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Abstract—Digital games can make unique and powerful contributions to K-12 science education, but much of that potential remains

unrealized. Research evaluating games for learning still relies primarily on pre- and post-test data, which limits possible insights into

more complex interactions between game design features, gameplay, and formal assessment. Therefore, a critical step forward

involves developing rich representations for analyzing gameplay data. This paper leverages data mining techniques to model learning

and performance, using a metadata markup language that relates game actions to concepts relevant to specific game contexts. We

discuss results from a classroom study and identify potential relationships between students’ planning/prediction behaviors observed

across game levels and improvement on formal assessments. The results have implications for scaffolding specific activities, that

include physics learning during gameplay, solution planning and effect prediction. Overall, the approach underscores the value of our

contextualized approach to gameplay markup to facilitate data mining and discovery.

Index Terms—Games for science learning, data mining, knowledge engineering, learning behavior
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1 INTRODUCTION

DIGITAL games provide a promising medium for science
education [12], [17], [29]. The NRC report on laboratory

activities and simulations [26] makes clear, however, that
the design of physical and virtual learning activities, rather
than the choice of a medium, has the greatest impact on
learning outcomes. The meta-analysis by Clark et al. [6]
underscores the central role of design in the efficacy of digi-
tal games for learning.

Unfortunately, most quantitative research on games for
science learning has focused only on pre-post test compari-
sons to evaluate the games’ effectiveness and compare differ-
ent game designs (c.f., [17]). Pre-post comparisons lend
themselves to straightforward comparisons of various treat-
ments (e.g., control and experimental conditions), but they
provide minimal insight into how game or level designs and
player behaviors (i.e., their approach to playing the game)
are linked to the learning process. Furthermore, pre-post test
approaches cannot directly support formative assessment

and feedbackwhile students are playing the game.However,
digital games provide ample opportunities to collect data
during play that may provide insight into the evolution of
students’ thinking and learning (e.g., [5], [17]; [24], [25], [23]).

This paper describes an approach to making the learning
context of game behavior explicit. Adding relevant metadata
helps to interpret students’ actions in the learning context,
and then apply learning analytics and data mining techni-
ques to model students’ gameplay behavior. To assess this
approach, we design learning context metadata in a physics
game called SURGE Next and analyze the resulting anno-
tated log data from a classroom study. The results provide
initial evidence for the utility of contextual metadata coding
and data mining for understanding links between gameplay
and learning. In particular, the analysis identifies potential
relationships between planning/prediction behaviors and
reading informational text provided in game levels, to
improvements on formal (pre-post test) assessments. In
addition, this analysis points to a specific link between accel-
eration maneuvers in SURGE levels and learning of formal
acceleration concepts. One implication of these results is that
dynamic level sequencing and appropriate scaffolding for
solution planning/prediction and reading activities (particu-
larly for students who are less willing to engage in them)
could aid students’ learning during gameplay.

2 SURGE NEXT: GAME DESIGN

In this paper, we apply our metadata coding and mining
approach to SURGE Next, a conceptually-integrated game for
learning [4], where the physics concepts to be learned are
integrated directly into the game mechanics. Fig. 1 illus-
trates gameplay in SURGE Next, which begins in an outer-
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space environment (implying there are no gravitational or
frictional forces). In SURGE Next, players navigate their red
spherical ship from its starting position to a target while
avoiding obstacles. SURGE focuses on popular gameplay
mechanics including: (a) supporting engagement and
approachable entry (e.g., [15]), (b) situating the player with
a principled stance and perspective (e.g., [19]), (c) providing
context and identification for the player with a role and nar-
rative (e.g., [10]), (d) monitoring and providing actionable
feedback (e.g., [1]), and (e) using pacing and gatekeeping to
guide the player through cycles of performance (e.g., [27]).

Rather than employing a real-time interface like the one
used in the original SURGE Classic [3], where pressing an
“arrow key” results in the immediate application of a force,
SURGE Next requires the player to place all of the force
commands (which vary in direction, magnitude, and time
duration over which they are applied) on the game map in
advance by dragging them from a palette (see Fig. 1). If the
red ship’s trajectory intersects the point where a force icon
was placed, its trajectory is modified by application of that
force. SURGE Next also limits the total number of force
commands available in a given level to increase the salience
and impact of each. Ideally, this should encourage players
to consider more carefully the expected outcomes of each
action as opposed to adopting trial and error methods.
Thus, SURGE Next emphasizes deliberative gameplay,
planning, and prediction (as opposed to reactive gameplay).

In designing SURGENext levels, we first aligned in-game
maneuvers with an application of one of Newton’s three
laws in a specific and explicit form. We then designed
sequences of levels to highlight the relationships of the indi-
vidual cases to the formal laws. As an example, levels like
the one illustrated in Fig. 1 require application of Newton’s
first law to achieve a 90-degree turn. The right pane in Fig. 1
illustrates a common incorrect solution to this level. The
player applies the correct upward force initially, but instead
of applying a (downward) canceling force, the player uses a
force directed to the right, assuming this will result in the
ship turning to the right and moving in that direction. In this
situation, the ship moves off in a diagonal trajectory to col-
lide with a wall instead of the intended horizontal trajectory.

Our observations indicate that after an initial error with a
right turn – as in the right pane of Fig. 1, some students suc-
cessfully generate a correct solution in subsequent trials – as
in the left pane of Fig. 1. Other students continue to increase

the number of horizontal forces, assuming a large force will
make the trajectory horizontal or at least get “close enough”
to the desired solution. In other words, they are unable to
apply the concept of canceling motion in a given direction
by applying a force opposite to the direction of motion.
In SURGE Next (henceforth “SURGE”, for brevity), our
approach to level design and logging of gameplay data facili-
tates automated analysis and helps us model differences in
students’ gameplay related to performance on assessments.

3 CONTEXTUAL METADATA FOR SURGE LEVELS

Simple measures, such as success or failure in completing a
level or the points earned in that level, are unlikely to sup-
port detailed inferences about students’ conceptual develop-
ment, students’ strategies, or how well the game scaffolds
students’ learning. Some work on games for learning has
incorporated the design of embedded assessments to mea-
sure conceptual understanding and provide formative asses-
sments to help students learn, and for teachers or the system
to adapt support within the game (e.g., [2], [24], [25]). Rather
than including additional assessments, SURGE incorporates
context-specific descriptions that link game actions (i.e.,
gameplay behavior) to relevant physics concepts. Other
researchers have employed semantic annotation of objects in
games, and rules linked to gameplay behavior to assess
learning and conceptual understanding (e.g., [9], [16]). Our
approach is similar, but its focus is not on formative assess-
ments and feedback. Instead we codify generalizable rela-
tionships between gameplay and learning contexts, and this,
enables effective mining and exploratory analysis of
observed behaviors rather than focusing on assessment of
known behaviors. Analyzing students’ gameplay behavior
with respect to the learning context can identify previously
unknown errors and potentially unexpected/unknown
strategies that can be connected to learning outcomes and
theory beyond previously-conceived assessments.

Previous work has used researcher-guided protocols
and self-report schemes for drawing connections between
students’ problem-solving approaches, game strategies, and
conceptual change. This, requires significant time investment
and are often infeasible for studies with many students.
Further, students’ self-reports on use of strategies and
problem-solving schemes do not always correspond to the
approaches they employ [28]. Merely bypassing the inaccura-
cies in self-reports by recording gameplay behavior is

Fig. 1. Simple SURGE level focusing on fewer, but more consequential, actions.
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insufficient. However, in SURGE, different game levels, dif-
ferent positions within a single level, and even different states
of the player’s ship (e.g., momentum and forces currently act-
ing on it) alter the meaning of a given combination of forces.
Thus, the context of a player’s action(s) defines the semantics
of those actionswith respect to relevant physics concepts.

To contextualize actions in SURGE, we adopt a bottom-
up approach that identifies relevant learning aspects of a
game level during its design, in contrast toa top-down
design of assessments imposed on (or external to) the game
levels. Our coding scheme for game levels introduces
machine-readable metadata linking potential actions to
related physics concepts and learning goals at specific loca-
tions in each level. Tracking students’ actions and inferring
their relations to physics concepts allows us to analyze how
and why students succeed (or fail) in particular levels.

SURGE’s metadata tags allow the game to log the context
of students’ actions, and interpret them by noting the ship’s
collisions with visible objects and invisible “tracking”
objects placed in the game environment. The invisible track-
ing objects detect the ship’s movements into (and out of)
particular regions. All encounters between the ship and
obstacles and tracking objects during level play are logged
along with relevant state information, such as its velocity
vector, active forces, and mass.

The metadata language captures simple statements and
complex conditionals. Simple statements capture contact
with a tracking region and other objects associated with a
particular metadata tag. More complexmetadata triggers are
specified by IF/THEN/ELSE constructs and Boolean logic
expressions (conditions combined with the logical operators
AND, OR, and NOT) associated with game objects. The con-
ditions capture information, such as whether the player pre-
viously passed through a specified tagged region or object.
Further, they may be used to express properties of the
object’s motion and state at the time (speed, direction of
motion, or mass). For example, a very specific metadata
expression could indicate that a particular feature will be
associated with a trial only if the spaceship enters a tracking
region at an angle between 90 and 180 degrees with a speed
of 1 m/s and a mass of 1 kg. In practice, the large majority of
metadata expressions are significantly less complex and
require only that the spaceship passed through one or two
tagged regions, sometimeswith a state constraint (e.g., direc-
tion of motion).

For example, the illustrations in Fig. 2 include an invisible
tracking object labeled “StopNGo,” and metadata associated
with the end target, labeled “EndTarget”: {IF StopNGo
THEN LG/Newton1/RightTurn ELSE [LG/Netwon1/
Deflection, LG/Newton1/Cancellation]}. If the student’s
solution follows the right turn path, as shown in the left
image, then the event log will indicate that the ship passed
through the “StopNGo” tracking object and reached the
“EndTarget.” Themetadata associatedwith the “EndTarget”
will be parsed, and since the spaceship also passed through
the “StopNGo” tracking object (IF StopNGo THEN . . .), the
trial will be tagged with the feature indicated by the associ-
ated metadata rule (i.e., “LG/Newton1/RightTurn”). This
feature indicates that the student correctly applied specific
concepts related to a concrete sub-case of Newton’s 1st law
by stoppingmotion with the application of force in the oppo-
site direction of motion while also applying an orthogonal
force to produce a right turn in this level game.

Alternatively, if the student’s solution follows the path
shown in the image on the right side of Fig. 2, then parsing
the metadata for the end target object (the “ELSE. . .” portion
because the spaceship did not pass through “StopNGo”) will
tag the trial with the features “LG/Newton1/Deflection”
and “LG/Newton1/Cancellation.” These features indicate
that the student correctly applied Newton’s 1st law to (1)
cancel the ship’s current velocity by applying an opposing
force, and (2) produce a deflection in the trajectory using a
second orthogonal force (thus resulting inmotion orthogonal
to the ship’s initial trajectory). Table 1 illustrates some of the
other commonmetadata rules used in SURGE.

More generally, our coding scheme divides the solution
space into a finite number of regions and states that relate
learning goals to student actions by simple rules. Students are
given a finite number of forces in each level, and a level is fur-
ther constrained by the configuration (i.e., the placement of
obstacles, diamonds, end targets, etc.). This makes the defini-
tion of contextual metadata relatively simple for most levels.
Features derived from the contextual coding in the logged
data, in turn, simplify subsequent analyses of interpreting
students’ attempts at solving the level, and the changes they
make across the multiple attempts. This provides opportuni-
ties for applying systematic data mining and learning analyt-
ics approaches to gain a deeper, contextualized understan-
ding of students’ behaviors and learning performance, includ-
ing their evolution over time [14]. In particular, techniques for

Fig. 2. Examples of metadata regions and their relationship to alternative solutions in SURGE.
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modeling and identifying patterns in sequential activity data,
coupled with the specific learning goal and error features
resulting from the level metadata, can be used to identify pat-
terns (in this case, sequences describing observed changes in
game state and player actions that caused them) linking phys-
ics learning and gameplay behavior.

Analysis of these patterns can help identify important
behaviors and suggest system refinements and scaffolding
that benefit student learning in subsequent versions of
SURGE and other games. In particular, connecting identi-
fied patterns with students’ performance on pre-/post-tests
can establish important areas of interaction between game-
play behaviors and domain learning. The following section
describes the mining techniques employed to analyze
SURGE data in more detail. The results and discussion pre-
sented in Sections 6 and 7 explore the affordances of this
approach for generating new hypotheses related to learning
through gameplay.

4 DIFFERENTIAL SEQUENCE MINING FOR SURGE
DATA

To investigate relationships between prior knowledge, for-
mal assessment of learning gains, and gameplay behaviors
in SURGE, we applied an exploratory data mining tech-
nique, Differential Sequence Mining (DSM) [13], [14], which
iteratively analyzes sequences of student activities to iden-
tify the patterns that most clearly differentiate two groups
of students by their frequency of use. This methodology

applies four iterative steps to mine sequential activity
patterns:

(1) Activity abstraction: Log files are processed to pro-
duce symbolic sequences of level trials. A sequence
is an ordered series of trials that a particular student
performed when attempting to solve a specific level.
Each trial is defined by one or more events with
additional measures (e.g., the medal received for
that trial or the change in the number of forces
between two consecutive trials) that are described in
more detail in Table 2. For example, a sequence of
three trials defined by the measures of change in
forces and medal received might be: [2 Forces
Added, No Medal] ! [1 Force Added, Bronze
Medal]! [1 Force Added, Gold Medal].

(2) Differential Grouping: In this study, we created two
groups based on student learning gains from the
pre- to post-test. To relate gameplay behaviors and
knowledge gain, we selected students with low prior
knowledge in the domain (those at or below the
median score on the pre-test). For this group, the
median gain from pre- to post-test was 0, so we split
the students into two groups: Gain group – those who
improved on the post-test (19 students), and NoGain
group – those who did not improve on the post-test
(23 students). We did not analyze data from the high
prior knowledge group because very few of these
students had improved post-test scores.

TABLE 1
Example Learning Goal Features

Learning Goal Description

Newton1/Balance Adding a balancing constant force (equal magnitude, opposite direction) to an existing constant
force will result in constant speed. (e.g., overcoming friction)

Newton2/AccelForce For a constant mass, acceleration is directly proportional to force (as force increases, acceleration
increases)

Newton2/AccelMass For a constant force, acceleration is inversely proportional to mass (as mass increases, acceleration
decreases)

Newton3/ThrowForward Throwing an object forward (in the direction of motion) will cause you to slow down or move
backward (acceleration in the opposite direction)

TABLE 2
Events with Corresponding Measures Used to Characterize Trials for Mining

Measure Definition and possible values

End Cause The manner in which the trial ended: (i) the player stopped the trial, (ii) the player reached the target (goal)
to complete the level, (iii) the player collided with a dangerous object in the level, and (iv) the player went
out of bounds.

Medal Achieved The medal achieved for the trial (an indicator of the student’s performance in completing the level): (i) no
medal (if the player did not reach the target), (ii) bronze medal, (iii) silver medal, and (iv) gold medal.

Intro Screen Read The amount of time the student spent on the level’s introductory screen at the beginning of each trial, which
provided information about the level and relevant physics concepts: (i) “Short” (� 4 seconds) and (ii)
“Long” (> 4 seconds).

Change in Number
of Forces

The net change in the number of forces employed versus the previous trial, a rough measure of the extent to
which the student revised or extended their previous solution: (i) � �3, (ii) �2, (iii) �1, (iv) 0, (v) 1, (vi) 2,
and (vii) � 3 change in forces.

Change in Number
of Learning Goal
Features

The change in the number of learning goal features (LG) achieved, an indicator of the student’s successful
accomplishment of a portion of the level related to a specific physics learning goal: (i) � �3, (ii) �2, (iii) �1,
(iv) 0, (v) 1, (vi) 2, and (vii) � 3 change in learning goal features.

Change in Number
of Error Features

The change in the number of error features (indicator of the student’s failure to accomplish some portion of
the level related to specific physics learning goals): (i) � �3, (ii) �2, (iii) �1, (iv) 0, (v) 1, (vi) 2, and (vii) � 3
change in error features.
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(3) Candidate pattern generation: We employ a standard
sequential pattern mining algorithm to identify trial
patterns that were sufficiently frequent for that
group. The threshold for selection was set at 5 per-
cent to accommodate the wide variety of levels ana-
lyzed (14). Sequential pattern mining allows us to
identify every subsequence that occurs in at least a
given percentage of sequences. In this case, that
means that all subsequences that occurred in at least
5 percent of either group’s level sequences are identi-
fied as candidate patterns. These patterns were then
analyzed to identify those that differentiate the two
groups by frequency of occurrence.

(4) Differential comparison: A t-test on pattern occurrence
across the groups was used as the selection criteria
to identify the differentially-frequent patterns from the
set generated in Step 3 [14]. This step filtered out pat-
terns that did not have strong differences in fre-
quency of occurrence across the two groups. The
remaining set of differentially-frequent patterns
were ranked and analyzed using the ratio of the fre-
quency in the Gain group level attempts to the fre-
quency in the NoGain group level attempts.

5 METHOD

The primary goal of the analysis in this paper is to use
exploratory methods to illustrate the affordances of our
metadata and mining approach in deriving insights that
link gameplay to learning context. Therefore, the primary
findings in this paper yield insights that relate gameplay
behavior and learning of physics concepts. In this frame-
work, we generate hypotheses about mechanisms and poten-
tial scaffolds that improve learning from gameplay, rather
than to confirm pre-defined hypotheses. To achieve this, we
employ data from a SURGE study described below.

Subjects. 68 eighth-grade students (37 male and 31
female) from six classes taught by the same teacher partici-
pated in this study and used the version of the game
described in Section 2. The public middle school, located in
Southeastern United States, primarily serves a diverse
lower/middle-class population. The intervention was con-
ducted during the students’ science class, and amounted to
approximately 3 hours of gameplay, and 1 hour of pre-post
assessments spread over a week. Only data from the 42 stu-
dents who completed the IRB assent form, the pre-test, and
the post-test is included in this analysis.

Design. The study used a pre-test–intervention–post-test
design. Before playing the game, each student completed a
pre-test adapted from the Force Concept Inventory (FCI).
After the pre-test, students played the SURGE game with
levels designed to roughly alignwith the same focal concepts
questions in the FCI-based test. Students had no prior class-
room instruction on Force andMotion concepts and no prior
experience playing the SURGE game before the study began.
After playing SURGE, students completed the post-test.

Assessment of physics understanding. The pre- and post-tests
consisted of 12 multiple-choice questions based on the Force
Concept Inventory [11]. Questions covered basic concepts rel-
evant to understanding Newton’s Laws: (1) vector combina-
tion and diagonal motion (vectors); (2) the relationship

between velocity, acceleration, and position (acceleration); (3)
the influence of friction on motion (friction); (4) the influence
of mass on motion (mass); and (5) the influence of gravity on
motion (gravity).

Level metadata markup. As discussed, each level was
coded with metadata and invisible tracking objects to facili-
tate post hoc analysis of the progression of students’ solu-
tion attempts in terms of key learning goals and potential
errors related to the learning goals. For analysis, these learn-
ing goals were further grouped into four physics-related
conceptual categories explored in the game: diagonals/deflec-
tions/turns; forces and cancelling; acceleration and friction; mass;
and launching. The diagonals/deflection/turns group inclu-
ded these three kinds of 2D motion. The forces and cancel-
ling group included selecting and cancelling forces to
achieve required speeds. The launching group focused on
Newton’s third Law. The relevant game actions for these
learning goals involved placing force vectors at appropriate
locations to speed up, slow down, or deflect the spaceship.
Because the majority of students did not reach levels that
included the launching learning goals, we did not analyze
this learning goal.

6 RESULTS

We present two sets of results. First, we explore relation-
ships between patterns mined from logged gameplay data
and pre-post learning gains. Then we explore the relation-
ship between pre-post learning gains and game perfor-
mance. t, Our purpose is not to demonstrate the efficacy of
the beta version of SURGE used in the study in terms of
learning gains (significant on vector questions, F(1, 63) ¼
4.37, p < 0.05, h2p ¼ 0.07, but not overall, F(5, 59) ¼ 1.50, p ¼
0.21, h2p ¼ 0.11). Instead, we highlight the affordances of our

metadata and mining approach in deriving insights by link-
ing gameplay to learning context.

6.1 Relationships between Gameplay Patterns
and Learning Gains

In order to investigate student gameplay behavior and its
relationship with overall pre- and post-test performance,
we employed the DSM exploratory data mining technique
described in Section 4 to identify important differences in
trial activity patterns between the groups of students who
demonstrated learning gains (Gain, n ¼ 19) and those who
did not (NoGain, n ¼ 23). The trial sequences were rela-
tively short, and multiple measures were used to define
each trial (see Table 2). As a result, many of the differential
patterns describe a single trial, while others extended over
short sequences of trials.

We ran the mining process iteratively as described in Sec-
tion 4, employing 15 different combinations of measures to
define trials. TheDSMalgorithm identified 65 differential pat-
terns across these mining iterations. Some patterns were less
interesting because they simply confirmed expected relation-
ships. For example, when using measures for the change in
learning goal features and change in error features to charac-
terize trials, the resulting patterns simply indicated that the
Gain group tended to achieve additional learning goal fea-
tures more frequently without increasing the error features.
Though this pattern is generally expected, it confirms that
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low prior knowledge students who gained more on the
assessment also had greater success in the game.

In addition to confirming expected relationships, other
trial features producedmore interesting patterns that we dis-
cuss in greater detail below. We use five trial characteriza-
tions with 15 total patterns to illustrate important differences
in gameplay and t the relationships between gameplay and
learning. Table 3 lists these 15 differential patterns along
with the percentage of levels in which the pattern occurred
(for each group described in Section 4) and the ratio of those
occurrences between the two groups. The patterns that
appeared differentially in the Gain group’s trials are in
highlighted rows. For example, the first pattern, labeled
Gain1 describes a trial in which at least 3 forces were added
and the level was successfully completed by reaching the
end target. Trials matching this pattern occurred 1.56 times
more often per sequence (i.e., the series of trials performed
by a student on a single level) in the Gain group than in the
NoGain group. Overall, this patternmatched at least one trial
in 7.3 percent of the level sequences for the Gain group and
4.7 percent for the NoGain group.

Patterns relating solution planning to learning gains. Pat-
terns Gain1-Gain3 and NoGain1-NoGain3 illustrate that
successful planning and prediction was more strongly
linked to success (both on the level and in application of
physics concepts) for the Gain group. These patterns
involve the addition of multiple forces, which required bet-
ter planning and combining predictions of the effects of
forces. The first group of patterns investigated (Gain1,
NoGain1, NoGain2) were from trials characterized by the
change in forces employed (with respect to the previous trial)
and the end cause (indicating success or failure) for the

trial, where Gain1 was 1.5 times more common for the Gain
group.

The hypothesized link between planning/prediction and
learning is further supported by considering patterns
NoGain1 and NoGain2 in which the NoGain group was
more likely to cause a collision with a dangerous object
when they applied two or more new forces, and more likely
to stop the run after adding a single new force. Considering
the gameplay mechanics and observing student play, stop-
ping the run indicates that the student realized that addi-
tional forces would be required to reach the target or that
their spaceship was not following the intended path. This
suggests that the NoGain group did not fully understand
the consequences of applying additional forces, and adding
multiple forces often led to unexpected collisions. When
they attempted to develop an understanding by adding one
force at a time, they still generated deviations from the
expected trajectory. Sometimes they realized that they
needed to add more forces to reach the goal.

The other differential patterns that included the change in
forces measure (Gain2, Gain3, NoGain3) further suggest that
the Gain group was more effective in planning and predic-
tion because their force additions led to achieving more
learning goals (one or two) without increasing the number
of errors in the solution. On the other hand, the NoGain
group was more likely to increase errors in their solution
even when they added a single force. The lack of progress
indicated by the patterns also suggest that the NoGain
group may have resorted to trial and error methods.

Patterns relating reading time and success measures. Patterns
Gain4-Gain8 and NoGain4-NoGain6 illustrate that the time
spent reading the introductory page was more frequently

TABLE 3
Selected Trial Patterns that Show Differential Usage between the Gain and the NoGain Groups

Measures ID Pattern Freq. Ratio
(Gain :
NoGain)

% of
Levels
(Gain)

% of
Levels

(NoGain)

Change in
Forces, End
Cause

Gain1 [3þ Forces Added,
Target Reached]

1.56 7.3% 4.7%

NoGain1 [2 Forces Added, Collision] 0.77 11.6% 15.0%
NoGain2 [1 Force Added, Stop] 0.77 21.0% 27.2%

Change in
Forces, Change
in Learning Goal
Features, Change
in Error Features

Gain2 [3þ Forces Added,
2 More LG, Same # Errors]

1.99 7.8% 3.9%

Gain3 [3þ Forces Added,
1 More LG, Same # Errors]

1.57 6.9% 4.4%

NoGain3 [1 Force Added, Same # LG,
2 More Errors]

0.61 3.3% 5.4%

Intro Screen Read
Time, End Cause

Gain4 [Long Intro Read,
Target Reached]

1.88 15.9% 8.5%

Gain5 [Long Intro Read, Stop] �>
[Short Intro Read, Stop]

1.71 8.7% 5.1%

NoGain4 [Short Intro Read, Stop] 0.91 43.0% 47.4%
NoGain5 [Short Intro Read, Stop] �>

[Short Intro Read, Stop]
0.81 18.9% 23.4%

Intro Screen Read
Time, Change in
Learning Goal
Features

Gain6 [Long Intro Read, 2 More LG] 2.74 6.9% 2.5%
Gain7 [Long Intro Read, 1 More LG] 1.58 10.4% 6.6%
Gain8 [Long Intro Read, Same # LG] 1.27 41.9% 33.1%

NoGain6 [Short Intro Read, Same # LG] 0.92 79.2% 86.2%

Medal Achieved NoGain7 [No Medal] �> [Gold Medal] 0.70 6.9% 9.9%
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linked to success (on game levels and in application of phys-
ics concepts). As compared to the NoGain group, the Gain
group was nearly twice as likely to successfully complete a
level on a trial where they spent a longer time reading the
introductory material (pattern Gain4). The Gain group was
also more likely to combine long and short reads of the
material (in consecutive trials) and manually stop the trial
(pattern Gain5), indicating that they may have paid more
attention to the introduction especially when they had diffi-
culties in achieving the correct solution. In contrast, the
NoGain group was more likely to combine one or more
short reads, and then stop the trial (patterns NoGain4 and
NoGain5), suggesting that they did not use the introductory
material to help them correct their solutions.

Patterns Gain6, Gain7, and Gain8 also show that the Gain
group’s long reads corresponded to more success in attain-
ing learning goal features. In contrast, the NoGain group’s
short reads did not help in achieving the learning goals. In
combination with Gain4, these results suggest that the Gain
group not only spent more time reading the intro screen,
but they also profited from it more than the NoGain group.

Patterns of medals achieved on subsequent level attempts. At
face value, pattern NoGain7 was particularly surprising
because it indicates that the NoGain group was more likely
to jump directly from a trial in which they did not complete
the level (no medal achieved) to one in which they completed
the level with a gold medal (i.e., the highest possible perfor-
mance on the level). However, a deeper analysis of this pat-
tern showed that this differential occurrence was largely
confined to three short levels that introduced the effects of
change in mass on acceleration. In these levels, a gold medal
was earned for any completion of the level. Furthermore,
the NoGain group often continued to attempt additional
incorrect solutions on these levels before they returned to
the correct solution. Therefore, this pattern does not indic-
ate a particularly useful behavior by the NoGain group.
Instead, this may suggest that the relationship between
force, mass, and acceleration, i.e., Newton’s Second Law,
was particularly confusing for the NoGain group.

6.2 Relationship between Learning Gains and Game
Behavior Covariates

The previous analyses did not link the learning goal fea-
tures with the specific concepts to ensure that a sufficient
number of comparable trial sequences for data mining, In
this section, we present further exploratory analyses to
examine the relationship between in-game behavior (as
measured by triggering learning goal features within certain
conceptual categories) and pre-post learning gains on spe-
cific concepts.

A repeated-measures MANCOVA analysis (along with
separate univariate analyses) was conducted with percent
correct on each post-test question type (vectors, accelera-
tion, mass, friction, and gravity) included as separate meas-
ures. Test administration (pre vs. post-test) was included as
a within-subjects factor. Counts of each different category of
game learning goal features triggered by students’ actions
were included as covariates (to evaluate the relationship
between post-test scores and game behavior). The learning
goal feature covariates with their mean counts and standard
deviations included diagonals/deflection/turns (mean 11.27,

SD 5.64), forces and cancelling (mean 12.61, SC 4.85), mass
(mean 2.05, SD 2.54), and acceleration and friction (mean 6.45,
SD 4.63). All of these covariates were used in the analysis to
examine the influence of each gameplay learning goal count
while controlling for others.

Our analyses focused on the main effects of covariates or
interactions between test administration and gameplay
learning goal covariates to determine if learning gains were
related to contextualized game behavior. None of the effects
were significant in the multivariate tests (i.e., none of the
learning goal covariates explained multivariate improve-
ment across the range of test question types). Most impor-
tantly, univariate tests for acceleration assessment items
showed a significant interaction between test administration
and acceleration and friction learning goal count, F(1, 59) ¼
4.74, p < .05, h2p ¼ .07. Higher numbers of acceleration and
friction learning goals triggered predicted significantly
greater gains on acceleration assessment items, rpartial(59) ¼
.27, p < .05. No other univariate effects were significant in
the analyses.

7 DISCUSSION, IMPLICATIONS, AND FINAL
THOUGHTS

Together, the analyses described in Section 6 illustrate the
potential utility of the contextual metadata coding and data
mining to link gameplay and learning context for more
detailed investigations of student learning and perfor-
mance. Though the overall learning gains were minimal,
incorporating the metadata coding and data mining pro-
vided revealing information about learning within the
game and illustrated the potential for these techniques to
reveal relationships between game performance and
improvement on formal assessments. In this section, we dis-
cuss the implications of these results and our next steps to
expand upon this approach in future analyses.

7.1 Discussion

Relationships Between Gameplay Patterns and Learning Gain.
Gameplay patterns provided insights into student learning
processes in this pilot version of SURGE. The data mining
results illustrated three important differences in level
attempt behavior between the students who showed a
learning gain on the pre-/post-test and those who did not.

One set of identified patterns indicated that low-prior
knowledge students who developed the competencies of
using three or more new force commands to correctly solve
a level gained more on the formal assessment also. On the
other hand, low-prior knowledge students who showed no
gains on the assessment had difficulties in improving theory
results from their previous trial even when they added one
force command at a time. A reason for this lack of success
may be that these students could not link underlying phys-
ics principles to the game scenarios, and they tried to over-
come their lack of knowledge (or misunderstanding) of the
physics concepts by making repeated incremental modifica-
tions that did not result in improved outcomes. Alterna-
tively, these students may have adopted a brute force trial-
and-error strategy for game play, and it worked for some
simple levels. However, the lack of systematic planning,
prediction, and interpretation of game play resulted in lack
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of success and missed opportunities for learning the physics
concepts.

The observed differences may also reflect an underlying
difference in students’ working memory capacities. Plan-
ning, prediction, and interpretation are often a function of
domain-specific knowledge and domain-general working
memory capacities. Students who exhibited more planning
behavior may have had more free working memory resour-
ces to extract meaningful general rules from their experien-
ces in the game. This analysis may imply a causal link
between the ability to plan and predict the outcome of game
actions and the learning of the physics concepts, but addi-
tional studies are needed to confirm the link to physics
learning.

A second set of identified patterns for students with
learning gains indicated a similar link between time spent
in (re-)reading the introductions to a level and improved
performance on that level. This may be attributed to reading
abilities: Perhaps better readers found the content useful,
and extracted useful information that led to better level sol-
utions. Differences in verbal working memory capacity
might also explain this finding: Students who read the text
for a longer period of time may have better abilities to
understand and retain information from the intro materials
while exploring the game map.

Another pattern implied that students with no learning
gains more frequently showed jumped from a failure to a
complete success for a level. Further analysis showed that
this pattern was misleading – this pattern occurred only for
some of the simpler levels in which mass concepts were
introduced, and the sudden jump from failure to comple-
tion happened after these students’ had made repeated
unsuccessful attempts to solve the rather simple level. It
may be that trial-and-error approaches eventually result in
success for these simple levels, while greater understanding
and planning is a prerequisite for completing some of the
more complex levels.

Since some activities (more extensive planning/predic-
tion and reading of the provided material about the levels)
were linked with important game success measures and
overall learning, one potential implication is that dynamic
level sequencing and appropriate scaffolding for these
activities (particularly for students who are less willing to
engage in them) could aid physics learning during SURGE
gameplay. Since the data mining analysis is exploratory,
these results do not confirm any experimental hypotheses,
but rather suggest that these areas may be fruitful for fur-
ther investigation of the connections between learning and
gameplay behaviors. Future refinements and experiments
with SURGE will systematically test these scaffolding
hypotheses.

Relationship between learning gains and game behavior covari-
ates. Finally, incorporating the metadata coding into analy-
ses of learning gains provided further insights about
specific physics concepts and learning in SURGE. The anal-
ysis of the effects of learning goal feature covariates on test
learning gains showed that gains on acceleration items were
greater when students successfully performed behaviors
that involved acceleration and friction.

The relationship between improvement on acceleration
test items and game successes with acceleration scenarios

suggests that the students who solved more of the accelera-
tion-related levels successfully in the game learned more
about the related physics concepts. However, successes in
acceleration scenarios did not relate to larger test gains in
other item types. This emphasizes the content-specific con-
nection between game successes and test learning gains.
Though this result is currently limited to acceleration, it pro-
vides an important first step by demonstrating that success
in contextualized game behavior can be directly related to
learning of specific physics concepts. The metadata coding
and the DSM methods can help us identify the relations
between contextually-relevant game behaviors and assess-
ment-based learning gains to draw inferences about how
domain knowledge can be acquired from a game.

7.2 Implications and Future Work

In the original SURGE (SURGE Classic), the lack of contex-
tual metadata limited our analyses to pre-post test gains
and high-level analyses of gameplay data (e.g., “how many
actions did the player use per trial?”). We collected raw
gameplay data, but without level-specific metadata, sequen-
ces of actions could not meaningfully be analyzed in terms
of related physics concepts and the context in which they
were applied [17]. In the current study, the contextual meta-
data provided insight into the connections between game-
play and learning. The analyses presented in this paper
represent a valuable first step toward distilling large
amounts of player data and interpreting them as domain-
relevant learning behaviors by: (a) incorporating contextual-
ized metadata during level design and (b) analyzing game-
play behaviors in an automated manner using this
metadata rather than analyzing raw player actions. Our
findings demonstrate that this approach provides a deeper
understanding of how gameplay is connected to the devel-
opment of both intuitive and formal understandings in
ways that can support real-time adaptation of gameplay. In
SURGE Next, these results can be leveraged to support
players’ evolving understanding of the underlying physics
relationships, as well as their game-playing and problem-
solving strategies.

Based on these findings, we are working to expand and
refine the approach in terms of the grain-size of the focal
metadata tagging. In the current metadata level coding, spe-
cific physics learning goals and corresponding errors were
the focus. Each learning goal was coded primarily within
the first few levels that introduced the relevant concepts. As
each subsequent new learning goal was introduced, how-
ever, that new learning goal became the focus. This was an
effect of both a primary focus on the “new” learning goals
as they occurred in the progression and of the complexity of
coding for many different learning goals/errors in a single
level. In order to better analyze students’ developing under-
standing of the physics concepts over the full course of the
game, we are refining our metadata markup approach to
focus on maneuvering regions in a level and a minimal
amount of information about the expected maneuver, then
automatically relating the student’s maneuvers to relevant
facets [20], [21] of physics understanding (instead of explic-
itly marking each learning goal and error of interest in the
level). This approach builds on a knowledge-in-pieces theo-
retical account of student learning [7], [8]. A facet-based
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account of student learning assumes that students bring a
large number of resources and ideas with them that com-
bine everyday experiences and formal learning experiences.
The specific ideas that students apply in a given context are
cued by the particulars of the context. Learning from this
perspective involves students refining these specific ideas
(or facets) in terms of how they are combined, cued, and
applied.

This facet-based approach is promising for data-mining
in games because facets of student thinking can be inferred
as corresponding to a given set of forces employed during
a maneuver, in combination with the expected motion
resulting from the maneuver. These combinations of
actions and contexts for the actions remain consistent
across levels. Therefore, it suffices to mark the regions in
which maneuvering is necessary along with the expected
motion (i.e., direction of motion and/or speed) in the con-
text of the level design. Then the connection to physics
understanding can be inferred by combining this informa-
tion with knowledge of the student’s actual use of forces
within the maneuvering region. Thus, the quantity of meta-
data markup needed for a level is a more compact per
maneuver rather than per potential learning goal and error of
interest. This significantly reduces overhead for marking
levels, while allowing us to identify facets across the full
progression of levels and thus track and analyze learning
progressions and processes.

In the level from Figs. 1 and 2, for example, only the gen-
eral region inwhich the turningmaneuver can be executed is
marked, and the metadata only contains a name and the
expected direction of motion upon exiting. Given this very
simple markup, the example level solution can be automati-
cally analyzed based on the student’s placement of a cancel-
ing (down) force and a perpendicular (right) force overlap-
ping each other within the maneuver region, combined with
the logged information that the player entered the region
moving north and exited in the expected direction of east.
For this example, the resulting facets would be “canceling”
(indicating the student understood they could stop the
northward motion by using an opposing force) and “force as
mover” (indicating the student understood that then apply-
ing a force to the east would cause movement in that direc-
tion). In contrast, if the student used the angled trajectory
approach illustrated in Fig. 2B, the automated analysis
would identify the resulting facets as “force as deflector”
(indicating the student understood how to first deflect to the
northeast) and then “component cancelling” (indicating the
student understood how to cancel the northward velocity
component with a force applied toward the south).

Equally important, common errors can also be identified
in terms of facets with the same, simpler markup instead
of requiring additional metadata to describe each potential
error. If the student had only placed a force to the east
(resulting in the incorrect trajectory illustrated in Fig. 2B)
this would automatically be recognized as an error
described by the application of the facet “force as a mover”
without considering or understanding the other facets of
“force as a deflector” or “canceling.” In this approach,
most of information about how to translate level context
plus gameplay behavior into physics understanding is con-
tained in the rules that connect facets to the combination

of: (1) motion entering a maneuver, (2) expected motion
exiting a maneuver, (3) actual motion exiting a maneuver,
and (4) the forces employed in the maneuver. The informa-
tion for (1), (3), and (4) is automatically logged by any
invisible tracking object in a SURGE level, so the necessary
coding to complete the contextual information for a level is
simply adding tracking object(s) to indicate the region(s) in
which a maneuver may occur and providing simple meta-
data indicating the expected motion upon exiting each
region. Thus, with less tagging, we can analyze not only
whether or not the student displays a normative under-
standing, but also whether or not the student displays
behaviors indicative of specific common alternative con-
ceptions, which then could provide the basis for produc-
tive targeted scaffolding.

Further, to track developing understanding more consis-
tently over the course of the game, we intend to refine the
level design process to incorporate repeated level segments
throughout the progression. Individual level segments will
assess student understanding of each physics concept, but
these concepts will re-appear in multiple levels over the
course of the game. This design allows for more systematic
assessment of students’ developing proficiency with indi-
vidual learning goals and can support consistent formative
assessment in a classroom setting. Finally, the design may
provide more stable diagnostic information that could drive
adaptive content.

Another issue with our current data mining analyses is
that the characterization of trials (i.e., each level attempt) is
limited to high-level features. In order to assess planning,
solution refinement, and related activities more effectively,
we propose to extend our approach with additional meas-
ures that describe each solution component. In SURGENext,
a solution component is a contextualized force placement,
which can be linked to relevant physics principles (e.g., a
deflection, a vector component cancellation, or a force not
triggered on the current trajectory). The use of additional
performancemeasures may help us quantify how changes in
force placements from one trial to the next bring the
student’s solution closer to the goal (or not). This analysis,
combined with the new markup language, can clarify how
students’ strategies and solution structures evolve.

Ultimately, observed behavior patterns can be used to
drive real-time adjustments of the scaffolding and game
experience. For example, predictive classifiers can be
applied to dynamically adjust the scaffolding based on a
student’s behavior patterns in early levels. We are develop-
ing a scaffolding approach through dialog with agents
(characters) in the game world, which is framed as the stu-
dent helping the character to resolve a mission challenge or
task. A key role of the agents in this approach will be engag-
ing the students in prediction, reflection, and articulation of
important causal relationships. This dialog first focuses on
helping the student reflect on their experiences in a level
and articulate the relevant causal relationships involved in
core game maneuvers. The dialog then extends this reflec-
tion to articulating the specific relationships in terms of
more formal disciplinary ways of thinking. We refer to our
approach as “explanation games” [4], [5] based on research
on self-explanations (e.g., Roy & Chi, 2005; [18]) as well as
prediction, observation, and reflection (Kearny, 2004).
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7.3 Final Thoughts

Commercial game designs provide powerful affordances
for science learning and engagement. It is important to
remember, however, that these affordances evolved under
different pressures and goals that may not have links to sci-
ence learning. Rethinking and redesigning these conven-
tions to support logging and analysis of gameplay behavior
with respect to both the learning context and the gaming
context is of central importance. Early work on data mining
in games often focused on mining of data at the level of spe-
cific actions without aggregating up to more salient levels in
terms of students’ understanding. Incorporating relatively
small amounts of metadata to describe the learning and
gaming contexts within games can produce rich data on stu-
dent behavior. In combination with data mining techniques,
this approach can yield deeper insights into science learning
with games, which in turn can be leveraged to enhance
adaptive scaffolding. The approach described here allows
games to continually capture context and, therefore, assess
actions in context in real time. As a result, one can systemat-
ically aggregate data in support of inferences about student
understanding, which in turn could then drive real-time
scaffolding based on these inferences about specific facets of
students’ normative or alternative conceptions.
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