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Abstract—We present a new method for random testing of
binary executables inspired by biology. In our approach we
introduce the first fuzzer based on a mathematical model for
optimal foraging. To minimize search time for possible vulner-
abilities we generate test cases with Lévy flights in the input
space. In order to dynamically adapt test generation behavior
to actual path exploration performance we define a suitable
measure for quality evaluation of test cases. This measure takes
into account previously discovered code regions and allows us
to construct a feedback mechanism. By controlling diffusivity of
the test case generating Lévy processes with evaluation feedback
from dynamic instrumentation we are able to define a fully self-
adaptive fuzzing algorithm.

I. INTRODUCTION

As software ever increases in size and complexity we face

the significant challenge to validate the systems surrounding

us. Penetration testing of software has come a long way

from its origins and nowadays shows an extensive diversity

of possible strategies. All of them have the common aim

to achieve maximal code coverage by generating suitable

program inputs, also called test cases. Possible approaches

range from dynamic symbolic [1], [2] and concolic [3], [4], [5]

execution to more or less random testing using generational,

mutational, black-box, or white-box fuzzers [6], [7]. Within the

latter domain of random test generation current strategies for

input generation basically rely on heuristics and sophisticated

guessing. It is still an open question how to optimally generate

inputs that trigger a maximum number of bugs in a finite

amount of time.

In the course of researching new effective search strategies

we find similar problems in biology, particularly in the field

of optimal foraging. A variety of biological systems let us

observe optimal strategies for finding energy sources by si-

multaneously avoiding predators. When we identify sources

of food with possible vulnerabilities in binary executables

and predators with the overhead of execution runtime, we are

inspired to adapt mathematical models of optimal foraging

to test case generation. This approach enables us to take

stochastic models of optimal foraging as a basis for input

mutation. In particular we rely on Lévy flights to search for

bug triggering test cases in input space.

Before summarizing our contributions we first give some

short background on fuzzing, optimal foraging, and the Lévy

flight hypothesis.

a) Fuzzing: There exists a substantial diversity of test

case generation strategies for random testing binaries. All these

approaches have in common to a greater or lesser extent the

random generation of test cases with the aim of driving the

targeted program to an unexpected and possibly exploitable

state. The most significant advantage of fuzzing is its ease

of use. Most executable binaries that process any input data

are suitable targets for random test generation and effective

fuzzers are implemented in a short time.
b) Optimal Foraging: Observing biological systems has

led to speculation that there might be simple laws of motion

for animals searching for sources of energy in the face of

predators. Regardless of whether we look at bumblebees[8],

fish and hunting marine predators in the sea [9], [10], grey

seals [11], spider monkeys [12], the flight search patterns of

albatrosses [13], the wandering of reindeer [14], the reaction

pathways of DNA-binding proteins [15], or the neutralisation

of pathogens by white blood cells [16], we can discover emerg-

ing movement patterns all those examples have in common.

Mathematical modelling such common patterns is an active

field of research in biology and is more generally referred

to as movement ecology. While the physics of foraging [17]

provides us several possible models our choice is not guided

by accuracy with respect to the biological process but by

minimization of software bug search time. This leads us to

the special class of stochastic processes called Lévy flights
which we discuss in more detail in Section III.

c) Lévy Flight Hypothesis: Within the variety of models

for optimal foraging Lévy flights have several characteristic

properties that show promise for software testing. In particular,

the Lévy flight hypothesis accentuates the most significant

property of these kinds of stochastic processes for our pur-

poses. It states that Lévy flights minimize search time when

foraging sources of food that are sparsely and randomly dis-

tributed, resting, and refillable. These assumptions match to the

properties of bugs in software (with the obvious interpretation

that refillable translates to the fact that software bugs stay until

fix). In addition to the mathematical Lévy flight hypothesis,

the Lévy flight foraging hypothesis in theoretical biology states

that these processes actually model real foraging behavior in

certain biological systems due to natural selection. The Lévy

flight hypothesis constitutes the major connection link between

optimal foraging theory and random software testing.
In this paper we propose a novel method for random

software testing based on the theory of optimal foraging. In

summary, we make the following contributions:

• We introduce a novel fuzzing method based on Lévy

flights in the input space in order to maximize coverage

of execution paths.
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• We define a suitable measure for quality evaluation of test

cases in input space with respect to previously explored

code regions.

• In order to control diffusivity of the test generation

processes we define a feedback mechanism connecting

current path exploration performance to the test genera-

tion module.

• We enable self-adaptive fuzzing behavior by adjusting

the Lévy flight parameters according to feedback from

dynamic instrumentation of the target executable.

• We implement the presented algorithm to show the fea-

sibility of our approach.

The remainder of this paper is organized as follows. In

Section II we discuss related work. In Section III we present

necessary background on Lévy flights and show how to

construct them in input space. We define a quality measure

for generated test cases in Section IV and introduce our self-

adapting fuzzing algorithm in Section V. Next, we give details

regarding our implementation in Section VI and discuss prop-

erties, possible modifications, and expansions of the proposed

algorithm in Section VII. The paper concludes with a short

outlook in Section VIII.

II. RELATED WORK

The prevalent method used for binary vulnerability detection

is random test generation, also called fuzzing. Here, inputs

are randomly generated and injected into the target program

with the aim to gain maximal code coverage in the execution

graph and drive the program to an unexpected and exploitable

state. There is a rich diversity of fuzzing tools available, each

focusing on specialized approaches. Multiple taxonomies for

random test generation techniques have been proposed, the

most common is classification into mutational or generational

fuzzing. Mutation fuzzers are unaware of the input format

and mutate the whole range of input variables blindly. In

contrast, generation fuzzers take the input format into account

and generate inputs according to the format definition. For

example, generation fuzzers can be aware of the file formats

accepted by a program under test or the network protocol

definition processed by a network stack implementation. We

can further classify random test generation methods into black-

box or white-box fuzzing, depending on the awareness of

execution traces of generated inputs. We refer to [6] and [7]

for a comprehensive account.

For definition of our quality measure for test cases we built

upon executable code coverage strategies. The idea to generate

program inputs that maximize execution path coverage in

order to trigger vulnerabilities has been discussed in the field

of test case prioritization some time ago, see e.g. [18] and

[19] for a comparison of coverage-based techniques. Rebert

et al. [20] discuss and compare methods to gain optimal seed

selection with respect to fuzzing and their findings support our

decision to select code coverage for evaluating the quality of

test cases. The work of Cha et al. [21] is distantly related to a

substep of our approach in the sense that they apply dynamic

instrumentation to initially set the mutation ratio. However,

they use completely different methods based on symbolic

execution. Since symbolic preprocessing is very cost-intensive

they further compute the mutation ratio only once per test.
Lévy flights have been studied extensively in mathematics

and we refer to Zaburdaev et al. [22] and the references therein

for a comprehensive introduction to this field. Very recently

Chupeau et al. [23] connected Lévy flights to optimal search

strategies and minimization of cover times.

III. LÉVY FLIGHTS IN INPUT SPACE

In this section we give the necessary background on Lévy

flights and motivate their application. With this background

we then define Lévy flights in input space.

A. Lévy Flights
Lévy flights are basically random walks in which step

lengths exhibit power law tails. We aim for a short and

illustrative presentation of the topic and refer to Zaburdaev

et al. [22] for a comprehensive introduction. Pictorially if a

particle moves stepwise in space while randomly choosing an

arbitrary new direction after each step, it describes a Brownian

motion. If in addition the step lengths of this particle vary after

each step and are distributed according to a certain power low,

it describes a Lévy flight.
Formally, Lévy processes comprise a special class of

Markovian stochastic processes, i.e. collections of random

variables

(Lt), t ∈ T (1)

defined on a sample space Ω of a probability space (Ω,F , P ),
mapping into a measurable space (Ω′,F ′), and indexed by a

totally ordered set T . In our case Ω′ refers to the discrete input

space of the program and the index time T models the discrete

iterations of test case generation, so we can assume T = N.

The process (Lt)t∈T is said to have independent increments
if the differences

Lt2 − Lt1 , Lt3 − Lt2 , ..., Ltn − Ltn−1 (2)

are independent for all choices of t1 < t2 < ... < tn ∈ T .

The process (Lt), t ∈ T is said to be stationary, if

∀t1, t2 ∈ T, h > 0 : Lt1+h − Lt1 ∼ Lt2+h − Lt2 , (3)

i.e. increments for equal time intervals are equally distributed.

A Lévy process is then formally defined to be a stochastic

process having independent and stationary increments. The

additional property

L0 = 0 a.s. (4)

(i.e. almost surely) is sometimes included in the definition, but

our proposed algorithm includes starting points other than the

origin.
To construct a Lévy process (Ln)n∈N we simply sum

up independent and identically distributed random variables

(Zn)n∈N, i.e.

Ln :=
n∑

i=1

Zi. (5)
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The process (Ln)n∈N is Markovian in the sense that

P (Ln = xn|Ln−1 = xn−1, ..., L0 = xo) (6)

= P (Ln = xn|Ln−1 = xn−1), (7)

which simplifies a practical implementation. If the distribution

of step lengths in a Lévy process is heavy-tailed, i.e. if the

probability is not exponentially bounded, we call the process

a Lévy flight. Such processes generalize Brownian motion in

that their flight lengths l are distributed according to the power

law

p(l) ∼ |l|−1−α, (8)

where 0 < α < 2. They exhibit infinite variance

< l2 >=∞ (9)

which practically results in sometimes large jumps during

search process. In fact, the ability to drive a particle very

long distances within a single step gives Lévy flights their

name. While Brownian motion is a suitable search strategy

for densely distributed targets, Lévy flights are more efficient

than Brownian motion in detecting widely scattered (software)

bugs. Although there is much to say about the theoretical

aspects of this class of stochastic processes we basically refer

to the power law in equation (8) in the following. Smaller

values of α yield a heavier tail (resulting in frequent long

flights and super-diffusion) whereas higher values of α reveal

a distribution with probability mass around zero (resulting

in frequent small steps and sub-diffusion). In Section V we

adapt α according to feedback information from dynamic

instrumentation of the targeted binary.

As indicated in Section I Lévy flights are directly connected

to the minimal time it takes to cover a given search domain.

We refer to [23] for recent results regarding minimization of

the mean search time for single targets.

B. Input Space Flights

Next we construct Lévy flights in the input space of binary

executables under test. Therefore, assume the input to be a bit

string of length N . If we simply wanted an optimal search

through the input space without any boundary conditions,

we would construct a one-dimensional Lévy flight in the

linear space {0, ..., 2N}. However, our aim is not input space

coverage but execution code coverage of the binary under test.

In this section we construct a stochastic process in input space

with the properties we need for the main fuzzing algorithm

presented in Section V.

First, we divide the input into n segments of size m = N
n

(assuming without loss of generality that N is a multiple of n).

We then define two Lévy processes, one in the space of offsets

O = {1, ..., n} and one in the space of segment values S =
{1, ..., 2m}. With underlying probability spaces (Ω1,F1, P1)
and (Ω2,F2, P2) we define the one-dimensional Lévy flights

L1
t : Ω1 → O (10)

L2
t : Ω2 → S (11)

with index space t ∈ N and corresponding power law distri-

bution of flight lengths l

pj(l) ∼ |l|−1−αi , j = 1, 2 (12)

where 0 < αi < 2. While (L1
t )t∈N performs a Lévy flight

in the offset parameter space, (L2
t )t∈N performs Lévy flights

within the segment space indicated by the offset. Regarding the

initial starting point (L1
0, L

2
0) we assume a given seed input.

We choose an arbitrary initial offset L1
0 ∈ O and set the initial

value of L2
0 according to the segment value (with offset L1

0)

of the seed input.

By setting different values of α we can control the dif-

fusivity of the stochastic processes (L1
t )t∈N and (L2

t )t∈N. If

we find a combination of offset and segment values of high

quality the fuzzer should automatically explore nearby test

cases, which is realized by higher values of 0 < αi < 2.

Similarly if the currently explored region within input space

reveals low quality test cases, the fuzzer should automatically

adapt to widen its search pattern by decreasing α. Therefore,

we first have to define a quality measure for test cases.

IV. QUALITY EVALUATION OF TEST CASES

In this section we define a quality measure for generated test

cases. We aim for maximal possible code coverage in a finite

amount of time, so we evaluate a single input by its ability to

reach previously undiscovered execution paths. In other words,

if we generate an input that drives the program under test to

a new execution path, this input gets a high quality rating.

Therefore we have to define a similarity measure for execution

traces. We will then use this measure in Section V as feedback

to dynamically adapt diffusivity of the test case generation

process.

The field of test case prioritization provides effective meth-

ods for coverage-based rating (see [18] and [19] for a com-

parison). We adapt the method of prioritizing test cases by

additional basic block coverage. As introduced in Section

III we assume inputs for the program under test to be bit

strings of size N and denote the space of all possible inputs

as I = {0, ..., 2N}. Our challenge can then be formulated

as follows. Given a subset of already generated input values

I ′ ⊂ I, how do we measure the quality of a new input x0 ∈ I
with respect to maximal code coverage? For a given x0 ∈ I let

cx0
denote the execution path the program takes for processing

x0. Intuitively we would assign a high quality rating to the

new input x0 if it drives the targeted program to a previously

undiscovered execution path, i.e. if cx0
differs significantly

from all previously explored execution paths {cx|x ∈ I ′}. To

measure this path difference we take the amount of newly

discovered basic blocks into account. Here we refer to a basic
block as a sequence of machine instructions without branch

instructions between block entry and block exit. Let B(cx)
denote the set of basic blocks of execution path cx. The set
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of newly discovered basic blocks while processing a new test

case x0 given already executed test cases I ′ ⊂ I is then

B(cx0
) \
( ⋃

x∈I′
B(cx)

)
. (13)

We define the number E(x0, I ′) of these newly discovered

blocks as

E(x0, I ′) :=
∣∣∣∣∣B(cx0

) \
( ⋃

x∈I′
B(cx)

)∣∣∣∣∣ , (14)

where |A| denotes the number of elements within a set A. The

number E(x0, I ′) indicates the number of newly discovered

basic blocks when processing x0 with respect to the already

known basic blocks executed by the test cases within I ′.
Intuitively E(x0, I ′) gives us a quality measure for input x0

in terms of maximization of basic block coverage. In order

to construct a feedback mechanism we will use a slightly

generalized version of this measure to control diffusivity of

the input generating Lévy processes in our fuzzing algorithm

in Section V.

V. FUZZING ALGORITHM

In this section we present the overall fuzzing algorithm.

Our approach uses stochastic processes (i.e. Lévy flights as

introduced in Section III) in the input space to generate test

cases. To steer the diffusivity of test case generation we

provide feedback regarding the quality of test cases (as defined

in Section IV) to the test generation process in order to yield

self-adaptive fuzzing.

We first prepend an example regarding the interplay between

input space coverage and execution path coverage to motivate

our fuzzing algorithm. Consider a program which processes

inputs from an input space I. Our aim is to generate a subset

I ′ ⊂ I of test cases (in finite amount of time) that yields

maximal possible execution path coverage when processed by

the target program. Further assume the program to reveal deep

execution paths (covering long sequences of basic blocks) only

for 3% of the inputs I, i.e. 97% of inputs are inappropriate

test cases for fuzzing. Since we initially cannot predict which

of the test cases reveals high quality (determined by e.g. the

execution path length or the number of different executed basic

blocks), one strategy to reach good code coverage would be

black-box fuzzing, i.e. randomly generating test cases within

I hoping that we eventually hit some of the 3% high quality

inputs. We could realize such an optimal search through input

space with highly diffusive stochastic processes, i.e. Lévy

flights as presented in Section III.

As mentioned above the Lévy flight hypotheses predicts an

effective optimal search through input space due to their dif-

fusivity properties. On the one hand this diffusivity guarantees

us reaching the 3% with very high probability. On the other

hand, once we have reached input regions within the 3% of

high quality test cases, the same diffusivity also guarantees us

that we will leave them very efficiently. This is why we need to

adapt the diffusivity of the stochastic process according to the

quality of the currently generated test cases. If the currently

generated test cases reveal high path coverage, the Lévy flight

should be localized in the sense that it reduces its diffusivity

to explore nearby inputs. In turn, if the currently generated test

cases reveal only little coverage, diffusivity should increase in

order to widen the search for more suitable input regions. By

instrumenting the binary under test and applying the quality

evaluation of test cases introduced in Section IV we are able

to feedback coverage information of currently explored input

regions to the test case generation algorithm. In the following

we construct a self-adaptive fuzzing strategy that automatically

expands its search when reaching low quality input regions and

focuses exploration when having the feedback of good code

coverage.

a) Initial Seed: We start with an initial non-empty set of

input seeds X0 ⊂ I. As described in Section III we assume the

elements x ∈ X0 to be bit strings of length N and divide each

of them into n segments of size m = N
n (assuming without

loss of generality that N is a multiple of n). Practically the

input seeds X0 can be arbitrary files provided manually by

the tester, they may not even be valid with regard to the input

format of the program under test. We further set two initial

diffusive parameters 0 < α1, α2 < 2 and an initial offset

q0 ∈ {1, ..., n}.
b) Test Case Generation: The test case generation step

takes as input a test case x0, diffusion parameters α1 and

α2, an offset number q0 ∈ {1, ..., n}, and a natural number

kgen ∈ N of maximal test cases to be generated. It outputs a

set Xgen of kgen new test cases Xgen ∈ I.

As introduced in Section III we refer to the offset space as

O = {1, ..., n} and to the segment space as S = {1, ..., 2m}.
We denote with x0(q0) the segment value of input x0 at offset

q0. For the Lévy flights

L1
t : Ω1 → O (15)

in the offsets O and

L2
t : Ω2 → S (16)

in S with flight lengths l distributed according to the power

law

pj(l) ∼ |l|−1−αj , j = 1, 2 (17)

we set the initial conditions

L1
0 = q0 and (18)

L2
0 = x0(q0), (19)

respectively. Let R(x0, q0, s0) denote the bit string generated

by replacing the value x0(q0) of bit string x0 at offset q0 by a

new value s0. Both stochastic processes (L1
t )t∈N and (L2

t )t∈N
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are then simulated for kgen steps to generate the kgen new test

cases

x1 := R
(
x0, L

1
0, L

2
1

)
(20)

x2 := R
(
x1, L

1
1, L

2
2

)
(21)

...

xj+1 := R
(
xj , L

1
j , L

2
j+1

)
(22)

...

xkgen
:= R

(
xkgen−1, L

1
kgen−1, L

2
kgen

)
. (23)

For simplicity of notation in this definition we identify the

values Lj
t with their respective binary representations (as bit

string). In words, we start with the initial test case x0 and

replace its segment content at offset L1
0 = q0 with the new

value L2
1, which is the value in segment space S = {1, ..., 2m}

that we get when taking a first random step with the Lévy

flight (L2
t )t∈N. This yields x1. We get the next test case x2 by

considering the just generated x1, setting the offset according

to (L2
t )t∈N, and then replacing the content of the segment

indicated by this offset by a new segment value chosen by

(L2
t )t∈N. We proceed with this algorithm until the set

Xgen := {x1, ..., xkgen
} (24)

of kgen new test cases is generated.

c) Quality Evaluation: The quality evaluation step takes

as input two sets of test cases Xgen, I ′ ⊂ I and outputs a

quality rating Ẽ(Xgen, I ′) of Xgen with respect to I ′. We

already defined the number E(x0, I ′) of newly discovered

basic blocks for a single test case x0 with respect to a given

subset I ′ ⊂ I in Equation (14). To generalize this definition

to a quality rating Ẽ(Xgen, I ′) of a set of test cases Xgen

(with respect to I ′) we define the mean

Ẽ(Xgen, I ′) := |Xgen|−1
∑

x∈Xgen

E(x, I ′). (25)

d) Adaptation of Diffusivity: The diffusivity adaptation

step takes as input a quality rating Ẽ(Xgen, I ′) ∈ N, two

parameters b1, b2 ∈ R
+ (controlling the switching behavior

from sub-diffusion to super-diffusion) and outputs two adapted

parameters 0 < α1, α2 < 2, which according to the power law

(17) regulate the diffusivity of the Lévy flights (L1
t )t∈N and

(L2
t )t∈N.

Our aim (as motivated at the beginning of this section) is to

adapt the diffusion parameters in such a way that the algorithm

automatically focuses its search (by decreasing diffusivity of

the generating Lévy flights) when generating high quality (i.e.

high coverage) test cases and in turn automatically widens its

search (by increasing diffusivity) in the case of low quality

(i.e. low coverage) test cases. As discussed in Section III

we can control diffusivity by setting suitable values of α1

and α2. Smaller diffusivity parameters result in frequent long

flights and super-diffusion whereas higher parameters reveal

frequent small steps and sub-diffusion. To achieve this we

select a monotonically increasing function f : R→ (0, 2) with

f(0) ≤ ε (for ε > 0 sufficiently small) and limt→∞ f(t) = 2.

Any such function will provide self adaptation of diffusivity

of the Lévy flights and we simply choose two functions

fi(t) :=
1

1 + ebi−t
, i = 1, 2 (26)

where bi ∈ R
+ are fixed parameters that determine at which

point within the quality rating spectrum (i.e. at which mean

number of newly discovered basic blocks) the search behavior

of (L1
t )t∈N and (L2

t )t∈N switches from sub-diffusion to super-

diffusion. With this function we adapt diffusivity to

αi = f
(
Ẽ(Xgen, I ′)

)
, i = 1, 2. (27)

The next iteration of test case generation is then executed with

adapted Lévy flights.

e) Test Case Update: This step takes as input two sets of

test cases Xold, Xgen ⊂ I and outputs an updated set of test

cases Xnew. During the fuzzing process we generate a steady

stream of new test cases which we directly evaluate with

respect to the set of previously generated inputs (as discussed

in the quality evaluation step). However, if we archive every

single test case and for each generation step evaluate the

kgen currently generated new test cases against the whole his-

tory of previously generated test cases, fuzzing speed decays

constantly with increasing duration of the fuzzing campaign.

Therefore we define an upper bound kmax ∈ N of total test

cases that we keep for quality evaluation of new test cases.

Small values of kmax may cause the Lévy flights (L1
t )t∈N

and (L2
t )t∈N to revisit already explored input regions without

being adapted (by decreasing the parameters αi) to perform

super-diffusion and widen their search behavior. However, this

causes no problem due to the Lévy flight hypothesis (discussed

in Section I).

The update of Xold with Xgen simply follows a first in first
out strategy. Initially if |Xold| + |Xnew| < kmax we append

all newly generated test cases so that Xnew = Xold ∪Xgen.

Otherwise we first delete the oldest kold entries in Xold, where

kold = |Xold|+ |Xnew| − kmax, (28)

and then take the union.

f) Joining the Pieces: Now that we have presented all

individual parts we can combine them. The overall fuzzing

algorithm is depicted in Figure 1.

The initial seed generation step outputs a non-empty set of

test cases X0 ⊂ I, two diffusivity parameters α1 and α2, and

an initial offset q0. The inputs X0 are added to the list of

test cases Xall. Then the fuzzer enters the loop of test case

generation, quality evaluation, adaptation of diffusivity, and

test case update. The first step within the loop (referred to

as Last(Xall)) is selecting the most recently added test case

x0 in Xall, which will then be used as initial condition in the

generation step. Starting at L1
0 = q0 and L2

0 = x0(q0) the Lévy

flights (L1
t )t∈N and (L2

t )t∈N generate the set of new inputs

Xgen by diffusing through input space with diffusivity α1 and

α2, respectively. The quality of Xgen is then evaluated against

the previous test cases in Xall. Depending on the quality

rating outcome, the diffusivity of (L1
t )t∈N and (L2

t )t∈N is then
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Fig. 1. Overall fuzzing algorithm with parameters b1, b2, kgen, and kmax.
After initial seed generation the fuzzer enters the loop of test case generation,
quality evaluation, adaptation of diffusivity, and test case update.

adapted correspondingly by updating α1 and α2 according to

the sigmoid functions fi in Equations (26). Then the current

list of test cases Xall is updated with the just generated set

Xgen and the fuzzer continues to loop.

Regarding complexity of the fuzzing algorithm we note that

all of the individual parts are processed efficiently in the sense

that their time complexity is bound by a constant. Especially

the evaluation step Eval() is designed to scale: In the first

iterations of the loop the cost of evaluating Xgen against Xall

is bound by O(|Xall|2). To counter this growth we defined an

upper bound kmax ∈ N for |Xall| in the test case update step

above.

VI. IMPLEMENTATION

To show the feasibility of our approach we implemented

a prototype for the proposed self-adaptive fuzzing algorithm

(as depicted in Figure 1). Our implementation is based on

Intel’s dynamic instrumentation tool Pin [24] and a custom

Lévy flight simulation programmed in the statistical computing

language R [25]. While test cases are generated in the R

module, evaluation of current path exploration performance

is realized in the custom Pin tool. A simple Python script

handles the quality feedback from dynamic instrumentation to

the test case generating R module.

In our implementation we omit the first step Last(Xall)
within the loop and instead always keep the current position

of the processes (Li
t)t∈N. This is due to the construction of

new test cases in Equations (20)-(23) so that the last test

case within Xall is simply the most recently generated xkgen

which will be used as starting position within the subsequent

loop iteration. Therefore it suffices to stop the Lévy flights

after kgen steps, save their current position, and proceed with

adapted diffusivity parameters in the subsequent invocation of

the Gen() function.

VII. DISCUSSION

In this section we discuss properties, possible modifications,

and expansions of our proposed fuzzing algorithm.

As demonstrated in Section V our algorithm is self-adaptive

in the sense that it automatically focuses its search when

reaching high quality regions in input space and widens

exploration in case of low quality input regions. One possible

pitfall of such a self-adaptive property is the occurence of

attracting regions: If the Lévy flights (Li
t)t∈N (i = 1, 2) enter

regions of high quality and get the response from the quality

evaluation step to focus their search (by decreasing their

diffusivity), an improper quality rating mechanism might cause

the Lévy flights to stay there forever. However, our evaluation

method (as defined in Section IV) avoids this by favoring test

cases that lead the target binary to execute undiscovered basic

blocks and in turn devaluates inputs that lead to already known

execution paths. Therefore, if the test case generation module

gets feedback that it is currently exploring a region of high

quality it focuses its search as long as new execution paths

are detected. As soon as exploration of new execution paths

stagnates, the feedback from the evaluation module switches

to a low rating. Such a negative feedback again increases

diffusivity according to Equations (26) and (27), which again

causes the processes (Li
t)t∈N (i = 1, 2) to diffuse into other

regions of the input space.

One main modification of our algorithm would be in-

terchanging the aim of maximizing code coverage with an

adequate objective. In Section IV we defined a quality mea-

sure for generated test cases based on the number of new

basic blocks we reach with those inputs. Although this is

the most common strategy when searching for bugs in a

target program of unknown structure, we could apply other

objectives. For example, we could aim for triggering certain

data flow relationships, executing preferred regions of code,

or reach a predefined class of statements within the code. Our

fuzzing algorithm is modular and flexible in that it allows

to interchange the quality measure according to different

testing objectives. More examples of such testing objectives

are discussed in the field of test case prioritization (e.g. in

[18] and [19]).

VIII. CONCLUSION

Inspired by moving patterns of foraging animals we in-

troduce the first self-adaptive fuzzer based on Lévy flights.

Just like search patterns in biology have evolved to optimal

foraging strategies due to natural selection, so have evolved

mathematical models to describe those patterns. Lévy flights

are emerging as successful models for describing optimal

search behavior, which leads us to their application of hunting

bugs in binary executables. By defining corresponding stochas-

tic processes within the input space of the program under test

we achieve an effective new method for test case generation.

Further, we define an algorithm that dynamically controls

diffusivity of the defined Lévy flights depending on actual

quality of generated test cases. To achieve this we construct

a measure of quality for new test cases that takes already
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explored execution paths into account. During fuzzing the

quality of actually generated test cases is constantly forwarded

to the test case generating Lévy flights. High quality test case

generation with respect to path coverage causes the Lévy flight

to enter sub-diffusion and focus its search on nearby inputs,

whereas a low quality rating results in super-diffusion and

expanding search behavior. This feedback loop yields a fully

self-adaptive fuzzer. Our proposed algorithm is modular in the

sense that it allows integration of other fuzzing goals beyond

code coverage, which is subject to future work.
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