seemingly restrictive, the second rule is not impractical: the

commonly used libraries, such as libc and libm, can be pre-

compiled and installed along with S-driver as part of system

deployment; the uncommon libraries required in shreds for

processing sensitive data are usually in-house developed or

open source, and therefore, can be recompiled by developers.

Both rules are enforced by S-compiler.

C. S-compiler: automatic toolchain for shred verification and
instrumentation

Developers use S-compiler to build programs that use

shreds. In addition to regular compilation, S-compiler per-

forms a series of analysis and instrumentation to verify pro-

grams’ use of shreds and prepare the executables so that S-

driver can enforce the security properties (P1-P2) during run-

time. Unlike general-purpose program analysis, S-compiler’s

analysis is mostly scoped within the code involved in shred

executions, and therefore, can afford to favor accuracy over

scalability. Prior to the analysis and transformation, S-compiler

translates an input program into an intermediate representation

(IR) in the single static assignment (SSA) form.

Checking shred usage: To verify that all shreds in the

program are properly closed, S-compiler first identifies all the

shred creations sites(i.e., calls to shred enter), uses them as

analysis entry points, and constructs a context-sensitive control

flow graph for each shred. S-compiler then performs a code

path exploration on each graph in search for any unclosed

shred (or unpaired use of shred enter and shred exit),

which developers are asked to fix. This check is sound because

it is not inter-procedural (i.e., a pair of shred enter and

exit APIs must be called inside a same function) and it

conservatively models indirect jumps.

To prevent potential secret leaks, S-compiler performs an

inter-procedural data-flow analysis in each shred. Potential

leaks happen when secrets are either loaded from, or stored to,

unprotected memory. The data-flow analysis checks for both

cases. First, it ensures that data stored in s-pools do not pre-

exist in regular memory (i.e., such data must be directly loaded

into s-pools from input channels, such as stdin or file system.

Second, the analysis checks for any unsanitized data propaga-

tion from an s-pool object to a regular heap destination. Thanks

to the explicit memory allocations and aliasing in s-pool, the

data-flow analysis needs neither manually defined sources or

sinks nor heuristic point-to analysis. In addition, this analysis

strikes a balance between security and usability: it captures

the common forms of secret leaks (e.g., those resulted from

bugs) while permitting intentional data exports (e.g., saving

encrypted secrets).

Buffered I/O, when used for loading or storing s-pool data,

may implicitly leak the data to pre-allocated buffers outside of

s-pools, which data-flow analysis can hardly detect. Therefore,

S-compiler replaces any buffered I/O (e.g.,fopen) with direct

I/O (e.g.,open) in shreds.

Hardening in-shred control flows: We adopt a customized

form control-flow integrity (CFI) to ensure that in-process

malicious code cannot hijack any shred execution. To that

end, S-compiler hardens in-shred code during compilation.

Based on the control flow graphs constructed in the previous

step, S-compiler identifies all dynamic control flow transfers,

including indirect jumps and calls as well as returns, inside

each shred. It then instruments these control flow transfers so

that they only target basic block entrances within containing

shreds. This slightly coarse-grained CFI does not incur high

overhead as the fine-grained CFI and at the same time is

sufficiently secure for our use. It prevents shred execution from

being diverted to out-shred code. Furthermore, since shreds are

usually small in code size (i.e., few ROP gadgets) and our CFI

only allows basic block-aligned control transfers, the chance

of in-shred ROP is practically negligible.

The control flow hardening only applies to in-shred code.

If a function is called both inside and outside of a shred, S-

compiler duplicates the function and instruments the duplicate

for in-shred use while keeping the original function unchanged

for out-shred use. S-compiler creates new symbols for such

duplicates and replaces the in-shred call targets with the new

symbols. As a result, a function can be used inside shreds and

instrumented without affecting out-shred invocations. Using

function duplicates also allows S-compiler to arrange the

code reachable in a shred in adjacent memory pages, which

facilitates the enforcement of control flow instrumentations

and improves code cache locality.

Binding shreds and s-pools: Developers define a constant

integer as the pool descriptor for each s-pool they need. To

associate an s-pool with a shred, they use the constant descrip-

tor as the pool desc parameter when calling shred enter.

This simple way of creating the association is intuitive and

allows explicit sharing of an s-pool among multiple shreds.

However, if not protected, it may be abused by in-process

malicious code (e.g., creating a shred with an association

to an arbitrary s-pool). S-compiler prevents such abuse by

statically binding shreds and their s-pools. It first infers the

pool-shred association by performing a constant folding on

the pool desc used in each shred enter invocation. It

then records the associations in a special section (.shred)

in the resulting executable, to which S-driver will refer during

runtime when deciding if a shred (identified by its relative

offset in memory) indeed has access to a requested s-pool.

Thanks to the static binding, dynamically forged pool-shred

association is prevented, so is s-pool sharing across different

compilation units.

Similar to previous works employing code instrumentation

and inline reference monitoring, we assume that attackers

cannot rewrite executables produced by S-compiler. Further,

S-driver write-protects the instrumented code and their critical

6161

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 19:17:56 UTC from IEEE Xplore. Restrictions apply.

runtime data structures in memory. More details about the

security and robustness of system are discussed in § V-A.

D. S-driver: OS-level manager for shreds and s-pools

S-driver is a dynamically loadable kernel extension. It can

be easily installed on a system as a regular driver. S-driver

provides the OS-level support and protection for shreds and

s-pools.

ARM memory domains: S-driver leverages a widely avail-

able yet rarely used ARM CPU feature, namely the the

memory domain mechanism, to realize s-pools or create

specially protected memory regions inside a single virtual

memory space. At the same time, our design is not specific

to ARM and can realize s-pools using a mechanism similar

to memory domains in future Intel CPUs [5], [6]. On ARM

platforms, domains are a primary yet lesser known memory

access control mechanism, independent of the widely used

paging-based access control. A memory domain represents a

collection of virtual memory regions. By setting a 4-bit flag

in a Page Directory Entry (PDE), OS assigns the memory

region described by the PDE to one of the 16 (24) domains

supported by the CPU. Since each PDE has its own domain

flag, the regions constituting a domain do not have to be

adjacent. Upon each memory access, the hardware Memory

Management Unit (MMU) determines the domain to which

the requested memory address belongs and then decides if the

access should be allowed based on the current access level for

that domain. The access level for each domain is recorded in

the per-core Domain Access Control Registers (DACR) [14],

and therefore, can be individually configured for each CPU

core.

Creation and management of s-pools: Although memory

domains are ideal building blocks for s-pools thanks to their

efficient hardware-enforced access control, memory domains

are not originally designed for this purpose and cannot directly

enable s-pools due to two limitations. First, only a total of 16

memory domains are available. If intuitively using one domain

for creating one s-pool, the limited domains will soon run out

as the number of s-pools used in a program increases. Second,

the access control on memory domains is very basic and does

not concern the subject of an access (i.e., who initiates the

access). However, access control for s-pools must recognize

subjects at the granularity of shreds. S-driver overcomes both

limitations of memory domains by multiplexing the limited

domains and introducing shred identities into the access con-

trol logic.

S-driver uses the limited domains to support as many s-pools

as an application may need. Rather than permanently assigning

an s-pool to a domain, S-driver uses domains as temporary

and rotating security identities for s-pools in an on-demand

fashion. Specifically, it uses a total of k = Min(Ndom −
1, Ncpu) domains, where Ndom is the number of available

domains and Ncpu is the number of CPU (or cores) on a

system. The first k domains are reserved for the first k CPUs.

15 13 12 11 10 9 8 7 6 5 4 3 2 1 014

DACR1

DACR2

DACR3

DACR4

 :No Access

:No-op(depends on page permissions)

 :Unused

:Reserved

Fig. 3: The DACR setup for a quad-core system, where k = 4.

The first 3 domains (Dom0 −Dom2) are reserved by Linux.

Each core has a designated domain (Dom3 − Dom6) that

it may access when executing a shred. No CPU can access

Dom7.

S-driver sets the per-CPU DACR in a way such that, Domi

is only accessible to shreds running on CPUi, for the first

k CPUs; Domk+1 is inaccessible to any CPU in user mode.

Figure 3 shows an example DACR setup.

S-driver uses the k CPUs and the k + 1 domains for

executing shreds and protecting s-pools. When a shred starts or

resumes its execution on CPUi, S-driver assigns its associated

s-pool to Domi, and therefore, the shred can freely access its

s-pool while other concurrent threads, if any, cannot. When

the shred terminates or is preempted, S-driver assigns its s-

pool to Domk+1, which prevents any access to the pool from

that moment on. As a result, S-driver allows or denies access

to s-pools on a per-CPU basis, depending on if an associated

shred occupies the CPU. Even if any malicious code manages

to run concurrently alongside the shred inside the same process

on another CPU, it cannot access the shred’s s-pool without

triggering domain faults. Thus, P1 is achieved.

It is reasonably efficient to switch s-pools to different

domains upon shred entries and exits are. These operations

do not involve heavy page table switches as process- or VM-

based solutions do. They only require a shallow walk through

of the first level page table and updates to the PDEs pointing

to the s-pools in question. Besides, they do not trigger full

TLB flushes as our design uses the per-address TLB eviction

interface (flush tlb page) and only invalidates the TLB

entries related to the updated PDEs. To further reduce the over-

head, we invent a technique called lazy domain adjustment:
when a shred is leaving CPUi, without adjusting any domain

assignment, S-driver quickly changes the DACR to revoke the

CPU’s access to Domi and lets the CPU’s execution continue.

It does not assign the s-pool used by the previous shred to

Domk+1 until a domain fault happens (i.e., another shred

coming to the CPU and accessing its s-pool). The lazy domain

adjustment avoids unnecessary domain changes and halves the

already small overhead in some test cases (see § V).

6262

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 19:17:56 UTC from IEEE Xplore. Restrictions apply.

Out-shred In-shred

Off-CPU

SPOOL: Lock

domain fault
(modified DACR)

shred exit

shred enter

context switch
shred exit shred alloc/Domain fault

shred exit

context switch

context switch
domain fault*

DACR: Deny

On-CPU

SPOOL: Lock

DACR: Deny

In-shred

Off-CPU

SPOOL: Lock

DACR: ����

In-shred

On-CPU

SPOOL: Unlock

DACR: Allow

In-shred

Off-CPU

SPOOL: Unlock

DACR: Deny

In-shred

On-CPU

SPOOL: Unlock

DACR: Deny

Fig. 4: A shred’s transition of states

Figure 4 shows how S-driver orchestrates the transitions of

a shred’s states in response to the API calls, context switches,

and domain faults. Each state is defined by a combination of

four properties:

• Shred = {In-shred | Out-shred}: if the shred has started

or exited.

• DACR = {Allow | Deny}: if the DACR allows or denies

the current CPU to access its domain.

• SPOOL = {Lock | Unlock}: if the associated s-pool is

locked or not.

• CPU = {On-CPU | Off-CPU}: if the shred is running

on a CPU or not.

The transition starts from the top, left circle, when the shred

has not started and its s-pool is locked. After shred enter is

called, S-driver starts the shred, but it will not adjust the DACR

or the s-pool access till a domain fault or a spool alloc
call due to the lazy domain adjustment in effect. When a

context switch happens in the middle of the shred execution

with unlocked DACR and s-pool, S-driver instantly sets the

DACR to Deny but (safely) leaves the s-pool open. Later on,

if a domain fault occurs, S-driver locks the previous s-pool

because the fault means that the current code running on the

CPU is in-shred and is trying to access its s-pool. If a domain

fault never occurs till the shred regains the CPU, S-driver does

not need to change any domain or s-pool settings, in which

case the lazy domain adjustment saves two relatively heavy

s-pool locking and unlocking operations.

Secure stacks for shreds: Although S-compiler forbids unsan-

itized data flows from s-pools to unprotected memory regions,

it has to allow in-shred code to copy s-pool data to local

variables, which would be located in the regular stack and

potentially accessible to in-process malicious code. To prevent

secret leaks via stacks, S-driver creates a secure stack for

each shred, allocated from its associated s-pool. When code

execution enters a shred, S-driver transparently switches the

stack without the application’s knowledge: it copies the current

stack frame to the secure stack and then overwrites the stack

pointer. When the shred exits or encounters a signal to be

handled outside of the shred, S-driver restores the regular

stack. As a result, local variables used by shreds never exist

in regular stacks, and therefore cannot leak secrets.

Runtime protection of shreds: In addition to enabling and

securing shreds and s-pools, S-driver also protects the inline

reference monitor (IRM) that S-compiler plants in shred

code. S-driver write-protects the memory pages containing

the instrumented code and the associated data in memory. It

also pins the pages in s-pools in memory to prevent leaks

via memory swap. Given that our threat model assumes the

existence of in-process adversaries, S-driver also mediates the

system calls that malicious code in user space may use to

overwrite the page protection, dump physical memory via

/dev/*mem, disturb shreds via ptrace, or load untrusted

kernel modules. For each program using shreds, S-driver starts

this mediation before loading the program code, avoiding pre-

existing malicious code.

S-driver’s system call mediation also mitigates the attacks

that steal secret data, not directly from s-pools, but from the

I/O media where secret data are loaded or stored. For instance,

instead of targeting the private key loaded in an s-pool, an

in-process attacker may read the key file on disk. S-driver

monitors file-open operations insides shreds. When the first

time a file F is accessed by a shred S, S-driver marks F
as a shred-private file and only allows shreds that share the

same s-pool with S to access F . This restriction is persistent

and survives program and system reboots. As a result, an

attacker can read F only if she manages to intrude the program

during its first run and access F before a shred does. Although

not completely preventing such attacks, S-driver makes them

very difficult to succeed in reality. For a complete remedy,

we envision a new primitive for in-shred code to encrypt and

decrypt secret data with a persistent key assigned to each s-

pool and automatically managed by S-driver. However, our

current prototype does not support this primitive.

It is worth noting that, although the system call mediation

can prevent user-space malicious code that tries to break shreds

via the system interfaces, it is a more intrusive and less

configurable design choice than the well-known access control

and capability frameworks, such as SELinux, AppArmor, and

Capsicum [15]. However, we leave the integration with those

systems as future work because the system call mediation is

easy to implement and is sufficient for the prototyping purpose.

E. Satisfied Requirements

We now examine if the design of shreds meets the require-

ments for in-process private memory (R1-R4 in § II-B).

Shreds remove the historical constraint facing developers

6363

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 19:17:56 UTC from IEEE Xplore. Restrictions apply.

that, memory protection domains can only be created at the

granularities of the rigid scheduling units, namely processes.

This constrain poses a major challenge to defend in-process

abuse. Using shreds, developers can flexibly create execution

units of various sizes and individually grant these units access

to protected memory pools. As a result, shreds allow for fine-

grained protection domains inside processes, and thus, meet

R1.

Developers create shreds and use s-pools via the four

intuitive APIs. They can easily adopt shreds in either new

or legacy applications, without major design changes. When

building applications, S-compiler automatically verifies shred

usages and hardens the resulting executables. S-driver, the dy-

namically loadable kernel extension, enables runtime support

and protection of shreds without requiring a new or rebuilt

OS. The entire system is easy to use and deploy, which meets

R2.

Our design assumes that in-shred code would contain vul-

nerabilities that may lead to secret leaks or control flow

hijacks. Our design either precludes such vulnerabilities or

prevents them from being exploited. Specifically, S-compiler

rejects code containing unsanitized data flows from s-pools

to unprotected memory regions. It also inserts checks before

statically undecidable memory dereferences whose values may

flow to regular memory, preventing potential leaks during

runtime. These static and dynamic checks together eliminate

outbound propagations of plain data in s-pools, and there-

fore, enforce the data flow property in R3. S-compiler also

instruments indirect control flow transfers in shreds, whose

destinations are checked during runtime and assured to be

basic block entrances inside containing shreds. These checks

enforce the control flow property in R3.

To efficiently enable s-pools, or the in-process private

memory regions, our design leverages a widely available yet

largely overlooked feature in ARM CPUs, namely memory

domains [4] (Intel has prototyped a similar feature for future

CPUs [5], [6]. Compared with paging-based memory access

control, our domain-based design does not require page table

switches, full TLB flushes, or disabling concurrent threads

when (un)locking s-pools. Besides, S-driver changes domain

assignments and access levels in a lazy fashion, which further

reduces the security enforcement overhead. As shown in our

evaluation (§ V), using shreds and s-pools only slows down

programs by 4.67%, which indicates that R4 is satisfied.

IV. SYSTEM IMPLEMENTATION

We fully implemented our designs of S-compiler and S-

driver. We built S-compiler based on LLVM [7] and its C front-

end Clang [16]. We built S-driver with Linux as the reference

OS. The implemented system was deployed and evaluated

on a quad-core ARM Cortex-A7 computer (Raspberry Pi 2

Model B running Linux 4.1.15). Table I shows the SLoC of

the implementation.

S-compiler: The modular and pass-based architecture of

LLVM allows us to take advantage of the existing analyzers

Language SLOC

S-compiler

Analysis
Pass

C++ 1345

Instrumenta
tion Pass

C++ 275

S-driver C 1205

TABLE I: The SLoC for S-compiler and S-driver.

and easily extends the compilation pipeline. S-compiler adds

two new passes to LLVM: the shred analysis pass and the

security instrumentation pass. Both operate on LLVM bitcode

as the IR.

The analysis pass carries out the checks on the usages

and security properties of shreds, as described in § III-C.

We did not use LLVM’s built-in data flow analysis for

those checks due to its overly heuristic point-to analysis

and the unnecessarily conservative transfer functions. Instead,

we implemented our specialized data flow analysis based on

the basic round-robin iterative algorithm, with weak context

sensitivity and a straightforward propagation model (i.e., only

tracking value-conserving propagators). We also had to extend

LLVM’s compilation pipeline because it by default only sup-

ports intra-module passes while S-compiler needs to perform

inter-module analysis. We employed a linker plugin, called

the Link-Time Optimization (LTO), to cross link the IR of all

compilation modules and feed the linked IR to our analyzers.

The instrumentation pass uses the LLVM IR manipulation

interfaces to insert security checks into the analyzed IR that,

which are necessary for enforcing the in-shred control flow

regulations and preventing dynamic data leaks, as discussed

in § III-C.

S-driver: We built S-driver into a Loadable Kernel Module

(LKM) for Linux. S-driver creates a virtual device file (/de-
v/shreds) to handle the ioctl requests made internally by

the shred APIs. It uses 13 out of 16 memory domains to

protect s-pools because the recent versions of Linux kernel

for ARM already occupies 3 domains (for isolating device,

kernel, and user-space memory). S-driver uses the available

domains to protect unlimited s-pools and controls each CPU’s

access to the domains as described in § III-D. Since Linux

does not provide callback interfaces for drivers to react to

scheduling events, in order to safely handle context switches or

signal dispatches in shreds, S-driver dynamically patches the

OS scheduler so that, during every context switch, the DACR

of the current CPU is reset, which locks the open s-pool,

if any. The overhead of this operation is negligible because

resetting the DACR only takes a single lightweight instruction.

To capture illegal access to s-pools and lazily adjust domain

assignments, S-driver registers itself to be the only handler of

domain faults and is triggered whenever a domain violation

happens. Algorithm 1 shows how S-driver handles a domain

fault. Purely implementing S-driver as a LKM allows shreds

6464

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 19:17:56 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Domain Fault Handler

input : The faulting virtual address fault addr
result: Recover from the domain fault, or kill the faulting

thread

/*Identity check*/
s pool ← FindSpool(fault addr);
s owner ← GetOwner(s pool);
if fault thread is NOT in shred then

goto bad_area

if fault thread is NOT s owner then
goto bad_area

/*Recover from domain fault*/
cpu domain ← GetCPUDomain();
s pool domain ← GetSpoolDomain(s pool);
if s pool is unlocked then

if cpu domain = s pool domain then
/*No need to change domain for s pool*/
RestoreDACR();

else
AdjustSPool(cpu domain)

else
UnlockSPool(cpu domain)

LockOtherActiveSPools(s pool);

to be introduced into a host without installing a custom-build

kernel image.

V. ANALYSIS AND EVALUATION

A. Security Analysis

We now analyze our system design in terms of its robustness

against the evasions or manipulations that attacks may pursue.

For this analysis, we assume an attacker has already take

control of a victim process, either via remote exploitation or

malicious local libraries, which is the most powerful attacker

possible under our threat model. With the goal of accessing an

s-pool used by the victim program, the attacker may attempt

to bypass the security enforcement of shreds in the following

ways, all of which are prevented by our design.

First, the attacker may create a shred of her own and try

to associate the shred with the target s-pool by specifying

a same s-pool descriptor. This attack will fail because: (i)
if the attacker creates the shred via code in a different

executable or compilation unit (e.g., a malicious library), s-

driver forbids sharing of s-pools among different compilation

units by localizing s-pool descriptors during executable load;

(ii) if the attacker creates the shred by injecting code in

the compromised process, s-driver denies the shred creation

because no statically verified information about this shred exits

in the executable file.

Second, the attacker may try to hijack a shred execution.

She can exploit in-shred code and diverging the the control

flow to selected malicious code. In that case, the malicious

code would run inside a shred and in turn gain access to

the s-pool. However, s-compiler and s-driver together prevent

such control flow manipulations via code instrumentation and

runtime protection. The instrumentation code checks, among

other things, if an indirect control flow transfer is bound by

the code coverage of the (vulnerable) shred, as determined by

s-compiler (§ III-C).

Third, the attacker may direct the control flow to a legitimate

shred entry point in an ROP fashion, hoping to regain the

control after the next return instruction or the shred exits.

Since s-driver assigns a separate and protected stack for each

shred execution, the attacker cannot set up the stack to launch

ROP inside the shred. Even if the attacker regains the control

immediately after the shred exits, she cannot not learn anything

about the data processed in that shred because s-driver resets

the stack where before the shred is executed. Moreover, s-

driver also prevents other types of manipulation of legitimate

shreds, such as hooking the shred APIs and modified the

verified code mapped in memory.

Finally, using inline security checks and saving the shred

information in executables make an implicit security assump-

tion that, attackers cannot rewrite the executables generated

by s-compiler, such as removing the inline security checks or

modifying the shred section. We note that this is a common

assumption shared by all inline reference monitors. It is feasi-

ble in the context of preventing in-process memory abuse: if

attackers already control the executable of a program, memory

abuse would become unnecessary.

B. Experiments and Evaluation

Our experiments sought to answer the following questions:

• How easy or difficult for developers to adopt shreds in

their code?

• How compatible and useful are shreds to real-world

programs?

• How do shreds affect the application’s and system’s

performance?

Choice of Applications: We selected 5 popular open source

applications to evaluate our prototype system. The applications

are shown in Table II, ranging from the small HTTP server,

lighttpd, to the complex cryptography library, OpenSSL. The

applications were chosen because each of them has at least

one piece of sensitive data that is subject to in-process abuse,

and therefore, warrants shred’s protection. Moreover, the ap-

plications represent a good variety of software of different

functionalities and codebase sizes.

Adoption Tests: To measure the efforts required to adopt

shreds in reality, we hired several CS graduate students to

incorporate shreds into the 5 selected applications. They were

first given a short tutorial on how to use shreds and s-pools,

and then asked to adopt shreds into the application source

code. The adoption in these tests did not intend to protect all

kinds of sensitive data in the applications, which is unrealistic

given that the student participants in the tests are not the

original developers of the applications and are unlikely to

identify all types of sensitive data. Instead, we asked the

participants to protect only one specific type of sensitive data

6565

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 19:17:56 UTC from IEEE Xplore. Restrictions apply.

TABLE II: 5 open source softwares used in evaluation

Executable Size(byte) Category Protected Data Type Program Size(KLOC)

curl 227071 curl http client password 177

minizip
80572 miniunz

97749 minizip
file compression tool password 7

openssh 2207588 ssh remote login tool credential 130

openssl 3093920 libcrypto.so crypto library crypto key 526

lighttpd 85135 mod auth.so web server credential 56

in each application (as shown in the Protected Data Type

column in Table II). This measurable and realistic task for

the participants allowed us to examine how easy or difficult

to use shreds correctly and effectively in practice.
After the tests finished, we manually confirmed the cor-

rectness and completeness of the code changes. The modified

applications compile and run without any issue. As shown in

Table III, on average, the participants spent an hour on lighttpd

and 15 min on minizip, representing the longest and shortest

adoption time measured in the tests. These numbers show that

shreds are intuitive even to first-time users. Given that the

participants spent most of the time understanding the codebase,

we expect that the time needed for adopting shreds will be even

shorter when the original application developers perform the

tasks. The number of shreds created and the number of SLoC

changes do not exhibit direct correlation with the adoption

time. The code changes are very small compared with the

size of the applications, which indicates that no major design

changes are required to apply shreds to existing applications.

TABLE III: Code changed and time spent in adoption tests

Application Shred
numbers

Code
change(SLoC)

Adoption
time(min)

curl 2 13 30
minizip 4 23 15
openssh 1 8 20
openssl 3 34 35
lighttpd 2 27 60

Compilation Tests: To test the performance and compatibility

of our offline analysis and compilation methods, we instru-

mented S-compiler in order to measure the overhead and log

potential errors, if any, while building the 5 software packages

that use shreds. Figure 5 shows the time and space overhead

introduced by S-compiler, relative to the performance of a

vanilla LLVM Clang compiling the unchanged applications.

On average, S-compiler delays the building process by 24.58%

and results in a 7.37% increase in executable sizes. The seem-

ingly significant delays in compilation are in fact on par with

static analysis and program instrumentation tools of similar

scale. They are generally tolerable because compilations take

place offline in background and are usually not considered to

be time-critical. The executable file size increases are mainly

resulted from the in-shred instrumentation and are below 2%

except for the outliers. We encountered no error when building

these applications using S-compiler. The built applications run

without issues during the course of the tests.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

curl minizip openssh openssl lighttpd

compile time
increase

generated file size
increase

Fig. 5: The time and space overhead incurred by S-compiler

during the offline compilation and instrumentation phase

Performance Tests: This group of tests examines the run-

time performance of shreds and s-pools. We performed both

micro-benchmarkings and end-to-end tests, which respectively

reveal the performance cost associated with shreds’ critical

operations and the overhead exhibited in the 5 applications

retrofitted with shreds.

In the micro-benchmarking tests, we developed unit test

programs that force shreds to go through the critical operations

and state changes, including shred entry, exit, and context

switch. We measured the duration of these operations and state

changes, and then compared them with the durations of the

equivalent or related operations without shreds. Figure 6 shows

the absolute time needed for a context switch that preempts

a shred-active thread, a regular thread, and a regular process,

respectively. It is obvious that, switching shred-active threads

is marginally more expensive than switching regular threads

(about 100μs slower); switching shred-active threads is much

faster than a process context switch. This is because when a

shred is preempted, S-driver does not need to make any change

to page tables or TLB. Instead, it only performs a single DACR

reset operation, which is very lightweight.

6666

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 19:17:56 UTC from IEEE Xplore. Restrictions apply.

We also compared the time needed for completing the shred

API calls (invoking ioctl internally) with several reference

system calls, as shown in Figure 7. The getpid, one of the

fastest system calls, serves as a baseline for comparison. The

shred enter API is compared with the clone system call

(without address space change), and is slightly faster, which

means creating a shred takes less time than creating a thread.

The s-pool allocation API is mildly slower than mmap due to

the additional domain configurations. But the overhead is low

enough to easily blend in the typical program performance

fluctuations.

Furthermore, we measured the performance improvement

enabled by the lazy domain adjustment optimization. We

applied shreds to five SPEC CINT2006 benchmark programs

written in C (Figure 8), where a number of shreds were created

to perform intensive access to s-pools. We note that this

test is designed only for the performance evaluation purpose

while recognizing that these benchmark programs do not need

shreds’ protection. The result shows that in all but one case

the optimization brings the overhead under 1% whereas the

non-optimized implementation of shreds incurs an average

overhead of 2.5%.

Those micro-benchmark tests together indicate that the

shred primitives are lightweight and the performance impact

that shred state changes and s-pool operations may pose to the

application or the system is very mild.

15000

15500

16000

16500

17000

17500

18000

18500

shred
switch

thread
switch

process
switch

T
im

e
/c

o
n

te
xt

 s
w

itc
h

 (μ
s)

Fig. 6: The time needed for a context switch when: (1) a shred-

active thread is switched off, (2) a regular thread is switched

off but no process or address space change, and (3) a regular

thread is switched off and a thread from a different process is

scheduled on.

In the end-to-end tests, we let each of the 5 open-source

applications perform a self-contained task twice, with and

without using shreds to protect their secret data (e.g., Lighttpd

fully handling an HTTP auth login and OpenSSL carrying

out a complete RSA key verification). We instrumented the

applications with timers. For each application, we manually

drove it to perform the task, which fully exercises the added

shreds. We measured both the time and space costs associated

0

200

400

600

800

1000

2.06E6

2.10E6
user time (μs)
sys time (μs)

Fig. 7: Invocation time of shred APIs and reference system

calls (the right-most two bars are on log scale). It shows that

shred entry is faster than thread creation, and s-pool allocation

is slightly slower than basic memory mapping.

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1 no shred

shred-no lazy

shred lazy

Fig. 8: Five SPEC2000 benchmark programs tested when: (1)

no shred is used, (2) shreds are used but without the lazy

domain adjustment turned on in S-driver, and (3) shreds are

used with the lazy domain adjustment.

6767

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 19:17:56 UTC from IEEE Xplore. Restrictions apply.

with using shreds in these tests. The absolute costs and the

relative increases are shown in Table IV. On average, the

per-task slow down among the applications is 4.67% and the

memory footprint increase is 7.26%. The results show that

shreds are practical for real applications of various sizes and

functionalities. The overhead is hardly noticeable to the end

users of the applications.

Security Coverage Test: Finally, we tested the coverage of

shred protection in the 5 modified applications. These tests

not only check if the shred adoption is correct and complete

in these applications, but also demonstrate the security benefits

uniquely enabled by shreds in these applications. We con-

ducted these tests using a simple memory scraper that scans

each application’s virtual memory in search for the known

secrets. The tests simulate the most powerful in-process abuse

where an adversary has full visibility into the user-space virtual

memory of the application and can perform brute-force search

of secrets. For each application, our memory scraper runs as

an independent thread inside the application and verifies if

any instance of the secret data can be found in memory via a

value-based exhaustive search. We ran this test in two rounds,

one on a vanilla version of the application and the other on

the shred-enabled version.

In the first round, where shreds are not used, the memory

scraper found at lease one instance of the secret values in

memory for all the applications, which means that these secrets

are subject to in-process abuse. In the second round, where

shreds are used, the memory scraper failed to detect any

secrete in the applications’ memory, which means that the

secrets are well contained inside the s-pools and protected

from in-process abuse. The results show that, the applications

have correctly adopted shreds for processing the secret data in

memory and stored such data only in s-pools. Moreover, the

tests show that, without significant design changes, applying

the shred primitives in these real applications creates needed

protection for the otherwise vulnerable passwords, crypto keys,

and user credentials.

VI. RELATED WORK

Our system is related to the following lines of works, in

terms of the addressed problems or the employed techniques.

Program module isolation: The previous works have studied

the problem of isolating the executions of mutually distrusting

modules, ranging from libraries in user-space programs to

drivers in the OS. SFI [13] and its variants [17], [18] establish

strict boundaries in memory space to isolate potentially faulty

modules and therefore contain the impact resulted from the

crashes or malfunctions of such modules. SFI has also been

extended to build sandboxes for untrusted plugins and libraries

on both x86 [19], [20] and ARM [21], [22]. Extending module

isolation into kernel-space, some previous works [18], [23]

contain faulty drivers as well as user-space modules. Unlike

these works, which focus on fault isolation or sandboxing, our

work aims to prevent the in-process memory abuse launched

by either vulnerable or malicious code. Our work allows devel-

opers to run sensitive code in flexibly-defined and lightweight

execution units (i.e., shreds), where the code has exclusive

access to private memory pools, in addition to the regular

memory regions, and the execution is protected from other

code running (concurrently) in the same address space. The

aforementioned works require verification and instrumentation

of all untrusted code modules, whereas our work only needs

to analyze and harden trusted in-shred code. We repurpose

the ARM memory domain to efficiently realize the design

of shreds and the protection against in-process abuse. Fur-

thermore, SFI and similar techniques assume that isolated

modules should be logically independent and not interact

closely, whereas shreds neither impose such restrictions nor

incur additional overhead when accessing regular memory,

invoking third-party library functions, or making system calls.

Process- and thread-level isolation: Arranging program com-

ponents into different processes has long been advocated

as a practical approach to achieving privilege and memory

separation [8]–[10]. Many widely used software, such as

OpenSSH and Chrome, have adopted this approach. Separated

components run in their own address spaces and are immune

from memory abuse by other components. However, process

separation faces three major limitations when being used for

defending memory abuse. First, due to the coarse granular-

ity of a process, memory abuse may still happen inside a

component process as a result of a library call or a code

injection, as shown in several real attacks on Chrome. Sec-

ond, using process separation usually requires major software

design changes due to the added concurrency and restrictions,

which prevents wide adoption. Third, process separation can

cause high overhead, particularly when separated components

frequently interact. Wedge enables thread-level memory isola-

tion [3]. While incurring slightly lower overhead than process-

level isolation, it still suffers from the fixed granularity and

require major software changes to be adopted. In comparison,

shreds are flexibly grained and easy to adopt. Shreds are also

more efficient because, unlike the aforementioned works, our

design does not rely on the heavy paging-based memory access

control.

Protected execution environments: A number of systems

were proposed for securely executing sensitive code or per-

forming privileged tasks. Flicker [24] allows for trusted code

execution in full isolation to OS or even BIOS and provides

remote attestation. TrustVisor [25] improves on performance

and granularity with a special-purpose hypervisor. SeCage [11]

runs sensitive code in a secure VM. SICE [26] protects

sensitive workloads purely at the hardware level and supports

current execution on multicore platforms. SGX [12], an up-

coming feature in Intel CPUs, allows user-space programs to

create so-called enclaves where sensitive code can run securely

but has little access to system resources or application context.

In general, these systems are designed for self-contained code

that can run independently in isolated or constrained environ-

6868

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 19:17:56 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: End-to-end overhead observed while tested programs performing a complete task: the left-side part of the table

shows the executing time and the right-side part shows the memory footprint.

 End-to-end time Memory footprint(Max RSS)
 w/

shred(ms)
w/o
shred(ms)

time
increase

w/
shred(KB)

w/o
shred(KB)

size
increase

curl 154 163 5.80% 4520 5104 12.90%
minizip 23770 25650 7.90% 3004 3064 1.90%
openssh 158.1 163.3 3.20% 3908 4644 18.80%
openssl 2502 2546 1.75% 3892 3908 0.40%
lighttpd 501 525 4.70% 3364 3440 2.30%
Avg. 4.67% 7.26%

ments. They are neither suitable nor practical for preventing

memory abuses, which can target data or code that cannot

be jailed in these isolated environments. In addition, these

systems do not need to consider the case where the protected

execution can be exploited, whereas our design does and

enforces security checks on in-shred executions.

Memory encryption and protection: Several memory pro-

tection mechanisms were proposed before. Overshadow [27]

uses virtualization to render encrypted views of application

memory to untrusted OS, and in turn, protects application

data. Mondrian [28] is a hardware-level memory protection

scheme that enables permission control at word-granularity

and allows memory sharing among multiple protection do-

mains. Another scheme [29] provides memory encryption and

integrity verification for secure processors. While offering

strong protection, these schemes all require hardware modifi-

cations have not been adopted in real-world. In fact, this work

was partly motivated by the lack of a practical and software-

based memory protection mechanism. Recently, protecting

cryptographic keys in memory became a popular research

topic. Proposed solutions range from minimizing key exposure

in memory [30]–[32], to avoiding key presence in the RAM

by confining key operations to CPUs [33], [34], GPUs [35],

and hardware transactional memory [36]. Although effective

at preventing key thefts, a major common type of memory

abuse, these works can hardly protect other types of sensitive

data or code in memory.

Dynamic information flow tracking: Many previous works

have used dynamic flow tracking for detecting and defending

a range of attacks, including privacy leaks [37] and control

flow manipulations [38]. HiStar [39] and Flume [40] enabled

system-wide tracking. While information flow tracking can be

an ideal solution to memory abuse in theory, it is arguably

difficult to use in reality, especially for average programmers.

In contrast, our work takes a more practical approach to

address a less broad security issue. We aim to provide easy-

to-use primitives that help developers efficiently protect their

sensitive data and code.

Granular sandbox and compartmentalization: Some recent

works proposed fine-grained and flexible application sand-

box [15], [41] and compartmentalization [42] frameworks.

These works mainly aim at mitigating memory-related ex-

ploitations by reducing the capabilities and privileges for

untrusted or vulnerable code. In contrast, our work adopts

a reversed model of trust: code in an application is by

default untrusted and only the explicitly created and statically

verified shreds are given the extra privilege during runtime to

access the associated s-pools. However, despite the difference

between their goals and ours, shreds are related to this line of

woks for two reasons: (1) we faced a same technical challenge

of efficiently isolating in-process memory, and overcame it

via a new and effective approach suitable to our goal, and

(2) shreds can employ compartmentalization to achieve more

systematic mediation of untrusted code, as discussed in § III-D.

VII. CONCLUSION

We propose shreds, a set of OS-backed programming prim-

itives that addresses developers’ currently unmet needs for

fine-grained, convenient, and efficient protection of sensitive

memory content against in-process adversaries. A shred can be

view as a flexibly defined segment of a thread execution (hence

the name). Each shred is associated with a protected memory

pool, which is accessible only to code running in the shred.

Unlike previous works, shreds offer in-process private memory

without relying on separate page tables, nested paging, or even

modified hardware. Plus, shreds provide the essential data flow

and control flow guarantees for running sensitive code. We

have built the compiler toolchain and the OS module that

together enable threads on Linux. We demonstrated the usage

of shreds and evaluated their performance using 5 non-trivial

open source software, including OpenSSH and Lighttpd. The

results show that shreds are fairly easy to use and incur low

runtime overhead.

VIII. ACKNOWLEDGMENT

We thank the anonymous reviewers for their insightful

comments. We thank our shepherds, Robert Watson and Brent

Kang, for their guidance on the final paper revisions. We

thank our colleagues at the National Security Institute at Stony

Brook, in particular, Mingwei Zhang, for their feedback to

the work. This project was supported by the National Science

Foundation (Grant#: CNS-1421824 and CNS-1514142) and

the Office of Naval Research (Grant#: N00014-15-1-2378).

6969

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 19:17:56 UTC from IEEE Xplore. Restrictions apply.

Any opinions, findings, and conclusions or recommendations

expressed in this paper are those of the authors and do

not necessarily reflect the views of the National Science

Foundation or the Office of Naval Research.

REFERENCES

[1] Z. Durumeric, J. Kasten, D. Adrian, J. A. Halderman, M. Bailey,
F. Li, N. Weaver, J. Amann, J. Beekman, M. Payer et al., “The matter
of heartbleed,” in Proceedings of the 2014 Conference on Internet
Measurement Conference. ACM, 2014, pp. 475–488.

[2] Z. Deng, B. Saltaformaggio, X. Zhang, and D. Xu, “iris: Vetting
private api abuse in ios applications,” in Proceedings of the 22Nd ACM
SIGSAC Conference on Computer and Communications Security, ser.
CCS ’15. New York, NY, USA: ACM, 2015, pp. 44–56. [Online].
Available: http://doi.acm.org/10.1145/2810103.2813675

[3] A. Bittau, P. Marchenko, M. Handley, and B. Karp, “Wedge: Splitting
applications into reduced-privilege compartments.” in NSDI, vol. 8,
2008, pp. 309–322.

[4] “Memory domains,” http://infocenter.arm.com/help/index.jsp?topic=
/com.arm.doc.ddi0211k/Babjdffh.html.

[5] J. Corbet, “Memory protection keys,” https://lwn.net/Articles/643797/,
May 2015.

[6] D. Hansen, “[rfc] x86: Memory protection keys,” https://lwn.net/
Articles/643617/, May 2015.

[7] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” in Code Generation and Optimiza-
tion, 2004. CGO 2004. International Symposium on. IEEE, 2004, pp.
75–86.

[8] D. Kilpatrick, “Privman: A library for partitioning applications.” in
USENIX Annual Technical Conference, FREENIX Track, 2003, pp. 273–
284.

[9] N. Provos, M. Friedl, and P. Honeyman, “Preventing privilege escala-
tion.” in USENIX Security, vol. 3, 2003.

[10] D. Brumley and D. Song, “Privtrans: Automatically partitioning pro-
grams for privilege separation,” in USENIX Security Symposium, 2004,
pp. 57–72.

[11] Y. Liu, T. Zhou, K. Chen, H. Chen, and Y. Xia, “Thwarting memory
disclosure with efficient hypervisor-enforced intra-domain isolation,” in
Proceedings of the 22Nd ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’15, 2015.

[12] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative instructions and
software model for isolated execution,” in Proceedings of the 2nd
International Workshop on Hardware and Architectural Support for
Security and Privacy. ACM, 2013, pp. 1–1.

[13] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham, “Efficient
software-based fault isolation,” in ACM SIGOPS Operating Systems
Review, vol. 27, no. 5. ACM, 1994, pp. 203–216.

[14] “Domain access control register,” http://infocenter.arm.com/help/index.
jsp?topic=/com.arm.doc.ddi0434b/CIHBCBFE.html.

[15] R. N. Watson, J. Anderson, B. Laurie, and K. Kennaway, “Capsicum:
Practical capabilities for unix.” in USENIX Security Symposium, 2010,
pp. 29–46.

[16] “clang: a c language family frontend for llvm,” http://clang.llvm.org/.
[17] M. Castro, M. Costa, J.-P. Martin, M. Peinado, P. Akritidis, A. Donnelly,

P. Barham, and R. Black, “Fast byte-granularity software fault isolation,”
in Proceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles. ACM, 2009, pp. 45–58.

[18] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula, “Xfi:
Software guards for system address spaces,” in Proceedings of the 7th
symposium on Operating systems design and implementation. USENIX
Association, 2006, pp. 75–88.

[19] B. Ford and R. Cox, “Vx32: Lightweight user-level sandboxing on the
x86.” in USENIX Annual Technical Conference. Boston, MA, 2008,
pp. 293–306.

[20] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar, “Native client: A sandbox for
portable, untrusted x86 native code,” in Security and Privacy, 2009 30th
IEEE Symposium on. IEEE, 2009, pp. 79–93.

[21] “Arm 32-bit sandbox,” https://developer.chrome.com/native-client/
reference/sandbox internals/arm-32-bit-sandbox. [Online]. Avail-
able: https://developer.chrome.com/native-client/reference/sandbox
internals/arm-32-bit-sandbox

[22] Y. Zhou, X. Wang, Y. Chen, and Z. Wang, “Armlock: Hardware-based
fault isolation for arm,” in Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2014,
pp. 558–569.

[23] R. Strackx and F. Piessens, “Fides: Selectively hardening software
application components against kernel-level or process-level malware,”
in Proceedings of the 2012 ACM conference on Computer and commu-
nications security. ACM, 2012, pp. 2–13.

[24] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki,
“Flicker: An execution infrastructure for tcb minimization,” in ACM
SIGOPS Operating Systems Review, vol. 42, no. 4. ACM, 2008, pp.
315–328.

[25] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig,
“Trustvisor: Efficient tcb reduction and attestation,” in Security and
Privacy (SP), 2010 IEEE Symposium on. IEEE, 2010, pp. 143–158.

[26] A. M. Azab, P. Ning, and X. Zhang, “Sice: a hardware-level strongly
isolated computing environment for x86 multi-core platforms,” in Pro-
ceedings of the 18th ACM conference on Computer and communications
security. ACM, 2011, pp. 375–388.

[27] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A. Wald-
spurger, D. Boneh, J. Dwoskin, and D. R. Ports, “Overshadow: a
virtualization-based approach to retrofitting protection in commodity
operating systems,” in ACM SIGOPS Operating Systems Review, vol. 42,
no. 2. ACM, 2008, pp. 2–13.

[28] E. Witchel, J. Cates, and K. Asanović, “Mondrian memory protection,”
in Proceedings of the 10th International Conference on Architectural
Support for Programming Languages and Operating Systems, ser.
ASPLOS X. New York, NY, USA: ACM, 2002, pp. 304–316.
[Online]. Available: http://doi.acm.org/10.1145/605397.605429

[29] G. E. Suh, D. Clarke, B. Gassend, M. v. Dijk, and S. Devadas, “Efficient
memory integrity verification and encryption for secure processors,” in
Proceedings of the 36th annual IEEE/ACM International Symposium on
Microarchitecture. IEEE Computer Society, 2003, p. 339.

[30] K. Harrison and S. Xu, “Protecting cryptographic keys from memory dis-
closure attacks,” in Dependable Systems and Networks, 2007. DSN’07.
37th Annual IEEE/IFIP International Conference on. IEEE, 2007, pp.
137–143.

[31] Akamai Technologies, “Secure storage of private (rsa) keys,” https://lwn.
net/Articles/594923/.

[32] MSDN, “Securestring class,” https://msdn.microsoft.com/en-us/library/
system.security.securestring.aspx.

[33] T. Müller, F. C. Freiling, and A. Dewald, “Tresor runs encryption
securely outside ram.” in USENIX Security Symposium, 2011, pp. 17–17.

[34] L. Guan, J. Lin, B. Luo, and J. Jing, “Copker: Computing with private
keys without ram,” in 21st ISOC Network and Distributed System
Security Symposium (NDSS), 2014.

[35] G. Vasiliadis, E. Athanasopoulos, M. Polychronakis, and S. Ioannidis,
“Pixelvault: Using gpus for securing cryptographic operations,” in
Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2014, pp. 1131–1142.

[36] L. Guan, J. Lin, B. Luo, J. Jing, and J. Wang, “Protecting private
keys against memory disclosure attacks using hardware transactional
memory,” in Security and Privacy (SP), 2015 IEEE Symposium on, May
2015, pp. 3–19.

[37] D. Y. Zhu, J. Jung, D. Song, T. Kohno, and D. Wetherall, “Tainteraser:
protecting sensitive data leaks using application-level taint tracking,”
ACM SIGOPS Operating Systems Review, vol. 45, no. 1, pp. 142–154,
2011.

[38] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas, “Secure program
execution via dynamic information flow tracking,” in Acm Sigplan
Notices, vol. 39, no. 11. ACM, 2004, pp. 85–96.

[39] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières, “Making
information flow explicit in histar,” in Proceedings of the 7th symposium
on Operating systems design and implementation. USENIX Associa-
tion, 2006, pp. 263–278.

[40] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler,
and R. Morris, “Information flow control for standard os abstractions,”
in ACM SIGOPS Operating Systems Review, vol. 41, no. 6. ACM,
2007, pp. 321–334.

[41] A. Belay, A. Bittau, A. Mashtizadeh, D. Terei, D. Mazières, and
C. Kozyrakis, “Dune: Safe user-level access to privileged cpu features,”
in Presented as part of the 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 12), 2012, pp. 335–348.

7070

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 19:17:56 UTC from IEEE Xplore. Restrictions apply.

[42] R. N. Watson, J. Woodruff, P. G. Neumann, S. W. Moore, J. Anderson,
D. Chisnall, N. Dave, B. Davis, K. Gudka, B. Laurie et al., “Cheri:
A hybrid capability-system architecture for scalable software compart-
mentalization,” in Security and Privacy (SP), 2015 IEEE Symposium on.
IEEE, 2015, pp. 20–37.

7171

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 19:17:56 UTC from IEEE Xplore. Restrictions apply.

