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Abstract—As unmanned aerial vehicles (UAVs) become widely
used in various civil applications, many civil aerodromes are being
transformed into a hybrid environment for both manned and
unmanned aircraft. In order to make these hybrid aerodromes op-
erate safely and efficiently, the autonomous taxiing system of UAVs
that adapts to the dynamic environment has now become increas-
ingly important, particularly under poor visibility conditions. In
this paper, we develop a probabilistic self-learning approach for
the situation awareness of UAVs’ autonomous taxiing. First, the
probabilistic representation for a dynamic navigation map and
camera images are developed at the pixel level to capture the
taxiway markings and the other objects of interest (e.g., logistic
vehicles and other aircraft). Then, we develop a self-learning
approach so that the navigation map can be maintained online
by continuously map-updating with the obtained camera observa-
tions via Bayesian learning. An indoor experiment was undertaken
to evaluate the developed self-learning method for improved situ-
ation awareness. It shows that the developed approach is capable
of improving the robustness of obstacle detection via updating the
navigation map dynamically.

Index Terms—Autonomous taxiing, self-learning, situation
awareness, unmanned aerial vehicle.

I. INTRODUCTION

A FTER several decades of research and development, un-
manned aerial vehicles (UAVs) are now widely used in

civil applications (e.g. monitoring gas pipelines [1] and surveil-
lance of electrical power infrastructures [2]). Civil UAVs are
unlikely to have their own specialized aerodromes for taking-
off and landing due to the enormous initial investment and
the following maintenance expenses. A feasible solution would
be to share civil aerodromes with manned aircraft so that the
existing facilities can be fully utilized during off-peak time.
This paper considers an important safety issue, i.e. situation
awareness of a UAV during its autonomous taxiing.

There is considerable attention paid to the research on im-
proving the ground surface operation efficiency and safety
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in the recent years as aerodromes have become increasingly
complex with heavier traffic flow. This includes investigations
on aircraft departure (pushback) phase [3], surface traffic au-
tomation systems for taxiing phase [4], and optimization for
taxiway routing and runway scheduling [5]. Apart from being
more efficient, safety is another important research direction
regarding aerodrome operation. For example, with a survey
on surveillance technologies, [6] investigates the key separa-
tion parameters for a conflict detection and resolution system.
Clearly a hybrid environment for both manned and unmanned
aircraft has raised greater challenges to the operation and safety
issues in the already very complicated aerodrome environment.
Using vertical take-off and landing (VTOL) type of UAVs could
be a solution for some applications for not introducing too
much additional troubles to the aerodrome. However, they have
limited payloads and flight endurance while comparing with
fixed-wing aircraft. Therefore, this paper focuses on solving the
problems that a fixed-wing UAV may cause or encounter.

A typical hybrid civil aerodrome for manned and unmanned
aircraft is a highly dynamic environment, and autonomous
taxiing is one of the major tasks of a UAV operating on the aero-
drome surface. Hence an autonomous taxiing system is required
to be adaptive and responsive to provide safety guarantee. A
detailed discussion on safety issues can be found in [7]. In
general, the autonomous taxiing system on a UAV is expected
to have the same visual information acquiring capability as
a human pilot, which includes obtaining information visually
from signs, light signals, pavement markings, and obstacles.
Therefore, vision-based approaches are preferred in applica-
tions (see, e.g. [8]).

While autonomous taxiing has been achieved previously on
the Global Hawk aircraft using DGPS and highly accurate maps
to guide the aircraft around a segregated air force controlled
airport [9], this is totally inadequate for a civil aerodrome.
Such a system would need constant supervision by the remote
pilot as it will not react to obstacles, and will not function
without DGPS corrections or in GPS denied environments.
In contrast, by allowing a UAV to have a greater degree of
autonomy in the taxiing phase of aerodrome operations, as
well providing greater situation awareness, remote pilots can be
tasked to handle multiple aircraft at once [10]. Such a system
would significantly improve the utility of UAVs by reducing
the workload of the remote unmanned aircraft pilot and by
easing integration into the national airspace system (NAS) [11].
Because of the importance, autonomous taxiing and automated
aerodrome operations are an identified research gap to bring-
ing UAVs into the NAS, and to operate in non-segregated
aerodromes [12].
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So far there has been minimal research in the area of UAV
autonomous taxiing. A closely related research area is lane
detection for roadway traffic. Road surface is usually dark,
whereas roadway markings are usually painted in white or
yellow (light colors). Hence, in practice, light intensity and
color-based approaches are commonly used for lane detec-
tion. For example, a color-based approach is used for track-
ing unmarked road lanes in [13] and [14] respectively. [15]
investigates extracting lane marks by matching the dark-light-
dark pattern from observations. In doing so, the RGB cam-
era observations are converted into light intensity images and
mapped into a ground plane for lane detection. Lane detection
can also be carried out based on features other than color so
errors associated with differing light levels are minimized. [16]
presents a two-stage lane marking detection scheme, where the
Hough transform is first of all used to detect the vanish point
from an observed image and an inverse perspective mapping is
applied according to the vanish point information; then a neural
network is employed to recognize markers from the mapped
image. [17] and [18] also use the Hough transform for lane
detection.

Although great effort has been made to increase the reliabil-
ity of lane detection, worn markings, low resolution and noisy
input images set a ceiling to the performance of pure computer
vision solutions. To further improve on the robustness of the
vision approaches, domain knowledge needs to be incorporated.
In the literature, maps are sometimes treated as prior knowledge
and used as a reference for improving on the localization of
a vehicle by comparing the prior information from the map
with the current camera vision. Specifically, [19] aligns the
camera vision from a vehicle with a sequence of coarse-to-fine
birds-eye images to improve on the visual localization accu-
racy. A mutual information based matching between vehicle
observations and a local orthographic imagery for localization
is reported in [20]. [21] compares the real-time laser scan from
vehicle with a pre-collected obstacle point cloud to achieve
better localization. In the autonomous vehicle localization liter-
ature discussed, various sensors and observation-map matching
strategies are used and promising results are obtained.

Recently, by combining the two lines of research on vehicle
lane detection and vehicle localization, [22] has made the first
attempt to use both the map information and camera images for
a taxiway centerline extraction in an aerodrome scenario. The
updating process in [22], however, is static and hence is unable
to adapt to the dynamic environment of an aerodrome.

In this paper, we propose a self-learning probabilistic ap-
proach for maintaining and updating a dynamic navigation map
for autonomous taxiing that includes an aerodrome map and
an obstacle map. More specifically, the camera observations,
aerodrome map and obstacle map are each represented as a
probability distribution. With a given GPS measurement from
the UAV, matching between the current camera observation
and navigation map is carried out to increase the localization
accuracy. Then Bayesian inference is drawn to combine the
current camera observation with the map prior to calculate the
taxiway’s posterior distribution. The obtained posterior distri-
bution of the dynamic navigation map at the current time step
is further treated as prior knowledge at the next time step for

processing the next frame of image. In this way, the navigation
map can be dynamically maintained and updated to adapt to the
dynamic environment of an aerodrome.

This paper is organized as follows. Section II highlights
the research challenges of autonomous taxiing and outlines
a probabilistic learning framework to address these research
challenges. In Section III we develop the probabilistic represen-
tations for camera observations, aerodrome map and obstacle
map. Kullback-Leibler divergence based matching is discussed
in Section IV for improved localization. In Section V we
investigate the self-learning process of the dynamic navigation
map. A practical indoor experiment is discussed in Section VI.
Finally, concluding remarks are given in Section VII.

II. RESEARCH CHALLENGES AND FRAMEWORK

A. Research Challenges

Broadly speaking, there are two possible approaches to sup-
port autonomous taxiing for UAV operation in aerodromes.
One is the combination of GPS measurements with a detailed
aerodrome map. By using high accuracy GPS, an aircraft can
be located on the aerodrome map so the local environment
information can be extracted. This will make aerodrome nav-
igation possible. However, although an aerodrome is usually
well regulated, it is a dynamic environment with a high level
of uncertainty. For example, a map might be out of date due
to maintenance work or accidents, foreign objects may cause
an obstruction, airport service vehicles could be driving around
the aerodrome causing there to be an unmapped obstacle.

The other approach is, equivalent to a pilot, to observe real
local environment information using the on-board cameras.
Computer vision, however, is quite susceptible to errors caused
by changing weather and light conditions. For example, the
taxiway markings could be worn out and hence not clearly
visible, false obstacle detections and other clutter might be
generated from camera observations. As a safety critical sys-
tem, neither approach would fulfill the integrity and safety
requirements for an autonomous taxiing system of unmanned
aircraft.

This paper aims to integrate these two approaches together
to provide a much more reliable and safer method for the
autonomous taxiing of UAVs. Technically, our hypothesis is
that these two approaches are complementary with each other.
The detailed aerodrome map provides the information such as
what the camera system expects to see and where to focus the
attention on. This helps to identify worn out markings, deal with
poor visibility and reduce clutter. On the other hand, the camera
system of a UAV is able to identify unexpected objects and
their changes so that it is able to update the navigation map in
real time and provide a better safety assessment. To realize this,
there are a number of research challenges to address, including:

1) How to fuse these two different approaches together?
2) If there is any conflict between the information from these

two sources, what is the strategy in resolving the conflict
(e.g. which one shall be trusted more)?

3) How to make the overall system better than each individ-
ual part in terms of integrity, safety and accuracy?
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Fig. 1. Framework structure.

In this paper to address these issues, a probabilistic approach
will be developed in a Bayesian learning framework. The pro-
posed self-learning approach is able to take advantages of both
approaches to provide robust and reliable situation awareness
in dynamic and uncertain environments to support UAVs’ au-
tonomous taxiing. This is particularly important under poor vis-
ibility conditions such as night time, fog, haze, and heavy rain.

B. Research Framework Structure

In this section, we provide an overall framework structure for
the proposed approach. Instead of considering a GPS-denied
environment, we consider a more typical aerodrome envi-
ronment where UAVs navigate with GPS measurements and
an accurate aerodrome map. However, we don’t assume the
GPS measurements are highly reliable. Aerodromes are highly
dynamic environments full of uncertainties such as the other
aircraft, vehicles, etc.; it is practically impossible to include the
information of these moving objects into a map in advance.
Rather, the only way to address this issue is to employ an
online detecting process with various on-board sensors, such
as camera and LIDAR. In order to detect an object from noisy
camera images as early and robustly as possible during the
navigation, here we use a self-learning approach to maintain the
detection results. To handle the dynamic information, we pro-
pose a concept of “dynamic navigation map” which is a knowl-
edge base containing both the static and dynamic information,
and we develop a self-learning approach for maintaining and
updating it. The dynamic navigation map is a collection of two
individual maps, i.e. an aerodrome map and an obstacle map.
The aerodrome map provides the position information of all the
taxiway/runway centerlines, stop bars, and other markings. This
map can be treated as either static or dynamic depending on its
accuracy. The main purpose of the aerodrome map is to provide
a reference for visual localization, which will be further used as
a starting point for updating either the aerodrome map itself or
the obstacle map or both. The obstacle map, on the other hand,
is a dynamic map for storing the previously learned obstacle
distribution; it can be combined with the current observation to
gain a more robust detection. The overall framework structure
is given in Fig. 1.

As shown from the left column of Fig. 1, the framework
includes two major input sources, i.e. the aerodrome map and
camera images. In order to have a probabilistic representation,
the prior distributions are initialized for the aerodrome map and
obstacle map according to the given aerodrome map by setting
an initial variance on each location. Due to the fact that each
camera image is generated from a forward-facing camera and
the aerodrome map is a two-dimensional top-view image, an
inverse perspective mapping (IPM) pre-processing is required
to map the camera image to be consistent with the top down
view of the aerodrome map. A “camera observation” refers to
this mapped image instead of the original untransformed cam-
era image. Then an indicator is calculated to extract different
objects (obstacles, the centerline and other traffic markings)
from the mapped observation, and these objects are further
represented as probability distributions by following the same
process as the aerodrome and obstacle maps. The subsequent
Bayesian analysis is undertaken that combines the prior distri-
butions of aerodrome and obstacles, and the likelihood func-
tions formed using the camera observation. It should be noted
that the dynamic navigation map is a global map (labeled
by “G”) covering the whole aerodrome and the observation
(labeled by “L”) is a camera viewing area related local image.

The third input of the framework is GPS measurements.
This information is required to link the camera observations
and the global dynamic navigation map, indicating which area
on the dynamic navigation map corresponds to the current
camera observation. Due to the measurement noise of the GPS,
a matching process is required to refine the measurement. This
is undertaken by finding the optimal matching location by min-
imizing the Kullback-Leibler divergence (KLD) between the
distributions of the navigation map and the camera observation.
This matching process produces an optimal local navigation
map together with a calibrated GPS measurement. With the
introduced process on the three inputs, the local camera ob-
servation is aligned with the dynamic navigation map, and
both of them are represented with an identical probabilistic
representation format. Thus, the two sources are ready to be
combined and research challenge 1 is addressed.

Once a matched local navigation map is found, the posterior
distributions of the aerodrome and obstacles are produced by
Bayesian inference, named as “enhanced map” in Fig. 1. This
enhanced map is then updated back onto the global dynamic
navigation map according to the calibrated GPS measurement,
and will be used for matching the next frame of the camera ob-
servation in the next time step. By using a Bayesian framework,
the “enhanced map” (posterior) is a weighted combination of
the “dynamic navigation map (L)” (prior) and the “camera
observation (L)” (likelihood). The weights are defined by the
variances of the prior and likelihood distributions, which reflect
the confidence in each of them. Therefore, Bayesian inference
provides guidance for solving the information conflicts men-
tioned in challenge 2.

Regarding research challenge 3, the accuracy of the GPS
measurements are refined in the proposed framework by com-
paring the camera observation with the aerodrome map. In
addition, the robustness of obstacle detection is improved
by combining previous observations into the learned obstacle
map. Thus, the accuracy and robustness of the overall system
become better.
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III. PROBABILISTIC REPRESENTATIONS

In general, camera observations in poor visibility are quite
noisy and object extraction is not very reliable. We therefore
incorporate a probabilistic self-learning approach. To this end,
we first of all discuss the probabilistic representations for the
aerodrome map and camera observations.

A. Pre-Processing of Taxiway Map and Camera Images

In this paper, the initial navigation map M = {Mc,Mo} is
defined to be a collection of the aerodrome map Mc and the
initial obstacle map Mo. The aerodrome map Mc is a binary
image in which the pixels associated with the taxiway centerline
and other traffic markings are “1”s and the rest pixels are “0”s.
The initial obstacle map Mo is set as an image with all zeros,
indicating that no obstacle is presumed on the map.

As explained earlier, camera observations are captured from
a forward-facing camera mounted on the aircraft. The IPM
is employed to produce a top view of the observation that is
consistent to the aerodrome map. The perspective transform
matrix that is required by the IPM can be computed from the
camera’s intrinsic and extrinsic parameters. The error of these
parameters, however, accumulates. Therefore, instead we use a
direct reconstruction with a set of measured control points to
find the transformation matrix (see [23]).

The taxiway centerline is in a salient bright yellow color on
the dark asphalt ground. We use the frequency-tuned salient
region detection approach to characterize all the salient objects
(both the centerline and obstacles) in the camera observations.
Visual saliency is the perceptual quality that makes an object
or person stand out relative to its neighbors and thus captures
our attention. This new approach is suitable for the automatic
detection of visually salient regions in images and has demon-
strated both higher precision and better recall. In the recent
years, it has attracted a lot of attention in the academic literature
(see, e.g., [24], among many others).

The saliency indicator S is defined as

S(X) = ‖Iμ − IG(X)‖ (1)

in which X denotes pixel locations of the image. Iμ =
[Lμ, aμ, bμ] is the mean image feature vector of the observa-
tion in L ∗ a ∗ b∗ color space, and IG = [LG,aG, bG] is the
blurred observation image with a Gaussian filter. The blurry
process removes fine texture details and high spatial-frequency
noise. ‖ · ‖ is the L2 norm (Euclidean distance). To ensure
the navigation map has the same format, the Gaussian filter is
also applied to M . The blurred navigation map is denoted by
M = {Mc,Mo}.

We note that the centerline and obstacles are mixed together
in the saliency indicator S = {Sc,So}. To distinguish them,
the saliency indicator S is compared with Mc via the KLD
matching, which will be discussed in Sections IV and V-B.

B. Representations of Navigation Map and
Camera Observations

The modeling and analysis in this paper are carried out at
the pixel level so that the objects of interest (e.g. obstacles) can

Fig. 2. A taxiway of Stansted Airport, U.K. (a) Front view of ROI. (b) Top view
of ROI.

be detected as early and robustly as possible when the objects
are very small; this can give a UAV sufficient time to react
(collision avoidance, etc.) during autonomous taxiing.

Let M = {Mc,Mo} denote the parameter matrices corre-
sponding to the ground truth of locations for the taxiway Mc

and obstacles Mo respectively. Bayesian inference is used to
infer this information from the navigation map (treated as
prior knowledge) and camera observation (treated as likelihood
function). It is assumed that both the navigation map and the
observation at the pixel level follow the Gaussian distributions
below:

Navigation map : q(M) = N
(
M;M, σ2

Nav

)
(2)

Camera observation : q(S|M) = N
(
S;M, σ2

Obs

)
(3)

where σ2
Obs and σ2

Nav are the variances specifying the noise
levels of the observation and navigation map. Note that as the
navigation map contains both the aerodrome map and obstacle
map, q(M) = N (M;M, σ2

Nav) in the above equation applies to
both of the two maps, and hence it includes two separate distri-
butions, i.e. the aerodrome map q(Mc) = N (Mc;Mc, σ

2
c,Nav)

and the obstacle map q(Mo) = N (Mo;Mo, σ
2
o,Nav). Similarly,

the camera observation distribution q(S|M) includes two com-
ponents: one for the surface marking observation q(Sc|Mc) and
the other for obstacle observation q(So|Mo). The relationship
among them is illustrated in Fig. 1.

To demonstrate the representation process discussed in this
section, a photograph1 taken at Stansted Airport, UK, is used
as a raw observation from a forward-facing camera as shown in
Fig. 2(a), where a calibrated trapezoid area marks the region of
interest (ROI). Fig. 2(b) is the mapped top view of the ROI after
the IPM.

An aerodrome map Mc is generated from Google maps
and blurred with a Gaussian filter, as shown in Fig. 3(a). The
only information contained in this map is the layout of the
taxiway centerline. Note that the aerodrome map is in the global
(geographic) coordinate system, whereas the camera image is
in the UAV’s local coordinate system (heading to south-west in
the global coordinate system).

1http://www.geograph.org.uk/photo/2481393
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Fig. 3. Filtered aerodrome map and saliency indicator. (a) Filtered aerodrome
map. (b) Saliency indicator.

Eq. (1) is employed to further process the mapped observa-
tion to the saliency indicator S, as shown in Fig. 3(b). Since no
obstacle is present in this observation, we have Sc = S.

IV. MATCHING OF OBSERVATION WITH NAVIGATION MAP

Although a consistent representation format is constructed in
Section III, a positional matching process is required to find the
sub-area from the global navigation map q(M) that matches to
the local camera observation q(S|M). In addition, the matching
process also allows us to separate obstacles from the centerline.

Specifically we find the optimal matching solution by mini-
mizing the KLD between q(M) and q(S|M). As a by-product,
when the KLD is minimized, the KLD of each pixel can be used
as a criterion for finding obstacles. In this section we consider
the matching problem only; the obstacle problem will be dealt
with in Section V-B.

A. Position Measurement Model

Let p = [x, y, θ]T denote the ROI position in an aerodrome
coordinate system (two dimensional position with a yaw angle)
which is the middle point on the nearest edge of the trapezoid
ROI, as shown by the circle in Fig. 2(a). Although the position
of the ROI cannot be measured directly, it can be obtained
by simply applying a rigid transformation on the raw GPS
measurement. To simplify notation, the transformation process
is suppressed notationally and we consider the (transformed)
GPS measurement on the ROI position in the rest of the paper.
The GPS measurement model is given as

p̂ = f(p) + ε (4)

where f(·) is a measurement function and ε = [εx, εy, εθ]
T is

a vector of additive Gaussian measurement noises.

B. Locational Matching With Symmetrized KLD

Given a measurement p̂, the objective of KLD matching is
to estimate the ground truth p such that the corresponding sub-
area on the global aerodrome map q(Mc) best matches to the

Fig. 4. Optimally matched area in the global navigation map. Comparing the
cropped maps (b) and (c) with the camera observation in Fig. 3(b) [e.g., the
bottom right corner of (b) and (c)], we can see that the centerline in (c) is better
matched.

observed centerline q(Sc|Mc). For this end, we minimize a
symmetrized KLD between the two distributions

popt = argmin
ptest

∑
X∈I

[DKL (q(Mc;ptest, X)‖q(Sc|Mc;X))

+DKL (q(Sc|Mc;X)‖q(Mc;ptest, X))] (5)

where ptest = p̂+ [dx, dy, dθ]T is a test location in the search
space around the measurement p̂, and popt is the best guess of
the ROI position p. q(Mc;ptest, X) denotes the distribution of
the aerodrome map of each pixel X at the test location ptest,
and q(Sc|Mc;X) is the observation distribution of each
pixel X . I is a pixel collection of the local observation area.
The operatorDKL(P‖Q) computes the Kullback-Leibler diver-
gence of Q from P .

To illustrate the matching process, we return to the example
that we examined earlier. Using Fig. 3(b) as the local markings
observation and Fig. 3(a) as the global aerodrome map, a
matching result is shown in Fig. 4(a). Given a measured camera
state marked with a triangle and an arrow, an initial guess of
the area corresponding to the current observation is obtained,
as shown to be the area with a dashed rectangle in Fig. 4(a).
A KLD cost is then computed in this neighboring area using
Eq. (5). Considering the high accuracy and availability of
local area augmentation system (LAAS) in many aerodromes,
and the increasing use of satellite based augmentation system
(SBAS), a 6 m × 6 m neighboring search region would be
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Fig. 5. KLD cost mesh.

sufficient for the matching. Fig. 5 displays the KLD cost in the
neighboring area with dx ∈ [−3, 3] meters and dy ∈ [−3, 3]
meters (dθ is optimized during the matching, but not shown in
this figure), and popt is obtained with the minimal KLD cost.
Corresponding to popt, a solid rectangle as the optimally
matched area is worked out. In addition, Fig. 4(b) and (c) show
the extracted sub-areas from the global navigation map with the
raw GPS measurement p̂ and with the optimal estimate popt

respectively.
We note that an integral operation is involved in computing

the KLD where the evaluation at each pixel is very computa-
tionally demanding. However, since both Eqs. (2) and (3) are
Gaussian, its analytical solution can be obtained (see, e.g. [25])

DKL (q(Mc;ptest, X)‖q(Sc|Mc;X))

= log
σObs

σNav
+

σ2
Nav + (Mc,X − Sc,X)2

2σ2
Obs

− 1
2

(6)

DKL (q(Sc|Mc;X)‖q(Mc;ptest, X))

= log
σNav

σObs
+

σ2
Obs + (Mc,X − Sc,X)2

2σ2
Nav

− 1
2
. (7)

Consequently, Eq. (5) reduces to

popt = argmin
ptest∑

X∈I

[
σ4
Nav + σ4

Obs +
(
σ2
Nav + σ2

Obs

)
(Mc,X − Sc,X)2

2σ2
Navσ

2
Obs

− 1

]

(8)

where Mc,X and Sc,X are the values associated with q(Mc;
ptest, X) and q(Sc|Mc;X) respectively at each pixel X .

Remarks:

(i) The element-wise matrix operation in Eq. (8) may in-
cur a heavy computational cost. In order to increase
the computation speed and meet the real-time process
requirement, we note that only a sub-area q(Mc;ptest)
extraction from q(Mc) is needed in each of the opti-
mization iterations. Hence, instead of extracting from the
full aerodrome map q(Mc), a pre-cropped map can be
used to speed up this operation. More specifically, the
sub-area to be selected is a circumscribed rectangle of
the estimated ROI region (defined by the estimated ROI

Fig. 6. Observation frame sequence in 1 s. (a) time = 0 s. (b) time = 0.2 s.
(c) time = 0.4 s. (d) time = 0.6 s. (e) time = 0.8 s. (f) time = 1 s.

position popt), and it’s edges are parallel to the two axes
of the aerodrome coordinate system.

(ii) Temporally reducing the resolution of q(Mc;ptest) and
q(Sc|Mc) can effectively control the number of pixels in
I. In doing so, the computational cost for calculating the
KLD will be substantially reduced in each iteration of the
optimization.

C. Calibrated GPS Measurements

As mentioned earlier, the GPS measurement p̂ in Eq. (4) is
subject to some noise. The KLD matching provides the optimal
estimate popt of the ROI position as it is worked out using two
sources of information, i.e. the raw GPS measurements and
camera observation. This estimated ROI position is then used
to guide the self-learning process by indicating which area of
the navigation map matches to the current camera observation
and should be updated. As a by-product, the accuracy of GPS
measurements is also improved.

To demonstrate the improved GPS accuracy, we consider a
UAV moving forwards at a constant speed of 10 m/s with a
given initial ROI position. An observation sequence is gener-
ated from Fig. 2(b) and used for the demonstration purposes. By
setting the temporal interval between observations as 0.1 s, half
of the sequence is given in Fig. 6 with a time interval of 0.2 s.
Measurements with respect to each of the observations are
simulated by adding a zero mean Gaussian noise to the given
camera trajectory. Fig. 7 displays a comparison between the
calibrated measurement popt with raw measurement p̂. Uni-
versal Transverse Mercator (UTM) coordinate system is used
in this figure, which converts longitude and latitude into a two
dimensional Cartesian coordinate system in meters. An offset
vector [x, y] = [311100, 5752700] is subtracted from the axes.
The straight line with asterisks is the ground truth of the ROI
positions, and a circle on it marks its initial position at t = 0 s.
Distances between two neighboring asterisks are 1 m apart. Tri-
angles are the simulated measurements, and boxes are the cor-
rected measurements with the KLD matching. From this figure,
it can be clearly seen that the calibrated measurements are much
closer to the ground truth than the raw GPS measurements.

V. ENHANCED NAVIGATION MAP VIA SELF-LEARNING

This section investigates a self-learning process by pooling
various sources of information together.
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Fig. 7. Calibrated GPS measurements via the KLD matching.

In the literature there are many different methods for fusing
different sources of information. In this paper we use a Bayesian
approach because: (a) we incorporate a probabilistic represen-
tation for each information source (the aerodrome map, camera
images, etc.); (b) recursive Bayes’ inference provides an error
tolerance mechanism for dealing with various measurement
noise; and (c) according to statistical theory, the posterior esti-
mate is optimal with the minimum Bayes’ risk. See [26] for an
overview of machine learning with a probabilistic perspective.

A. Bayesian Updating

Given a probabilistic representation of a camera observation
q(S|M) and the probabilistic representation of its correspond-
ing local navigation map q(M;popt), the enhanced map is
defined to be the posterior distribution obtained via Bayes’ rule

q(M|S) ∝ q(S|M)q(M;popt)

∝ N
(
M;Mpost, σ

2
post

) (9)

where

Mpost =
σ2
Obs

σ2
Nav + σ2

Obs

M+
σ2
Nav

σ2
Nav + σ2

Obs

S (10)

σ2
post =

σ2
Navσ

2
Obs

σ2
Nav + σ2

Obs

. (11)

The above Bayesian inference applies to the aerodrome map
and obstacle map respectively. Clearly the enhanced map
q(M|S) at each time step keeps the navigation map q(M) up
to date. From Eq. (10), it can be observed that the mean of the
enhanced map is the sum of the means of the current camera
observation and navigation map, weighted by their precision
(the reciprocals of their variances). The ratio between σ2

Obs and
σ2
Nav determines which is the more dominant component in the

learning process. For example, if camera observations have a
higher level of uncertainty comparing with the aerodrome map
(i.e. the prior knowledge is considered to be more reliable than
the current observation for this type of application), a higher
weight is allocated to the aerodrome map.

Fig. 8. Illustration of a classification problem with and without the Bayesian
learning process.

Eq. (11) gives the variance of the enhanced map. Note that
0<σ2

Nav/(σ
2
Nav+σ2

Obs)<1 and 0<σ2
Obs/(σ

2
Nav+σ2

Obs)<1.
Hence, we obtain from Eq. (11) that

σ2
post < σ2

Nav and σ2
post < σ2

Obs

i.e. σ2
post is smaller than both σ2

Obs and σ2
Nav. Consequently

the uncertainty of the navigation map is reduced via Bayesian
inference.

The enhanced navigation map with reduced posterior vari-
ance σ2

post increases the reliability of obstacle detection. For
the same threshold used for obstacle detection, it can reduce
false positive and false negative rates, and hence increase the
accuracy of the detection.

To illustrate how the self-learning process improves obstacle
detection, we consider a simplified classification problem with
distributions H0 ∼ N (3.5, 1) and H1 ∼ N (6.3, 1), where H0

and H1 represent the probability distributions that a pixel of
the camera observation comes from free space and obstacles
respectively (see Fig. 8). With a given false positive rate α =
0.050, the corresponding threshold is obtained as 5.145, thus
leading to a false negative rate of β1 = 0.124. Now, suppose
that a posterior distribution is obtained, H2 ∼ N (6.3, 0.5), that
updates the distribution H1 with the same mean but a smaller
variance. With the same false positive rate α, the false negative
rate of H2 is now reduced to β2 = 0.051. Therefore the false
negative is dramatically reduced after the self-learning.

Now to demonstrate the effect of the proposed self-learning
process, we return to the example that we considered earlier
and investigate the enhanced navigation map with the proposed
self-learning method. Given a centerline indicator q(Sc|Mc)
in Fig. 3(b) and its optimally matched local centerline map
q(Mc;popt) in Fig. 4(c), the enhanced local map is obtained in
Fig. 9(a) using Eqs. (10) and (11). An updated centerline map
q(Mc|S) is given in Fig. 9(b) by updating the corresponding
area defined by popt. It can be seen from the enhanced map that
richer features from the camera observation are now included in
the aerodrome map, such as the yellow label on the centerline.

B. Self-Learning Process

The aim of this paper is to develop a self-learning approach
using the information collected from the camera of a UAV
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Fig. 9. Enhanced map. (a) Enhanced local map. (b) Updated aerodrome map.

to update the navigation map. In this subsection, we focus
on two important issues of the self-learning process: (a) how
knowledge is accumulated over time; and (b) how to deal with
a dynamic environment with obstacles.

First, we consider a dynamic environment where the
Bayesian updating process evolves from a time step t to the
next time step t+ 1.

In order to fully utilize the information collected in the pre-
vious time steps, the autonomous taxiing system needs to have
a self-learning capability so that knowledge is accumulated
over time. For this purpose, we treat the enhanced navigation
map obtained at time t [i.e. the posterior distribution given in
Eqs. (10) and (11)] as the prior knowledge in time step t+ 1.
The algorithm for the proposed navigation-map updating
process is described as Algorithm 1.

Algorithm 1 The self-learning process

Let t = 0.
REPEAT

1) Process the camera image taken at time t+ 1 and trans-
form it into its probabilistic representation Eq. (3);

2) Obtain the GPS measurement Eq. (4) at t+ 1;
3) Calculate the optimized measurement popt using the

KLD matching method, Eq. (8);
4) Crop the posterior distribution obtained in time step t,

i.e. q(M;popt), which is treated as the prior for time
t+ 1;

5) Draw Bayesian inference, Eq. (10);
6) Let t = t+ 1;

UNTIL the aircraft has completed its taxi.

The full learning process is illustrated by Fig. 1. It is clear
that as time increases during the taxiing, more and more camera
observations will be incorporated into the dynamic navigation
map. Hence, the weight of the navigation map gradually be-
comes dominant in the learning process. Intuitively, this means
that if an object repeatedly appears in the observations, it will be
confirmed and learned with an increasing level of confidence. In
contrast, the information on confidence levels is rarely available
in other detection approaches that fully rely on computer vision
in the literature.

Next, we turn to investigate obstacles. The obstacle distri-
bution is one of the most important pieces of the dynamic
information. The saliency indicator S introduced in Eq. (1)
contains both the centerline and obstacle information, whereas
their counterparts in the navigation map are stored separately.

In the literature, there are many sophisticated methods for
separating an object from its background. For example, [27] in-
vestigates a method that finds the obstacle-free-space in inverse
perspective mapped images captured from a pair of front facing
stereo cameras. On the other hand, [28] fuses motion informa-
tion (optical flow) with stereo vision. In addition, to detect spe-
cific types of obstacles, [29] combines the active contour model
with stereo vision and a dimension-ratio based object classifier
is used to distinguish pedestrians, vehicles and other objects.

As the research focus of this paper is on improved situation
awareness for UAVs’ autonomous taxiing, we will not explore
any technical details on obstacle filtering. Rather, we use a
simple and straightforward approach based on the residual KLD
cost map between the saliency indicator S and the taxiway
centerline map Mc after the KLD matching. We note that each
pixel value in the residual KLD cost map indicates how much
the saliency map S is different from the centerline map Mc

at each pixel. Assuming the centerline map is more accurate, a
higher residual means the higher possibility of being an obsta-
cle at the pixel. Therefore, we set a threshold of this residual
map to generate two complementary indicators: a centerline
indicator Sc with the obstacles being masked, and an obstacle
indicator So with the centerline and the other traffic markings
being masked. Each of them is then used as a likelihood
function to compute the posteriors of the aerodrome map and
obstacle map accordingly.

The variances of the aerodrome and obstacle maps, however,
need to be updated differently. This is because an obstacle is
assumed to be dynamic and its position may vary from time
to time, whereas the centerline and the other traffic markings
are assumed to be static. Hence the obstacle posterior variance
obtained in Eq. (11) needs to be inflated before being employed
as the prior distribution at the next time step.

Specifically, we follow [30] and suppose that the posterior
variance for the obstacle map at time step t is σ2

post (the
subscript t is suppressed here for notation simplicity). In time
step t+ 1, the posterior distribution at time t is treated as the
prior distribution at t+ 1, i.e.

q(Mo) = N
(
Mo;Mpost, σ

2
o,Nav

)
where the prior variance σ2

o,Nav at t+ 1 is an inflated posterior
variance at t, i.e.,

σ2
o,Nav =

σ2
post

λ

where 0 < λ < 1 is usually termed a forgetting factor. λ can be
used as a tuning parameter in practice. This variance-inflating
method is commonly used in the literature (see, e.g. [30]).
The above equation simply says that the obstacles are poten-
tially moving objects and their positions may vary from time to
time; when it evolves from t to t+ 1, we become less confident
in the posterior obstacle map obtained at time t.
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Fig. 10. Experimentenvironment. (a) Centerline layout. (b) Camera observation.

VI. A PRACTICAL EXPERIMENT

To illustrate the proposed framework, a practical experiment
was carried out in an indoor environment.

A. Settings for the Experiment

The purpose of this experiment is to demonstrate the ability
of continuously self-learning when the proposed framework
processes the collected information and deals with obstacles.

The environment was designed to be a taxiway junction
with the centerline being marked with yellow tape in the exper-
iment. The centerline layout with scale information is displayed
in Fig. 10(a). A taxiway centerline map was generated based on
this layout.

A differential drive unmanned ground vehicle (UGV) from
Clearpath Robotics called the Husky was used as the vehicle
platform. Highly accurate position measurements at each time
step were obtained from a simultaneous location and map-
ping (SLAM) software, which utilizes the onboard LIDAR. A
forward-facing GoPro camera was mounted on the top of Husky
to produce camera images. Fig. 10(b) gives an experiment
environment observation taken from the camera, in which the
trapezoid marks the ROI that IPM was applied to.

B. Self-Learning for Obstacle Detection

The example given in previous sections updates the aerodrome
map without considering obstacles. In this practical experiment,
we assume the aerodrome map was accurate and focus on test-
ing the self-learning method for obstacle detection. We compare
obstacle detection by using two different approaches: with and

Fig. 11. Camera observation at 50% brightness.

Fig. 12. Camera observation and mismatching indicator at the 17th frame.
(a) Camera observation. (b) Mismatching indicator.

without the self-learning. To have a fair comparison, the whole
experiment parameters were set the same for both approaches.

To demonstrate the performance in as many aspects as pos-
sible, we deliberately reduced the brightness of the observation
to 50%. Two obstacles were placed in the environment. A small
bright object (obstacle 1) was placed beside the centerline, and
a big dark object (obstacle 2) was placed on the centerline
crossing point, as shown in Fig. 11. During the experiment,
the vehicle followed the centerline to the left and video was
recorded at 30 frames per second. We evenly extracted 10% of
the video frames for the experiment, i.e. 3 frames per second.
The total number of extracted frames for the experiment was 40.

The centerline map was initialized with the layout given in
Fig. 10(a), whereas the obstacle map was initialized with an
empty map (all-zero matrix). These two maps described initial
knowledge of the environment and were to be dynamically
updated using the camera observations during the taxiing.

In the experiment, whenever a new camera observation was
obtained as shown in Fig. 12(a), the latest GPS measurement
was simulated by the SLAM software and retrieved as an
initial point to minimize the KLD between the observation
and the aerodrome map. With respect to obstacle detection and
the navigation map updating, we considered two approaches:
the approach without the self-learning where the obstacle
detection was based on the saliency threshold only, and the
approach with the self-learning enhanced obstacle detection
where additionally the probability distribution incorporated the
prior knowledge. In the experiment, the threshold for each of
the two approaches was chosen independently to optimize their
individual performances. In practice, they need to be carefully
calibrated.
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Fig. 13. Detection results at the 17th frame. (a) Without self-learning. (b) With
self-learning.

Here we take the 17th frame as an example: for the optimal
matching point found, the mismatching level between the two
is shown as Fig. 12(b). By setting a suitable threshold for
each of the two approaches, the detection results are shown
in Fig. 13, where the white areas denote the detected obstacle
obscured regions in the camera view. Comparing the two results
in Fig. 13 with the camera observation in Fig. 12(a), it can be
seen that: (a) when an obstacle (e.g. obstacle 2) was relatively
large, both approaches worked well and they were able to detect
the obstacle easily. However, when an obstacle was relatively
small (e.g. obstacle 1), the obstacle was detected more accurate
with the self-learning enhanced approach than with the pure
saliency based one; (b) due to the light condition, the side faced
to the vehicle was darker than the top side of object 1. This
side was almost not detected by the pure salience approach
and consequently only the top side is shown in Fig. 13(a). In
contrast, both the top side and the darker side of object 1 faced
to the camera were detected in Fig. 13(b). This demonstrates
that the self-learning enhanced approach is more reliable and is
not very sensitive to the light condition; (c) the detection result
without the self-learning shows an isolated false positive area
[the small blob left to the detected obstacle 2 in Fig. 13(a)].
The self-learning approach, on the other hand, did not have
such a problem because its detection was based on cumulative
evidence rather than a single observation which was subject to
the quality of that particular image.

To quantitatively evaluate the performance of the proposed
self-learning approach, we consider two commonly used crite-
ria: recall ratio and Fβ-score. Recall (also termed sensitivity or
true positive rate) measures the proportion of positives that are
correctly identified as such. Fβ-score is a widely used indicator
in object detection (see, e.g., [31], [32]) to evaluate the overall
performance of both recall and precision which is defined as

Fβ = (1 + β2) · precision · recall
(β2 · precision) + recall

where β is the parameter for weighting the importance between
precision and recall. Here we use F1-score by setting β = 1,
i.e. the same weight is applied to precision and recall. Clearly,
F1-score is the harmonic average of precision and recall.

The recall ratios of the two approaches (with and without
the self-learning) for detecting the two obstacles are displayed
in Fig. 14(a). The first and second obstacles moved into the

Fig. 14. Performance comparison. (a) Recall. (b) F1-score.

camera view region at the 1st and 13th frames respectively. It
can be seen that the recall ratio of the self-learning enhanced
approach increased much faster as the obstacle moved into the
camera view. This is due to the fact that the posterior variance is
dramatically reduced at each pixel when more evidence on the
obstacles is accumulated via the Bayesian self-learning. As the
consequence, the corresponding posterior probability increases
rapidly and exceeds the threshold. After the vehicle moved
forward and turned left, the first obstacle disappeared from the
camera view in the 37th frame. Thus the recall of obstacle 1
drops to zero in Fig. 14(a).

In contrast, the performance of recall ratio for the approach
without the self-learning varies: the recall ratio is high (low)
when detecting a large (small) obstacle.

Next, we turn to consider the F1-score displayed in
Fig. 14(b). From the figure we can see that without the self-
learning, the detection performance on the two obstacles are
very different (the two dashed curves). Due to the bigger size
of obstacle 2, the saliency detection without the self-learning
gives a comparable F1-score as the one with the self-learning.
However, for a smaller object (obstacle 1), the F1-score is sig-
nificantly reduced without the self-learning, whereas the self-
learning enhanced approach provides a better and consistent
performance for both the smaller and larger obstacles.

In addition, without the use of the self-learning approach,
in order to achieve a consistent detection performance, the
algorithm requires a careful selection of different thresholds for
each of the target obstacles according to their size, color, etc.
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Since obstacles are unpredictable, it is not feasible to set mul-
tiple thresholds in real applications. In contrast, when the self-
learning approach is used, the detection performance becomes
more robust and consistent: the smaller (1st) and larger (2nd)
obstacles can both be detected with similar performances when
a single threshold was set. Such robustness demonstrated by the
proposed approach is very important in practical applications.

Before concluding this section, we offer a couple of final
comments. As a three-dimensional obstacle is projected onto
a two-dimensional map, the shape of the obstacle after the
projection varies from different observing angles. Therefore,
the detected obstacle on the obstacle map does not reflect
its real size from the top view. However, with mounting the
camera at an appropriate height, the ground touching point
of the obstacles can always be observed. Since this point is
located on the ground, the localization of the obstacle based
on this point will be accurate. Additionally, while the obstacle
map is updated with a forward-facing camera observation, any
area outside the current camera view region is uncertain. Thus,
this global obstacle map should only be used as a temporary
database for providing a continuous enhancement to the current
camera-view region, but not for any global path planning.
Due to the dynamic nature of an aerodrome environment, no
obstacle is assumed to be permanent, and hence the navigation
map should be reinitialized before the next taxiing task.

VII. CONCLUSION

This paper proposes a knowledge enhancing framework via
a self-learning approach so that a vision input is reinforced
by prior knowledge, and dynamic environment obstacles can
be updated into the knowledge base during the taxiing process
of a UAV.

To demonstrate the overall capability of the framework, a
practical experiment was conducted in an indoor environment
which shows that the performance of the developed approach
meets our expectation.

The current framework improves the robustness of the
saliency map based obstacle detection. The next step will be to
extend the framework by incorporating other color and texture
features to help UAVs gain a better understanding of the envi-
ronment. In addition, taxiways usually have some informative
marking/words. As markings/words recognition is a relatively
mature research area, in our future work we will incorporate
this additional information into the framework of this paper.
Although in this paper we consider a dynamic environment
of aerodromes where people and vehicles come and go, no
dynamic equations are introduced for these moving obstacles;
this will be another important future research issue.

Theoretically, once a proper probabilistic representation is
worked out for these features, the methodology that we have
developed in this paper can be used to combine all sources of in-
formation together to achieve an integrated situation awareness
output. By taking the results from this paper and by utilizing
knowledge pertaining to the highly controlled environment of
an aerodrome, related decision making will be explored in our
future research. Also, the framework will be tested with the data
from a real taxiway and runway.
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