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Aircraft tracking based on the Doppler shift of radio sources of
opportunity presents one approach to avert or reduce tragedies like
the lost flight MH370. Systems like this are based on simultaneous
observation of the Doppler shift caused by aircraft from multiple
common radio sources and many listeners, for example by capturing
Doppler signals from spectrogram images. In the current article, a
mathematical model of instantaneous Doppler curve extraction from
within a VHF spectrogram image is presented and exploited with
three receiving and one transmitting stations. The model is based on
a priori knowledge of the probability density function (pdf) of the
first-order derivative of the Doppler shift (FODDS), and on a system
of blocks for identifying, classifying, and predicting the Doppler
signal in a one-scan-at-a-time fashion. Tracing capabilities of such a
model are tested in an off-line experiment with 21 TV signal
recording sessions. The system was able to trace 73.8% of observed
Doppler signatures; its stability was proven with various scenarios of
Doppler curve appearance within the recorded sessions and
simulated synthetic data.
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I. INTRODUCTION

Work presented in this publication is a continuation to
the study on multistatic radar systems based on
Doppler-only information presented in [1]. The previous
paper described the principles used for aircraft tracking by
passive multistatic Doppler shifts. The system was tested
with very high frequency (VHF) recordings of Doppler
footprints. This inverse problem of determining the
location of the plane in spherical coordinates was
approached by applying a mathematical model consisting
of a combination of the Hough transform (HT), the Canny
edge detection operator, and the secant method for
minimization.

The present paper is meant to introduce a new method
for extracting Doppler curves from within the image (a
spectrogram matrix). The spectrogram form as a signal
representation provides efficient ways of analyzing it. In
[2] authors present advantages and disadvantages of
different time-frequency representations in a
manoeuvering air target scenario. The spectrogram
representation which is pursued in this paper is designed
to be quickly executable without any major loss of
resolution. The method presented focuses on commercial
aircraft detection, with the lost flight MH370 as a
reference scenario, in which case the trajectory of the
aircraft tends to follow geodesics with some minor bends.
The approach used here differs from the one presented in
the previous paper [1] by the instantaneous identification
of Doppler curve components. The mathematical model
consists mainly of cell averaging – constant false alarm
rate (CA-CFAR), signal intensity analysis, and signal
crossing scenario analysis.

In [3] several constant false alarm rate (CFAR)
techniques suitable for over-the-horizon reception are
tested. CA-CFAR is chosen over the other techniques
tested in order to get good signal detection. However, in a
multiple target scenario the clutter map – constant false
alarm rate (CM-CFAR) or the trimmed mean – constant
false alarm rate (TM-CFAR) methods would perform
better in recognizing interfering targets according to these
authors.

In [4] the authors present an approach to detect
Doppler signatures of human movements micro–Doppler
(μD) and classify them into separate categories. For
feature extraction the authors proposed applying a
smoothing median filter over the computed maximum
power spectrum and then applying two techniques, namely
a two-directional two-dimensional form of principal
component analysis (2D2-PCA) and two-directional
two-dimensional form of linear discriminant analysis
(2D2-LDA).

The idea of detection of components within a
spectrogram is a well-studied subject. Some examples
involve harmonic component tracking in audio signals
with a sequential Bayesian harmonic model [5], using
fractional spectrograms (FS) to compute the instantaneous
frequency (IF) of multicomponent nonstationary signal
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[6], separation of a percussive component containing
transients as an application of time-scale modification
(TSM) [7], human fall detection using time-varying
Doppler signatures analyzed with time-frequency
representations, and matching pursuit decomposition [8].
In [6] the authors have demonstrated a method for
multicomponent signal separation using an adaptive
window FS provided that the local amplitudes of signal
components do not vary significantly, whereas this
publication presents a separation method based on
separate peak recognition. This method was chosen over a
maxima detection based one in a past study of extraction
of frequency modulation (FM) based signal [9].

In [10] the authors demonstrate a method of
reassignment (RM) in which at every time step scattered
components are reallocated on a time–frequency plane to a
new point that represents the distribution of energy in the
time–frequency window more accurately. A special case
of reassignment was introduced in [11] as a
synchrosqueezing transform (SST) with the purpose of
identifying speakers by incorporating a wavelet transform
and auditory-nerve based models. In contrast to
reassignment transform the SST allows for mode
reconstruction [more efficient mode separation than
empirical mode decomposition (EMD)]. A comprehensive
overview of these two methods (RM and SST) is presented
in [12]. In the present paper however, the components are
not shifted on the plane but are rather followed as they are
located with respect to their center of mass (CoM). In
other words the current method allows the signal to locally
fluctuate on the plane while still being trackable.

Connecting the detected components at different time
instances is a well-studied subject. The Viterbi algorithm
(VA) has been tested in different fields of interest [9, 13,
14]. The concept of the VA has been used in this paper, but
the idea behind the current algorithm does not match fully
the specifics of VA; see Section III-E.

The paper is organized as follows. After this
Introduction, the second section covers the fundamentals
for the ensuing analysis, which is derived from the
probability density function (pdf) of the first-order
derivative of Doppler shift (FODDS). The third section
introduces the mathematical model developed here. In the
fourth section a description of the recording circumstances
and the data recorded and simulated are presented.
Experimental results with the proposed model are
presented in section five. Discussion of the results is
presented in section six.

II. PDF OF FODDS WITH RESPECT TO VARYING
SAMPLING TIME AND CRUISING VELOCITY

Let us start from the well-known bistatic Doppler shift
equation presented in (1)

fD (t) = ft

c

d (dTA (t) + dAI (t))

dt
, (1)

where ft represents the transmitted frequency, dTA (t) and
dAI(t) are distances from the transmitter to an aircraft and

Fig. 1. Graph of first derivative of Doppler shift with respect to spatial
variables x and y and constants T = 0.5 s, Vc = 250 m s–1, and γ = 220◦.

from an aircraft to the receiver, respectively; c is the speed
of electromagnetic waves, and fD(t) corresponds to the
Doppler frequency (shift), I = J, M.

Distances dTA (t) and dAI (t) from (1) can be expanded
into the following form

dTA (t (1)) =
√

(x − xT)2 + (y − yT)2 (2)

dTA (t (2)) =
√

(x + �x − xT)2 + (y + �y − yT)2 (3)

dTA (t (3)) =
√

(x + 2�x − xT)2 + (y + 2�y − yT)2 (4)

where x and y are constrained to the following domain
[–0.7dTR, 0.7dTR] × [–dTR, dTR], t (3) = t (2) + T = t (1)
+ 2T, dTR – length of the baseline, (xT, yT) – transmitter
location, (xR, yR) – receiver location, �x = VcT cosγ , �y
= VcT sin γ . Parameter γ is an angle between the
receiver-transmitter vector and the vector of the object’s
trajectory, measured counterclockwise; see Fig. 1. Two of
the remaining parameters Vc and T are the cruising
velocity and the sampling time, respectively.

Sequence dAI (t (1)) . . . dAI (t (3)) has a similar
construction.

Substituting the bistatic distance at time t (p), dTA(t (p))
+ dAI (t (p)) with db (t(p)) gives (1) a discretized form

fD (x, y, γ, T , Vc) = ft

c

db (t (p − 1)) − db (t (p))

T
(5)
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Fig. 2. Graph of pdf of FODDS value Pr [Vc, T] as function of aircraft
cruising speed Vc and

∂fD
∂t

.

Therefore the first derivative of (5) can be expressed as
follows

∂fD (x, y, γ, T , Vc)

∂t

= ft

c

[
db (t (p − 2)) − 2db (t (p − 1)) + db (t (p))

T 2

]

(6)

An example of the distribution of the first derivative of
the Doppler shift as a function of spatial location is
presented in Fig. 1. In this case the angle γ is set to 220◦,
cruising velocity Vc = 250 m s–1, and sampling time
T = 0.5 s.

The pdf of the FODDS value as a function of cruising
velocity Vc and sampling time T is expressed as

Pr [Vc, T ] =
π∫

0

dTR∫
−dTR

0.7dTR∫
−0.7dTR

∂fD (x, y, γ, T , Vc)

∂t
dxdydγ

(7)
An interesting phenomenon can be observed in Fig. 2.

As the cruising velocity increases, the limits of the pdf’s
domain (the first derivative) shift towards higher values.
However the changes are not large which can be seen from
Fig. 3 which demonstrates the change in the first
derivative with the highest probability value over varying
cruising velocity.

The graph in Fig. 4 depicts the pdf presented in (7).

III. A DOPPLER CURVE DETECTION MODEL BASED
ON PDF OF FODDS

In this section a mathematical model of Doppler curve
detection is presented. It is assumed that the system is
incapable of tracing Doppler curves that emerge from
isorange contour trajectories, or the baseline’s trajectory.

Fig. 3. FODDS as function of cruising velocity Vc for maximum
observed probability.

Fig. 4. PDF of FODDS. Dotted line corresponds to linear scale (left
axis), solid line corresponds to logarithmic one (right axis).

The model consists of the following blocks:

1) CA-CFAR model. It is used to scan in line-by-line
pattern in order to detect cells with amplitude over a
certain threshold, that with some certain probability
corresponds to the target echo.

2) Cells detected with CA-CFAR are analyzed to find
separated peaks, defined as a group of neighboring points
corresponding to the same peak, which could represent
different signal sources. This step is achieved through
analysis of first and second derivatives.

3) The CoM formula is applied to find the frequency
that corresponds to the true maximum amplitude of each
peak. The maximum-amplitude frequency points thus
found are then named as the pretenders.

4) To aid prediction of the forthcoming position of
signal in frequency domain we calculate the expected
value of ∂ fD (x, y, γ , T, Vc) /∂t and denote it with
E [∂ fD/∂t,]; see Section III-E.

5) The classification block in which the system
classifies the pretenders into separated groups which form
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a logically consistent time series in a sense of Doppler
shift curvature. The classification block is mainly based on
a continuation of the energy concentration parameter, the
distance in frequency between two consecutive steps, and
probability Pr[Vc, T] of frequency difference.

6) The signal intersection block is responsible for
finding cases in which two or more signals are intersecting
for some period of time. It solves these cases by predicting
and separating the signals based on the history of the
signal’s shape and amplitude.

7) The rejection block consists of the set of rules
needed to reject or accept the pretenders’ group.

8) The prediction block is based on a first- or
second-order polynomial fit of the groups of the
pretenders found, depending on the class of the signal, and
on an extrapolation one step (one scan line) forth.

9) The linking block is responsible for joining two
signals separated by a time gap once certain conditions are
fulfilled.

Each of the listed blocks and interactions between
them is presented in Fig. 5 and in the forthcoming
subsections.

A. Constant False Alarm Rate

Let us denote a matrix of spectrogram data by S[n × m]

and an amplitude of each cell of this matrix by
S(t(p),ω(j)), where t(p), p ∈ [1, n] denotes a time for the
cell being measured, and ω (j), j ∈ [1, m] the frequency
that corresponds to the cell.

The CFAR technique is well documented, and many
variants of it have been developed.

As an example of this technique we want to give a
brief presentation of one of the aforementioned variants,
namely the CA-CFAR.

Let us consider Fig. 6 in which there are three
distinguished groups of cells: reference cells (dotted),
guard cells (crosshatch), and the cell under test (CUT)
(grid). To check if detection is declared in the CUT we
need to average over all the reference cells RC of length
nRC and then after multiplying it with the constant kCFAR

compare with the amplitude of CUT; see (8).

S (t (k) , ω (p)) > kCFAR

1

nRC

∑
j∈RC

S (t (k) , f (j )) , (8)

where RC denotes a reference cell’s location in the
frequency domain and is of length nRC, kCFAR stands for a
scaling constant. If the inequality is satisfied, then CUT is
stored and denoted as S(t(k),ω (p, t(k))), pi ∈ [1, m].

B. Grouping

The points found in the previous step are now grouped
to form separate peaks of signals. This separation is
achieved by examination of the frequency distance
between them. If

ω (ji, t (p)) − ω (ji+1, t (p)) < fmr, (9)

Fig. 5. Organigram of procedure presented in Section III.

Fig. 6. CA-CFAR scheme.
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where fmr denotes the frequency margin between two
points, then it is said that SH (t(p),ω(ji, t(p))) and SH(t(p),
ω (ji + 1, t(p))) belong to the same group (set) H, and
i, i + 1 ∈ [1, |H|], |H| denotes the cardinality of the group
(set) H. Further it is assumed that each group corresponds
to a separated signal, both those desired to be discovered,
like Doppler curves, and those originating in another
source.

C. Center of Mass

The aim of this step is to find the CoM (gravity) of
previously established groups. In this case mass
corresponds to the amplitude of each cell SH(t(p),
ω(ji, t(p))) and its location is measured relative to the
frequency ωH (ji, t(p)). For group H of cardinality equal to
bH this is achieved through the following formulae in (10)
and (11).

ωl (t (p)) = 1

Nw

bH∑
i=1

[SH (t (p) , ω (ji, t (p))) ωH (ji, t (p))]

(10)

al (t (p)) = SH (t (p) , wl (t (p))) (11)

where Nw =
bH∑
i=1

SH(t(p), ω(ji, t(p))). A pair (ωl(t(p)),

al(t(p))) denotes frequency and amplitude of the center for
group H at time t (p). The value of the amplitude refers to
an interpolated value between amplitudes of two closest
neighbors. The found pairs (ωl, al) are then referred to as
pretenders for signal carrying cells. Let us denote a
number of pairs (pretenders) (ωl, al) detected at time t(p)
as q(t (p)).

D. Expected Value

To aid the prediction of the position of a pretender in a
next scan S(t(p + 1)) we use the previously established
pdf of the FODDS Pr[Vc, T]. The expected value E[Vc, T]
is used to predict the location of the next pretender for
some given group H when there is not enough historical
data (length of a set SH(t(p),ω(ji, t(p))) in time domain is
limited to a couple of scans) on which proper prediction
could be based. Let us denote the length of the signal that
is needed for predicting its next frequency value (location
within frequency spectrum ω) by nh.

E. Classification and Prediction

The classification block is the most important part of
the system. It allows continuous monitoring of a
previously detected pretender. The efficiency of
classification depends on the quality of the signal,
measured by its signal-to-noise ratio (SNR), gaps in signal
reception, etc.

With every new scanned line we need to conduct a
number of calculations. The first of these (12) is to check
every pair of newly found pretenders and pretenders from
the previous scan for their frequency differences. The
resulting parameter is the first out of four that will control
classification and determine how the sequence of

matching pretenders eventually forms a signal. All four
parameters are represented in the form of matrices,

∨
l1∈[1,q(t(p−1))]
l2∈[1,q(t(p))]

Fl1,l2(t(p)) = wl1 (t (p − 1)) − ωl2(t(p)).

(12)
The second parameter is a result of constraining

frequency differences obtained from (12), and its Boolean
values Fm

l1,l2 can be evaluated from (13)

∨
l1∈[1,q(t(p−1))]
l2∈[1,q(t(p))]

Fm
l1,l2 (t (p)) = ∣∣Fl1,l2(t(p)) < fmr

∣∣ (13)

The next parameter determines energy concentration
for each group and then checks for multiplication of
energy concentration for each group from the previous
step with each group from the present step. The following
formula (14) represents the energy concentration value ec
for group H of cardinality bH:

ecl (t (p)) =

bH∑
i=1

SH (t (p) , ω (ji, t (p)))

ωH
(
jbH, t(p)

) − ωH (j1, t (p))
(14)

The third crucial parameter ECl1,l2 is obtained by the
following formula (15).

∨
l1∈[1,q(t(p−1))]
l2∈[1,q(t(p))]

ECl1,l2 (t (p)) = ecl1(t(p − 1)) . ecl2 (t (p))

(15)
The fourth parameter uses knowledge on probability

distribution of the FODDS

∨
l1∈[1,q(t(p−1))]
l2∈[1,q(t(p))]

Pl1,l2 (t (p)) = Pr[Vc,T ]

∣∣∣∣∂f D

∂t

= Fl1,l2 (t (p)) (16)

Two of the aforementioned parameters are then
normalized by the following equations (17), (18).

∨
l1∈[1,q(t(p−1))]
l2∈[1,q(t(p))]

Fs
l1,l2 (t (p)) = 1

1 + ∣∣Fl1,l2 (t (p))
∣∣ (17)

∨
l1∈[1,q(t(p−1))]
l2∈[1,q(t(p))]

ECs
l1,l2 (t (p)) = ECl1,l2 (t (p))

max
(
ECl1,l2 (t (p))

)
(18)

For the sake of simplicity, notations for the four
established parameters are: Fs for normalized frequency
differences matrix, Fm for the matrix of frequency
differences in a logical form, ECs for the matrix of
normalized energy concentration, and P for matrix of the
probability distribution. The four aforementioned
parameters are then combined in the following fashion

M = Fs ◦ Fm ◦ ECs + P (19)

where the operator ◦ denotes the Hadamard product. The
newly established matrix M is a measure of the quality of
matching between groups from the previous scan and
those from the present one.

The next step is to iteratively check matrix M for cells
with the highest values. Once the highest value has been
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found, let us denote the corresponding cell with mtl1,l2.
Then the cells in the corresponding row l1 and column l2
are zeroed. In other words, this step allows only
one-to-one relations between groups. This is repeated until
the null matrix form is achieved.

Estimation of matrix M is repeated for each
progressing scan. If during the process of selection by
operation on matrix M one (or more) of the groups is
consecutively chosen ns times to have continuation in the
next scan then the sequence of “matching” groups is
considered as a potential signal. The sequences that do not
reach the length of ns are rejected and considered useless
for further analysis. Let us denote the sequence l as
wl(t[st, en]), where st and en denote scan numbers when
the sequence started and ended (or present scan),
respectively.

Once the sequence is formed the system initializes
prediction to anticipate frequency value one scan ahead.
The prediction is based on the last nh historical frequency
values fitted with a second-order polynomial. In some
cases the system uses a first-order polynomial; see Section
III-F for details. Parameter nh varies depending on the
actual length of the sequence and can be defined as nh =
min{ns, nhu} where nhu denotes an upper limit for the
parameter nh.

To distinguish the present quality of the signal (at time
t (p)) it is crucial to attribute a quality measure

hl (t (p)) , (20)

to a sequence l. It is done by checking if any of the newly
found groups are within estimated prediction boundaries.
If there exists a group that satisfies this condition then
hl(t(p)) = 1, if not then zero is assigned.

The sequence is then categorised into two groups, the
first one corresponding to a Doppler-related signal (D) and
the second one to a carrier-related signal (C). The
condition for a carrier-related signal is defined in (21)

(
p = nc ∧ |pl (t (1)) − pl (t (p))| < fmc

) ⇒ wl = wc
l

(21)
where the pair (nc, fmc) are a length of the sequence wl for
which we check if its trend (first-order polynomial fit) pl

has deviated by fmc from its starting frequency value, wc
l

denotes a newly classified sequence as a carrier (hence
superscript c). The sequences that do not satisfy this
condition are classified to be Doppler related.

If the signal fades out then for some time there are no
recognized groups within prediction boundaries and
therefore the prediction itself is used as a new estimation.
In this case the assigned quality measure equals zero. If the
vector of quality measure satisfies the following condition

1

ns

p∑
i=p−ns+1

hl (t (i)) < ptr (22)

then the signal is terminated and temporarily stored.

F. Intersection of Sequences

This section explains the case when two or more
sequences intersect on the frequency-time plane
(spectrogram). Examples of intersection might involve
two (or more) Doppler sequences (D-D) or Doppler and
carrier sequences (D-C). In the latter case the carrier
sequence tends to behave as stationary frequency-wise, but
it can, and occasionally does, sway due to different
equipment and weather-related causes.

For this part of the mathematical model, we assume
that the sequence wl exists

∧
l∈Z

(
wl ∨ wc

l

)
(23)

and is longer than ns(en – st + 1 > ns) and prediction is
initialized. Among cells of matrix M we choose those that
correspond to sequences longer than ns. From this set we
choose the one with the highest value and proceed by
checking if its value is positive (>0). If that is the case
then we store it for further analysis as wx

l .
The stored sequences wx

l are now analyzed for a
possible intersection scenario. A condition that needs to be
fulfilled is that two (or more) sequences share the same
column of matrix M. In other words two (or more)
sequences point at the same group as the continuation.
Then depending on sequence category we use a different
prediction. In the case of a Doppler signal we use a
second-order polynomial to estimate the next element of
the sequence; for carrier sequences we use a first-order
polynomial with a significantly longer history tail on
which the next element is estimated. In both cases the
quality measure hl (t (p)) = 1.

G. Combining Sequences

This step is important as a backup solution in a case
when the system loses trace on some signal. Because a
situation like that is possible we need to implement a
solution for combining two curves where one of them
mathematically prolongs the other one.

Every time when the new signal has been formed the
system checks whether it is a continuation of any of the
previous terminated signals or not. For every pair of
present wl and past wz signals the prediction to past and
prediction to future are performed, respectively, with
length of prediction nl,z matching the time gap between
them. Once the results of prediction fl (t [st – nl,z, st – 1]),
fz (t [en + 1, en + nl,z]) are known the system checks the
following condition:
nl ,z∑
i=1

ωl (t [st − i]) − ωz

(
t
[
en + nl,z − i + 1

])
< nl,zfmrp

(24)
where fmrp is a frequency margin for predicted values. If
the condition is fulfilled then the signals are joined and the
gap is complemented with values resulting from fitting the
subsequences ωz (t [en – ns, en]) and ωl (t [st, st + ns

–1]). If the condition is not met then the system recognizes
the present signal as a completely new one. Selection of
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potential past signals is made based on condition of time
difference

tl (st) − tz (en) < tp, (25)

where tp is a time margin for the potential signal.

IV. DATA SET SPECIFICATION

A. Recorded Sessions

This section describes the data set used to demonstrate
the application of the mathematical model presented in
Section III.

The radio signal data (RSD) was captured by three
receivers, J1, J2, and M located near Joensuu, Finland.
Receivers J1 and J2 correspond to the same geographical
location but different antenna configurations. A TV station
located in Saint Petersburg, Russian Federation was used
as a transmitter of opportunity. The receiving antennas’
parameters were as follows:

1) 4-element horizontal dipole array at about 14 m
above ground, with dipole end dip directed to Saint
Petersburg transmitter to attenuate signal strength increase
during carrier crossing, for receiver J1,

2) rotatable horizontal 4-element 50 MHz Yagi, gain
about 5 dBD, height about 7 m above ground, directive
pattern typical to 5-element Yagis, for receiver J2 and

3) long wire of 250 m, which is slightly directional to
northeast and has almost similar back lobe pattern to south
west, for receiver M.

The recording sessions of RSD took place on July 12,
2012 with the use of J2 and M receivers and March 22 to
April 26, 2014 with the use of J1 and J2 receivers.

RSD was acquired with sampling rate of 8 kHz. The
receivers were tuned to record a spectrum of frequencies
that includes the transmitter frequency (ft = 49.75 MHz)
and accompanying Doppler curves. To obtain a
spectrogram form of RSD [15] the short time Fourier
transform (STFT) was used with the width of a
symmetrically positioned Hann window set to L ∼ l s
(8192 samples) and calculation time step to G = 0.5 s.
With these settings the spectrogram is categorized as
overlapped with overlapping time of ∼0.5 s. This window
specification ensures that information on the signal’s
magnitude is not lost [16]. Moreover half a second time
resolution combined with 8192 samples per window
provides a good time/frequency resolution for the Doppler
signature of common length of tens of minutes. By
studying the pdf of FODDS we can deduce that a 0.5 s
window will in most cases be sufficient to ensure steady
and traceable transition of Doppler signature in frequency
domain, discarding some extreme cases such as aircraft
trajectories passing through the baseline or nearly parallel
to it.

Locations of both receiving parties that were recording
RSD (J and M) and the transmitting station (T) are
depicted in Fig. 7. The effective radiated power (ERP) of

Fig. 7. Geographical location of transmitter T and receivers J, M and
distances between them.

Fig. 8. Example of recorded Doppler signatures. Receivers J1 and J2

were tuned to receive signal from same transmitter T.

St. Peterburg’s TV station used in this experiment was
149 kW.

Notable distances between receivers J, M, between the
transmitter T and receivers J, M, are, respectively, dJM =
42.2 km, dTJ = 301.8 km, dTM = 288.4 km.

Fig. 8 presents an example of recorded data in a form
of spectrograms. In this case RSD comes from
simultaneous recordings from J1 and J2. It is worth
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TABLE I
Parameters and their Values used during Execution of the Algorithm.

Parameter Value Definition

kCFAR 1.2 scaling constant for CA-CFAR
fmr 3 Hz frequency margin in (9)
(nc, fmc) (120 s, 1 Hz) length of the sequence nc for which we check if its trend (first-order polynomial fit) pl has deviated by fmc

from its starting frequency value
nRC 20 length of reference cells, CA-CFAR
nhu 50 s upper limit for the parameter nh

ns 20 s length of sequence for which sequence is considered as a signal or length of latest values of quality
measure vector

T 0.5 s sampling time (time step)
tp 120 s time margin for a potential signal in combining sequences
ptr 75% termination coefficient

mentioning that the signatures received with J1 are
noticeably longer but also have a lower SNR.

B. Simulated Signal

To complement the experimental part, the synthetic
Doppler signal was simulated with the help of Phased
Array System ToolboxTM being a part of MATLABTM.
The scenario of this simulation was suppose to imitate
conditions presented in Section IV-A. The length of the
baseline was set to dTR = 301 km, location of the
transmitter was set at the origin (0, 0, 0), receiver’s
location to (0, dTR, 0). Aircraft starting st and finishing fi
locations were chosen randomly as Ast(x, y) =
{U(–0.6dTR, – 0.2dTR), U(–0.2dTR, 1.2dTR)}, Afi (x, y) =
{U(0.2dTR, 0.6dTR), U(–0.2dTR, 1.2dTR)}, and so was the
altitude alt = U (9750, 11270) m and the velocity Vc = U
(244, 257) m s–1.

The transmitting frequency ft remained the same as in
the case of the St. Petersburg TV station. To obtain a
different SNR of resulting Doppler signal the power of
transmitted signal varied as Pav = U(0, 100)W.

The simulation involved three statistical models for
the target’s bistatic radar cross section (BRCS), namely:
nonfluctuating, Swerling 1, and Swerling 2; additionally an
ogive model was simulated and represented by system of
equations (26) for ogive’s BRCS [17], over which the Swer-
ling 2 model was added to simulate smaller fluctuations.

σa =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ2tan4ϕ(1−tan2ϕtan2(β/2))−3

16πcos3(β/2) ,

0 ≤ β < π − 2ϕ
(26a)

πL2
o(sin(β/2)−cos ϕ)
4sin2ϕ sin(β/2) ,

π − 2ϕ < β < π
(26b)

where λ, ϕ, β, and Lo denote wavelength, half angle,
bistatic angle, and ogive’s length, respectively.
Additionally a rectangular signal was used as a
transmitted signal. Parameters characterizing the
transmitting/reflecting/receiving ends were as follows:

transmitting frequency ft = 49.75 MHz
sampling frequency fs = 15 kHz
pulsewidth ε = 1/1500 s
pulse repetition frequency (PRF) fp = 200 Hz

transmitter gain GT = 10 dB
preamp noise of the receiver Epr = 10 dB
receiver gain GR = 20 dB.

Such defined signal is then transmitted, reflected from
a target, received, and transformed with STFT in the same
way as RSD presented in Section IV-A. Moreover
parameters for the reflecting object were set:

ogive’s length Lo = 75.36 m (A340-600 length)
ogive’s half angle ϕ = 22.5◦

BRCS for nonfluctuating and Swerling 1-2 models
was set σ B = 40 m2

V. CASE STUDY

A. Recorded Sessions

To present the performance of the method we need to
list values for some of the parameters from Section III.
These parameters were estimated with the use of trial data
of four hours of RSD as follows:

T, nRC - sampling time and length of reference cells
were set arbitrarily and the rest of the parameters
were adjusted accordingly;

kCFAR - sensitivity was adaptively selected to balance
ratio between discoverable signals and false alarm
rate, to not inhibit detection of valid targets;

fmr - margin was decided by studying variation of width
and shape over the time of a set of separate signals;

(nc, fmc) pair was set based on analyzing the recorded
Doppler signal for minimum detected change in
frequency over a maximum period of time;

nhu, ns, both parameters were decided by studying the
length of unwanted signals (source other than
Doppler effect or carrier).

tp - margin was chosen by studying length of gaps in
the signal’s amplitude.

ptr - sensitivity for possible termination was purposely
set this high so that in the case of neighboring
signals, frequency-wise, termination will prevent
possible “tracing jumps” between the two signals.

The list of parameters, their values and a brief
description are presented in Table I.
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Testing the algorithm on the previously recorded data
was divided in two stages. In the first stage, the number of
visible Doppler signatures Do on a spectrogram was
counted for every recorded session with a heuristic
method. This number was then used to compare with the
number of properly extracted (detected) signatures De.
The first stage also includes calculating the average time
span t̄d between signatures as a parameter that informs
about the density of the visible Doppler curves in a given
session. The second stage concentrates on the execution of
the algorithm. The following parameters are gathered after
analyzing each session: the number of properly extracted
Doppler signatures De, the average signal-to-noise ratio
aSNR, the number of false alarms FA. By proper
extraction we mean an extraction where the length is equal
to or longer than 80% of the visible curve.

Each extracted signal, besides the carrier signal, was
indicated in Fig. 9. However we can notice that the carrier
signal from the first image was classified as a Doppler
signature because of its tendency to bend with time,
therefore it remained on image. This kind of situation has
been very rare and usually the carrier frequency was
constant.

A number of 21 recording sessions was tested with the
extraction technique presented in this paper. In Table II we
have gathered variables that describe the performance of
the algorithm and the measurement conditions of each
session.

The presented variables are: Ts - session duration;
I - receiver configuration; td - average time gap between
two consecutive Doppler signatures; Do - number of
observed Doppler signatures; De - number of properly
extracted Doppler signatures; aSNR - average
signal-to-noise ratio of the extracted signatures; FA -
number of false alarms, related to CA-CFAR; FA% -
percentage of false alarms s.t. FA[%] = FA

FA+De
; te -

calculation time needed for tracing the spectrogram image.
To understand the relation between parameters from

Table II a correlation matrix was calculated and is
presented in Fig. 10. Understanding the correlation
between each pair of the parameters is a crucial step in
understanding the mathematical model, therefore we treat
the correlation parameter as an indicator of performance
of the technique.

Examination of correlation values starts with the
variable td . The fact that it does not correlate with any of
the other parameters is an indicator of the stability of the
system’s performance with respect to the time gap
between signatures. It means that in the case of short
time gaps the system manages to extract signatures at the
same level of performance as in the case of longer time
gaps.

The linear relation between Do and De describes the
stability of the model’s performance measured within
different recording sessions. A significant linear relation
between Do and FA and the value of the fraction Do/FA
which equals 1.95 indicate the stability of the selection
technique used in the model.

Fig. 9. Left: Result of tracing spectrogram matrix SI, I = J1, J2. Right:
Image before tracing. Horizontal frequency axis expressed in Hz, vertical

in wall clock units of time while recording was taken.

The relation between the detection rate De/Do and the
false alarm rate was found to equal –0.42 which indicates
decrease in false alarm rate while increase in detected
curves rate and vice versa.
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TABLE II
Results of Tracing Spectrogram Images with the Presented Technique

Start Ts I td Do De aSNR dB FA FA% te

2012-07-11, 20:13:42 2:11:09 J2 22:25 6 5 6.87 0 0 5:17
2012-07-11, 20:00:04 1:38:20 M 30:05 3 3 5.66 0 0 2:42
2014-03-22, 13:39:20 0:15:55 J1 1:55 5 3 5.77 0 0 0:39
2014-03-23, 13:16:20 0:44:20 J1 7:59 4 3 6.33 3 50 2:53
2014-03-27, 14:15:40 1:15:40 J1 6:06 11 6 5.05 10 63 4:12
2014-03-29, 13:21:20 2:30:30 J1 8 :51 12 9 5.06 6 40 11:09
2014-03-30, 17:52:20 1:00:50 J1 8:23 6 6 5.38 4 40 3:26
2014-04-01, 13:58:40 1:59:55 J1 6:26 15 12 6.33 9 43 8:08
2014-04-01, 16:01:40 0:29:10 J1 3:10 6 6 6.23 2 33 1:58
2014-04-01, 16:32:10 0:42:10 J1 5:13 4 3 6.22 0 0 2:32
2014-04-01, 17:21:20 1:18:42 J1 7:18 8 6 6.23 3 33 5:27
2014-04-02, 17:56:20 2:03:32 J1 8:01 13 9 6.46 4 31 7:33
2014-04-03, 13:10:00 2:22:59 J1 7:07 18 17 5.58 9 35 8:37
2014-04-03, 16:07:01 0:30:57 J1 2:50 5 3 6.31 1 25 1:37
2014-04-04, 11:39:00 0:38:38 J1 3:22 2 2 4.62 0 0 1:31
2014-04-04, 13:04:30 1:16:44 J1 4:27 14 13 5.64 2 13 3:54
2014-04-04, 17:10:30 1:51:35 J1 8:08 16 13 5.62 5 28 5:38
2014-04-05, 12:50:50 2:33:19 J1 8:28 17 12 5.55 11 33 10:36
2014-04-07, 13:18:30 2:16:30 J1 5:40 20 14 5.55 12 46 8:02
2014-04-26, 11:29:02 4:11:48 J1 9:39 20 11 5.63 14 54 17:12
2014-04-26, 11:29:02 4:11:48 J2 9:54 17 8 8.18 19 70 16:38

222 164 5.88 114 41

Fig. 10. Pairwise correlation plot between variables presented in
Table II.

It was found that there is no correlation between aSNR
and any other parameter, which at that stage of analysis is
challenging to interpret.

Finally, there is a very significant correlation between
the time te and FA which confirms the linearity of the
model.

The efficiency of the system was found to equal De/Do

= 73.8%.

B. Simulated Signal

The tests in this subsection were conducted with
simulated data introduced in Section IV-B. To check the
quality of signature extraction of the algorithm, the same
parameter values presented in Table I that were used to
test the real signal, were used.

Results presented in this section are based on 1400
simulations with varying parameters Ast (x, y), Afi (x, y),
alt, Vc, Pav and randomly chosen statistical model. During
each simulation the exact location of the Doppler signature
on the time-frequency plane was known based on (1). The
exact Doppler was then stored as (fD, ao, t), fD (t), ao(t, fD),
where t denotes time instances of Doppler signature, fD
the frequency values, and ao amplitude values (SNR dB).
Moreover the extracted signatures were stored in a form
of (ωl, al, t [st, en]), ωl (t), al (t, ωl) where t[st, en] denotes
time instances over which the extraction was successful,
ωl the frequency values, and al amplitude values of the
extraction (SNR dB). The amplitude values of the extracted
signature were averaged over time t [st, en] so that
each signature was indicated by its averaged SNR aSNR.

To compare the efficiency of the system on the set of
statistical models the ratio re between lengths of extraction
time t [st, en] and exact Doppler time length t was
calculated as re = t[st,en]

t
. Dependency of re as a function

of aSNR is shown in Fig. 11. Scattered values were fitted
with a third-order polynomial (TOP) (red solid curves in
Fig. 11) and compared for every model in Fig. 12 together
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Fig. 11. Extraction time to exact Doppler time ratio re as function of
aSNR (averaged SNR over extracted time length t [st, en]) for three

statistical models and an ogive.

with the standard deviation of difference

σs = 1

t (en) − t (st)

∑
t[st,en]

[fD (t [st, en]) − ωl (t [st, en])]2

(27)

The standard deviation values were fitted with a TOP
for the nonfluctuating and ogive models, the rest (Swerling
1-2) were equipped with fitted lines. Note that the scale of
the right figure was changed for the ogive curve ([0.638,
2.4]).

An overall performance of the system with simulated
data can be expressed with an average value of the
parameter re which was equal to re= [0.82, 0.77, 0.81,
0.47] for nonfluctuating, Swerling 1, 2, and ogive,
respectively. The averaged values of σ s for the
aforementioned models were σs = [0.21, 0.23, 0.22, 0.74]
Hz. The values of re for three first models indicate a good
performance of the algorithm, but the relatively smaller
value for the fourth one is caused by the fact that an ogive
was detectable mainly when the case (26b) was in use

Fig. 12. Ratio re as function of aSNR (top figure) and standard
deviation of difference fD (t [st, en]) – ωl (t [st, en]) as function of aSNR

(bottom figure). Note change of scale for ogive model [0.638, 2, 4].

(π – 2ϕ < β < π). Average standard deviation σs values
do not exceed a frequency resolution in the
time-frequency plane which equals ∼0.91 Hz.

It is worth noting that the algorithm is able to separate
between two or more intersecting signals – the system
recognizes them and follows the curves separately, as
illustrated in Fig. 13, which in that respect is an advantage
over an algorithm presented in [9]. The experiment with
two targets was conducted under the same conditions as
defined earlier in Section IV-B with transmitting power
Pav = 25 W which resulted in aSNR = 5.39 dB. The
intersection does not influence the quality of extraction
frequency-wise and there is no significant alternation of
trend of σ s; see right illustration in Fig. 13.

VI. DISCUSSION

This work is devoted to establishing a novel method of
instantaneous Doppler signature extraction from within
VHF band spectrogram images. We establish a pdf of the
FODDS. This pdf is used for estimating the expected
value and therefore the expected frequency shift. The
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Fig. 13. Extraction of two targets. Left: extracted features; center:
simulated spectrogram; right: standard deviation of frequency differences

σ s between extracted signatures and exact signatures. Vertical axes
represent wall clock time [MM:SS].

structure of the mathematical model consists of a number
of blocks, the most relevant of which are:

1) a CA-CFAR block responsible for detection of
amplitude-wise outlying cells;

2) construction of pretenders based CoM on formulae;
3) classification of pretenders which uses signal

energy concentration and frequency difference between
two consecutive steps and pdf of FODDS;

4) the case of intersection of multiple signals is solved
by predicting the signals’ location in the frequency
domain;

5) a block of combining signals is responsible for
linking two signals into one across a time gap between
them and a distance gap between their predicted frequency
values. The missing link is then created by extrapolating
with a second-order polynomial based on the number of
points from the proper ends of both signals.

Based on 21 recording sessions that were tested with
the technique developed in this paper we observed a 73%
efficiency in extracting Doppler signatures, while in the
case of the synthetic signal an efficiency of [0.82, 0.77,
0.81, 0.47] was achieved for nonlinear, Swerling 1, 2, and
ogive test signals, respectively. This fact, combined with
the possibility in which many more transmitter-receiver
pairs are used, may establish a system like the one
described in [1] with which hopefully no civilian large
aircraft is untraceable when the receivers work together in
a multistatic configuration.
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