IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 17, NO. 11, NOVEMBER 2016

3263

Time-Optimal Maneuver Planning in Automatic
Parallel Parking Using a Simultaneous
Dynamic Optimization Approach

Bai Li, Kexin Wang, and Zhijiang Shao

Abstract—Autonomous parking has been a widely developed
branch of intelligent transportation systems. In autonomous park-
ing, maneuver planning is a crucial procedure that determines
how intelligent the entire parking system is. This paper con-
cerns planning time-optimal parallel parking maneuvers in a
straightforward, accurate, and purely objective way. A unified
dynamic optimization framework is established, which includes
the vehicle kinematics, physical restrictions, collision-avoidance
constraints, and an optimization objective. Interior-point method
(IPM)-based simultaneous dynamic optimization methodology is
adopted to solve the formulated dynamic optimization problem
numerically. Given that near-feasible solutions have been widely
acknowledged to ease optimizing nonlinear programs (NLPs), a
critical region-based initialization strategy is proposed to facilitate
the offline NLP-solving process, a lookup table-based strategy is
proposed to guarantee the on-site planning performance, and a
receding-horizon optimization framework is proposed for online
maneuver planning. A series of parallel parking cases is tested,
and simulation results demonstrate that our proposal is efficient
even when the slot length is merely 10.19% larger than the car
length. As a unified maneuver planner, our adopted IPM-based
simultaneous dynamic optimization method can deal with any
user-specified demand provided that it can be explicitly described.

Index Terms—Autonomous vehicles, motion planning, time-
optimal control, nonholonomic systems, nonlinear optimization,
intelligent vehicle.

I. INTRODUCTION

ARALLEL parking refers to stopping a car parallel to
the road, in line with other parked cars. Parallel parking
commonly requires initially driving past the parking spot and
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then reversing into that space. Subsequent position adjustment
may require forward and reverse gears in handling tiny spots.

To date, urban parking spots have become narrower than
before, thus rendering manual parking operations more chal-
lenging [1]. Unskilled parking operations may disturb the sur-
rounding road users and even cause a traffic jam [2]. Besides
that, inexperienced drivers who are reluctant to try tiny parking
spots would have to circle around blocks, thereby contributing
to additional air pollution, fuel consumption, and congestion
[3]: a report indicates that vehicles along the Columbus Avenue
of New York wind around for totally 590,000 km searching for
parking spots every year, resulting in 325 tons of carbon dioxide
emission and 50,000 wasted hours [4].

To ease the manual parking burdens, parking assist systems
have been developed by automobile manufacturers. Toyota
Prius is the first model equipped with an automatic parking
system, which appeared on the market in 2003. Ever since the
first commercial availability, productions developed by Audi,
BMW, Ford, Land Rover, Mercedes-Benz, and Nissan have also
hit the market [5], [6]. In spite of the prosperous developments,
challenges remain in coping with harsh parking scenarios. A
recent publication even alleges that no real product in this
industry is known to outperform a human driver in making
smart enough decisions [7].

Autonomous parking generally consists of three sequential
stages, namely, circumstance perception, maneuver planning,
and control implementation [8]. Circumstance perception con-
tributes to detecting a parking slot, maneuver planning refers
to the generation of parking motions according to the detected
circumstance, while control implementation concerns how to
execute the planned maneuvers. Prevailing research studies in
this community care more about the control stage than about
the maneuver planning stage, they believe that control imple-
mentation compensates for the roughly planned maneuvers but
this viewpoint is misleading, especially in dealing with harsh
scenarios: suppose an automobile drives along a narrow and
delicate passage, a rough maneuver planner is not capable to
safely conclude whether this passage is passable! In this sense,
it is the maneuver planning stage that makes decisions during a
parking process, i.e., to decide how intelligent an entire parking
assist system is [6]. This study concerns about the maneuver
planning issue in parallel parking.

Maneuver planning of wheeled vehicles has attracted interest
in the community of robotics for long. Wheeled locomotion
imposes non-integrable kinematic constraints on the vehicle
motion, making the planning problem difficult [9]. The authors
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Fig. 1. Comprehensive review of prevailing maneuver planning methodologies
in robotics.

classify all the maneuver planning methodologies into two cate-
gories: direct methods and indirect methods [10]. Indirect meth-
ods refer to the ones that convert the original maneuver planning
scheme to other types of problems such as “path-planning +
tracking” and “path-planning + trajectory generation”. The pre-
vailing “path-planning+"’ methodologies are broadly classified
into three branches: geometric, heuristic, and analytical path
planners [6]. Geometric planners originate from the pioneering
works of Dubins [11] and of Reeds and Shepp [12], wherein
paths consist of straight line segments and circular arcs with
minimum radius [13]-{15]. In addition, smooth paths, which
are expressed by splines, polynomials or clothoids, have been
considered to ease the subsequent path tracking procedure [2],
[16]-{18]. The second branch concerns about heuristics, includ-
ing machine learning [19], sampling [20], [21], search theory
[22]{24], fuzzy logic [25], etc. The third branch involves
control theories such as Pontryagin’s maximum principle [26]
and differential geometric control theory [27]. Compared to
the aforementioned indirect methods that decouple the original
problem into multiple stages, direct methods are characterized
by solving the maneuver planning problem directly. Thus dif-
ferential equations have been commonly used to describe the
time-related dynamic process in a straightforward and clear
way. Given that an analytical solution to a dynamic problem
is not available in general, prevailing methodologies are com-
monly on the basis of specific solution structures (e.g., Reeds-
Shepp based and bang-bang control based trajectories) [6],
[28]-{35]. Specifically, geometrics, heuristics, and control theo-
ries are incorporated in some of the direct planners to facilitate
the solving process, although the original maneuver planning
problem is directly dealt with. A collection of the aforemen-
tioned maneuver planning methodologies is depicted in Fig. 1.

Determining whether one planner is better than another is
difficult because they are applied in distinct scenarios and/or
are on the basis of distinct descriptions. Broadly speaking, indi-
rect methods decouple the original maneuver planning scheme
into multiple stages. Although these aforementioned “path-
planning+" methods are computationally cheap, they have dif-
ficulty in coping with complicated scenarios and/or time-related
restrictions [10]. In essence, a “path-planning + tracking”
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method would shift the maneuver planning difficulties to the
control stage, rather than cope with them! Given the limitations
in the prevailing “path-planning+” methods, maneuver plan-
ning should be solving directly, without being separated into
stages [36]. Direct methodologies are commonly involved in
specific solution structures as aforementioned. Specific struc-
tures would reduce the available solution space, largely weak-
ening the unification of a maneuver planner. For example, the
heuristics-based models are usually intuitively understandable
and reasonable, but they are capable of providing almost none
solutions beyond human expectations/experiences. In addition,
maneuver optimization is superior to planning merely feasible
maneuvers, because the former nominally exploits every inch
of a tiny parking spot.

This work aims to solve the parallel parking maneuver
planning problem in a direct, straightforward, unified, and
purely objective way. Specifically, an optimal control problem
architecture is formulated, which consists of differential equa-
tions (representing vehicle kinematics), algebraic equations/
inequalities (representing mechanical/environmental restric-
tions), and a user-specified optimization objective. Although
formulating such a beneficial architecture is not difficult, com-
putational challenges in problem solving has been a critical
bottleneck that prevents most of previous studies from get-
ting ahead. This bottleneck may become less crucial with the
incessant developments in high-efficient CPUs and advanced
numerical dynamic optimizers.

The remainder of this paper is organized as follows.
Section II introduces an optimal control problem on the basis
of the concerned parallel parking maneuver planning scheme.
The aforementioned optimal control problem solver, together
with facilitation strategies are proposed in Section III, followed
by Section IV, wherein our proposal is tested via simulations.
In-depth analyses about the simulation results are provided in
Section V. Finally, conclusions are drawn in Section VI.

II. PROBLEM FORMULATION

The original maneuver planning mission is described as an
unified optimal control problem in this section.

A. Vehicle Kinematics

Given the low moving speed in real-world parking [26], an
automobile (excluding its four wheels) is assumed as a rigid
body, i.e., coupled dynamics of vehicle suspensions are not
considered. Also, tire sideslip issue is omitted. We focus on
vehicles with front steering wheels. Kinematics of a car-like
vehicle is expressed as

dgfi(tt) =v(t) - cos O(t)
—Z?;;;) = o(t) - sin O(t)
t
"t = alt) 0
‘fi(t/) = jerk(t)
do(t) _ wv(t)tan ¢(t)
4l _ iy
"o = w(t)

where (x,y) refers to the mid-point of rear wheel axis (see
the reference point P in Fig. 2), 6 refers to the orientation
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Fig. 2. Parametric notations related to vehicle size and kinematics.

angle, v stands for the linear velocity of P, a stands for
the corresponding acceleration, jerk denotes the acceleration
derivative, ¢ denotes the steering angle of front wheels, w
denotes the corresponding angular velocity, and ! denotes the
wheelbase (i.e., the distance between front and rear wheel axes)
[4]. Other parametric settings related to the geometric size of
an automobile include front overhang length n, rear overhang
length m, and vehicle width 2b, as depicted in Fig. 2.

B. Interior Constraints

In addition to vehicle kinematics, physical and mechanical
constrains should be satisfied. In more detail,

|a(t)] < amax
[v(t)] < Vmax
|p(t)] < Prax

where ¢y > 0 denotes the (unknown in advance) completion
time of the entire parking process. Rationales behind the
aforementioned constraints are as follows: (i) changing v(t)
fast brings about discomfort to passengers, thus bounds are
imposed on a(t); (ii) a vehicle usually parks in a low speed,
reserving reaction time for potential emergencies, thus bounds
are imposed on v(t); (iii) ¢(t) is mechanically limited.
Besides (2a), the following two constraints are considered:

lierk(t)| < damax
| (t)] < dEmax;

forany 0 <t <ty (2a)

forany 0 <t <ty (2b)

where k’(t) denotes the derivative of instantaneous curvature
K(t). k(t) and £/ (t) are defined as

(t) = tan;zﬁ(t)
K (t) = % 3)

Limitation of jerk results in smoothed actuator loads and re-
duced passenger discomfort [37]. Similarly, imposing bounds
on «'(t) makes the curvature profile «(¢) continuous and then
eases the subsequent maneuver implementation procedure [38].

C. Exterior Restrictions

This subsection presents the formulation of exterior con-
straints (i.e., collision-free conditions). As a common practice,
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Fig. 3. Schematics on the formulation of collision-avoidance restrictions.
(a) Basic Heaviside step function H (z). (b) Two functions named func_slot(z)
and func_ceiling(z) that describe the frontiers on both sides of the road.
(c) Admissible space denoted by the shading region.

vehicle body is regarded as a rectangle in the 2D Euclidean
space, and a parking slot is considered rectangular.
First, frontiers of a parallel parking slot is described through

func_slot(x) = (—H(z) + H(xz — SL)) - SW 4)

where SL > 0 denotes parking slot length, SW > 0 denotes
parking slot width, H(x) stands for Heaviside step function
(defined as H(xz) =1 when z > 0; otherwise, H(z) = 0),
func_ceiling(z) = CL > 0 defines frontiers on the other side
of the road (Fig. 3). To avoid underlying collisions, a vehicle
should locate above func_slot(-) and below func_ceiling(-),
which is accurately described via inequalities as follows.

For the convex set properties, the necessary and suffi-
cient collision-free condition between a rectangular car and
func_ceiling(+) is that the four corner points (i.e. points A(t),
B(t), C(t), and D(¢) in Fig. 3(c)) locate below func_ceiling(-):

forany t € [0,ty]. 5)

At any specific moment, locations of four corner points are
determined provided that z(t), y(t), and 6(t) are given:

A=(A;,A))
=(z4+( 4+ n)-cosd — b-sinb, y+(l4+n)-sinf+b-cosh)
B = (Bz, By)

=(z+(+n)-cosf+b-sinf, y+(I4+n)-sinf — b-cosh)
C=(Cs,Cy)=(x—m-cosf+b-sinf, y—m-sinf—b-cosh)
D=(Dgy,Dy)=@—m-cosf—b-sinf,y—m-sinf+b-cosh).
(6)
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Fig. 4. Schematics on the necessary and sufficient condition of remaining
above func_slot(+).

To guarantee that the concerned vehicle remains above
func_slot(+), we have

A, > func_slot(A;)
B, > func_slot(B;)
Cy > func_slot(C;)
D, > func_slot(D,)

(N

which only serves as a necessary condition. That is because the
vehicle can still hit the function func_slot(-) in two cusps (i.e.,
points O = (0,0) and E = (SL,0) in Fig. 4) even when the
four corner points locate above func_slot(-). Fig. 4 depicts an
example wherein point E hits in the vehicle through edge BC
whereas the four corner points remain above func_slot(-). Thus
we need additional efforts to prevent that points O and E are in-
side the rectangular region ABCD. To begin with, the geometric
center of rectangle ABCD is denoted as point GG, which locates
at (z+(((I+n—m) -cos0)/2),y + (((I+n —m) - sin9)/2)).
Then, a new frame of axes is established, wherein the new
origin is G and X' axis points the vehicle orientation (Fig. 4).
Thereafter, the coordinates of O and E' are transformed from
XOY frame to X'GY’ frame. Given that the X’GY’ frame is
obtained through translation (according to OG) and rotation
(according to 6 in anticlockwise) of the XOY frame, coordi-
nates of O and F in the X’GY’ frame can be presented by

Oxay = (0, 0,)

l+n—m

N 0—vy-sinf —
(xcos y - sin 5 ,

x-sinf —y - cosf ) (8a)

EX/GY/ = (E;,E;)

l+n—m

= —z-cos —y- sinh —
(l’COS Y - sm 3

+ SL - cos 8, x~sin9—y-cost9—SL-sin9) .
(8b)
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Thus, O and E locate outside the rectangular vehicle region if
and only if

(9a)

0] zlﬂn%

, when |O;| <b

l+m+n

PARSE

, when |E, | <b. (9b)
In summary, the necessary and sufficient collision-avoidance
condition for a vehicle that is above func_slot(+) is a satisfaction

of (7)+9).

D. Initial and Terminal Conditions

Initial conditions refer to the initial status of a vehicle when
parking begins, and they should be specified via localization
and perception ahead of time. Terminal conditions, on the
other hand, stand for the criteria for terminating the concerned
parking process: (i) a parking process ends with a full stop, i.e.,
v(ty) = 0 and a(ty) = 0; (ii) an inside-slot terminal require-
ment is defined as

Ay(ty) <0
By(tf) <0
C,(ty) <0 4o
Dy(ty) <0.

Requirement (ii) implies that a vehicle is not required to be
parked exactly parallel to the road, and it caters for true needs:
once the vehicle is fully inside the slot, it is nominally free of
collision risks.

E. Overall Dynamic Optimization Framework

The aforementioned kinematics and restrictions, together
with a specified optimization objective, form an optimal control
problem. Specifically, completion time ¢y is chosen as the
minimization objective in this work.

If the concerned off-line optimal control problem is solved
online, it becomes the receding horizon optimization stage in
nonlinear model predictive control (NMPC). Both on-line and
off-line optimization schemes are collectively called dynamic
optimization problems. In addition to the aforementioned con-
straints and conditions, any other user-specified demand can be
incorporated in our formulated dynamic optimization problem,
thereby formulating a unified framework, rather than dealing
with a few special cases.

III. DYNAMIC OPTIMIZATION PROBLEM SOLVER

Describing the parallel parking maneuver planning scheme
as a unified dynamic optimization problem is easy, nonetheless,
the problem-solving process is so difficult as to have hindered
most of research efforts from investigating further. A high-
efficient dynamic optimizer, simultaneous dynamic optimiza-
tion methodology, is adopted to solve our formulated problem.
Specifically, the original infinite-dimensional dynamic opti-
mization problem is discretized into a finite-dimensional non-
linear programming (NLP) problem, which is solved via
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Fig. 5. Collocation of finite elements and interpolation points for differential
state variables.

interior-point method (IPM) thereafter. Strategies that facilitate
the NLP-solving process are preliminarily proposed.

A. Dynamic Optimization Problem Solver

Simultaneous dynamic optimization method is featured by
discretizing not only control variables but state variables as
well, thereby being equivalent to a fully implicit Runge-Kutta
method with excellent stability and high order accuracy [39].

Our concerned dynamic optimization problem in Section II
can be generalized as

min ¢ (2(t))
0 = F(2(t),C(t), ult))

5.4 2(0) = 2 (1)
2(ty) = 24,
te [O,tf]

wherein () refers to the minimization criterion, z(t) refers
to differential state variables, ((t) refers to the algebraic state
variables, and u(t) refers to the control variables. The deci-
sion variables in (11) include z(t), ((t), u(t), and ¢y. First,
the time domain [0,¢y] is divided into N equidistant inter-
vals {[ti—1,t]|i =1,2,..., N}, where tg = 0 and tn,, = ty.
Thus, duration of each element is written as h; = t; — t;_1 =
tf/Nfe, 1 =1,2,..., Nt.. For the consistency with previous
studies in this community, those intervals are referred to as
“finite elements” in the remainder of this paper. Second,
in each finite element, (K + 1) collocation points {z;;|j =
0,1,2,..., K} (see Fig. 5) are taken as decision variables
whereby to approximate the differential states z(t) via piece-
wise Lagrange polynomial:

K K

2= | =

=0

(1 —7%)
(75 — 7n) (12

k=0,#j
wheret =t;,_1 + h - Tand 7 € [0, 1]. Radau or Gaussian points
Tk =1 and 7, (k=1,..., K — 1) are chosen to satisfy or-
thogonal properties when K is determined. The Lagrange poly-
nomial represented in (12) has a desirable property that z(t;;) =
z;j, where t;; = t,_1 + h - 7;. In addition, continuity of the
differential state variables at element boundaries is considered
by enforcing 7p = 0 and

K K
Zit10= . Aom) ) =120 Nee—
1_;,_170—2 Zij H (T-—T) =Zi K, t=1,2...,1Vfe .
=0\ k=0,£j \ Ik

(13)
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Similarly, control variables w(t) and algebraic states ((¢) can
be represented by piecewise Lagrange polynomials:

K K

u(t) = Z Ugj H % (14)
i=1 k=15 7K

() = EK: Gij - ﬁ =) (15)
=1 it (T )

Herein, u(t) and ((t) can be discontinuous at finite element
boundaries, as depicted in Fig. 6. Substituting (12)—(15) into
(11) yields an NLP formulation:

¢ (2(tr))

min
245,Cij Wij
Yo (dwffrm : Zik) —h F(zij, Gijy wig) = 0

T=Tk
K T—Tk

V(1) = [Tk—o,2; ((7j7fT,;))

_ g
h - Nfe
G(Zija C’ija ul]) <0

Zi14+1,0 = Ziy K

S.t.

21,0 = 20

ZNfe7K:th
i=1,2..  Ni,ir=1,2... N —1, i =1,2,.... K.
(16)

After the discretization, IPM is utilized to compute the de-
cision variables, i.e., z;;, (;;, and u;; as well as ty, so as
to minimize ¢(z(tf)). As a gradient-based optimizer, IPM
can handle NLP problems with intricate equalities and bound
constraints. Specifically, bound constraints are incorporated
in the optimization objective in barrier-parameter-multiplied
logarithmic forms, and the original NLP is transformed into an
equality constrained barrier problem. For each specified barrier
parameter, the barrier problem is solved inside the feasible
domain. As the barrier parameter approaches zero, solutions of
the barrier problems gradually converge to that of the original
NLP problem. Interested readers may consult [40] for details.

B. Connections to Parking Maneuver Planning Scheme

Principle of the IPM-based simultaneous method in solving
a generalized dynamic optimization problem (11) is briefly pre-
sented in the preceding subsection. This subsection targets on
how the IPM-based simultaneous method solves our concerned
maneuver planning problem.

First, the minimization criterion ¢(z(t¢)) is equal to ¢ since
time-optimal maneuvers are expected in this study. Second, z(t)
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represents all the differential state variables in (1), namely, x(t),
y(t), v(t), a(t), 6(t), and ¢(t). Third, {(t) represents all the
state variables that are not differentiated, e.g., A, (t), B,(t),
and C,(t). Fourth, u(¢) represents the control variables, i.e.,
w(t) and jerk(t). Fifth, G(z(t), {(t),u(t)) < 0in (16) cover all
the algebraic equalities/inequalities formulated in Section II.

C. Off-Line Initialization of IPM

Although IPM is capable of dealing with NLPs with millions
of decision variables and constraints [39], yet the optimization
process may converge slowly or even converge to infeasibility in
solving complicated problems. Given that near-feasible initial
guess has been widely acknowledged to facilitate the solving of
a complicated NLP problem [41], [42], this subsection concerns
about how to generate smart initial guess so as to facilitate
the off-line NLP-solving process. Later, the action to generate
efficient initial guess generation is called initialization of NLP.

Our proposed initialization strategy is inspired by the fact
that a vehicle would adjust its configurations locally during the
period of time right before the parking process terminates, espe-
cially when the slot is tiny. To begin with, a “critical region” is
defined as the dashed box region in Fig. 7. Thereafter, a number
of “new” problems, which are distinct from the original one,
are pre-solved one after another. During that sequential pre-
solving process, each optimized solution is taken as the initial
guess in pre-solving the next problem. The aforementioned
“new” problems contain additional restriction that the vehicle
should remain within the critical region during some specified
period of time right before the parking scheme is accomplished.
Length of the “some specified period of time” is determined
by integer N, € [1, Ng], thus, the additional restriction is
described as

IA IAIAN A
Q0 Q0
i el

@)
.

forany t € [h- Ny, tg]. (17)

Evidently, when N, is set small, restriction (17) would take
effect during a relatively large proportion of time. Conversely, if
N, = Nr., then the “new” problem s identical to the original one,
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Formulate a dynamic optimization problem from the
original parking maneuver planning mission

L 2
—
z
3
g o
= =9
2 )
3 -
a =
=
—
-
]
=
(97
Formulate an g
in the form of 73
1)
=
=
=
a8 Pre-solve a sequence of new problems =
= to facilitate the formal NLP-solving process 2
; Optimize the discretized variables in the
- converted NLP problem using IPM
1
1

Output the optimized solution

Fig. 8. Flowchart of IPM-based simultaneous methodology for parallel park-
ing maneuver planning problems.

because (17) is completely ineffective. We aim to pre-solve a
number of “new” problems, wherein N, increases from 1 to Nf.

Readers may wonder why it makes sense to consider such a
sequence of increasingly constrained problems. The rationale
behind this proposal is that, once a car stays in the criti-
cal region, the collision avoidance conditions mentioned in
Section II-C (i.e., (5), (7) and (9)) are replaced by (17). In
other words, (17) is identical to the combination of (5), (7) and
(9), Yt € [h- Ny, ts]. Given that func_slot(-) in (7) contains
two non-differentiable points, and (9) contains condition judg-
ments, (7) and (9) add to the difficulties in solving the original
problem via a gradient-based method, IPM. This indicates that,
the collision-avoidance constrains are largely simplified on
t € [h- Ny, ty], although the additionally imposed restriction
during that period of time appears to complicate the problem.
Therefore, IV, = 1 represents the most simplified one among
all the “new” problems. We begin the pre-solving process from
the easiest one (without initial guess), and utilize the optimized
solution as the initial guess to facilitate the subsequent “new”
problem, i.e. the one with IV, = 2. This sequential process con-
tinues until Ny, = N, when the original problem is formally
solved in the end.

Through the analyses mentioned above, we manage to facili-
tate the off-line maneuver planning process via a critical region
based sequential strategy. An overall flowchart of this approach
is demonstrated in Fig. 8.
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D. On-Site Initialization

Although an off-line initialization strategy is proposed to
facilitate the NLP-solving process, yet the computation is not
cheap enough in real-world applications. In other words, an
automobile may render congestion if it has to wait for the
computation results before taking any action. To preliminarily
address this issue, an on-site initialization procedure via look-
up tables is introduced in this subsection.

In the first step, all of the parking cases should be repre-
sented by a finite number of scenarios. This preliminary study
only considers distinctions in x(0), y(0), 6(0), and SL. For
example, parameter SL that fall in the interval 5 < SL < 6 can
be represented by scenarios in the set {5.0, 5.2, 5.4, 5.6, 5.8,
6.0}. Second, each representative scenario is optimized off-
line using the IPM-based simultaneous dynamic optimization
approach, together with the sequential initialization strategy
introduced in Section III-C. Thereafter, the optimized results
of the representative cases are recorded in a database.

In dealing with a real-world parking maneuver planning
scheme, solution to the closest recorded case is extracted from
the database and utilized as the on-site initial guess. Through
this, initial guess can be generated without involving the time-
consuming sequential strategy. The maneuver optimization
result, when available, is regarded as an “initial reference”
utilized in the subsequent on-line replanning process.

E. On-Line Receding-Horizon Replanning

On-line replanning intends to react to potential scenario
changes and compensate for errors in low-level controllers
during the parking process.

Suppose that the receding-horizon replanning procedure ex-
ecutes N, times. Thus, time interval is divided into Nyep
control horizons {T¢;li = 1,2,..., Nyep}. To begin with, the
vehicle executes the initial reference maneuvers during the
first control horizon T1; simultaneously, a receding-horizon
replanning procedure starts at ¢t = 0. Note that the maneuver
replanning concerns part of the original problem, specifically,
from ¢t = Ty to t = ¢;. In other words, maneuver replanning
considers a scheme from where the vehicle is “predicted” to
be at ¢t = T, the end of the first control horizon. Moving
obstacles, if exist, locate at where they are “predicted” to be at
t = Tc1. Herein, predicting future locations of the vehicle and
the moving obstacles is not easy because of sensor/controller
noises, kinematics mismatches, and exterior uncertainties. Ca-
pable filtering methodologies are needed to make reliable pre-
dictions of the future situations. In this preliminary study, we
assume that the state estimation of each subsequent control
horizon is accurate, therefore stochastic/system errors do not
accumulate as the parking process continues. Ever since ¢ =
Tc1, the vehicle involves in the second control horizon and
executes the replanned maneuvers until ¢ = Ty + Too. This
recursive process continues until the end the NV;cpth control
horizon.

Regarding the setting of control horizon lengths, we con-
sider utilizing the finite element structure in the simultaneous
dynamic optimization method by setting Nyc,, = N¢.. In more
detail, when t = 0, To; is set to t’} /Nte, Where t’} originates

3269

TABLE 1
NOTATION OF USER-SPECIFIC PARAMETERS AND SETTINGS

Parameter Description Setting
Eqol Convergence tolerance in IPM 108
p Minimum absolute distance from the initial point 10

¢ to bound in IPM
Finite element number in the simultaneous
N fe 40
approach
K Interpolation point number in the simultaneous 3
approach
SL Slot length -
N4 Slot width 2.0 m
CL Road width 3.5m
n Front overhang length 0.839 m
/ Distance between front and back wheel axes 2.588 m
m Rear overhang length 0.657 m
2b Car width 1.771 m
D v Maximum steering angle 33°
LI Bound of acceleration 0.75 m/s?
Vinax Bound of velocity 2.0 m/s
da,, Bound of jerk 0.5 n/s?
dKax Bound of curvature derivative 0.6
Nrep Control horizon number in on-line replanning 10

from the initial reference; during ¢ € [0, T¢1], a reduced NLP
problem with the latter (Ng, — 1) finite elements is solved, and
the corresponding part in the initial reference is taken as an on-
line initial guess; the replanned result replaces the on-line initial
guess; when t = Tcq, Too is set to t/f/(Nfe — 1), where t’f
originates from the on-line replanning result in the first control
horizon; during ¢ € [T¢1, Te1 + Tez), an NLP problem with
(Nt — 2) finite elements is solved, and the corresponding part
in the current initial guess is utilized to facilitate the NLP-
solving process. The subsequent process continues in a similar
manner, and finally ¢y = Zi\;i" T¢; stands for the completion
time of entire the parking process. Herein, on-line initializa-
tion is adopted to guarantee that each replanning procedure
accomplishes before the corresponding control horizon ends. In
contrast to the NMPC architectures with fixed control horizon
lengths, our proposal smartly incorporates the receding-horizon
replanning with our discretization formulation.

IV. SIMULATION RESULTS

To understand the behavior of IPM-based simultaneous
methodology on maneuver planning, a series of simulations
were conducted in “A Mathematical Programming Language”
(AMPL) environment [43] and executed on an Intel Core
17-4710MQ CPU with 4 GB RAM thatruns at 2.50 GHz. IPOPT,
an open-source software package of IPM, in the 3.8.0 version
[40] was utilized with default options. Concerned parameters
and their settings are listed in Table I, where the car-size
parameters originated from [2]. Regarding 7; mentioned in
Section III-A, we set K = 3 and adopted Radau points 7, =
0.1551, o = 0.6450, and 75 = 1 [39].

Specifically, for the first six cases, the initial conditions in-
clude (0) =SL + m, y(0)=1.5, v(0)=0, a(0) = 0, 6(0) = 0,
and ¢(0) = 0 while the terminal conditions include v(t¢) = 0,
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TABLE II § T
MANEUVER PLANNING CASES 1-10 4 ]
Case Parking Special , (sec) Computation .
no. slot size requirement(s) ! time (sec) 1 i
1 SL=60m - 7.521 41.868 8
2 SL=55m - 9.242 47.152 K1 4
3 SL=5.0m - 11.905 59.726 *
4 SL=45m - 33.849 101.411 : i
same with Case 1 except that * ? Xoas o &
5 SL=60m N. =80 7.522 136.400
fe =
same with Case 1 except that Fig. 10. Optimized motion in Case 2.
6 SL=6.0m da,, =0.25 /s> 9.344 182.394
same with Case 3 except that : ; !
4 -
x(0)=-5.14m i |
7 SL=5.0m $(0)=1.41 m 18.426 193.578 ) |
6(0)=13.18° 2 1
same with Case 3 except that =2
Al
x(0)=8.97 m N 1
8§ SL=50m | ¥0)=2.17m 16.131 178.845 s
6(0) =-16.06° 4 3 v ' 0 s
v(0)=0.36 m/s Xaxis
same with Case 2 except that Fig. 11. Optimized motion in Case 3.
x(0)=6.15m
9 SL=55m |V(®=1.55m and 9.483 0332 ’ : :
0(0)=5° o _
result of Case 2 is taken as the 3
initial guess directly 2re ; '
same with Case 1 except that R 2601 = n
result of Case 1 is taken as the > >
initial reference and ar 7
10 SL changes SL reduces continuously from 12.002 } 2r
6.0 m to 5.0 m during the first S 7
5.74 sec. 4 sj l‘) 45 10 1‘5
X axis
| I Fig. 12. Optimized motion in Case 4. The terminal maneuvers are zoomed in
L at the upper left corner.
2 |
£ 7 5
% .
> 4
Al ~ sl i
2r 2
3 £ 1
4 5 tln 6 10 15 :
X axis i
Fig. 9. Optimized motion in Case 1. £
a(ty) = 0 and the inside-slot restriction (10). In Cases 7 and ! 8 3 e ¥ C
8, the initial conditions are irregular. Compared with the first
eight cases that are optimized without initial guess, Case 9 is  Fig. 13. Optimized motion in Case 7.
optimized based on a near-feasible initial guess. In Case 10,
SL reduces continuously from 6.0 m to 5.0 m at the beginning s . : . .
5.74 seconds. This case concerns a real-time maneuver plan- “r ]
ning mission with moving obstacle(s). Details of all the simulat- z
ion cases are listed in Table II. The obtained parking maneuvers  , ,
are partly plotted in Figs. 9-14, together with the optimized 3.
profiles in Figs. 15-19. " = 1
2
3
V. DISCUSSIONS 9 ‘ . i i
5 o 5 10 15
X axis

This section provides in-depth analyses behind the obtained
simulation results.

Fig. 14. Optimized motion in Case 8.
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Fig. 17. Optimized control/state profiles in Case 3.

A. On the Optimized Maneuvers

The only distinct parameter among Cases 1-4 is SL, which
varies from 6.0 m to 4.5 m, with the slot-car length ratio reduces
from 1.47 to 1.10. When SL decreases, the car has to locally
adjust with more maneuvers before fully completely enter the
parallel parking slot. Here, the number of maneuvers can be
reflected by the number of cusps in the path. When SL = 4.5
(Case 4), the slot length is merely 10.19% larger than the car
length.

B. On the Optimized Profiles

The aforementioned number of maneuvers is also reflected
in the optimized profile v(¢). In more detail, counting the times
that v(t) passes through v =0 when 0 < t < t; leads to the
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Fig. 19. Optimized control/state profiles in Case 6.

number of maneuvers. Besides that, the maneuver number issue
reflects limitations of the utilized kinematic model: when the
vehicle passes from backward motion to a forward motion,
the acceleration profile a(t) is nonzero, which is in conflict
with common practice. This indicates that a kinematic model
deserves improvements so as to be realistic.

Viewing the depicted profiles in Figs. 15-19, one may notice
that the obtained state variables are smoother than the control
variables (i.e., jerk(¢) and w(t)), because of the requirements
(13) in Section III-A. The jerk profiles generally form a bang-
singular-bang mode, which is in accord with the theories in
[44]. Given that an automobile can only steer the front wheels
within a finite speed [45], [46], it appears that w(t) profiles
vary within a finite amplitude (especially in Fig. 18), although
boundary constraints are not imposed on w(t). Rationale behind
this phenomenon is that, we have required that «'(¢) should
be bounded; definition of £'(t) in (3) directly renders |w(t)| <
dKmax - | - cos® ¢(t), which implies that |w(t)| is naturally
bounded.

Moreover, it is interesting to note that ¢(¢ ;) does not neces-
sarily equal to zero, because the formulated terminal conditions
do not include ¢(ty) = 0. Herein, we consider that once a
vehicle is safe the moment it is fully in a parallel parking
slot, thus no extra issues deserve consideration. Letting ¢(t)
free not only eases the parking process, but also prevents
unnecessary tire wears.

C. On the Off-Line Initialization Process

In Cases 14, there are as many as 2154 decision variables
to optimize with 3114 constraints considered simultaneously in
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T T T T T L
0 1 2 3 4 5 6

Fig. 20. Illustration on the performance of offline initialization strategy. The
curves denote selected paths of point P during the parallel parking process
(Case 2). The terminal maneuvers are zoomed in at the upper left corner.

our concerned NLP problem when Ng = 40. Without initial
guess, it is almost beyond the ability of IPM to converge
to optimums. Fig. 20 shows how our sequential initialization
strategy works when Case 2 is taken for instance: a sequen-
tial initialization process begins with N, = 1 and terminates
when IV,, = 40. Specifically, the beginning “new” problem with
N, = 1 additionally requests that the vehicle should stay in the
critical region during the later (40 — 1)/40 = 97.5% period of
the entire [0,¢s]. Suppose that the automobile needs at least
2 sec to enter the critical region, N,, = 1 would render that
at least 2/(1 —97.5%) = 80 sec to accomplish the parking
mission. Thus, IV, = 2 yields the most painstaking efforts and
longest completion time ¢y = 85.615 than the other ones, as de-
picted in Fig. 20. When NV, increases, the optimized completion
time gradually decreases until solution to the original problem
may be obtained at some specific threshold.

D. On the Unification of Our Proposal

Cases 5-8 are slightly different from Cases 1-4 for com-
parison. Case 5 investigates the discretization accuracy of the
adopted numerical dynamic optimizer. A comparison between
Cases 1 and 5 shows that ¢y varies 0.001 sec when N is dou-
bled, reflecting that (i) setting V¢, =40 is acceptable at a level of
0.001, and (ii) our proposed methodology can uniformly cater
for different discretization accuracy demands. By halving the
jerk bounds in Case 6, the acceleration profile is smoother than
that in Case 3 (Figs. 17 and 19). A smaller da,.x yields less
agile maneuvers and leads to a 24.24% increase in ¢ ;. Cases 7
and 8 evaluate the algorithm ability to cope with irregular sce-
narios. As a brief summary of this subsection, Cases 5-8 show
the algorithm unification and efficiency through comparisons.

E. On the Real-Time Performance of the Maneuver Planner

A maneuver planner would not be useful if it executes slowly,
in spite of the merits in accuracy and unification. This sub-
section analyzes the performance of our on-site initialization
strategy and on-line replanning process.

Case 9 investigates the performance of on-site initialization.
Suppose that the result of Case 1 is obtained off-line and then
stored in a look-up table. When Case 9 is assigned, the on-site
initialization method first consults the look-up table and finds
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Fig. 22. Comparison between Case 1 and Case 10.

that Case 1 is the most similar case; thereafter, the recorded
optimization result of Case 1 is extracted from the look-up table
and utilized as initial guess in solving Case 9. As it turns out,
the on-site maneuver planning of Case 9 is accomplished in less
than 1 sec, which is satisfactory in real-world applications.

Case 10 investigates the on-line replanning capability. De-
tails of the receding-horizon replanning process are shown in
Fig. 21. During each control horizon (see the green long pillars
in Fig. 21), the replanning computation (see the orange pillars
adjacent to those green ones) takes up a small portion. As a
general trend, the computational time reduces as the parking
process continues, because the scales of the on-line replan-
ning problems are gradually decreasing (see Section III-E).
A comparison between the paths of Case 1 and Case 10 is
shown in Fig. 22, wherein both trajectories are nearly the same
at the beginning but as the vacant parking spaces are reducing
in Case 10, more efforts are needed before the parking scheme
is completed.

VI. CONCLUSION

In this paper, we have investigated how to plan time-optimal
maneuvers for autonomous parallel parking. The underlying
highlights lie in the following aspects.

(i) We advocate the benefits in using direct maneuver plan-
ners after providing a comprehensive review of the ma-
neuver planning methods in robotics.

(i) Our proposal is an open and unified dynamic optimization
framework, and any user-specified constraint can be in-
corporated in this framework provided that it is explicitly
described via equality/inequality. Moreover, our proposal
contains anything but unjustifiable subjective knowledge
or experiences, which would largely limit the full utiliza-
tion of objective conditions.
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(iii) The proposed on-site initialization via a look-up table and
receding-horizon replanning process indicate this maneu-
ver planner is promising to meet real-time demands.

In spite of the bright sides, future efforts are needed to
polish the proposed receding horizon replanning architecture in
NMPC, and to carry out experiments on a real-world automo-
bile platform. Moreover, dynamic models, instead of kinematic
ones, should be established to describe the movement principles
of a vehicle.
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