
Automated reasoning for equivalences in
the applied pi calculus with barriers

Bruno Blanchet

Inria, Paris, France
Email: Bruno.Blanchet@inria.fr

Ben Smyth

Huawei Technologies Co. Ltd., France
Email: research@bensmyth.com

Abstract—Observational equivalence allows us to study im-
portant security properties such as anonymity. Unfortunately,
the difficulty of proving observational equivalence hinders
analysis. Blanchet, Abadi & Fournet simplify its proof by
introducing a sufficient condition for observational equiva-
lence, called diff-equivalence, which is a reachability condition
that can be proved automatically by ProVerif. However, diff-
equivalence is a very strong condition, which often does not
hold even if observational equivalence does. In particular, when
proving equivalence between processes that contain several
parallel components, e.g., P | Q and P ′ | Q′, diff-equivalence
requires that P is equivalent to P ′ and Q is equivalent to Q′.
To relax this constraint, Delaune, Ryan & Smyth introduced
the idea of swapping data between parallel processes P ′ and Q′

at synchronisation points, without proving its soundness. We
extend their work by formalising the semantics of synchro-
nisation, formalising the definition of swapping, and proving
its soundness. We also relax some restrictions they had on the
processes to which swapping can be applied. Moreover, we have
implemented our results in ProVerif. Hence, we extend the class
of equivalences that can be proved automatically. We showcase
our results by analysing privacy in election schemes by Fujioka,
Okamoto & Ohta and Lee et al., and in the vehicular ad-hoc
network by Freudiger et al.

I. INTRODUCTION

Cryptographic protocols are required to satisfy a plethora

of security requirements. These requirements include clas-

sical properties such as secrecy and authentication, and

emerging properties including anonymity [1], [2], [3], ideal

functionality [4], [5], [6], and stronger notions of secrecy [7],

[8], [9]. These security requirements can generally be

classified as indistinguishability or reachability properties.

Reachability properties express requirements of a protocol’s

reachable states. For example, secrecy can be expressed

as the inability of deriving a particular value from any

possible protocol execution. By comparison, indistinguisha-

bility properties express requirements of a protocol’s ob-

servable behaviour. Intuitively, two protocols are said to

be indistinguishable if an observer has no way of telling

them apart. Indistinguishability enables the formulation of

more complex properties. For example, anonymity can be

expressed as the inability to distinguish between an instance

of the protocol in which actions are performed by a user,

from another instance in which actions are performed by

another user.

Indistinguishability can be formalised as observational

equivalence, denoted ≈. As a motivating example, consider

an election scheme, in which a voter A voting v is formalised

by a process V (A, v). Ballot secrecy can be formalised by

the equivalence

V (A, v) | V (B, v′) ≈ V (A, v′) | V (B, v) (1)

which means that no adversary can distinguish when two

voters swap their votes [2]. (We use the applied pi cal-

culus syntax and terminology [5], which we introduce in

Section II.)

A. Approaches to proving equivalences

Observational equivalence is the tool introduced for rea-

soning about security requirements of cryptographic pro-

tocols in the spi calculus [4] and in the applied pi calcu-

lus [5]. It was originally proved manually, using the notion

of labelled bisimilarity [5], [10], [11] to avoid universal

quantification over adversaries.

Manual proofs of equivalence are long and difficult,

so automating these proofs is desirable. Automation often

relies on symbolic semantics [12], [13] to avoid the infinite

branching due to messages sent by the adversary by treating

these messages as variables. For a bounded number of

sessions, several decision procedures have been proposed

for processes without else branches, first for a fixed set of

primitives [14], [15], then for a wide variety of primitives

with the restriction that processes are determinate, that

is, their execution is entirely determined by the adversary

inputs [16]. These decision procedures are too complex for

useful implementations. Practical algorithms have since been

proposed and implemented: SPEC [17] for fixed primitives

and without else branches, APTE [18] for fixed primitives

with else branches and non-determinism, and AKISS [19],

[20] for a wide variety of primitives and determinate pro-

cesses.

For an unbounded number of sessions, proving equiva-

lence is an undecidable problem [14], [21], so automated

proof techniques are incomplete. ProVerif automatically

proves an equivalence notion, named diff-equivalence, be-

tween processes P and Q that share the same structure and

2016 IEEE 29th Computer Security Foundations Symposium

© 2016, Bruno Blanchet. Under license to IEEE. 310

2016 IEEE 29th Computer Security Foundations Symposium

© 2016, Bruno Blanchet. Under license to IEEE.

DOI 10.1109/CSF.2016.29

310

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 23:02:55 UTC from IEEE Xplore. Restrictions apply.

differ only in the choice of terms [22]. Diff-equivalence

requires that the two processes always reduce in the same

way, in the presence of any adversary. In particular, the

two processes must have the same branching behaviour.

Hence, diff-equivalence is much stronger than observational

equivalence. Maude-NPA [23] and Tamarin [24] also use

that notion, and Baudet [25] showed that diff-equivalence is

decidable for a bounded number of sessions and used this

technique for proving resistance against off-line guessing

attacks [26]. Decision procedures also exist for restricted

classes of protocols: for an unbounded number of sessions,

trace equivalence has a decision procedure for symmetric-

key, type-compliant, acyclic protocols [27], which is too

complex for useful implementation, and for ping-pong pro-

tocols [28], which is implemented in a tool.

B. Diff-equivalence and its limitations

The main approach to automate proofs of observational

equivalence with an unbounded number of sessions is to

use diff-equivalence. (In our motivating example (1), a

bounded number of sessions is sufficient, but an unbounded

number becomes useful in more complex examples, as in

Section IV-B.) Diff-equivalence seems well-suited to our

motivating example, since the processes V (A, v) | V (B, v′)
and V (A, v′) | V (B, v) differ only by their terms. Such a

pair of processes can be represented as a biprocess which

has the same structure as each of the processes and captures

the differences in terms using the construct diff[M,M ′],
denoting the occurrence of a term M in the first process

and a term M ′ in the second. For example, the pair of

processes in our motivating example can be represented as

the biprocess P1 � V (A, diff[v, v′]) | V (B, diff[v′, v]). The

two processes represented by a biprocess P are recovered

by fst(P) and snd(P). Hence, fst(P1) = V (A, v) | V (B, v′)
and snd(P1) = V (A, v′) | V (B, v).

Diff-equivalence implies observational equivalence.

Hence, the equivalence (1) can be inferred from the diff-

equivalence of the biprocess P1. However, diff-equivalence

is so strong that it does not hold for biprocesses modelling

even trivial schemes, as the following example demonstrates.

Example 1. Consider an election scheme that instructs

voters to publish their vote on an anonymous channel.

The voter’s role can be formalised as V (A, v) = c〈v〉.
Thus, ballot secrecy can be analysed using the biprocess

P � c〈diff[v, v′]〉 | c〈diff[v′, v]〉. It is trivial to see

that fst(P) = c〈v〉 | c〈v′〉 is indistinguishable from

snd(P) = c〈v′〉 | c〈v〉, because any output by fst(P)
can be matched by an output from snd(P), and vice-

versa. However, the biprocess P does not satisfy diff-

equivalence. Intuitively, this is because diff-equivalence

requires that the subprocesses of the parallel composition,

namely, c〈diff[v, v′]〉 and c〈diff[v′, v]〉, each satisfy diff-

equivalence, which is false, because c〈v〉 is not equivalent

to c〈v′〉 (nor is c〈v′〉 equivalent to c〈v〉).

Overcoming the difficulty encountered in Example 1 is

straightforward: using the general property that P | Q ≈
Q | P , we can instead prove

V (A, v) | V (B, v′) ≈ V (B, v) | V (A, v′)

which, in the case of Example 1, is proved by noticing that

the two sides of the equivalence are equal, i.e., by noticing

that the biprocess P̂ � c〈diff[v, v]〉 | c〈diff[v′, v′]〉 trivially

satisfies diff-equivalence, since fst(P̂) = snd(P̂). However,

this technique cannot be applied to more complex examples,

as we show below.

Some security properties (e.g., privacy in elections [2],

[29], vehicular ad-hoc networks [3], [30], and anonymity

networks [1], [31], [32]) can only be realised if processes

synchronise their actions in a specific manner.

Example 2. Building upon Example 1, suppose each voter

sends their identity, then their vote, both on an anonymous

channel, i.e., V (A, v) = c〈A〉.c〈v〉. This example does

not satisfy ballot secrecy, because V (A, v) | V (B, v′)
can output A, v, B, v′ on channel c in that order, while

V (A, v′) | V (B, v) cannot.

To modify this example so that it satisfies ballot secrecy, we

use the notion of barrier synchronisation, which ensures that

a process will block, when a barrier is encountered, until all

other processes executing in parallel reach this barrier [33],

[34], [35], [36].

Example 3. Let us modify the previous example so that

voters publish their identity, synchronise with other voters,

and publish their vote on an anonymous channel. The

voter’s role can be formalised as process V (A, v) =
c〈A〉.1:: c〈v〉, where 1:: is a barrier synchronisation. Bal-

lot secrecy can then be analysed using biprocess Pex �
c〈A〉.1:: c〈diff[v, v′]〉 | c〈B〉.1:: c〈diff[v′, v]〉. Synchroni-

sation ensures the output of A and B, prior to v and v′,
in both fst(Pex) and snd(Pex), so that ballot secrecy holds,

but diff-equivalence does not hold.

The technique used to overcome the difficulty in Ex-

ample 1 cannot be applied here, because swapping the

two voting processes leads to the biprocess P ′
ex �

c〈diff[A,B]〉.1:: c〈v〉 | c〈diff[B,A]〉.1:: c〈v′〉, which does

not satisfy diff-equivalence. Intuitively, we need to swap

at the barrier, not at the beginning (cf. P ′
ex). In essence,

by swapping data between the two voting processes at

the barrier, it suffices to prove that the biprocess P ′′
ex �

c〈A〉.1:: c〈diff[v, v]〉 | c〈B〉.1:: c〈diff[v′, v′]〉 satisfies diff-

equivalence, which trivially holds since fst(P ′′
ex) = snd(P ′′

ex).
As illustrated in Examples 1 & 3, diff-equivalence is a

sufficient condition for observational equivalence, but it is

not necessary, and this precludes the analysis of interesting

security properties. In this paper, we will partly overcome

this limitation: we weaken the diff-equivalence requirement

by allowing swapping of data between processes at barriers.

311311

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 23:02:55 UTC from IEEE Xplore. Restrictions apply.

C. Contributions

First, we extend the process calculus by Blanchet, Abadi

& Fournet [22] to capture barriers (Section II). Secondly,

we formally define a compiler that encodes barriers and

swapping using private channel communication (Section III).

As a by-product, if we compile without swapping, we also

obtain an encoding of barriers into the calculus without

barriers, via private channel communication. Thirdly, we

provide a detailed soundness proof for this compiler. (Details

of the proof are in the long version of this paper [37].)

Fourthly, we have implemented our compiler in ProVerif.

Hence, we extend the class of equivalences that can be

proved automatically. Finally, we analyse privacy in election

schemes and in a vehicular ad-hoc network to showcase our

results (Section IV).

D. Comparison with Delaune, Ryan & Smyth

The idea of swapping data at barriers was informally

introduced by Delaune, Ryan & Smyth [38], [39]. Our

contributions improve upon their work by providing a strong

theoretical foundation to their idea. In particular, they do not

provide a soundness proof, we do; they prohibit replication

and place restrictions on control flow and parallel composi-

tion, we relax these conditions; and they did not implement

their results, we implement ours. (Smyth presented a prelim-

inary version of our compiler in his thesis [40, Chapter 5],

and Klus, Smyth & Ryan implemented that compiler [41].)

II. PROCESS CALCULUS

We recall Blanchet, Abadi & Fournet’s dialect [22] of the

applied pi calculus [5], [42]. This dialect is particularly use-

ful due to the automated support provided by ProVerif [43].

The semantics of the applied pi calculus [5] and the dialect

of [22] were defined using structural equivalence. Those

semantics have been simplified by semantics with config-

urations and without structural equivalence, first for trace

properties [44], then for equivalences [25], [45], [46]. In this

paper, we use the latter semantics. In addition, we extend

the calculus to capture barrier synchronisation, by giving the

syntax and formal semantics of barriers.

A. Syntax and semantics

The calculus assumes an infinite set of names, an infi-

nite set of variables, and a finite set of function symbols
(constructors and destructors), each with an associated arity.

We write f for a constructor, g for a destructor, and h for

a constructor or destructor; constructors are used to build

terms, whereas destructors are used to manipulate terms in

expressions. Thus, terms range over names, variables, and

applications of constructors to terms, and expressions allow

applications of function symbols to expressions (Fig. 1). We

use metavariables u and w to range over both names and

variables. Substitutions {M/x} replace x with M . Arbitrarily

large substitutions can be written as {M1/x1, . . . ,Mn/xn}

M,N ::= terms

a, b, c, . . . , k, . . . ,m, n, . . . , s name

x, y, z variable

f(M1, . . . ,Ml) constructor application

D ::= expressions

M term

h(D1, . . . , Dl) function evaluation

P,Q,R ::= processes

0 null process

P | Q parallel composition

!P replication

ν a.P name restriction

M(x).P message input

M〈N〉.P message output

let x = D in P else Q expression evaluation

t::P barrier

Figure 1. Syntax for terms and processes

and the letters σ and τ range over substitutions. We write

Mσ for the result of applying σ to the variables of M .

Similarly, renamings {u/w} replace w with u, where u and

w are both names or both variables.

The semantics of a destructor g of arity l are given by

a finite set def(g) of rewrite rules g(M ′
1, . . . ,M

′
l) → M ′,

where M ′
1, . . . ,M

′
l ,M

′ are terms that contain only construc-

tors and variables, the variables of M ′ must be bound in

M ′
1, . . . ,M

′
l , and variables are subject to renaming. The

evaluation of expression g(M1, . . . ,Ml) succeeds if there

exists a rewrite rule g(M ′
1, . . . ,M

′
l)→M ′ in def(g) and a

substitution σ such that Mi = M ′
iσ for all i ∈ {1, . . . , l},

and in this case g(M1, . . . ,Ml) evaluates to M ′σ. In order

to avoid distinguishing constructors and destructors in the

semantics of expressions, we let def(f) be {f(x1, . . . , xl)→
f(x1, . . . , xl)}, where f is a constructor of arity l. In particu-

lar, we use n-ary constructors (M1, . . . ,Mn) for tuples, and

unary destructors πi,n for projections, with the rewrite rule

πi,n((x1, . . . , xn)) → xi for all i ∈ {1, . . . , n}. ProVerif

supports both rewrite rules and equations [22]; we omit

equations in this paper for simplicity. It is straightforward

to extend our proofs to equations, and our implementation

supports them.

The grammar for processes is presented in Fig. 1. The

process let x = D in P else Q tries to evaluate D; if this

succeeds, then x is bound to the result and P is executed,

otherwise, Q is executed. We define the conditional if M =
N then P else Q as let x = eq(M,N) in P else Q, where

x is a fresh variable, eq is a binary destructor, and def(eq) =
{eq(y, y)→ y}; we always include eq in our set of function

symbols. The else branches may be omitted when Q is the

null process. The rest of the syntax is standard (see [8], [22],

[45]), except for barriers, which we explain below.

312312

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 23:02:55 UTC from IEEE Xplore. Restrictions apply.

Our syntax allows processes to contain barriers t::P ,

where t ∈ N. Intuitively, t::P blocks P until all processes

running in parallel are ready to synchronise at barrier t.
In addition, barriers are ordered, so t::P is also blocked

if there are any barriers t′ such that t′ < t. Blanchet,

Abadi & Fournet [22, Section 8] also introduced a notion

of synchronisation, named stages. A stage synchronisation

can occur at any point, by dropping processes that did

not complete the previous stage. By comparison, a barrier

synchronisation cannot drop processes. For example, in the

process c〈k〉.1:: c〈m〉 | 1:: c〈n〉, the barrier synchronisation

cannot occur before the output of k. It follows that the

process cannot output n without having previously output

k. In contrast, with stage synchronisation, either k is output

first, then the process moves to the next stage, then it

may output m and n, or the process immediately moves

to the next stage by dropping c〈k〉.1:: c〈m〉, so it may

output n without any other output. Our notion of barrier

is essential for equivalence properties that require swapping

data between two processes, because we must not drop one

of these processes.

Given a process P , the multiset barriers(P) collects all

barriers that occur in P . Thus, barriers(t::Q) = {t} ∪
barriers(Q) and in all other cases, barriers(P) is the multiset

union of the barriers of the immediate subprocesses of P .

We naturally extend the function barriers to multisets P of

processes by barriers(P) =
⋃

P∈P barriers(P). For each

barrier t, the number of processes that must synchronise

is equal to the number of elements t in barriers(P). It

follows that the number of barriers which must be reached

is defined in advance of execution, and thus branching

behaviour may cause blocking. For example, the process

c(x).if x = k then 1:: c〈m〉 else c〈n〉 | 1:: c〈s〉 contains

two barriers that must synchronise. However, when the term

bound to x is not k, the else branch is taken and one of

the barriers is dropped, so only one barrier remains. In

this case, barrier synchronisation blocks forever, and the

process never outputs s. The occurrence of barriers under

replication is explicitly forbidden, because with barriers

under replication, the number of barriers that we need to

synchronise is ill-defined. We partly overcome this limitation

in Section III-E1.

The scope of names and variables is delimited by binders

ν n, M(x), and let x = D in. The set of free names

fn(P) contains every name n in P which is not under the

scope of the binder ν n. The set of free variables fv(P)
contains every variable x in P which is not under the

scope of a message input M(x) or an expression evaluation

let x = D in. Using similar notation, the set of names in a

term M is denoted fn(M) and the set of variables in a term

M is denoted fv(M). We naturally extend these functions

to multisets P of processes by fn(P) =
⋃

P∈P fn(P) and

fv(P) = ⋃
P∈P fv(P). A term M is ground if fv(M) = ∅,

a substitution {M/x} is ground if M is ground, and a

M ⇓M (M is a term, so it does not contain destructors)

h(D1, . . . , Dl) ⇓ Nσ if

there exist h(N1, . . . , Nl)→ N ∈ def(h) and σ such that

for all i ∈ {1, . . . , l} we have Di ⇓Mi and Mi = Niσ

B,E,P ∪ {0} → B,E,P (RED NIL)

B,E,P ∪ {P | Q} → B,E,P ∪ {P,Q} (RED PAR)

B,E,P ∪ {!P} → B,E,P ∪ {P, !P} (RED REPL)

B,E,P ∪ {ν n.P} → B,E ∪ {n′},P ∪ {P{n′
/n}}

for some name n′ such that n′
∈ E ∪ fn(P ∪ {ν n.P})
(RED RES)

B,E,P ∪ {N〈M〉.P,N(x).Q} →
B,E,P ∪ {P,Q{M/x}}

(RED I/O)

B,E,P ∪ {let x = D in P else Q} →
B,E,P ∪ {P{M/x}}

if D ⇓M

(RED DESTR 1)

B,E,P ∪ {let x = D in P else Q} → B,E,P ∪ {Q}
if there is no M such that D ⇓M

(RED DESTR 2)

B,E,P ∪ {t::P1, . . . , t::Pn} →
B\{tn}, E,P ∪ {P1, . . . , Pn}

if n ≥ 1 and for all t′ such that t′ ≤ t, we have

t′
∈ B\{tn}, where tn denotes n copies of t.
(RED BAR)

Figure 2. Operational semantics

process P is closed if fv(P) = ∅. Processes are considered

equal modulo renaming of bound names and variables. As

usual, substitutions avoid name and variable capture, by first

renaming bound names and variables to fresh names and

variables, respectively.

The operational semantics is defined by reduction (→) on

configurations. A configuration C is a triple B,E,P , where

B is a finite multiset of integers, E is a finite set of names,

and P is a finite multiset of closed processes. The multiset

B contains the barriers that control the synchronisation of

processes in P . The set E is initially empty and is extended

to include any names introduced during reduction, namely,

those names introduced by (RED RES). When E = {ã}
and P = {P1, . . . , Pn}, the configuration B,E,P intuitively

stands for ν ã.(P1 | · · · | Pn). We consider configurations as

equal modulo any renaming of the names in E,P that leaves

fn(P) \E unchanged. The initial configuration for a closed

process P is Cinit(P) = barriers(P), ∅, {P}. Fig. 2 defines

313313

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 23:02:55 UTC from IEEE Xplore. Restrictions apply.

reduction rules for each construct of the language. The rule

(RED REPL) creates a new copy of the replicated process

P . The rule (RED RES) reduces ν n by creating a fresh

name n′, adding it to E, and substituting it for n. The rule

(RED I/O) performs communication: the term M sent by

N〈M〉.P is received by N(x).Q, and substituted for x. The

rules (RED DESTR 1) and (RED DESTR 2) treat expression

evaluations. They first evaluate D, using the relation D ⇓M ,

which means that the expression D evaluates to the term

M , and is also defined in Fig. 2. When this evaluation

succeeds, (RED DESTR 1) substitutes the result M for x
and runs P . When it fails, (RED DESTR 2) runs Q. Finally,

the new rule (RED BAR) performs barrier synchronisation: it

synchronises on the lowest barrier t in B. If t occurs n times

in B, it requires n processes t::P1, . . . , t::Pn to be ready to

synchronise, and in this case, it removes barrier t both from

B and from these processes, which can then further reduce.

A configuration B,E,P is valid when barriers(P) ⊆ B. It

is easy to check that the initial configuration is valid and that

validity is preserved by reduction. We shall only manipulate

valid configurations.

Example 4. Let us consider the parallel composition of

processes P � c〈k〉.1:: c(x), Q � ν n.1:: c〈n〉, and

R � c(x), which yields the initial configuration C =
{12}, ∅, {P | Q | R}, since the process P | Q | R
contains two barriers 1. We have

C = {12}, ∅, {P | Q | R}
−→ {12}, ∅, {P, Q | R} by (RED PAR)

−→ {12}, ∅, {P, Q, R} by (RED PAR)

−→ {12}, ∅, {1:: c(x), Q, 0} by (RED I/O)

−→ {12}, ∅, {1:: c(x), Q} by (RED NIL)

−→ {12}, {n′}, {1:: c(x), 1:: c〈n′〉} by (RED RES)

−→ ∅, {n′}, {c(x), c〈n′〉} by (RED BAR)

−→ ∅, {n′}, {0, 0} by (RED I/O)

−→ ∅, {n′}, {0} by (RED NIL)

−→ ∅, {n′}, ∅ by (RED NIL)

B. Observational equivalence

Intuitively, configurations C and C′ are observationally

equivalent if they can output on the same channels in the

presence of any adversary. Formally, we adapt the definition

of observational equivalence by Arapinis et al. [46] to

consider barriers rather than mutable state. We define a

context C[] to be a process with a hole. We obtain C[P]
as the result of filling C[]’s hole with process P . We

define adversarial contexts as contexts ν ñ.(| Q) with

fv(Q) = ∅ and barriers(Q) = ∅. When C = B,E,P and

C[] = ν ñ.(| Q) is an adversarial context, we define

C[C] = B,E ∪ {ñ},P ∪ {Q}, after renaming the names in

E,P so that E ∩ fn(Q) = ∅. A configuration C = B,E,P
can output on a channel N , denoted, C ↓N , if there exists

N〈M〉.P ∈ P with fn(N) ∩ E = ∅, for some term M and

process P .

Definition 1 (Observational equivalence). Observational

equivalence between configurations ≈ is the largest sym-

metric relation R between valid configurations such that

C R C′ implies:

1) if C ↓N , then C′ −→∗↓N , for all N ;

2) if C → C1, then C′ →∗ C′1 and C1 R C′1, for some C′1.

3) C[C] R C[C′] for all adversarial contexts C[].

Closed processes P and P ′ are observationally equivalent,
denoted P ≈ P ′, if Cinit(P) ≈ Cinit(P

′).
The definition first formulates observational equivalence

on semantic configurations. Item 1 guarantees that, if a

configuration C outputs on a public channel, then so does

C′. Item 2 guarantees that this property is preserved by

reduction, and Item 3 guarantees that it is preserved in the

presence of any adversary. Finally, observational equivalence

is formulated on closed processes.

C. Biprocesses

The calculus defines syntax to model pairs of processes

that have the same structure and differ only by the terms that

they contain. We call such a pair of processes a biprocess.

The grammar for biprocesses is an extension of Fig. 1, with

additional cases so that diff[M,M ′] is a term and diff[D,D′]
is an expression. (We occasionally refer to processes and

biprocesses as processes when it is clear from the context.)

Given a biprocess P , we define processes fst(P) and snd(P)
as follows: fst(P) is obtained by replacing all occurrences

of diff[M,M ′] with M and snd(P) is obtained by replacing

diff[M,M ′] with M ′. We define fst(D), fst(M), snd(D),
and snd(M) similarly, and naturally extend these functions

to multisets of biprocesses by fst(P) = {fst(P) | P ∈ P}
and snd(P) = {snd(P) | P ∈ P}, and to configura-

tions by fst(B,E,P) = B,E, fst(P) and snd(B,E,P) =
B,E, snd(P). The standard definitions of barriers, free

names, and free variables apply to biprocesses as well.

Observational equivalence can be formalised as a property

of biprocesses:

Definition 2. A closed biprocess P satisfies observational
equivalence if fst(P) ≈ snd(P).

The semantics for biprocesses includes the rules in

Fig. 2, except for (RED I/O), (RED DESTR 1), and

(RED DESTR 2) which are revised in Fig. 3. It follows from

this semantics that, if C −→ C′, then fst(C) −→ fst(C′) and

snd(C) −→ snd(C′). In other words, a biprocess reduces

when the two underlying processes reduce in the same way.

However, reductions in fst(C) or snd(C) do not necessarily

imply reductions in C, that is, there exist configurations C
such that fst(C) −→ fst(C′), but there is no such reduction

C −→ C′, and symmetrically for snd(C). For example, given

the configuration C = ∅, ∅, {diff[a, c]〈n〉.0, a(x).0}, we have

fst(C) −→ ∅, ∅, {0, 0}, but there is no reduction C −→

314314

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 23:02:55 UTC from IEEE Xplore. Restrictions apply.

B,E,P ∪ {N〈M〉.P,N ′(x).Q} →
B,E,P ∪ {P,Q{M/x}}

if fst(N) = fst(N ′) and snd(N) = snd(N ′)

(RED I/O)

B,E,P ∪ {let x = D in P else Q} →
B,E,P ∪ {P{diff[M,M ′]/x}}

if fst(D) ⇓M and snd(D) ⇓M ′
(RED DESTR 1)

B,E,P ∪ {let x = D in P else Q} → B,E,P ∪ {Q}
if there is no M such that fst(D) ⇓M

and no M ′ such that snd(D) ⇓M ′

(RED DESTR 2)

Figure 3. Generalised semantics for biprocesses

B,E,P ∪ {N〈M〉.P,N ′(x).Q} ↑
if (fst(N) = fst(N ′))
⇔ (snd(N) = snd(N ′))

(DIV I/O)

B,E,P ∪ {let x = D in P else Q} ↑
if (∃M.fst(D) ⇓M)
⇔ (∃M ′.snd(D) ⇓M ′)

(DIV DESTR)

Figure 4. Semantics for divergence

∅, ∅, {0, 0}. Formally, this behaviour can be captured using

the divergence relation (↑) for configurations (Fig. 4) [25].

Divergence can occur because either: i) one process can

perform a communication and the other cannot, by rule

(DIV I/O); or ii) the evaluation of an expression succeeds in

one process and fails in the other, by rule (DIV DESTR). Us-

ing the notion of diff-equivalence (Definition 3), Theorem 1

shows that a biprocess P satisfies observational equivalence

when reductions in C[Cinit(fst(P))] or C[Cinit(snd(P))] im-

ply reductions in C[Cinit(P)] for all adversarial contexts

C[], that is, configurations obtained from C[Cinit(P)] never

diverge.

Definition 3 (Diff-equivalence). A closed biprocess P sat-

isfies diff-equivalence if for all adversarial contexts C[],
there is no configuration C such that C[Cinit(P)] −→∗ C
and C ↑.

Theorem 1. Let P be a closed biprocess without barriers. If

P satisfies diff-equivalence, then P satisfies observational

equivalence.

Theorem 1 can be proved by adapting the proof of Blanchet,

Abadi & Fournet [22, Theorem 1], which presents a similar

result using a semantics based on structural equivalence and

reduction instead of reduction on configurations.

III. AUTOMATED REASONING

To prove equivalence, we define a compiler from a bipro-

cess (containing barriers) to a set of biprocesses without

barriers. The biprocesses in that set permit various swapping

strategies. We show that if one of these biprocesses satisfies

diff-equivalence, then the original biprocess satisfies obser-

vational equivalence. The compiler works in two steps:

1) Function annotate annotates barriers with the data to

be swapped and channels for sending and receiving

such data.

2) Function elim-and-swap translates the biprocess with

annotated barriers into biprocesses without barriers,

which encode barriers using communication (inputs

and outputs). We exploit this communication to allow

swapping, by sending back data to a different barrier.

We introduce annotated barriers (Section III-A) and de-

fine these two steps (Sections III-B and III-C) below. By

combining these two steps we obtain our compiler (Sec-

tion III-D), which we have implemented in ProVerif 1.94

(http://proverif.inria.fr/). The proof of soundness shows that

these two steps preserve the observational behaviour of

the biprocesses, so that if a compiled biprocess satisfies

observational equivalence, then so does the initial biprocess.

A. Process calculus with annotated barriers

We introduce an annotated barrier construct t[a, c, ς]::P ,

which is not present in the syntax introduced in Section II,

but is used by our compiler. In this construct, a and c are

distinct channel names: channel a will be used for sending

swappable data, and channel c for receiving swapped data.

Moreover, the ordered substitution ς = (M1/x1, . . . ,Mn/xn)
collects swappable data M1, . . . ,Mn and associates these

terms with variables x1, . . . , xn; the process P uses these

variables instead of the terms M1, . . . ,Mn. The ordered

substitution ς is similar to a substitution, except that the

elements M1/x1, . . . ,Mn/xn are ordered. (We indicate or-

dering using parentheses instead of braces.) The ordering is

used to designate each variable in the domain unambigu-

ously. We define dom(ς) = {x1, . . . , xn} and range(ς) =
{M1, . . . ,Mn}. The annotated barrier t[a, c, ς]::P binds the

variables in the domain of ς in P , so we extend the functions

fn and fv to annotated barriers as follows:

fn(t[a, c, ς]::P) = {a, c} ∪ fn(range(ς)) ∪ fn(P)

fv(t[a, c, ς]::P) = fv(range(ς)) ∪ (fv(P) \ dom(ς))

We define the ordered domain of ς , ordom(ς) = (x1, . . . ,
xn), as the tuple containing the variables in the domain of

ς , in the same order as in the definition of ς .

We also introduce a domain-barrier construct t[a, c,
x̃]::P , which is similar to an annotated barrier except that

the ordered substitution ς is replaced with a tuple of variables

x̃ = (x1, . . . , xn) corresponding to the ordered domain of ς .

Domain-barriers occur in barriers(P), but not in processes.

We extend function barriers to annotated barriers as follows:

barriers(t[a, c, ς]::P) = {t[a, c, ordom(ς)]::P} ∪
barriers(P)

315315

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 23:02:55 UTC from IEEE Xplore. Restrictions apply.

Hence, function barriers maps processes to multisets of

domain-barriers and integers, and domain-barriers include

the process that follows the barrier itself. In addition,

we extend fst and snd for configurations as follows:

fst(t[a, c, x̃]::P) = t[a, c, x̃]:: fst(P) and fst(B,E,P) =
fst(B), E, fst(P), and similarly for snd.

The operational semantics for processes with both stan-

dard and annotated barriers extends the semantics for pro-

cesses with only standard barriers, with the following rule:

B,E,P ∪ {t::P1, . . . , t::Pm, t[am+1, cm+1, ςm+1]::Pm+1,

. . . , t[an, cn, ςn]::Pn}
→ B′, E,P ∪ {P1, . . . , Pm, Pm+1ςm+1, . . . , Pnςn}

(RED BAR’)

where 0 ≤ m ≤ n, 1 ≤ n, B = {tm, t[am+1, cm+1,
ordom(ςm+1)]::Pm+1, . . . , t[an, cn, ordom(ςn)]::Pn} ∪ B′,
and for all t′ such that t′ ≤ t, t′ does not appear in B′, i.e.,

t′ /∈ B′ and t′[]:: /∈ B′. When all barriers are standard,

this rule reduces to (RED BAR).

We introduce the function channels(B) = {a | t[a, c,
x̃]::P ∈ B}∪{c | t[a, c, x̃]::P ∈ B} to recover the multiset

of names used by the domain-barriers in B. We also define

the function fn-nobc, which returns the free names exclud-

ing the channels of barriers, by fn-nobc(t[a, c, ς]::P) =
fn(range(ς)) ∪ fn-nobc(P) and, for all other processes,

fn-nobc(P) is defined inductively like fn(P). (The acronym

“nobc” stands for “no barrier channels”.) The initial con-

figuration for a closed process P with annotated barriers is

Cinit(P) = barriers(P), channels(barriers(P)), {P}.
We introduce the following validity condition to ensure

that channels of annotated barriers are not mixed with other

names: they are fresh names when they are introduced

by barrier annotation (Section III-B); they should remain

pairwise distinct and distinct from other names. Their scope

is global, but they are private, that is, the adversary does not

have access to them.

Definition 4 (Validity). A process P is valid if it is closed,

the elements of channels(barriers(P)) are pairwise dis-

tinct, channels(barriers(P)) ∩ fn-nobc(P) = ∅, and for

all annotated barriers in P such that P = C[t[a, c, ς]::Q],
we have fv(Q) ⊆ dom(ς) and C[] does not bind a, c,
nor the names in fn(Q) above the hole.

A configuration B,E,P is valid if barriers(P) ⊆
B, channels(B) ⊆ E, all processes in P are valid,

the elements of channels(B) are pairwise distinct, and

channels(B) ∩ fn-nobc(P) = ∅.
Validity guarantees that channels used in annotated

barriers are pairwise distinct (the elements of

channels(barriers(P)) are pairwise distinct; the elements

of channels(B) are pairwise distinct), distinct from

other names (channels(barriers(P)) ∩ fn-nobc(P) = ∅;
channels(B) ∩ fn-nobc(P) = ∅), and free in the

processes (for all annotated barriers in P such that

P = C[t[a, c, ς]::Q], C[] does not bind a nor c above the

hole). These channels must be in E (channels(B) ⊆ E),

which corresponds to the intuition that they are global but

private. Furthermore, for each annotated barrier t[a, c, ς]::Q,

we require that fv(Q) ⊆ dom(ς) and the names in fn(Q)
are not bound above the barrier, that is, they are global.

This requirement ensures that the local state of the process

t[a, c, ς]::Q is contained in the ordered substitution ς . The

process Q refers to this state using variables in dom(ς).
The next lemma allows us to show that all considered

configurations are valid.

Lemma 2. If P is a valid process, then Cinit(P) is valid.

Validity is preserved by reduction, by application of an

adversarial context, and by application of fst and snd.

The proof of Lemma 2 and all other proofs are detailed in

the long version of this paper [37].

We refer to processes in which all barriers are annotated

as annotated processes, and processes in which all barriers

are standard as standard processes.

B. Barrier annotation

Next, we define the first step of our compiler, which

annotates barriers with additional information.

Definition 5. We define function annotate, from standard

processes to annotated processes, as follows: annotate
transforms C[t::Q] into C[t[a, c, ς]::Q′], where C[] is

any context without replication above the hole, a and c
are distinct fresh names, and (Q′, ς) = split(Q), where the

function split is defined below. The transformations are

performed until all barriers are annotated, in a top-down

order, so that in the transformation above, all barriers

above t::Q are already annotated and barriers inside Q
are standard.

The function split is defined by split(Q) = (Q′, ς) where

Q′ is a process and ς = (M1/x1, . . . ,Mn/xn) is an ordered

substitution such that terms M1, . . . ,Mn are the largest

subterms of Q that do not contain names or variables

previously bound in Q, variables x1, . . . , xn are fresh, and

process Q′ is obtained from Q by replacing each Mi with

xi, so that Q = Q′ς . Moreover, the variables x1, . . . , xn

occur in this order in Q′ when read from left to right.

Intuitively, the function split separates a process Q into its

“skeleton” Q′ (a process with variables as placeholders for

data) and associated data in the ordered substitution ς . Such

data can be swapped with another process that has the same

skeleton. The ordering of x1, . . . , xn chosen in the definition

of split guarantees that the ordering of variables in the

domain of ς is consistent among the various subprocesses.

This ordering of variables and the fact that M1, . . . ,Mn

are the largest possible subterms allows the checks in the

definition of our compiler (see definition of function swapper
in Section III-C) to succeed more often, and hence increases

opportunities for swapping.

316316

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 23:02:55 UTC from IEEE Xplore. Restrictions apply.

Example 5. We have

split(c〈diff[v, v′]〉) = (x〈y〉, (c/x, diff[v, v′]/y))
split(c〈diff[v′, v]〉) = (x′〈y′〉, (c/x′, diff[v

′, v]/y′))

The process c〈diff[v, v′]〉 is separated into its skeleton

Q′ = x〈y〉 and the ordered substitution ς = (c/x,
diff[v, v′]/y), which defines the values of the variables

x and y such that c〈diff[v, v′]〉 = Q′ς . The process

c〈diff[v′, v]〉 is separated similarly.

Using these results, annotate(Pex) is defined as

c〈A〉.1[a, b, (c/x, diff[v, v′]/y)]::x〈y〉 |
c〈B〉.1[a′, b′, (c/x′, diff[v

′, v]/y′)]::x′〈y′〉
where a, a′, b, b′ are fresh names. That is, annotate(Pex)
is derived by annotating the two barriers in Pex. (Process

Pex is given in Example 3.)

For soundness of the transformation (Proposition 4), it is

sufficient that:

Lemma 3. If (Q′, ς) = split(Q), then Q = Q′ς , fv(Q′) =
dom(ς), and fn(Q′) = ∅.

Intuitively, when reducing the annotated barrier by

(RED BAR’), we reduce t[a, c, ς]::Q′ to Q′ς , which is equal

to Q by Lemma 3, so we recover the process Q we had

before annotation. The conditions that fv(Q′) = dom(ς) and

fn(Q′) = ∅ show that no names and variables are free in Q′

and bound above the barrier, thus substitution ς contains the

whole state of the process Q = Q′ς .

The following proposition shows that annotation does not

alter the semantics of processes:

Proposition 4. If P0 is a closed standard biprocess and P ′
0 =

annotate(P0), then P ′
0 is valid, fst(P ′

0) ≈ fst(P0), and

snd(P ′
0) ≈ snd(P0).

Proof sketch: The main step of the proof consists in

showing that, when C[t::Pς] and C[t[a, c, ς]::P] are valid

processes, we have

C[t::Pς] ≈ C[t[a, c, ς]::P] (2)

This proof is performed by defining a relationR that satisfies

the conditions of Definition 1. By Lemma 3, from the

annotated biprocess P ′
0, we can rebuild the initial process

P0 by replacing each occurrence of an annotated barrier

t[a, c, ς]::Q with Qς , so the same replacement also transform

fst(P ′
0) into fst(P0) and snd(P ′

0) into snd(P0). By (2), this

replacement preserves the observational behaviour of the

processes.

C. Barrier elimination and swapping

Next, we define the second step of our compiler, which

translates an annotated biprocess into biprocesses without

barriers. Each annotated barrier t[a, c, ς] is eliminated by

replacing it with an output on channel a of swappable data,

followed by an input on channel c that receives swapped

data. A swapping process is added in parallel, which receives

the swappable data on channels a for all barriers t, before

sending swapped data on channels c. Therefore, all inputs on

channels a must be received before the outputs on channels

c are sent and the processes that follow the barriers can

proceed, thus the synchronisation between the barriers is

guaranteed. Moreover, the swapping process may permute

data, sending on channel c data that comes from channel a′

with a′
= a, thus implementing swapping. This swapping

is allowed only when the processes that follow the barriers

are identical (up to renaming of some channel names and

variables), so that swapping preserves the observational be-

haviour of the processes. We detail this construction below.

1) Barrier elimination: First, we eliminate barriers.

Definition 6. The function bar-elim removes annotated

barriers, by transforming each annotated barrier t[a,
c, (M1/z1, . . . ,Mn/zn)]::Q into a〈(M1, . . . ,Mn)〉.c(z).
let z1 = π1,n(z) in · · · let zn = πn,n(z) in Q, where

z is a fresh variable.

The definition of function bar-elim ensures that, if the

message (M1, . . . ,Mn) on the private channel a is simply

forwarded to the private channel c, then the process de-

rived by application of bar-elim binds zi to Mi for each

i ∈ {1, . . . , n}, like the annotated barrier, so the original

process and the process derived by application bar-elim are

observationally equivalent. Intuitively, the private channel

communication provides an opportunity to swap data.

Example 6. Using the results of Example 5,

eliminating barriers from annotate(Pex) results in

bar-elim(annotate(Pex)) = Pcomp | P ′
comp, where

Pcomp � c〈A〉.a〈(c, diff[v, v′])〉.b(z).
let x = π1,2(z) in let y = π2,2(z) in x〈y〉

P ′
comp � c〈B〉.a′〈(c, diff[v′, v])〉.b′(z′).

let x′ = π1,2(z
′) in let y′ = π2,2(z

′) in x′〈y′〉
for some fresh variables z and z′.

2) Swapping: Next, we define swapping strategies.

Definition 7. The function swapper is defined as follows:

swapper(∅) = {0}
swapper(B) ={

a1(x1) . · · · . an(xn).
c1〈diff[x1, xf(1)]〉 . · · · . cn〈diff[xn, xf(n)]〉.R∣∣B = {t[a1, c1, z̃1]::Q1, . . . , t[an, cn, z̃n]::Qn} ∪B′

where, for all t′[a, c, z̃]::Q ∈ B′, we have t′ > t;
f is a permutation of {1, . . . , n} such that,

for all 1 ≤ l ≤ n, we have Ql/z̃l =ch Qf(l)/z̃f(l);
R ∈ swapper(B′);
and x1, . . . , xn are fresh variables

}
if B
= ∅

where =ch is defined as follows:

317317

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 23:02:55 UTC from IEEE Xplore. Restrictions apply.

• Q =ch Q′ means that Q equals Q′ modulo renaming

of channels of annotated barriers and

• Q/z̃ =ch Q′/z̃′ means that z̃ = (z1, . . . , zk)
and z̃′ = (z′1, . . . , z

′
k) for some integer k, and

Q{y1/z1, . . . , yk/zk} =ch Q′{y1/z′1, . . . , yk/z′k} for

some fresh variables y1, . . . , yk.

The function swapper builds a set of processes from

a multiset of domain-barriers B as follows. We identify

integer t ∈ N and domain-barriers t[a1, c1, z̃1]::Q1, . . . ,
t[an, cn, z̃n]::Qn in B such that no other barriers with

t′ ≤ t appear in B, so that these barriers are reduced

before other barriers in B. Among these barriers, we con-

sider barriers t[ai, ci, z̃i]::Qi and t[aj , cj , z̃j]::Qj such that

Qi/z̃i =ch Qj/z̃j , that is, the processes Qi and Qj are equal

modulo renaming of channels of annotated barriers, after

renaming the variables in z̃i and z̃j to the same variables,

and we allow swapping data between such barriers using

the permutation f . We then construct a set of processes

which enable swapping, by receiving data to be swapped

on channels a1, . . . , an, and sending it back on channels

c1, . . . , cn, in the same order in the first component of

diff and permuted by f in the second component of diff.

The function swapper does not specify an ordering on the

pairs of channels (a1, c1), . . . , (an, cn), since any ordering

is correct.

Example 7. We have barriers(annotate(Pex)) =
{1[a, b, (x, y)]::x〈y〉, 1[a′, b′, (x′, y′)]::x′〈y′〉}. Moreover,

we trivially have x〈y〉/(x, y) =ch x〈y〉/(x, y) and

x′〈y′〉/(x′, y′) =ch x′〈y′〉/(x′, y′), because Q/z̃ =ch Q/z̃
for all Q and z̃. We also have x〈y〉/(x, y) =ch

x′〈y′〉/(x′, y′), because

x〈y〉{x′′
/x, y

′′
/y} = x′′〈y′′〉 = x′〈y′〉{x′′

/x′, y
′′
/y′}

It follows that swapper(barriers(annotate(Pex))) =
{Psame, Pswap}, where

Psame � a(z).a′(z′).b〈diff[z, z]〉.b′〈diff[z′, z′]〉
Pswap � a(z).a′(z′).b〈diff[z, z′]〉.b′〈diff[z′, z]〉

for some fresh variables z and z′. (Note that diff[z, z]
could be simplified into z.) This set considers the two

possible swapping strategies: the strategy that does not

swap any data and the strategy that swaps data between

the two processes at the barrier.

3) Combining barrier elimination and swapping: Finally,

we derive a set of processes by parallel composition of

the process output by bar-elim and the processes output by

swapper, under the scope of name restrictions on the fresh

channels introduced by annotate.

elim-and-swap(P) ={
ν ã.(bar-elim(P) | R) where B = barriers(P),
{ã} = channels(B), and R ∈ swapper(B)

}

Intuitively, function elim-and-swap encodes barrier syn-

chronisation and swapping using private channel commu-

nication, thereby preserving the observational behaviour of

processes.

Example 8. Using the results of Examples 6 & 7, applying

elim-and-swap to the process annotate(Pex) generates two

processes

P1 � ν a, a′, b, b′.(Pcomp | P ′
comp | Psame)

P2 � ν a, a′, b, b′.(Pcomp | P ′
comp | Pswap)

In the process P1, no data is swapped, so it behaves

exactly like Pex: (c, diff[v, v′]) is sent on a, sent back

on b by Psame as diff[(c, diff[v, v′]), (c, diff[v, v′])] which

simplifies into (c, diff[v, v′]), and after evaluating the

projections, Pcomp reduces into c〈diff[v, v′]〉, which is the

output present in the process Pex. Similarly, P ′
comp reduces

into c〈diff[v′, v]〉, present in Pex.

By contrast, in process P2, data is swapped: (c, diff[v, v′])
is sent on a and (c, diff[v′, v]) is sent on a′, and Pswap

sends back diff[(c, diff[v, v′]), (c, diff[v′, v])] on b. The

first component of this term is (c, v) (obtained by taking

the first component of each diff), and similarly its second

component is also (c, v), so this term simplifies into

(c, v). After evaluating the projections, Pcomp reduces

into c〈v〉. Similarly, P ′
comp reduces into c〈v′〉. Hence P2

behaves like c〈A〉.1:: c〈v〉 | c〈B〉.1:: c〈v′〉. In particular,

P2 outputs A and B before barrier synchronisation and v
and v′ after synchronisation just like Pex. But P2 satisfies

diff-equivalence while Pex does not.

The next proposition formalises this preservation of ob-

servable behaviour.

Proposition 5. Let P be a valid, annotated biprocess. If P ′ ∈
elim-and-swap(P), then fst(P) ≈ fst(P ′) and snd(P) ≈
snd(P ′).

Proof sketch: This proof is performed by defining a

relation R that satisfies the conditions of Definition 1. The

proof is fairly long and delicate, and relies on preliminary

lemmas that show that barrier elimination commutes with

renaming and substitution, and that it preserves reduction

when barriers are not reduced.

D. Our compiler

We combine the annotation (Section III-B) and removal

of barrier (Section III-C) steps to define our compiler as

compiler(P) = elim-and-swap(annotate(P))

We have implemented the compiler in ProVerif, which is

available from: http://proverif.inria.fr/.

By combining Propositions 4 and 5, we immediately

obtain:

Proposition 6. Let P be a closed standard biprocess. If

P ′ ∈ compiler(P), then fst(P) ≈ fst(P ′) and snd(P) ≈
snd(P ′).

318318

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 23:02:55 UTC from IEEE Xplore. Restrictions apply.

This proposition shows that compilation preserves the ob-

servational behaviour of processes. The following theorem

is an immediate consequence of this proposition:

Theorem 7. Let P be a closed biprocess. If a biprocess in

compiler(P) satisfies observational equivalence, then P
satisfies observational equivalence.

This theorem allows us to prove observational equivalence

using swapping: we prove that a biprocess in compiler(P)
satisfies observational equivalence using ProVerif (by The-

orem 1), and conclude that P satisfies observational equiv-

alence as well. For instance, ProVerif can show that the

process P2 ∈ compiler(Pex) of Example 8 satisfies obser-

vational equivalence, thus Pex satisfies observational equiv-

alence too.

Our compiler could be implemented in other tools

that prove diff-equivalence (e.g., Maude-NPA [23] and

Tamarin [24]), by adapting the input language. It could

also be applied to other methods of proving equivalence.

However, it may be less useful in these cases, since it might

not permit the proof of more equivalences in such cases.

E. Extensions

1) Replicated barriers: While our calculus does not allow

barriers under replication, we can still prove equivalence

with barriers under bounded replication, for any bound. We

define bounded replication by !nP � P | · · · | P with n
copies of the process P . We have the following results:

Proposition 8. Let C[!Q] be a closed standard biprocess,

such that the context C[] does not contain any bar-

rier above the hole. If a biprocess in compiler(C[!Q])
satisfies diff-equivalence, then for all n, a biprocess in

compiler(C[!nQ]) satisfies diff-equivalence.

Proposition 8 shows that, if our approach proves equiva-

lence with unbounded replication, then it also proves equiv-

alence with bounded replication.

Proposition 9. Let C[Q] be a closed standard biprocess,

such that the context C[] does not contain any replication

above the hole. If a biprocess in compiler(C[Q]) satisfies

diff-equivalence, then a biprocess in compiler(C[t::Q])
satisfies diff-equivalence.

Proposition 9 shows that, if our approach proves equiv-

alence after removing a barrier, then it also proves equiva-

lence with the barrier. By combining these two results, we

obtain:

Corollary 10. Let Qnobar be obtained from Q by removing

all barriers. Let C[] be a context that does not contain

any replication or barrier above the hole. If a biprocess

in compiler(C[!Qnobar]) satisfies diff-equivalence, then for

all n, process C[!nQ] satisfies observational equivalence.

Hence, we can apply our compiler to prove observational

equivalence for biprocesses with bounded replication, for

any value of the bound. In the case of election schemes,

this result allows us to prove privacy for an unbounded

number of voters, for instance in the protocol by Lee et
al. (Section IV-B).

2) Local synchronisation: Our results could be extended

to systems in which several groups of participants synchro-

nise locally inside each group, but do not synchronise with

other groups. In this case, we would need several swapping

processes similar to those generated by swapper, one for

each group.

3) Trace properties: ProVerif also supports the proof of

trace properties (reachability and correspondence properties

of the form “if some event has been executed, then some

other events must have been executed”, which serve for for-

malising authentication) [47]. Our implementation extends

this support to processes with barriers, by compiling them

to processes without barriers, and applying ProVerif to the

compiled processes. In this case, swapping does not help, so

our compiler does not swap. We do not detail the proof of

trace properties with barriers further, since it is easier and

less important than observational equivalence.

IV. PRIVACY IN ELECTIONS

Elections enable voters to choose representatives. Choices

should be made freely, and this has led to the emergence of

ballot secrecy as a de facto standard privacy requirement of

elections. Stronger formulations of privacy, such as receipt-

freeness, are also possible.

• Ballot secrecy: a voter’s vote is not revealed to anyone.

• Receipt-freeness: a voter cannot prove how she voted.

We demonstrate the suitability of our approach for analysing

privacy requirements of election schemes by Fujioka,

Okamoto & Ohta, commonly referred to as FOO, and Lee

et al., along with some of its variants. Our ProVerif scripts

are included in ProVerif’s documentation package (http:

//proverif.inria.fr/). The runtime of these scripts (including

compilation of barriers and proof of diff-equivalence by

ProVerif) ranges from 0.14 seconds for FOO to 90 seconds

for the most complex variant of the Lee et al. protocol, on

an Intel Xeon 3.6 GHz under Linux.

A. Case study: FOO

1) Cryptographic primitives: FOO uses commitments

and blind signatures. We model commitment with a binary

constructor commit, and the corresponding destructor open
for opening the commitment, with the following rewrite rule:

open(xk, commit(xk, xplain))→ xplain

Using constructors sign, blind, and pk, we model blind

signatures as follows: sign(xsk, xmsg) is the signature of

message xmsg under secret key xsk, blind(xk, xmsg) is the

blinding of message xmsg with coins xk, and pk(xsk) is

the public key corresponding to the secret key xsk. We also

use three destructors: checksign to verify signatures, getmsg
to model that an adversary may recover the message from

319319

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 23:02:55 UTC from IEEE Xplore. Restrictions apply.

the signature, even without the public key, and unblind for

unblinding, defined by the following rewrite rules:

checksign(pk(xsk), sign(xsk, xmsg))→ xmsg

getmsg(sign(xsk, xmsg))→ xmsg

unblind(xk, sign(xsk, blind(xk, xmsg)))→ sign(xsk, xmsg)
unblind(xk, blind(xk, xplain))→ xplain

With blind signatures, a signer may sign a blinded message

without learning the plaintext message, and the signature on

the plaintext message can be recovered by unblinding, as

shown by the third rewrite rule.

2) Protocol description: The protocol uses two author-

ities, a registrar and a tallier, and it is divided into four

phases, setup, preparation, commitment, and tallying. The

setup phase proceeds as follows.

1) The registrar creates a signing key pair skR and

pk(skR), and publishes the public part pk(skR). In

addition, each voter is assumed to have a signing key

pair skV and pk(skV), where the public part pk(skV)
has been published.

The preparation phase then proceeds as follows.

2) The voter chooses coins k and k′, computes the

commitment to her vote M = commit(k, v) and the

signed blinded commitment sign(skV , blind(k
′,M)),

and sends the signature, paired with her public key, to

the registrar.

3) The registrar checks that the signature belongs to an

eligible voter and returns the blinded commitment

signed by the registrar sign(skR, blind(k
′,M)).

4) The voter verifies the registrar’s signature and unblinds

the message to recover M̂ = sign(skR,M), that is, her

commitment signed by the registrar.

After a deadline, the protocol enters the commitment phase.

5) The voter posts her ballot M̂ to the bulletin board.

Similarly, the tallying phase begins after a deadline.

6) The tallier checks validity of all signatures on the

bulletin board and prepends an identifier � to each

valid entry.

7) The voter checks the bulletin board for her entry, the

pair �, M̂ , and appends the commitment factor k.

8) Finally, using k, the tallier opens all of the ballots and

announces the election outcome.

The distinction between phases is essential to uphold the

protocol’s security properties. In particular, voters must

synchronise before the commitment phase to ensure ballot

secrecy (observe that without synchronisation, traffic anal-

ysis may allow the voter’s signature to be linked with the

commitment to her vote – this is trivially possible when

a voter completes the commitment phase before any other

voter starts the preparation phase, for instance – which can

then be linked to her vote) and before the tallying phase

to avoid publishing partial results, that is, to ensure fairness
(see Cortier & Smyth [48] for further discussion on fairness).

3) Model: To analyse ballot secrecy, it suffices to model

the participants that must be honest (i.e., must follow the

protocol description) for ballot secrecy to be satisfied. All

the remaining participants are controlled by the adversary.

The FOO protocol assures ballot secrecy in the presence of

dishonest authorities if the voter is honest. Hence, it suffices

to model the voter’s part of FOO as a process.

Definition 8. The process Pfoo(xsk, xvote) modelling a voter

in FOO, with signing key xsk and vote xvote, is defined

as follows

ν k.ν k′. % Step 2

let M = commit(k, xvote) in

let M ′ = blind(k′,M) in

c〈(pk(xsk), sign(xsk,M
′))〉.

c(y). % Step 4

let y′ = checksign(pk(skR), y) in

if y′ = M ′ then

let M̂ = unblind(k′, y) in

1:: c〈M̂〉. % Step 5

2:: c(z).let z2 = π2,2(z) in % Step 7

if z2 = M̂ then c〈(z, k)〉
The process Pfoo(sk1, v1) | · · · | Pfoo(skn, vn) models an

election with n voters casting votes v1, . . . , vn and encodes

the separation of phases using barriers.

4) Analysis: ballot secrecy: Based upon [2], [49] and

as outlined in Section I, we formalise ballot secrecy for

two voters A and B with the assertion that an adversary

cannot distinguish between a situation in which voter A
votes for candidate v and voter B votes for candidate v′,
from another one in which A votes v′ and B votes v. We

use the biprocess Pfoo(skA, diff[v, v
′]) to model A and the

biprocess Pfoo(skB , diff[v
′, v]) to model B, and formally

express ballot secrecy as an equivalence which can be

checked using Theorem 7. Voters’ keys are modelled as

free names, since ballot secrecy can be achieved without

confidentiality of these keys. (Voters’ keys must be secret

for other properties.)

Definition 9 (Ballot secrecy). FOO preserves ballot se-
crecy if the biprocess Qfoo � Pfoo(skA, diff[v, v

′]) |
Pfoo(skB , diff[v

′, v]) satisfies observational equivalence.

To provide further insight into how our compiler works,

let us consider how to informally prove this equivalence:

that fst(Qfoo) is indistinguishable from snd(Qfoo). Before

the first barrier, A outputs

(pk(skA), sign(skA, blind(k
′
a, commit(ka, v))))

in fst(Qfoo) and

(pk(skA), sign(skA, blind(k
′
a, commit(ka, v

′))))

in snd(Qfoo), where the name k′a remains secret. By the

equational theory for blinding, N can only be recovered

from blind(M,N) if M is known, so these two messages are

320320

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 23:02:55 UTC from IEEE Xplore. Restrictions apply.

indistinguishable. The situation is similar for B. Therefore,

before the first barrier, A moves in fst(Qfoo) are mimicked

by A moves in snd(Qfoo) and B moves in fst(Qfoo) are

mimicked by B moves in snd(Qfoo).
Let us define sc(k, v) � sign(skR, commit(k, v)). After

the first barrier, A outputs

sc(ka, v) and ((�1, sc(ka, v)), ka) in fst(Qfoo)

sc(ka, v
′) and ((�1, sc(ka, v

′)), ka) in snd(Qfoo)

where �1 is chosen by the adversary. It follows that A reveals

her vote v in fst(Qfoo) and her vote v′ in snd(Qfoo), so these

messages are distinguishable. However, B outputs

sc(kb, v
′) and ((�2, sc(kb, v

′)) kb) in fst(Qfoo)

sc(kb, v) and ((�2, sc(kb, v)) kb) in snd(Qfoo)

where �2 is similarly chosen by the adversary. Hence,

B’s messages in snd(Qfoo) are indistinguishable from A’s

messages in fst(Qfoo). Therefore, after the first barrier, A
moves in fst(Qfoo) are mimicked by B moves in snd(Qfoo)
and symmetrically, B moves in fst(Qfoo) are mimicked by

A moves in snd(Qfoo), that is, the roles are swapped at the

first barrier. Our compiler encodes the swapping, hence we

can show that FOO satisfies ballot secrecy using Theorem 7.

Moreover, ProVerif proves this result automatically. This

proof is done for two honest voters, but it generalises

immediately to any number of possibly dishonest voters,

since other voters can be part of the adversary.

Showing that FOO satisfies ballot secrecy is not new:

Delaune, Kremer & Ryan [2], [49] present a manual proof

of ballot secrecy, Chothia et al. [50] provide an automated

analysis in the presence of a passive adversary, and Delaune,

Ryan & Smyth [38], Klus, Smyth & Ryan [41], and Chadha,

Ciobâcă & Kremer [19], [20] provide automated analysis

in the presence of an active adversary. Nevertheless, our

analysis is useful to demonstrate our approach.

FOO does not satisfy receipt-freeness, because each voter

knows the coins used to construct their ballot and these coins

can be used as a witness to demonstrate how they voted. In

an effort to achieve receipt-freeness, the protocol by Lee et
al. [51] uses a hardware device to introduce coins into the

ballot that the voter does not know.

B. Case study: Lee et al.

1) Protocol description: The protocol uses a registrar and

some talliers, and it is divided into three phases, setup,

voting, and tallying. For simplicity, we assume there is a

single tallier. The setup phase proceeds as follows.

1) The tallier generates a key pair and publishes the

public key.

2) Each voter is assumed to have a signing key pair

and an offline tamper-resistant hardware device. The

registrar is assumed to know the public keys of voters

and devices. The registrar publishes those public keys.

The voting phase proceeds as follows.

3) The voter encrypts her vote and inputs the resulting

ciphertext into her tamper-resistant hardware device.

4) The hardware device re-encrypts the voter’s cipher-

text, signs the re-encryption, computes a Designated

Verifier Proof that the re-encryption was performed

correctly, and outputs these values to the voter.

5) If the signature and proof are valid, then the voter

outputs the re-encryption and signature, along with her

signature of these elements.

The hardware device re-encrypts the voter’s encrypted

choice to ensure that the voter’s coins cannot be used as

a witness demonstrating how the voter voted. Moreover, the

device is offline, thus communication between the voter and

the device is assumed to be untappable, hence, the only

meaningful relation between the ciphertexts input and output

by the hardware device is due to the Designated Verifier

Proof, which can only be verified by the voter.

Finally, the tallying phase proceeds as follows.

6) Valid ballots (that is, ciphertexts associated with valid

signatures) are input to a mixnet and the mixnet’s out-

put is published. We model the mixnet as a collection

of parallel processes that each input a ballot, verify the

signatures, synchronise with the other processes, and

finally output the ciphertext on an anonymous channel.

7) The tallier decrypts each ciphertext and announces the

election outcome.

2) Analysis: ballot secrecy: In this protocol, the au-

thorities and hardware devices must be honest for ballot

secrecy to be satisfied, so we need to explicitly model them.

Therefore, building upon (1), we formalise ballot secrecy by

the equivalence

C[V (A, v) | V (B, v′)] ≈ C[V (A, v′) | V (B, v)] (3)

where the process V (A, v) models a voter with identity

A (including its private key, its device public key, and its

private channel to the device) voting v, and the context

C models all other participants: authorities and hardware

devices. (Other voters are included in C for privacy results

concerning more than two voters.) With two voters, we prove

ballot secrecy by swapping data at the synchronisation in

the mixnet. With an unbounded number of honest voters,

we prove ballot secrecy using Corollary 10 to model an

unbounded number of voters by a replicated process. As far

as we know, this is the first proof of this result.

With an additional dishonest voter, the proof of ballot

secrecy fails. This failure does not come from a limitation

of our approach, but from a ballot copying attack, already

mentioned in the original paper [51, Section 6] and for-

malised in [52]: the dishonest voter can copy A’s vote,

as follows. The adversary observes A’s encrypted vote on

the bulletin board (since it is accompanied by the voter’s

321321

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 23:02:55 UTC from IEEE Xplore. Restrictions apply.

signature), inputs the ciphertext to the adversary’s tamper-

resistant hardware device, uses the output to derive a related

ballot, and derives A’s vote from the election outcome,

which contains two copies of A’s vote.

3) Analysis: receipt-freeness: Following [2], receipt-

freeness can be formalised as follows: there exists a process

V ′ such that

V ′\chc ≈ V (A, v) (4)

C[V (A, v′)chc | V (B, v)] ≈ C[V ′ | V (B, v′)] (5)

where the context C[] appears in (3), chc is a public

channel, V ′\chc = ν chc.(V |!chc(x)), which is intuitively

equivalent to removing all outputs on channel chc from

V ′, and V (A, v′)chc is obtained by modifying V (A, v′) as

follows: we output on channel chc the private key of A,

its device public key, all restricted names created by V ,

and messages received by V . Intuitively, the voter A tries

to prove to the adversary how she voted, by giving the

adversary all its secrets, as modelled by V (A, v′)chc . The

process V ′ simulates a voter A that votes v, as shown by (4),

but outputs messages on channel chc that aim to make the

adversary think that it voted v′. The equivalence (5) shows

that the adversary cannot distinguish voter A voting v′ and

trying to prove it to the adversary and voter B voting v,

from V ′ and voter B voting v′, so V ′ successfully votes v
and deceives the adversary in thinking that it voted v′.

In the case of the Lee et al. protocol, V ′ is derived from

V (A, v)chc by outputting on chc a fake Designated Verifier

Proof that simulates a proof of re-encryption of a vote for

v′, instead of the Designated Verifier Proof that it receives

from the device. Intuitively, the adversary cannot distinguish

a fake proof from a real one, because only the voter can

verify the proof.

The equivalence (4) holds by construction of V ′, because

after removing outputs on chc, V ′ is exactly the same as

V (A, v). We prove (5) using our approach, for an unbounded

number of honest voters. Hence, this protocol satisfies

receipt-freeness for an unbounded number of honest voters.

As far as we know, this is the first proof of this result.

Obviously, receipt-freeness does not hold with dishonest

voters, because it implies ballot secrecy.

4) Variant by Dreier, Lafourcade & Lakhnech: Dreier,

Lafourcade & Lakhnech [52] introduced a variant of this

protocol in which, in step 3, the voter additionally signs the

ciphertext containing her vote, and in step 4, the hardware

device verifies this signature. We have also analysed this

variant using our approach. It is sufficiently similar to the

original protocol that we obtain the same results for both.

5) Variant by Delaune, Kremer, & Ryan:
Protocol description: Delaune, Kremer, & Ryan [2] in-

troduced a variant of this protocol in which the hardware

devices are replaced with a single administrator, and the

voting phase becomes:

3) The voter encrypts her vote, signs the ciphertext, and

sends the ciphertext and signature to the administrator

on a private channel.

4) The administrator verifies the signature, re-encrypts

the voter’s ciphertext, signs the re-encryption, com-

putes a Designated Verifier Proof of re-encryption, and

outputs these values to the voter.

5) If the signature and proof are valid, then the voter out-

puts her ballot, consisting of the signed re-encryption

(via an anonymous channel).

The mixnet is replaced with the anonymous channel, and

the tallying phase becomes:

6) The collector checks that the ballots are pairwise

distinct, checks the administrator’s signature on each

of the ballots, and, if valid, decrypts the ballots and

announces the election outcome.

Analysis: ballot secrecy: We have shown that this variant

preserves ballot secrecy, with two honest voters, using our

approach. In this proof, all keys are public and the collector

is not trusted, so it is included in the adversary. Since the

keys are public, any number of dishonest voters can also be

included in the adversary, so the proof with two honest voters

suffices to imply ballot secrecy for any number of possibly

dishonest voters. Hence, this variant avoids the ballot copy-

ing attack and satisfies a stronger ballot secrecy property

than the original protocol. Thus, we automate the proof made

manually in [2]. For this variant, the swapping occurs at the

beginning of the voting process, so we can actually prove

the equivalence by proving diff-equivalence after applying

the general property that C[P | Q] ≈ C[Q | P], much like

for Example 1. Furthermore, an extension of ProVerif [53]

takes advantage of this property to merge processes into

biprocesses in order to prove observational equivalence. The

approach outlined in that paper also succeeds in proving bal-

lot secrecy for this variant. It takes 13 minutes 22 seconds,

while our implementation with swapping takes 34 seconds. It

spends most of the time computing the merged biprocesses;

this is the reason why it is slower.

Analysis: receipt-freeness: We prove receipt-freeness for

two honest voters. The administrator and voter keys do

need to be secret, and all authorities need to be explicitly

modelled. The process V ′ is built similarly to the one for the

original protocol by Lee et al. Equivalence (4) again holds

by construction of V ′. To prove (5), much like in [2], we

model the collector as parallel processes that each input one

ballot, check the signature, decrypt, synchronise together,

and output the decrypted vote:

c(b); let ev = checksign(pkA, b) in

let v = dec(skC , ev) in 2:: c〈v〉
There are as many such processes as there are voters, two

in our case. However, such a collector does not check that

the ballots are pairwise distinct: each of the two parallel

322322

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 23:02:55 UTC from IEEE Xplore. Restrictions apply.

processes has access to a single ballot, so each process in-

dividually cannot check that the two ballots are distinct. We

implemented this necessary check by manually modifying

the code generated by our compiler, by adding a check that

the ballots are distinct in the process that swaps data. An

excerpt of the obtained code follows:

(c(b); let ev = checksign(pkA, b) in

let v = dec(skC , ev) in a1〈(b, v)〉; c1(v′); c〈v′〉)
| (c(b); let ev = checksign(pkA, b) in

let v = dec(skC , ev) in a2〈(b, v)〉; c2(v′); c〈v′〉)
| (a1((b1, v1)); a2((b2, v2));

(∗) if b1 = b2 then 0 else

c1〈diff[v1, v2]〉; c2〈diff[v2, v1]〉)
This code shows the two collectors and the process that

swaps data. We use a((b, v)) as an abbreviation for a(x);
let b = π1,2(x) in let v = π2,2(x) in. The ballots are sent

on channels a1 and a2 in addition to the decrypted votes, and

we check that the two ballots are distinct at line (∗). With

this code, ProVerif proves the diff-equivalence, so we have

shown receipt-freeness for two honest voters. This proof is

difficult to generalise to more voters in ProVerif, because in

this case the collector should swap two ballots among the

ones it has received (the two coming to the voters that swap

their voters), but it has no means to detect which ones.

C. Other examples

The idea of swapping for proving equivalences has been

applied by Dahl, Delaune & Steel [3] to prove privacy in a

vehicular ad-hoc network [54]. They manually encode swap-

ping based upon the informal idea of [38]. We have repeated

their analysis using our approach. Thus, we automate the

encoding of swapping in [3], and obtain stronger confidence

in the results thanks to our soundness proof.

Backes, Hriţcu & Maffei [29] also applied the idea of

swapping, together with other encoding tricks, to prove a

privacy notion stronger than receipt-freeness, namely co-
ercion resistance, of the protocol by Juels, Catalano &

Jakobsson [55]. We did not try to repeat their analysis using

our approach.

V. CONCLUSION

We extend the applied pi calculus to include barrier syn-

chronisation and define a compiler to the calculus without

barriers. Our compiler enables swapping data between pro-

cesses at barriers, which simplifies proofs of observational

equivalence. We have proven the soundness of our compiler

and have implemented it in ProVerif, thereby extending the

class of equivalences that can be automatically verified. The

applicability of the results is demonstrated by analysing

ballot secrecy and receipt-freeness in election schemes, as

well as privacy in a vehicular ad-hoc network. The idea of

swapping data at barriers was introduced in [38], without

proving its soundness, and similar ideas have been used

by several researchers [3], [29], so we believe that it is

important to provide a strong theoretical foundation to this

technique.
Acknowledgements: We are particularly grateful to Tom

Chothia, Véronique Cortier, Andy Gordon, Mark Ryan, and

the anonymous CSF reviewers, for their careful reading of

preliminary drafts which led to this paper; their comments

provided useful guidance. Birmingham’s Formal Verification
and Security Group provided excellent discussion and we are

particularly grateful to: Myrto Arapinis, Sergiu Bursuc, Dan

Ghica, and Eike Ritter, as well as, Mark and Tom, whom

we have already mentioned. Part of the work was conducted

while the authors were at École Normale Supérieure, Paris,

France and while Smyth was at Inria, Paris, France and the

University of Birmingham, Birmingham, UK.

REFERENCES

[1] A. Pfitzmann and M. Köhntopp, “Anonymity, Unobservability, and
Pseudonymity – A Proposal for Terminology,” in International Work-
shop on Design Issues in Anonymity and Unobservability, ser. LNCS,
vol. 2009. Springer, 2001, pp. 1–9, extended versions available at
http://dud.inf.tu-dresden.de/Anon Terminology.shtml.

[2] S. Delaune, S. Kremer, and M. D. Ryan, “Verifying privacy-type prop-
erties of electronic voting protocols,” Journal of Computer Security,
vol. 17, no. 4, pp. 435–487, 2009.

[3] M. Dahl, S. Delaune, and G. Steel, “Formal Analysis of Privacy for
Vehicular Mix-Zones,” in ESORICS’10: 15th European Symposium
on Research in Computer Security, ser. LNCS, vol. 6345. Springer,
2010, pp. 55–70.

[4] M. Abadi and A. D. Gordon, “A Calculus for Cryptographic Pro-
tocols: The Spi Calculus,” in CCS’97: 4th ACM Conference on
Computer and Communications Security. ACM Press, 1997, pp.
36–47.

[5] M. Abadi and C. Fournet, “Mobile values, new names, and secure
communication,” in POPL’01: 28th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages. ACM Press, 2001,
pp. 104–115.

[6] S. Delaune, S. Kremer, and O. Pereira, “Simulation based security
in the applied pi calculus,” in FSTTCS: IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer
Science, ser. Leibniz International Proceedings in Informatics, vol. 4.
Leibniz-Zentrum für Informatik, 2009, pp. 169–180.

[7] M. Abadi, “Security Protocols and their Properties,” in Foundations
of Secure Computation, ser. NATO Science Series. IOS Press, 2000,
pp. 39–60.

[8] B. Blanchet, “Automatic Proof of Strong Secrecy for Security Pro-
tocols,” in S&P’04: 25th IEEE Symposium on Security and Privacy.
IEEE Computer Society, 2004, pp. 86–100.

[9] V. Cortier, M. Rusinowitch, and E. Zǎlinescu, “Relating two standard
notions of secrecy,” Logical Methods in Computer Science, vol. 3,
no. 3, 2007.

[10] M. Abadi and A. D. Gordon, “A Bisimulation Method for Crypto-
graphic Protocols,” Nordic Journal of Computing, vol. 5, no. 4, pp.
267–303, 1998.

[11] J. Borgström and U. Nestmann, “On bisimulations for the spi calcu-
lus,” Mathematical Structures in Computer Science, vol. 15, no. 3,
pp. 487–552, 2005.

[12] J. Borgström, S. Briais, and U. Nestmann, “Symbolic Bisimulation
in the Spi Calculus,” in CONCUR’04: 15th International Conference
on Concurrency Theory, ser. LNCS, vol. 3170. Springer, 2004, pp.
161–176.

[13] S. Delaune, S. Kremer, and M. D. Ryan, “Symbolic Bisimulation
for the Applied Pi Calculus,” Journal of Computer Security, vol. 18,
no. 2, pp. 317–377, 2010.

323323

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 23:02:55 UTC from IEEE Xplore. Restrictions apply.

[14] H. Hüttel, “Deciding Framed Bisimilarity,” Electronic Notes in Theo-
retical Computer Science, vol. 68, no. 6, pp. 1–20, 2003, special issue
Infinity’02: 4th International Workshop on Verification of Infinite-
State Systems.

[15] L. Durante, R. Sisto, and A. Valenzano, “Automatic Testing Equiva-
lence Verification of Spi Calculus Specifications,” ACM Transactions
on Software Engineering and Methodology, vol. 12, no. 2, pp. 222–
284, 2003.

[16] V. Cortier and S. Delaune, “A method for proving observational
equivalence,” in CSF’09: 22nd IEEE Computer Security Foundations
Symposium. IEEE Computer Society, 2009, pp. 266–276.

[17] A. Tiu and J. Dawson, “Automating open bisimulation checking
for the spi calculus,” in CSF’10: 23rd IEEE Computer Security
Foundations Symposium. IEEE, 2010, pp. 307–321.

[18] V. Cheval, H. Comon-Lundh, and S. Delaune, “Trace equivalence
decision: Negative tests and non-determinism,” in CCS’11: 18th ACM
Conference on Computer and Communications Security. ACM Press,
2011, pp. 321–330.

[19] R. Chadha, S. Ciobâca, and S. Kremer, “Automated Verification of
Equivalence Properties of Cryptographic Protocols,” in ESOP’12:
21st European Symposium on Programming, ser. LNCS, vol. 7211.
Springer, 2012, pp. 108–127.

[20] S. Ciobâca, “Verification and Composition of Security Protocols with
Applications to Electronic Voting,” Ph.D. dissertation, LSV, ENS
Cachan & CNRS & INRIA, 2011.

[21] M. Abadi and V. Cortier, “Deciding knowledge in security protocols
under equational theories,” Theoretical Computer Science, vol. 367,
no. 1–2, pp. 2–32, 2006.

[22] B. Blanchet, M. Abadi, and C. Fournet, “Automated verification of
selected equivalences for security protocols,” Journal of Logic and
Algebraic Programming, vol. 75, no. 1, pp. 3–51, 2008.

[23] S. Santiago, S. Escobar, C. Meadows, and J. Meseguer, “A formal
definition of protocol indistinguishability and its verification using
Maude-NPA,” in STM’14: Security and Trust Management, ser.
LNCS, vol. 8743. Springer, 2014, pp. 162–177.

[24] D. Basin, J. Dreier, and R. Casse, “Automated symbolic proofs of
observational equivalence,” in CCS’15: 22nd ACM Conference on
Computer and Communications Security. ACM, 2015, pp. 1144–
1155.

[25] M. Baudet, “Sécurité des protocoles cryptographiques : aspects
logiques et calculatoires,” Ph.D. dissertation, Laboratoire Spécification
et Vérification, ENS Cachan, France, 2007.

[26] ——, “Deciding security of protocols against off-line guessing at-
tacks,” in CCS’05: 12th ACM Conference on Computer and Commu-
nications Security. ACM Press, 2005, pp. 16–25.

[27] R. Chrétien, V. Cortier, and S. Delaune, “Decidability of trace equiv-
alence for protocols with nonces,” in CSF’15: 28th IEEE Computer
Security Foundations Symposium. IEEE Computer Society, 2015,
pp. 170–184.

[28] ——, “From security protocols to pushdown automata,” ACM Trans-
actions on Computational Logic, vol. 17, no. 1:3, 2015.

[29] M. Backes, C. Hriţcu, and M. Maffei, “Automated Verification of
Remote Electronic Voting Protocols in the Applied Pi-calculus,”
in CSF’08: 21st IEEE Computer Security Foundations Symposium.
IEEE Computer Society, 2008, pp. 195–209.

[30] M. Dahl, S. Delaune, and G. Steel, “Formal Analysis of Privacy for
Anonymous Location Based Services,” in TOSCA’11: Workshop on
Theory of Security and Applications, ser. LNCS, vol. 6993. Springer,
2011, pp. 98–112.

[31] M. K. Reiter and A. D. Rubin, “Crowds: Anonymity for web
transactions,” ACM Transactions on Information and System Security,
vol. 1, no. 1, pp. 66–92, 1998.

[32] T. Chothia, “Analysing the MUTE Anonymous File-Sharing System
Using the Pi-Calculus,” in FORTE’06: 26th International Conference
on Formal Techniques for Networked and Distributed Systems, ser.
LNCS, vol. 4229. Springer, 2006, pp. 115–130.

[33] E. D. Brooks, III, “The Butterfly Barrier,” International Journal of
Parallel Programming, vol. 15, no. 4, pp. 295–307, 1986.

[34] D. Hensgen, R. Finkel, and U. Manber, “Two Algorithms for Barrier
Synchronization,” International Journal of Parallel Programming,
vol. 17, no. 1, pp. 1–17, 1988.

[35] N. S. Arenstorf and H. F. Jordan, “Comparing barrier algorithms,”
International Journal of Parallel Computing, vol. 12, no. 2, pp. 157–
170, 1989.

[36] B. D. Lubachevsky, “Synchronization Barrier and Related Tools for
Shared Memory Parallel Programming,” International Journal of
Parallel Programming, vol. 19, no. 3, pp. 225–250, 1990.

[37] B. Blanchet and B. Smyth, “Automated reasoning for equivalences in
the applied pi calculus with barriers,” Inria, Research report RR-8906,
2016, available at https://hal.inria.fr/hal-01306440.

[38] S. Delaune, M. D. Ryan, and B. Smyth, “Automatic verification of
privacy properties in the applied pi-calculus,” in IFIPTM’08: 2nd
Joint iTrust and PST Conferences on Privacy, Trust Management and
Security, ser. International Federation for Information Processing, vol.
263. Springer, 2008, pp. 263–278.

[39] B. Smyth, “Automatic verification of privacy properties in the ap-
plied pi calculus,” in Formal Protocol Verification Applied: Abstracts
Collection, ser. Dagstuhl Seminar Proceedings, 2007, no. 07421.

[40] ——, “Formal verification of cryptographic protocols with automated
reasoning,” Ph.D. dissertation, School of Computer Science, Univer-
sity of Birmingham, 2011.

[41] P. Klus, B. Smyth, and M. D. Ryan, “ProSwapper: Improved equiv-
alence verifier for ProVerif,” http://www.bensmyth.com/proswapper.
php, 2010.

[42] M. D. Ryan and B. Smyth, “Applied pi calculus,” in Formal Models
and Techniques for Analyzing Security Protocols. IOS Press, 2011,
ch. 6.

[43] B. Blanchet, B. Smyth, and V. Cheval, “ProVerif 1.93: Automatic
cryptographic protocol verifier, user manual and tutorial,” http://
proverif.inria.fr, 2016.

[44] M. Abadi and B. Blanchet, “Computer-assisted verification of a
protocol for certified email,” Science of Computer Programming,
vol. 58, no. 1–2, pp. 3–27, 2005, special issue SAS’03.

[45] B. Blanchet, “Vérification automatique de protocoles
cryptographiques: modèle formel et modèle calculatoire.” Habilitation
à diriger des recherches, Université Paris-Dauphine, 2008.

[46] M. Arapinis, J. Liu, E. Ritter, and M. Ryan, “Stateful applied pi
calculus,” in POST’14: 3rd Conference on Principles of Security and
Trust, ser. LNCS, vol. 8414. Springer, 2014, pp. 22–41.

[47] B. Blanchet, “Automatic Verification of Correspondences for Security
Protocols,” Journal of Computer Security, vol. 17, no. 4, pp. 363–434,
2009.

[48] V. Cortier and B. Smyth, “Attacking and fixing Helios: An analysis
of ballot secrecy,” Journal of Computer Security, vol. 21, no. 1, pp.
89–148, 2013.

[49] S. Kremer and M. D. Ryan, “Analysis of an Electronic Voting Protocol
in the Applied Pi Calculus,” in ESOP’05: 14th European Symposium
on Programming, ser. LNCS, vol. 3444. Springer, 2005, pp. 186–200.

[50] T. Chothia, S. Orzan, J. Pang, and M. T. Dashti, “A Framework for
Automatically Checking Anonymity with μCRL,” in TGC’06: 2nd
Symposium on Trustworthy Global Computing, ser. LNCS, vol. 4661.
Springer, 2007, pp. 301–318.

[51] B. Lee, C. Boyd, E. Dawson, K. Kim, J. Yang, and S. Yoo, “Providing
Receipt-Freeness in Mixnet-Based Voting Protocols,” in ICISC’03:
6th International Conference on Information Security and Cryptology,
ser. LNCS, vol. 2971. Springer, 2004, pp. 245–258.

[52] J. Dreier, P. Lafourcade, and Y. Lakhnech, “Vote-independence:
A powerful privacy notion for voting protocols,” in FPS’11: 4th
Workshop on Foundations & Practice of Security, ser. LNCS, vol.
6888. Springer, 2011, pp. 164–180.

[53] V. Cheval and B. Blanchet, “Proving more observational equivalences
with ProVerif,” in POST’13: 2nd Conference on Principles of Security
and Trust, ser. LNCS, vol. 7796. Springer, 2013, pp. 226–246.

[54] J. Freudiger, M. Raya, M. Félegyházi, P. Papadimitratos, and J.-P.
Hubaux, “Mix-zones for location privacy in vehicular networks,” in
WiN-ITS’07: 1st International Workshop on Wireless Networking for
Intelligent Transportation Systems, 2007.

[55] A. Juels, D. Catalano, and M. Jakobsson, “Coercion-resistant elec-
tronic elections,” in Towards Trustworthy Elections: New Directions
in Electronic Voting, ser. LNCS. Springer, 2010, vol. 6000, pp. 37–
63.

324324

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 26,2024 at 23:02:55 UTC from IEEE Xplore. Restrictions apply.

