
Learning How to Construct Models
of Dynamic Systems: An Initial Evaluation
of the Dragoon Intelligent Tutoring System

Kurt VanLehn, Jon Wetzel, Sachin Grover, and Brett van de Sande

Abstract—Constructing models of dynamic systems is an important skill in both mathematics and science instruction. However, it has

proved difficult to teach. Dragoon is an intelligent tutoring system intended to quickly and effectively teach this important skill. This

paper describes Dragoon and an evaluation of it. The evaluation randomly assigned students in a university class to either Dragoon or

baseline instruction that used Dragoon as an editor only. Among students who did use their systems, the tutored students scored

reliably higher (p < .021, d ¼ 1.06) on the post-test than the students who used only the conventional editor-based instruction.

Index Terms—Intelligent tutoring systems, educational simulations

Ç

1 INTRODUCTION

THE major issue addressed here is teaching students how
to construct models of natural and man-made dynamic

systems. Some terms that will be used here are: A system is
part of the real world, and a dynamic system is one that
changes over time. A model is an expression written in for-
mal modeling language. The behavior of the system over time
should match the predictions of the model. While some mod-
els can have their predictions generated by hand calcula-
tion, it is more common today to have computers do the
calculations. Most models have a set of parameters, which
are constant with respect to the time course of the system,
but the values can be changed by users of the model.
Constructing a model means developing a sufficient under-
standing of the system that one can write a model of it in
the modeling language. Exploring a model means manipu-
lating the parameter values of a given model and studying
how these changes affect the model’s predictions. Modeling
refers to either constructing a model or exploring a given
model. Our tutor system, Dragoon, supports both model
construction and model exploration.

Modeling of dynamic systems is taught in the university
at two levels. For students with strong mathematical back-
grounds, it is taught using partial differential equations and
MATLAB [1] or similar systems. It is typically a required
topic in mechanical, industrial, electrical and other engi-
neering degrees. For students with less advanced mathe-
matical backgrounds, system dynamics modeling is taught

with Stella [2], Vensim [3], Powersim [4] or similar systems,
and it is typically a required course for some business and
social science degrees.

In high school and earlier grades, modeling is prominent
in recently developed standards. In the Next Generation Sci-
ence Standards (http://www.nextgenscience.org), only
eight scientific practices are threaded throughout the stand-
ards, and “developing and using models” is one of them. Of
the 71 high school science performance expectations, 15 start
with “develop a model of . . .” or “Use a model to. . ..” For
example, HS-ESS2–6 is “Develop a quantitative model to
describe the cycling of carbon among the hydrosphere, atmo-
sphere, geosphere and biosphere.” In the Common Core
State Mathematics Standards [5], modeling is one of eight
mathematical practices. The content topics taught at the high
school level are marked with a star when modeling is
involved (CCSSO, 2011). For example, there is a star on
“Create equations and inequalities in one variable and use
them to solve problems,” whereas there is no star on “Solve
systems of linear equations exactly and approximately (e.g.,
with graphs).” Of the 117 high school topics, 45 percent are
starred and thus involvemodeling.

The problem addressed here is developing instruction that
helps students learn how to constructmodels of dynamic sys-
tems. The focus is on both high school students and college
students that have little more than a high school mathematics
background (i.e., some algebra).

Fortunately, this research problem has enjoyed nearly
30 years of work [6], [7]. In a recent review of educational
applications of system dynamics model construction,
VanLehn [8] defined a multi-dimensional classification of
research problems. Four of themajor dimensionswere:

� What modeling language?
� Model construction or model exploration?
� Howwere the systems presented to students?
� What were students intended to learn?

� K. VanLehn, J. Wetzel, and S. Grover are with the School of Computing,
Informatics and Decision Systems, Arizona State Unviersity, Tempe, AZ
85281. E-mail: {kurt.vanlehn, jon.wetzel, sgrover6}@asu.edu.

� B. van de Sande is with the Pearson Education, 3075 W Ray Rd #200,
Chandler, AZ 85226. E-mail: brett.vandesande@pearson.com.

Manuscript received 28 Jan. 2015; revised 2 Nov. 2015; accepted 16 Dec. 2015.
Date of publication 7 Jan. 2016; date of current version 16 June 2017.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TLT.2016.2514422

154 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 10, NO. 2, APRIL-JUNE 2017

1939-1382� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 27,2024 at 01:39:23 UTC from IEEE Xplore. Restrictions apply.

This introduction begins by locating this research project
along each dimension, then reviewing prior research that
also falls into that cell of the multi-dimension classification.

1.1 Classification of the Research to be Presented

For modeling dynamic systems, the two most widely used
modeling languages in K-12 education are graphical system
dynamics modeling and agent-based modeling. A system
dynamics model is essentially a set of coupled ordinary differ-
ential equations. However, Stella [2] and other model editors
hide some of the mathematical details from the user by using
a graphical “stock and flow” notation, which is described in
the next paragraph. An agent-based model is a set of programs,
one per agent, that control the agents’ appearance, movement
and other properties. NetLogo (https://ccl.northwestern.
edu/netlogo/) is currently the most widely used language
for agent-based modeling, although there are others [9], [10],
[11], [12], [13], [14]. Interesting macro-level behavior often
emerges from simple micro-level agent programs; this prop-
erty is called emergence [15], [16]. Although emergence has
excited both scientists and science educators, system dynam-
ics models are still widely used professionally and are often
simpler than agent based models. Thus, this project has
focused on graphical systemdynamicsmodeling languages.

As an introduction to the basic concepts, Fig. 1 shows a
model in stock-and-flow notation for this system: “A rabbit
population starts with 100 rabbits. Assuming there are no
deaths and that the population increases by 10 percent per
month, show the population over 12 months.” The rectangu-
lar node is called a “stock” and represents a quantity that is
the integral of its inputs. The inputs to a stock are shown
with double-line arrows called “flows.” The icon in the mid-
dle of the flow, which is intended to look like a valve, is actu-
ally a node representing the value of the flow. Clicking on it
(or any other node) opens the node editor, which in this case
would show that the number of “births per month” is the
product of “rabbit population” and “birth rate”. Inputs to
nodes other than stocks are shown with thin arrows, which
is why “rabbits born per month” has two arrows coming into
it. Birth rate is an “auxiliary” node, which means it is neither
a stock nor a flow. In general, auxiliary nodes can have any
mathematical function inside them, but this particular node
has only a constant (0.1) as its value.

Two common instructional activities are model construc-
tion and model exploration [6], [8], [17], [18], [19]. During a
model construction task, students are given a presentation of
the system and asked to construct a model of the system.
During a model exploration task, students are given a
model instead of constructing it. They manipulate the mod-
el’s parameter values in order to see how its predictions
change. With systems like Stella and NetLogo, the values of
parameters can be manipulated by moving sliders, and the
resulting predictions are displayed as graphs that change

shape in real time as the user manipulates a slider. Often
students are not shown the model itself, but only the sliders
and graphs. The research presented here addresses only
model construction and not model exploration.

Some common presentations of systems [8] are

� a short text [20]
� a set of documents [21], [22], [23], [24]
� a simulation of the system [11], [25], [26], [27], [28], [29]
� access to the real system and tools for measuring its

properties [30].
For instance, students might be asked to construct a

model of the population of Phoenix, Arizona given a short
text such as “In 2010, the population of Phoenix was
1,445,632 and was increasing at 9.4 percent per year.” Alter-
natively, studentsmight be given as set of source documents,
including census reports, population maps, etc. In the
research presented here, the presentations are short texts.

There are many reasons for including model construction
in the curriculum. Some of the major instructional objec-
tives, discussed more thoroughly in [8], are:

� Improved domain knowledge. Sometimes students are
expected to learn fundamental domain principles
and concepts by constructing models of systems that
involve them. For instance, physics students may be
taught the principles of Newtonian dynamics by con-
structing models of falling blocks, cannonballs pro-
jected at angles and so on.

� Improved understanding of a particular system. Some
systems are so important that students need to
understand them deeply. For instance, earth science
students might study global warming by construct-
ing submodels then integrating them.

� Understanding the role of models in science. Model con-
struction can help students appreciate the epistemol-
ogy of models. Students can grapple with issues like
accuracy, parsimony, under-determination, and so
on [31], [32].

� Improved model construction skill. When model con-
struction is treated as a cognitive skill, system pre-
sentations usually contain the information needed
for constructing a model, and students are not
expected to retain much information about the sys-
tem and the domain principles underlying it. The
focus is on becoming skilled in constructing models
regardless of the content of the system.

This research focuses on just the last instructional objec-
tive: improving student’s model construction skills. Such
skill is arguably a pre-requisite for using model construc-
tion for the other purposes listed above [25], [33].

1.2 Prior Work on Teaching Model Construction

When Stella pioneered a graphical notation for models [34],
many educators started to explore its instructional potential
for K-14 instruction. Classroom studies of system dynamics
model construction started with case studies then rapidly
scaled up to large professional development projects. The
STACIN project [19] and the CC-STADUS and CC-SUS-
TAIN projects [35] taught over 260 high school science
and math teachers how to use Stella. One major finding was
that the teachers constructed most models, which students

Fig. 1. Stock and flow model of a rabbit population.

VANLEHN ET AL.: LEARNING HOW TO CONSTRUCT MODELS OF DYNAMIC SYSTEMS: AN INITIAL EVALUATION OF THE DRAGOON... 155

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 27,2024 at 01:39:23 UTC from IEEE Xplore. Restrictions apply.

then used for model exploration [18]. On the few occasions
when students were asked to construct models, the models
were quite simple and the systems were presented by short,
highly explicit texts. Teachers reported that it was difficult
and time consuming to teach anything beyond basic model
construction skills.

Perhaps in response to these difficulties, several research
projects developed qualitative or partially qualitative
modeling languages [30], [36], [37], [38], [39], [40], [41], [42],
[43], [44], [45], [46], [47], [48], [49], [50], [51]. Although there
have been some promising results, there is as yet no experi-
mental evidence that these qualitative languages are easier
to learn than the quantitative graphical ones.

Seeking perhaps to find the underlying bottleneck in learn-
ing, several projects developed simple tests (often called con-
cept inventories) for measuring system thinking, and used
them to show that decision makers often did surprisingly
poorly on them [52], [53], [54], [55], [56], [57]. Fortunately,
even a small amount of instructionwas sufficient to overcome
at least some of the deficits, at least with some students [58].

Several projects have tried to understand how different
methods for displaying models and predictions affect
students’ understanding and learning [27], [28], [59], [60].
The results uncovered no great flaws in stock-and-flow dis-
play or the display of model predictions as graphs.

Some studies have undertaken detailed qualitative analy-
ses of students’ behavior as they tried to construct models
[18], [61], [62], [63], [64], [65]. Many of the studies contrasted
the behaviors of successful and unsuccessful modelers.
Alessi [18] provided a sample of the observed issues:

� Students tend to confuse stocks with flows.
� Students try to incorporate the formulas of previous

science andmath classes (which they often donot fully
understand) instead of doing true system analysis.

� When models do not work correctly, students include
fudge factors. Fudge factors are formulas, constants,
or logical conditions designed to artificially fix the
problem, and not to realisticallymodel the system.

� Students fail to test their models well, so the models
tend to work only for common conditions.

� Students confuse flows with causality.
� Students create models that are unnecessarily com-

plex and abstract.
� Students try to copy and adaptmodels from instructors

or textbooks instead of thinking through the phenome-
non and generating their ownmodels from scratch.

� Students engage in trial-and-error modifications in
the hope that the results will come out right.

� Students create initial models with too many compo-
nents when they should start with a simple model
and add complexity as needed.

� Students ignore the units of variables and, as a result,
combine variables that have different units.

Bravo et al. [25] conducted a formative evaluation of a
tutoring system for model construction. The system, Co-
Lab, provided feedback and hints when students asked for
help as they constructed a model. The evaluation uncovered
several issues (e.g., students failed to make any changes in
their model about 20 percent of the time after receiving
advice) but did not measure learning gains nor compare the
tutoring system to another form of instruction.

In summary, there is ample evidence that students find it
difficult to learn how to construct models of dynamic sys-
tems. However, only a few methods of scaffolding the learn-
ing have been studied so far, such as using qualitative math
instead of ordinary math, and modifying the appearance of
the modeling language.

Nonetheless, there are many potentially beneficial meth-
ods that can be drawn from the wider literature, which
includes agent-based modeling and model exploration. Van-
Lehn [8] identified severalmethods for helping students learn
how to construct models. Table 1 lists them and indicates
which are used byDragoon and discussed in the next section.

2 DRAGOON AND ITS INSTRUCTION

Prior to the study reported here, we conducted six studies in
summer school classes for high school students, three studies in
a university sustainability class, and one study in a university
informatics class [96], [97], [98], [99], [100], [101]. Although some
of these studieswere formal tests of hypotheses, all of them also
served as formative evaluations. That is, from observations,
interviews, log files and screen-capture videos, we inferred
ways that the Dragoon system and our instruction could be
improved. This section describes themajor lessons learned, and
how they relate to the experience of other researchers.

2.1 The Modeling Language

The initial version of Dragoon (which was called AMT) used
the stock-and-flow notation. During focus groups with high
school students, we found that they didn’t understand the
notation well even after using Dragoon for two hours. They

TABLE 1
Methods for Scaffolding Model Construction

Tutoring

� Feedback/hints on the model [20], [25], [66]
� Feedback/hints on the student’s process

(meta-tutoring) [20], [24], [67], [68]
Concrete articulation strategy [69], [70], [71]
Decomposition into subsystems [69], [72], [73]

� Reflective debriefings [74], [75], [76]
Answering student questions [24], [37], [77], [78], [79]

Clarifying the modeling language

� Notation for model [26], [27], [28], [30], [41], [44], [71], [80]
� Grounding the symbols [30], [41], [51]
� Facilitating comparing the model’s

predictions to the system’s behavior [30], [49], [81], [82]
Students explaining their model [30], [69], [83]

Gradually increasing complexity

Hiding model features [30]
Qualitative-first model construction [38], [48], [65], [84]

� Model progressions [85], [86], [87], [88], [89], [90]

Other scaffolding

Teachable agents and reciprocal teaching [66], [91], [92],
[93], [94]
Mental execution of models [48], [60]
Test suites [66]

� Generic models [44], [80], [95]
Gamification [21]

� indicates ones used by Dragoon.

156 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 10, NO. 2, APRIL-JUNE 2017

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 27,2024 at 01:39:23 UTC from IEEE Xplore. Restrictions apply.

understood that the thin arrows indicate inputs, but they
didn’t understand why the double arrows, which were also
inputs, were drawn differently. They thought the cloud-like
iconwas a node, but it isn’t, so they thought it should be elim-
inated. They saw no point in having auxiliary nodes for con-
stants, since they could put the constants inside expressions
of other nodes. Several students suggested that we use func-
tionmachine notation.

Simplifying the notation of system dynamics models is
not popular, given how entrenched the stock and flow not-
ation is. However, the Model-It project did use a novel nota-
tion [30]. The modeling language was similar to concept
map notation in that it had just one kind of arrow and one
kind of node. However, when the user clicked on a link to
edit it, it turns out that there were two kinds of links: Imme-
diate and Rate, which correspond to the thin arrows and the
double arrows of the stock-and-flow notation, respectively
[see the Appendix of 102]. However, the Rate links (and
hence the implicit stock nodes) were not often used. In one
of the final studies of Model-It, only 26 percent of the stu-
dents used any Rate links at all [30, p. 112]. Our instruc-
tional goals placed more emphasis on dynamic systems, so
we highlighted the necessary distinction between stocks
and non-stocks, but dispensed with the superfluous distinc-
tion between flows (or Rate links) and regular links.

Dragoon’s current notation, which is illustrated in Fig. 2,
uses function machine notation in that an arrow always rep-
resent an input. However, Dragoon uses three three kinds
of nodes:

� Accumulators: Stock nodes (rectangles) were renamed
accumulators; the initial value of the accumulator is
shown inside it. The value of an accumulator at time
T þ 1 is its value at time T plus the value of its inputs
at time T.

� Parameters: A parameter (a diamond) is a constant
whose value is controlled by a slider.

� Functions: Function nodes (circles) can in principle
have any function inside; we have implemented arith-
metic operations aswell as some common functions.

The focus group students wanted to be able to see all the
details of their models without having to open any of the

nodes. We considered displaying the mathematical expres-
sions inside the nodes, as is done with functionmachine nota-
tion. However, function machines tend to use short, one-
character names for quantities, whereas a good practice for
modeling is to use meaningful names such as “rabbit pop-
ulation.” These long names thwart displaying the expression
inside the node. In order to satisfy the students’ wish for
transparency on at least some simple models, the notation
uses the following conventions.

� When an input to an accumulator should be sub-
tracted from its value, then that input’s arrowhead
has a little circle with a negative sign inside it.

� If a function is a sum of its inputs, then a þ appears
inside it. As with accumulators, if an input is negated
before being included in the sum, the input’s arrow-
head has aminus sign inside a small circle.

� If a function is a product of its inputs, then a � appears
inside it. If any of the inputs is inverted before
being included in the product, then a small circle with
/ inside it appears at the input’s arrowhead.

These conventions allow most models to be written so
that all their mathematical details can be inferred from
their appearance. Users can write models that include
more complex mathematical expressions inside the func-
tion nodes, but such nodes will display nothing inside
their circle, so the students will need to click on the node
to see what it has inside it.

2.2 Grounding: Choosing Names for Nodes

In commercial system dynamics editors, the user chooses
names for the quantities. However, Dragoon needs to know
the quantity that such a name refers to so that it can deter-
mine if the user’s definition is correct. For instance, if Dra-
goon allowed students to type in their own names, and the
students chose “R,” then Dragoon would need to guess
whether “R” refers to “rabbit population,” “rate of rabbit
births” or some other quantity. When Bravo et al. [25] let
students type names for nodes, only 74 percent of the stu-
dent names were correctly matched to system quantities.
This is a general problem, called the grounding problem,
that occurs when two participants in a dialogue struggle to
arrive at the same meaning for a term [103].

Model editors have used several methods for reducing
grounding problems, but none are perfect (see [8], Section
8.2.2 for discussion). For instance, Model-it [30], Modeling-
Space [51] and Vmodel [41] had students first define objects
and then define variables as quantitative properties of the
objects. Thus, students would first define “stream” as an
object then define “phosphate concentration” as a quantita-
tive property of it. However, when students were given a
list of terms such as “water”, “tanks”, “water pressure” and
“water level in a tank”, they had trouble identifying which
terms were variables [48].

The initial version of Dragoon attempted to avoid this by
giving the student nodes that had appropriate names but
were otherwise undefined. For our rabbit population exam-
ple, it would give them nodes labelled “rabbit population,”
“births per month” and “birth rate.” Unfortunately, despite
all attempts to make the names crystal clear, students still
misinterpreted them regularly. For instance, some students

Fig. 2. Dragoon screen.

VANLEHN ET AL.: LEARNING HOW TO CONSTRUCT MODELS OF DYNAMIC SYSTEMS: AN INITIAL EVALUATION OF THE DRAGOON... 157

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 27,2024 at 01:39:23 UTC from IEEE Xplore. Restrictions apply.

would build a model just like the one in Fig. 1, but the
flow would be named “birth rate” and the constant-valued
node would be named “births per month.” Interviews with
students uncovered the fundamental problem: They would
only read the first word or two of the name, and if it seemed
at all appropriate, they would use it without looking to see
if there was a node with an even better name.

Our next attempt at solving the grounding problem put
all the names in a hierarchical menu, so that students would
be forced to choose among similar names. For the rabbit
problem, the menu was:

� Rabbit population
� Birth . . .

� rate
� per month

When the menu first appeared for naming a node, only
“rabbit population” and “birth” would be visible. Students
needed to click on “birth” which would then display the rest
of the node names and allow them to pick one. This signifi-
cantly reduced the grounding problems, but students com-
plained about having to navigate the hierarchical menus,
particularly when there were only a few possible node
names, as in our rabbit example. Thus, we switched to listing
the names alphabetically in a flat, non-hierarchical menu.
This made the repetition of words at the beginning of the
names quite salient. This appeared to work as well as the
hierarchical menus, and it was faster to navigate.

In order to encourage students to choose names care-
fully, some problems have menus that contain names that
are not necessary in the model. For instance, in a model to

be discussed in a moment, only three nodes are necessary
but six names appear in the menu (see top pane of Fig. 3).

2.3 Constraining Node Editor Actions

Like all system dynamics editors, Dragoon’s users define a
node by opening a pop-up node editor, which is essentially
just a form that needs to be filled in. Although our initial
node editor gave students considerable freedom in the
order in which they filled out the form, this freedom often
led to confusion. The current system can require that the
blanks in the form be filled in a specific order. It enforces
this ordering by enabling one blank at a time (see Fig. 3).

2.4 The Display of Predictions

Like all modern system dynamics editors, Dragoon can plot
a graph of the values of a selected node over time. A com-
mon instructional problem is that students often do not
notice when their model’s predications fail to match the sys-
tem’s behavior [18]. Even if a graph of the value of a system
quantity is given to the students as part of the system
description, students often mistakenly think that their mod-
el’s graph matches the given graph.

In order to get students to notice when their model’s pre-
dictions do not match the given behavior, Dragoon puts the
system’s behavior and the model’s predictions on the same
graph. For instance, if the student mistakenly put the value
of “birth rate” as 10 instead of 0.1, then Dragoon would dis-
play the graph of rabbit population shown in Fig. 4. The
green line with square points indicates user’s model’s pre-
diction, and the red line with circular points is the system’s
behavior. This instructional method has been used by other
systems as well [25], [104].

2.5 Tutorial Feedback

Dragoon has two major modes, author mode and student
mode. In author mode, the user enters not only a model but
also a system description, time ranges, time units, and other
details. In student mode, the screen opens showing a descrip-
tion of the system to bemodelled. The student enters and tests
amodelwith help fromDragoon. The amount of help given to
the student is determined by the scaffoldingmode:

� Editor mode: The student gets no help. Dragoon acts
like Stella, Vensim or any other model editor, except
that students select the name of a node from a list.

� Test mode: Whenever the student asks for a plot of a
node’s value, both its model values and the author’s
model’s value are displayed in the same graph

Fig. 3. Initial and final state of the node editor.

Fig. 4. Dragoon’s graphs and sliders.

158 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 10, NO. 2, APRIL-JUNE 2017

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 27,2024 at 01:39:23 UTC from IEEE Xplore. Restrictions apply.

(see Fig. 4). This is the only feedback that the stu-
dent gets.

� Immediate feedbackmode:Whenever the student enters
something in the node editor, the entry turns green,
red or yellow. It turns green if the entry matches the
corresponding element of the author’s model of the
system (see Fig. 3), and red otherwise. However, if
the student has alreadymade several mistakes on this
entry, then instead of turning red, the student’s entry
is replaced by the author’s entry and colored yellow.
This is sometimes called a “bottom-out hint” in the
tutoring literature [105]. Such help prevents frustra-
tion and offers an opportunity to learn.

� Coached mode: The student receives not only imme-
diate red, green and yellow feedback on each step,
but also receives process advice about what steps to
do next [20], [68], [106] and how to use the feedback
appropriately [107].

Immediate feedback mode was included because it has
been used successfully by other systems [20], [25], [105].
However, a common issue for immediate feedback is help
abuse: Instead of trying hard to make an entry, students
repeatedly either ask for help or make errors deliberately
until the tutoring system tells them what to enter [108]. A
variety of methods for reducing help abuse have been tried,
but none have been a stunning success [107], [108], [109],
[110]. In Dragoon, help abuse occurs when a student makes
enough deliberate errors that Dragoon fills in the entry and
colors it yellow. To discourage making errors deliberately,
when even one entry in a node’s definition is yellow, then the
perimeter of the node’s image is yellow. Students figure this
out quickly, and it seems to reduce help abuse considerably.
In order to further encourage students to think hard before
making an entry, Dragoon will color a node solid green if the
student defines it without making a single error (Fig. 2).
Although these simple ideas for reducing help abuse seem to
work, it would be simple and interesting to run an experi-
ment comparing help abuse rates with and without the node
coloring policies.

Whereas immediate feedback mode is feedback on the
students’ work product—the model being produced, coached
mode is feedback on the students’ process—what they choose
to do next. The basic idea is backward chaining [111], but Dra-
goon explains itmore simply, with these feedbackmessages:

1. Although the quantity you’ve picked is in the
author’s model, you should follow the Target Node
Strategy, which says you should start by defining a
node for a quantity that the problem asks you to
graph or focus on, then define nodes for its inputs,
and then define nodes for their inputs, etc. That way,
every node you create is an input to some node.

2. Please follow the Target Node Strategy. That is, fin-
ish any incomplete node (triangle or dashed border)
or, if there are no incomplete nodes, select a quantity
the problem asks you to graph or focus on.

3. It is too soon to work on this node. Please follow the
Target Node Strategy.

Dragoon keeps count of how many times a particular
type of feedback has been presented, so the three messages
above are presented for the first, second and subsequent

times that this piece of feedback is needed. (All feedback
messages have a similar three-fold presentation.) If the stu-
dent chooses to ignore Dragoon’s advice and create a pre-
mature node, then it turns blue but otherwise functions just
like a green (“correct”) node. In three studies that compared
Dragoon with and without coached mode, students learned
more with coached mode [20].

2.6 Schemas and a Theory of Skill Acquisition

Generic solutions to problems are often called schemas [112].
Mathematics textbooks often present many problems that
are instances of the same generic schema. Mayer [113] ana-
lyzed 10 algebra textbooks, and found that they contained
1,097 word problems. However, there were only 93 sche-
mas. An example of an algebra schema is the Overtake
schema, wherein one vehicle starts later than another vehi-
cle but overtakes it as they follow the same path.

A simple but incomplete theory of skill acquisition is that
schemas are the unit of knowledge that students acquire
when they practice problem solving. Thus, if students prac-
ticemanyOvertake problems and few Round Trip problems,
then they will make fewer errors on Overtake problems than
Round Trip problems.

Some system dynamics instruction includes general
models of linear change, exponential change, logistic change
and other common systems [80]. Dragoon includes such
generic models as examples that students can refer to when
they are trying to build a model of a specific system. Fig. 5
shows the example of exponential decay.

Schema theory is incomplete in several ways. First, some
problems require more than one schema. For instance, one
Dragoon system is a retirement account whose only income
is interest (exponential growth schema) and whose only
withdrawals are a constant amount per month (linear decay
schema). Students need to develop skill in dividing complex
problems into parts such that each part can be solved by
applying a known schema. Second, when using systems
like Dragoon that provide feedback on the results, students
must learn how to debug solutions that are flagged as incor-
rect. Third, it may be that when students have mastered
many schemas, then they develop an even more general
skill in problem solving so that they can easily solve prob-
lems that don’t match any schema that the student knows.
For instance, a student who has mastered 50 of Mayer’s
schemas may be able to easily solve problems that match
the other 43 schemas.

Although schema theory is incomplete, it does provide a
workable solution for organizing problem solving instruc-
tion. That is why many math textbooks and some system

Fig. 5. Schema for exponential decay.

VANLEHN ET AL.: LEARNING HOW TO CONSTRUCT MODELS OF DYNAMIC SYSTEMS: AN INITIAL EVALUATION OF THE DRAGOON... 159

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 27,2024 at 01:39:23 UTC from IEEE Xplore. Restrictions apply.

dynamics textbooks explicitly mention schemas (without
calling them “schemas,” which is Greek to most students).
That is why Dragoon presents schemas and discusses them
as solutions to problem, but it refers to them as “generic
models” or “generic change processes.”

2.7 Reflecting on a Solved Problem

One method of scaffolding is to wait until students have fin-
ished a model construction activity, then ask them reflection
questions such as, “What did you learn?” or “What parts of
the task were confusing?” [30], [114], [115], [116]. One can
also ask qualitative questions such as, “What would be dif-
ferent if the mass were increased substantially?” [74], [75],
[76]. Katz et al. [75] found that the content of the reflection
mattered more than the questioning. That is, they found that
merely printing a succinct text with reflection points was
marginally more effective than a guided dialogue that eli-
cited the same information from the student.

Given these results, Dragoon uses only text for reflection,
and does not use questions or dialogue. More specifically,
whenever a student clicks on the Done button (see Fig. 2)
and Dragoon agrees that the student is finished with the
problem, then it presents a short text written by the author.

2.8 Model Progressions

A model progression is a carefully designed sequence of
model construction problems that is intended to optimize
students’ learning by moving from simple problems to com-
plex ones [115]. Three dimensions of increasing complexity
are common:

� The models start simple and become increasingly
complex [85], [86], [87], [88], [89], [90].

� The presentations start simple and become increas-
ingly complex.

� The model editor starts with a simple set of features,
and more sophisticated features are enabled gradu-
ally [30], [38].

Because Dragoon’s modeling language is so simple, only
the first two ordering principles are used.

Our current definition of “model complexity” is based on
the set of schemas required to solve the model construction
problem. In particular, each new problem either (1) repeats
a problem structure used earlier, (2) introduces a new
schema, or (3) is a novel combination of familiar schemas.
The progression never introduces two new schemas, nor
introduces a schema and a novel combination at the same
time. Toward the end of the sequence, problems that cannot
be solved with familiar schemas are presented. We believe
this ordering principle is more favorable to learning than
our old principle, which ordered problems based on the
number of nodes in the model.

Next, we describe the five problem sets used in the
experiment, detailing how both the models and the presen-
tation increase in complexity through each problem set.

In problem set 1, all the problems involved applying just
one schema.Within that set of problems, the following order-
ing conventions were used. The first time a schemawas used
for solving a problem, the problem showed a picture of the
schema and printed the bulleted analysis that goes along
with it (see Fig. 6). The second time a schema was used, the

bulleted analysis was still present, but the name of the
schema and its image were absent. The third and subsequent
times a schema was used in a problem, even the bulleted
analysis was absent. Thus, the presentations of problems
beganwith scaffolding that was rapidly faded out.

In problem set 2, all the problems involved combining
two or more schemas. The first time a combination was
required, the bulleted analysis was part of the presentation,
as in Fig. 6 but for both schemas. On the second and subse-
quent presentations of problems involving that particular
schema combination, the bulleted analysis was absent.

In problem sets 3 and 4, all the problems involved system
dynamics schemas combined with algebra schemas and
irrelevant quantities. Although algebra schemas could have
been taught in the same explicit way as system dynamics
schemas, we did not do so because we assumed that most
students would have mastered such schemas during high
school. This assumption now seems false, as discussed later.

In problem set 5, the problems could not be solved by
combining familiar schemas. They mostly involved classic
system dynamics models, such as the Lotka-Volterra model
of predator-prey ecosystems, the logistic model of capacity-
limited growth, and Richardson’s model of the arms race.
These are complicated problems that sometimes appear late
in college-level courses.

3 EVALUATION

An evaluation of Dragoon was conducted in order to deter-
mine whether it was more effective than baseline instruction.
The evaluationwas conducted in a university class onmodel-
ing at a large southwestern university. The system dynamics
module of the course lasted three weeks; the rest of the course
addressed modeling with other languages. The course had
taught system dynamics modeling construction for years

Fig. 6. First problem to use the acceleration schema.

160 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 10, NO. 2, APRIL-JUNE 2017

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 27,2024 at 01:39:23 UTC from IEEE Xplore. Restrictions apply.

without the benefit of a tutoring system, and its instruction
served as the baseline against which Dragoon was compared.
Although the students in this course were required to have
taken brief calculus, discrete math, probability and statistics
before taking this course, their performance during the course
suggested that only some of them hadmastered the expected
mathematics skills. Thus, although this research project is
aimed at high school applications, only some of the students
in this study had a high school-level math background; others
weremore advanced.

3.1 Design and Sample

The study was a two-condition, between-subjects experi-
ment with a post-test but no pre-test. The Institutional
Review Board approved the study as non-exempt, and 34
students volunteered to participate. Students knew that if
one condition turned out to have a higher mean score than
the other, the difference in the means would be added to the
scores of the students in the lower-mean condition. They
also received three extra credit points for participation.

The students were assigned to condition by stratified
assignment. That is, after they were numbered by their score
in the initial three modules of the course, even numbered
students were assigned to one condition and odd number
students were assigned to the other. Unfortunately, one stu-
dent was accidently assigned to the wrong condition, so
there were 16 students in the Tutor (experimental) condition
and 18 students in the Editor (control) condition.

3.2 Design of the Experiment

Because the class emphasized developing skill in modeling,
all modules in the course emphasized problem solving over
lecture. A typical 75 minute class period had three activities:
a quiz, a short lecture, and supervised problem solving.
During the quiz, students solved a single problem similar to
the ones they did on the preceding homework assignment.
The homework assignments were not graded, so the main
motivation for doing them was to score well on the quiz.
During the supervised problem solving period, students
began working on the next homework assignment while the
instructor circulated among them providing help. Students
were also encouraged to help each other during this time.

The system dynamics module was composed of six con-
secutive class meetings, with a homework assignment
between each meeting. The first class meeting had no quiz,
and a 30 minute lecture that introduced the basic concepts
of system dynamics and Dragoon. The last class meeting
was an exam. The remaining four class meetings had the
format described above: quiz, short lecture and guided
homework. The quizzes were worth five points each, and
the exam was worth 50 points.

Students in both conditions of the experiment attended
class together. Their homework assignments were identical,
and everyone used Dragoon to do them. Section 2.8 describes
the problem set sequence. The only difference was that stu-
dents in the Tutor condition solved problems in Dragoon’s
coached, immediate feedback and test modes, whereas stu-
dents in the Editor condition usedDragoon is its editormode.

As had been done in previous years, students in the Edi-
tor condition had access to a PowerPoint slide deck learning
aid. For each problem in a homework assignment, there

were three slides in the deck that gave gradually more spe-
cific hints on solving the problem. The first slide indicated
how many nodes of each type were needed in the model.
The second slide presented the basic model structure with-
out the mathematical details. The last slide presented the
complete model. This three-slide learning aid was familiar
to the students, as similar learning aids had been used dur-
ing the first three modules of the course.

The only difference between the Editor condition and
the instruction in earlier years was that the earlier years
used a commercial system dynamics editor, Vensim, instead
of Dragoon. Thus, the Editor condition was very similar to
baseline instruction.

3.3 Measures

The main measure of performance was the students’ score
on the module exam, which served as an immediate post-
test. No pretest was necessary because students were, as
always in this class, unfamiliar with system dynamics
model construction. The exam was scored by the course
instructor, who was blind to the condition of the students.
The exam consisted of three Dragoon problems (see Supple-
mental Materials, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TLT.2016.2514422). All were solved in editor
mode, which was familiar to all students, as the quizzes
were in editor mode. Supplementary measures included log
data collected automatically by Dragoon and quiz scores.

Because students in this class typically had a variety of
preparations and the class was required for some and elec-
tive for others, several analyses described below used
course performance as a covariate in order to partially com-
pensate for the varying abilities of the students. The course
performance was calculated as the number of points scored
in the whole course minus the points scored during the sys-
tem dynamics module.

3.4 Results

Fig. 7 shows a scatterplot of the 34 participants. As the scat-
terplot suggests, the stratified assignment to conditions
worked in that there was no difference between conditions

Fig. 7. Post-test versus general ability.

VANLEHN ET AL.: LEARNING HOW TO CONSTRUCT MODELS OF DYNAMIC SYSTEMS: AN INITIAL EVALUATION OF THE DRAGOON... 161

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 27,2024 at 01:39:23 UTC from IEEE Xplore. Restrictions apply.

in mean course performance, which is our measure of gen-
eral ability (two-tailed T-test, p ¼ 0.94, d ¼ 0.03). More
importantly, and unfortunately, the mean exam score of the
Tutor students (41.5) was not reliability different (two-tailed
T-test, p ¼ 0.41, d ¼ 0.29) from the mean exam score of the
Editor students (38.9). In an ANCOVA with exam score as
the dependent variable and course performance as a covari-
ate, the means of the conditions were still not reliably differ-
ent (p ¼ 0.31).

However, students varied in their usage of the system from
6minutes to 491minutes (mean: 219minutes). In order to sep-
arate out those who actually usedDragoon, as either an editor
or a tutoring system, from those who did not use it much, a
median split was done. That is, each groupwas split into high
and low duration users so that therewere the same number of
high duration users as low duration users. As one would
expect, the two low duration groups, Tutor-Low (N ¼ 8) and
Editor-Low (N ¼ 9), had nearly the same post-test score (41.4
versus 44.8, p> .46), as their scores reflectedmostly their gen-
eral abilities rather than their use of Dragoon. However, the
mean of the Tutor-High group’s (N ¼ 8) exam scores (41.6)
was reliably higher (two-tailed T-test, p< .021) than themean
of the Editor-High group’s (N ¼ 9) exam score (33.1), and the
effect size was large (d¼ 1.06). Moreover, this difference was
still observed when course performance was factored out in
an ANCOVA (p < .047). This suggests that when students
actually do their homework, then Dragoon’s tutoring causes
more learning than using Dragoon as an editor with hints
fromPowerPoint slides.

Fig. 8 shows a scatterplot of the four groups of students.
The vertical axis is the exam score, but now the horizontal
axis is the time spent using Dragoon, as extracted from the
log files. Although the Tutor-High group spent less time
using Dragoon (mean: 288 minutes) than the Editor-High
group (337 min.), the trend was large but not reliable (p ¼
0.19, d ¼ 0.65). Because the Tutor-High group was earning
higher scores in less time than the Editor-High group, one
would expect that their efficiencies were dramatically dif-
ferent. When efficiency is measured as the exam score
divided by the time spent on Dragoon, the mean of the
Tutor-High group (0.15) was significantly higher (p < .025)
than the mean of the Editor-High group (0.10) with a large

effect size (d ¼ 1.04). More specifically the Tutor-High
group earned 50 percent more exam points per unit time
than the Editor-High group. These results suggest that the
tutoring features of Dragoon were effective.

4 DISCUSSION

The good news is that most of the students who used
Dragoon appear to have mastered the cognitive skill of con-
structing system dynamics models. Of the eight students in
the Tutor-High group, seven scored 80 percent or higher on
the final exam. This was probably due to the tutorial features
of Dragoon, because only two of the nine students who used
the Editor version of Dragoon scored higher than 80 percent.

The scatterplot of Fig. 8 reveals a curious phenomenon.
The data points in the upper left corner show that four stu-
dents aced the exam even though they spent only 20 minutes
or less using Dragoon. This phenomenon also occurred with
earlier versions of Dragoon. During every trial with high
school students in the summer school classes, one or two stu-
dents would learn dramatically faster than the other�35 stu-
dents in the class. We are not sure why, but it seems that, for
about 5 to 10 percent of the target population, learning how
to construct system dynamics models is extremely easy. It
appears that these students have alreadymastered some skill
that transfers to the Dragoon context. Let us first consider
some other studies using Dragoon, then return to the ques-
tion of what this general and highly desirable skill might be.
The next few sections are quite speculative, so some readers
maywish to skip ahead to Section 4.3 “A FinalWord.”

4.1 Analytic Mastery versus Notational Mastery

Dragoon has been used in two instructional contexts that are
quite different than the one discussed here. It has been used
in six high school science classes, where the focus was pri-
marily on learning about specific systems, such as the diges-
tive system’s regulation of energy intake, expenditure and
storage [117]. Each class worked for several class periods on a
worksheet thatwas specific to the system theywere studying.
Although the worksheets had them construct models with
Dragoon, the models were described explicitly in text. For
instance, if the model of Fig. 2 were described this way, the
description would exclude the discussion of what Giardia is,
as that would be covered earlier in the worksheet. However,
it would describe each of the nodes required for themodel:

Suppose a hiker’s water bottle starts with 100 Giardia in
it, and that this strain of Giardia grows at 40 percent per
hour. Construct a model in Dragoon with:

� A parameter node that represents the growth rate,
0.40

� A function node that represents the number of Giar-
dia born each hour. Its value is the growth rate times
the current number of Giardia in the bottle.

� An accumulator node that represents the number of
Giardia in the bottle each hour. Its initial value is
100. It has one input, which is the number of baby
Giardia born each hour. Thus, its value grows by
that amount each hour.

Such descriptions allow students to construct models
of the appropriate systems, but they do not require the ana-
lytic skill that was taught during the study described here.

Fig. 8. Post-test versus time on Dragoon.

162 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 10, NO. 2, APRIL-JUNE 2017

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 27,2024 at 01:39:23 UTC from IEEE Xplore. Restrictions apply.

However, even given such explicit descriptions of models,
students still have some initial difficulty operating Dragoon
and building the models. It takes about 30 to 60 minutes for
these students to become fluent with the Dragoon user inter-
face and the three-node notation for models. Let us call this
level of competence notational mastery, and use analytic mas-
tery for the competence acquired by the best students in the
study described in Section 3.

It was initially unclear whether the high school biology
students could acquire a deep understanding of the systems
they were studying given that they only had notational mas-
tery. We feared that analytic mastery would be required,
and thus science classes would have to include a six-class
module on model construction as a pre-requisite for learn-
ing about their target system. However, our studies suggest
that notational mastery suffices [117].

A second context for using Dragoon was a college class on
sustainability where students used Dragoon for an end-of-
semester project. Over four weeks, students worked in small
groups to build models of the urban ecosystem of the city of
Phoenix that would allow them to propose policies that were
demonstrably sustainable. Students were given no informa-
tion about Phoenix; they had to find all the information that
they needed. As an example of the kinds of challenges that
students’ faced, consider creating a node for the average num-
ber of miles driven per person per day. One can find a value
(27.30 miles, according to http://www.smartgrowthamerica.
org/documents/phoenixsprawl.pdf), but it is difficult to find
out what effects that value, and even more difficult to get
numerical estimates of the size of those effects. We were ini-
tially worried that students would require analytic mastery in
order to complete the project, so several hours of instruction
on Dragoon were required before students started on their
projects. As it turned out, most groups picked one person to
do all the editing of the model. As mentioned earlier, about 5
to 10 percent of the target students seem to acquire analytic
mastery rapidly, in less than 20 minutes. Moreover, the scat-
terplot of Fig. 8 suggests that a few hours with Dragoon suf-
fice for many others to attain analytic mastery. Perhaps
because every group had at least one person with analytic
mastery, all groups developed impressively large, sophisti-
catedmodels [118].

This sheds new light on the success of Dragoon’s prede-
cessor, Model-It [30], [119]. In several studies, students used
Model-It in projects similar to the sustainability one. The
Model-It students had to do literature research or gather data
in order to determine how the target systemsworked.Metcalf
et al. [30, p. 109] remark that, “Tutorial materials introducing
students to the software were kept to a minimum (less than
1 hour of class time).” This seems a remarkably short period
of time for learning a system dynamics model construction
tool, given the earlier studies showing howdifficult it was for
students to learn model construction [18], [35], [120]. How-
ever, the Model-It students always worked in small groups.
Even if only some of the Model-It students achieved analytic
mastery in one hour, every group may have had at least one
student capable for constructingmodels easily.

Here is a speculative account that ties these facts together.
Suppose that there is a general skill, labelled analytic mastery
of model construction, which some students acquire quickly
and others take at least several hours of practice to acquire.

While analytic mastery is an important instructional objec-
tive in its own right, and clearly called for by the standards,
it is not a pre-requisite for using model construction to learn
about specific systems. Students can use model construction
to learn about, say, stream ecology, by engaging in inquiry
activities in small groups so that at least one member per
group has analytic mastery, or by using explicit descriptions
of the models to be constructed by individual students so
that only notational mastery is required.

4.2 What is the Relationship of Well-Defined Model
Construction to Systems Thinking?

Systems thinking is a valued construct that is not easily
defined. Booth-Sweeney and Sterman [53] developed an
assessment of system thinking that has students draw
graphs of a system’s behavior given graphs depicting inputs
to the system. Although the assessment has been widely
used [52], [54], [55], [56], [57], [58], [121], Hopper and Stave
[122] questioned whether it reflected common practice in
defining systems thinking. From a comprehensive review of
200 articles that studied instruction in systems thinking,
they located only 17 studies that used formal assessments.
They characterized the assessments in terms of seven levels:

1. Recognizing interconnections: Listing system parts
connections among parts, and emergent properties.

2. Identifying feedback: What parts are involve; nega-
tive or positive feedback.

3. Understanding dynamic behavior: Recognition and
explanation of important behaviors.

4. Differentiating stocks, flows and other types.
5. Using conceptual models to explain the effect of

parameter manipulation on behavior.
6. Constructing a model in a modeling language or

editor.
7. Testing policies by using a model.
They concluded that that the Booth-Sweeney and Ster-

man assessment taps mostly the third and fourth levels, and
thus are at best an incomplete measure of systems thinking.

Our model construction tasks involve levels 1, 2, 4 and 6.
During the instruction presented here, students were never
asked to draw or state the model’s predictions, which is
what tasks 3 and 5 require, because generating model pre-
dictions was the job of Dragoon. Thus, it seems likely that
students who have aced our exam would do poorly on the
Booth-Sweeney and Sterman assessment of systems think-
ing, but would do well on the Hopper and Stave assess-
ment. In short, whether well-defined model construction is
a part of systems thinking depends crucially on how sys-
tems thinking is assessed.

4.3 A Final Word

Because this discussion has focused mostly on speculations
and future work, it is easy to lose track of the main result. In
an average of about 5 hours of problem solving and 1 hour
of lecture, six of the seven Tutor-High students were able to
construct some fairly sophisticated models on the post-test.
Moreover, this success can be attributed to the tutoring
given by Dragoon, as the Editor-High students did much
worse (effect size ¼ 1.06) when using Dragoon as an editor
with PowerPoint slides as a learning aid.

VANLEHN ET AL.: LEARNING HOW TO CONSTRUCT MODELS OF DYNAMIC SYSTEMS: AN INITIAL EVALUATION OF THE DRAGOON... 163

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 27,2024 at 01:39:23 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENTS

This research was supported by the Office of Naval
Research contract N00014-13-C-0029 and by US National
Science Foundation (NSF) award 1123823.

REFERENCES

[1] Mathworks. (2015, Jan. 15) [Online]. Available: http://www.
mathworks.com/products/matlab/

[2] ISEE. (2011). Stella: Systems Thinking for Education and Research
[Online]. Available: http://www.iseesystems.com/softwares/
Education/StellaSoftware.aspx

[3] VentanaSystems. (2015, Jan. 15). [Online]. Available: http://
vensim.com/

[4] PowerSim. (2015, Jan. 15). [Online]. Available: http://www.
powersim.com/

[5] CCSSO, “The Common Core State Standards for Mathematics,”
ed: Downloaded from www.corestandards.org on Oct. 31, 2011,
2011.

[6] S. J. Stratford, “A review of computer-based model research in
precollege science classroom,” J. Comput. Mathe. Sci. Teaching,
vol. 16, pp. 3–23, 1997.

[7] H. M. Doerr, “Stella ten-years later: A review of the literature,”
Int. J. Comput. Mathe. Learn., vol. 1, pp. 201–224, 1996.

[8] K. VanLehn, “Model construction as a learning activity: A design
space and review,” Interactive Learn. Environ., vol. 21, pp. 371–
413, 2013.

[9] L. Bollen andW. R. Van Joolingen, “SimSketch: Multiagent simu-
lations based on learner-created sketches for early science educa-
tion,” IEEE Transactions on Learning Technologies, vol. 6, no. 3,
pp. 208–216, Jul. 2013.

[10] A. Repenning, A. Ioannidou, and J. Zola, “AgentSheets: End-user
programmable simulations,” J. Artif. Societies Soc. Simul., vol. 3,
2000.

[11] S. Basu, J. S. Kinnebrew, A. Dickes, A. V. Farris, P. Sengupta,
J. Winger, et al., “A science learning environment using a compu-
tational thinking approach,” presented at the Proceedings of the
20th International Conference on Computers in Education, Sin-
gapore, 2012.

[12] R. Boohan, “Children and computer modelling: Making worlds
with WorldMaker,” in Proc. 6th World Conf. Comput. Edu., 1995,
pp. 975–985.

[13] E. K. Neumann, W. Feurzeig, and P. Garik, “An object-based
modelling tool for science inquiry,” in Modelling and Simulation
in Science and Mathematics Education, W. Feurzeig and N. Roberts,
Eds. New York, NY, USA: Springer, 1999, pp. 138–148.

[14] S. Fortmann-Roe and G. Bellinger. (2015). Insight Maker [Online].
Available: https://insightmaker.com/

[15] M. J. Jacobson and U. Wilensky, “Complex systems in
education: Scientific and educational importance and implica-
tions for the learning sciences,” J. Learn. Sci., vol. 15, pp. 11–
34, 2006.

[16] U. Wilensky andM. Resnick, “Thinking in levels: A dynamic sys-
tems approach to making sense of the world,” J. Sci. Edu. Tech-
nol., vol. 8, pp. 3–19, 1999.

[17] S. M. Alessi, “Building versus using simulations,” in Integrated
and Holistic Perspectives on Learning, Instruction and Technology,
J. M. Spector and T. M. Anderson, Eds. Dordrecht, The Nether-
lands: Kluwer, 2000, pp. 175–196.

[18] S. M. Alessi, “The application of system dynamics modeling in
elementary and secondary school curricula,” in –Proc. 5th Iberoa-
merican Conf. Informat. Edu., Vi~na del Mar, Chile, 2000.

[19] E. B. Mandinach and H. F. Cline, Classroom Dynamics: Implement-
ing a Technology-Based Learning Environment. Mahwah, NJ, USA:
Erlbaum, 1994.

[20] L. Zhang, K. Vanlehn, S. Girard, W. Burleson, M.-E. Chavez-
Echeagaray, J. Gonzalez-Sanchez, et al., “Evaluation of a meta-
tutor for constructing models of dynamic systems,” Comput.
Edu., vol. 75, pp. 196–217, 2014.

[21] D. L. Schwartz, C. Chase, D. B. Chin, M. Oppezzo,
H. Kwong, S. Y. Okita, et al., “Interactive metacognition:
Monitoring and regulating a teachable agent,” in Handbook of
Metacognition in Education, D. J. Hacker, J. Dunlosky, and A.
C. Graesser, Eds. New York, NY, USA: Taylor & Francis,
2009, pp. 340–358.

[22] D. L. Schwartz, K. P. Blair, G. Biswas, K. Leelawong, and J. Davis,
“Animations of thought: Interactivity in the teachable agent
paradigm,” in Learning with Animations: Research and Implications
for Design, R. Lowe and W. Schnotz, Eds. Cambridge, UK: Cam-
bridge Univ. Press, 2008, pp. 114–141.

[23] G. Biswas, H. Jeong, J. S. Kinnebrew, B. Sulcer, and R. D. Roscoe,
“Measuring self-regulated learning skills through social interac-
tions in a teachable agent environment,” Res. Practice Technol.
Enhanced Learn., vol. 5, pp. 123–152, 2010.

[24] K. Leelawong and G. Biswas, “Designing learning by teaching
agents: The Betty’s brain system,” Int. J. Artif. Intell. Edu., vol. 18,
pp. 181–208, 2008.

[25] C. Bravo, W. R. van Joolingen, and T. de Jong, “Using co-lab to
build system dynamics models: Students’ actions and on-line
tutorial advice,” Comput. Edu., vol. 53, pp. 243–251, 2009.

[26] W. R. van Joolingen, T. De Jong, A. Lazonder, E. R. Savelsbergh,
and S. Manlove, “Co-Lab: Research and development of an
online learning environment for collaborative scientific discov-
ery learning,” Comput. Human Behavior, vol. 21, pp. 671–688,
2005.

[27] S. L€ohner, W. R. Van Joolingen, E. R. Savelsbergh, and B. Van
Hout-Wolters, “Students’ reasoning during modeling in an
inquiry learning environment,” Comput. Human Behavior, vol. 21,
pp. 441–461, 2005.

[28] S. L€ohner, W. R. Van Joolingen, and E. R. Savelsbergh, “The
effect of external representation on constructing computer mod-
els of complex phenomena,” Instructional Sci., vol. 31, pp. 395–
418, 2003.

[29] P. Sengupta, J. S. Kinnebrew, S. Basu, G. Biswas, and D. B. Clark,
“Integrating computational thinking with K12 science education
using agent-based computation: A theoretical framework,” Edu.
Inf. Technol., vol. 18, pp. 351–380, 2013.

[30] S. J. Metcalf, J. Krajcik, and E. Soloway, “Model-It: A design retro-
spective,” in Innovations in Science and Mathematics Education:
Advanced Designs for Technologies of Learning, M. J. Jacobson and
R. B. Kozma, Eds. Evanston, IL, USA: Routledge, 2000, pp. 77–115.

[31] B. A. Crawford and M. Cullin, “Supporting prospective teachers’
conceptions of modelling in science,” Int. J. Sci. Edu., vol. 26,
pp. 1370–1401, 2004.

[32] D. F. Treagust, G. Chittleborough, and T. Mamiala, “Students’
understanding of the role of scientific models in learning scien-
ce,” Int. J. Sci. Edu., vol. 24, pp. 357–368, 2002.

[33] S. P. van Borkulo, W. R. van Joolingen, E. R. Savelsbergh, and
T. de Jong, “What can be learned from computer modeling?
Comparing expository and modeling approaches to teaching
dynamic systems behavior,” J. Sci. Edu. Technol., vol. 21, pp. 267–
275, 2012.

[34] B. M. Richmond, “STELLA: Software for bringing system dynam-
ics modeling to the other 98%,” presented at the Proceedings
of the 1985 International Conference of the System Dynamics
Society: 1985 International SystemDynamics Conference, 1985.

[35] R. Zaraza and D. Fisher, “Training system modelers: The NSF
CC-STADUS and CC-SUSTAIN projects,” in Modeling and Simu-
lation in Science and Mathematics Education, vol. 1, W. Feurzeig
and N. Roberts, Eds. New York, NY, USA: Springer, 1999,
pp. 38–69.

[36] A. d. C. Kurtz dos Santos, M. R. Thielo, and A. A. Kleer,
“Students modelling environmental issues,” J. Comput. Assisted
Learn., vol. 13, pp. 35–47, 1997.

[37] W. Beek, B. Bredeweg, and S. Lautour, “Context-dependent help
for the DynaLearn modelling and simulation workbench,” in
Artificial Intelligence in Education, G. Biswas, Ed. Berlin, Germany:
Springer-Verlag, 2011, pp. 4200–422.

[38] B. Bredeweg, J. Liem, W. Beek, P. Salles, and F. Linnebank,
“Learning spaces as representational scaffolds for learning con-
ceptual knowledge of system behavior,” in Proc. 5th Eur. Conf.
Technol. Enhanced Learn. Conf. Sustaining TEL: From Innovation
Learn. Practice, 2010, pp. 46–61.

[39] B. Bredeweg, F. Linnebank, A. Bouwer, and J. Liem, “Garp3
–Workbench for qualitative modelling and simulation,” Ecol.
Informat., vol. 4, pp. 263–281, 2009.

[40] B. Bredeweg, A. Gomez-Perez, E. Andre, and P. Salles,
“DynaLearn – Engaging and informed tools for learning concep-
tual system knowledge,” presented at the AAAI, 2009.

[41] K. D. Forbus, K. Carney, B. L. Sherin, and L. C. Ureel Il,
“VModel: A visual qualitative modeling environment for mid-
dle-school students,” AI Mag., vol. 26, pp. 63–72, 2005.

164 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 10, NO. 2, APRIL-JUNE 2017

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 27,2024 at 01:39:23 UTC from IEEE Xplore. Restrictions apply.

[42] C. Rose, C. Torrey, V. Aleven, A. Robinson, C. Wu, and K.
Forbus, “CycleTalk: Toward a dialogue agent that guides design
with an articulate simulator,” in Proc. 7th Int. Conf. Intell. Tut.
Syst., 2004, pp. 401–411.

[43] K. D. Forbus, L. C. Ureel Il, K. Carney, and B. L. Sherin,
“Qualitative modeling for middle-school students,” presented at
the Qualitative Reasoning, 2004.

[44] B. Bredeweg and K. D. Forbus, “Qualitative modeling in educa-
tion,” AI Mag., vol. 24, pp. 35–46, 2003.

[45] K. D. Forbus, J. O. Everett, L. Ureel, M. Brokowski, J. Baher, and
S. E. Kuehne, “Distributed coaching for an intelligent learning
enviornment,” in Proc. Qualititave Reseasoning, Sea Crest Resort,
Cape Cod, MA, 1998.

[46] K. D. Forbus and P. Walley, “Using qualitative physics to build
articulate software for thermodynamics education,” in Proc.
AAAI, 1994, pp. 1175–1182.

[47] K. D. Forbus, “The role of qualitative dynamics in naive physics,”
in Formal Theories of the Commonsense World, J. R. Hobbes and R. C.
Moore, Eds. Norwood, NJ, USA: Ablex, 1985, pp. 185–226.

[48] A. d. C. Kurtz dos Santos and J. Ogborn, “Sixth form students’
ability to engage in computational modelling,” J. Comput. Assisted
Learn., vol. 10, pp. 182–200, 1994.

[49] R. Miller, J. Ogborn, J. Briggs, D. Borough, J. Bliss, R. Boohan,
et al., “Educational tools for computational modelling,” Comput.
Edu., vol. 21, pp. 205–261, 1993.

[50] S. L. Jackson, S. J. Stratford, J. Krajcik, and E. Soloway, “A learn-
ing-centered tool for students building models,” Commun. ACM,
vol. 39, pp. 48–49, 1996.

[51] N. Avouris, M. Margaritis, V. Komis, A. Saez, and R. Melendez,
“ModellingSpace: Interaction design and architecture of a collab-
orative modelling environment,” presented at the Sixth Interna-
tional Conference on Computer Based Learning in Sciences
(CBLIS), Nicosia, Cyprus, 2003.

[52] J. D. Sterman and L. Booth Sweeney, “Cloudy skies: Assessing
public understanding of global warming,” Syst. Dyn. Rev.,
vol. 18, pp. 207–240, 2002.

[53] L. Booth Sweeney and J. D. Sterman, “Bathtub dynamics: Initial
results of a systems thinking inventory,” Syst. Dyn. Rev., vol. 16,
pp. 249–286, 2000.

[54] E. Moxnes, “Not only the tragedy of the commons: Mispercep-
tions of feedback and policies for sustainable development,”
Syst. Dyn. Rev., vol. 16, pp. 325–348, 2000.

[55] G. Ossimitz, “Stock-flow-thinking and reading stock-flow-
related graphs: An empirical investigation in dynamic thinking
abilities,” presented at the International System Dynamics Con-
ference, 2002.

[56] M. Cronin, C. Gonzalez, and J. D. Sterman, “Why don’t well-edu-
cated adults understand accumulation? A challenge to research-
ers, educators and citizens,” Org. Behavior Human Decision
Processes, vol. 108, pp. 116–130, 2009.

[57] M. Cronin and C. Gonzalez, “Understanding the building
blocks of dynamic systems,” Syst. Dyn. Rev., vol. 23, pp. 1–17,
2007.

[58] D. Kainz and G. Ossimitz, “Can students learn stock-flow-think-
ing? An empirical investigation,” presented at the System
Dynamics Conference, Palermo, Italy, 2002.

[59] P. W. B. Aikins, R. E. Wood, and P. J. Rutgers, “The effects of
feedback format on dynamic decision making,” Org. Behavior
Human Decision Processes, vol. 88, pp. 587–604, 2002.

[60] S. L€ohner, “Computer based modeling tasks: The role of external
representation,” Ph.D., Faculty of Social and Behavioural Scien-
ces, Univ. of Amsterdam, Amsterdam, NL, 2005.

[61] S. J. Stratford, J. Krajcik, and E. Soloway, “Secondary students’
dynamic modeling processes: Analyzing, reasoning about, syn-
thesizing, and testing models of stream ecosystems,” J. Sci. Edu.
Technol., vol. 7, pp. 215–234, 1998.

[62] K. Hogan and D. Thomas, “Cognitive comparisons of students’
systems modeling in ecology,” J. Sci. Edu. Technol., vol. 10,
pp. 319–345, 2001.

[63] P. H. M. Sins, E. R. Savelsbergh, and W. R. van Joolingen, “The
difficult process of scientific modelling: An analysis of novices’
reasoning during computer-based modelling,” Int. J. Sci. Edu.,
vol. 27, pp. 1695–1721, 2005.

[64] K. Thompson and P. Reimann, “Patterns of use of an agent-based
model and a system dynamics model: The application of patterns
of use and the impacts on learning outcomes,” Comput. Edu.,
vol. 54, pp. 392–403, 2010.

[65] Y. G. Mulder, A. Lazonder, and T. de Jong, “Finding out how
they find it out: An empirical analysis of inquiry learners’ need
for support,” Int. J. Sci. Learn., vol. 32, pp. 2033–2053, 2010.

[66] G. Biswas, K. Leelawong, D. L. Schwartz, and N. J. Vye,
“Learning by teaching: A new agent paradigm for educational
software,” Appl. Artif. Intell., vol. 19, pp. 263–392, 2005.

[67] M. Chi and K. VanLehn, “Eliminating the gap between the high
and low students through meta-cognitive strategy instruction,”
in Proc. 9th Int. Conf. Intell. Tut. Syst., 2008, pp. 603–613.

[68] M. Chi and K. VanLehn, “Meta-cognitive strategy instruction in
intelligent tutoring systems: How, when and why,” J. Edu. Tech-
nol. Soc., vol. 13, pp. 25–39, 2010.

[69] N. T. Heffernan, K. R. Koedinger, and L. Razzaq, “Expanding the
model-tracing architecture: A 3rd generation intelligent tutor for
algebra symbolization,” Int. J. Artif. Intell. Edu., vol. 18, pp. 153–
178, 2008.

[70] K. R. Koedinger and J. R. Anderson, “Illustrating principled
design: The early evolution of a cognitive tutor for algebra
symbolization,” Interactive Learn. Environ., vol. 5, pp. 161–180,
1998.

[71] D. McArthur, M. Lewis, T. Ormseth, A. Robyn, C. Stasz, and
D. Voreck, Algebraic Thinking Tools: Support for Modeling Situations
and Solving Problems in Kids’ World. Santa Monica, CA, USA:
RAND Corporation, 1989.

[72] S. Ramachandran and R. Stottler, “A meta-cognitive computer-
based tutor for high-school algebra,” in Proc. World Conf. Edu.
Multimedia, Hypermedia Telecommun., 2003, pp. 911–914.

[73] N. T. Heffernan, “Intelligent tutoring systems have forgotten
the tutor: Adding a cognitive model of human tutors,” Ph.D.
dissertation, School of Comput. Sci., Carnegie Mellon Univ.,
Pittsburgh, PA, USA, 2001.

[74] S. Katz, D. Allbritton, and J. Connelly, “Going beyond the
problem given: How human tutors use post-solution discus-
sions to support transfer,” Int. J. Artif. Intell. Edu., vol. 13,
pp. 79–116, 2003.

[75] S. Katz, J. Connelly, and C. Wilson, “Out of the lab and into the
classroom: An evaluation of reflective dialogue in Andes,” in
Proc. AI Edu., pp. 425–432.

[76] J. Connelly and S. Katz, “Toward more robust learning of physics
via reflective dialogue extensions,” presented at the Proceedings
of World Conference on Educational Multimedia, Hypermedia
and Telecommunications, 2009, pp. 1946–1951.

[77] L. Anthony, A. T. Corbett, A. Z. Wagner, S. M. Stevens, and K. R.
Koedinger, “Student question-asking patterns in an intelligent
algebra tutor,” in Proc. 7th Int. Conf. Intell. Tut. Syst., 2004,
pp. 455–467.

[78] A. Corbett, A. Z. Wagner, C.-Y. Chao, S. Lesgold, S. M. Stevens,
and H. Ulrich, “Student questions in a classroom evaluation of
the ALPS learning environment,” in Artificial Intelligence in
Education, C.-K. Looi and G. McCalla, Eds. Amsterdam, The
Netherlands: IOS Press, 2005, pp. 780–782.

[79] J. R. Segedy, J. S. Kinnebrew, and G. Biswas, “Supporting student
learning using converstational agents in a teachable agent envi-
ronment,” presented at the Proceedings of the 10th International
Conference of the Learning Sciences, Sydney, Australia, 2012.

[80] W. Bridewell, J. N. Sanchez, P. Langley, and D. Billman, “An
interactive environment for the modeling and discovery of scien-
tific knowledge,” Int. J. Human-Comput. Studies, vol. 64, pp. 1099–
1114, 2006.

[81] M. J. Nathan, W. Kintsch, and E. Young, “A theory of algebra-
word-problem comprehension and its implications for the
design of learning enviroments,” Cognition Instruction, vol. 9,
pp. 329–389, 1992.

[82] M. J. Nathan, “Knowledge and situational feedback in a learning
environment for algebra story problem solving,” Interactive
Learn. Environ., vol. 5, pp. 135–159, 1998.

[83] S. J. Metcalf, “The design of guided learning-adaptable scaffold-
ing in interactive learning environments,” Ph.D. dissertation,
Comput. Science and Eng. Dept., Univ. of Michigan, Ann Arbor,
MI, USA, 1999.

[84] Y. G. Mulder, A. W. Lazonder, T. de Jong, A. Anjewierden, and
L. Bollen, “Validating and optimizing the effects of model pro-
gression in simulation-based inquiry learning,” J. Sci. Edu. Tech-
nol., vol. 21, pp. 722–729, 2011.

[85] B. Y. White, “ThinkerTools: Causal models, conceptual change
and science education,” Cognition Instruction, vol. 10, pp. 1–100,
1993.

VANLEHN ET AL.: LEARNING HOW TO CONSTRUCT MODELS OF DYNAMIC SYSTEMS: AN INITIAL EVALUATION OF THE DRAGOON... 165

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 27,2024 at 01:39:23 UTC from IEEE Xplore. Restrictions apply.

[86] B. Y. White and J. R. Frederiksen, “Causal model progressions as
a foundation for intelligent learning environments,” Artif. Intell.,
vol. 42, pp. 99–157, 1990.

[87] B. Y. White, “Designing computer games to help physics stu-
dents understand Newton’s Laws of Motion,” Cognition Instruc-
tion, vol. 1, pp. 69–108, 1984.

[88] J. Swaak, W. R. van Joolingen, and T. de Jong, “Supporting simu-
lation-based learning; The effects of model progression and
assignments on definition and intuitive knowledge,” Learn.
Instruction, vol. 8, pp. 235–252, 1998.

[89] T. de Jong, E. Martin, J.-M. Zamarro, F. Esquembre, J. Swaak, and
W. R. van Joolingen, “The integration of computer simulation
and learning support: An example from the physics domain of
collisions,” J. Res. Sci. Teaching, vol. 36, pp. 597–615, 1999.

[90] J. Quinn and S. M. Alessi, “The effects of simulation complexity
and hypothesis-generation strategy on learning,” J. Res. Comput.
Edu., vol. 27, pp. 75–92, 1994.

[91] F. Reif and L. A. Scott, “Teaching scientific thinking skills: Stu-
dents and computers coaching each other,” Am. J. Phys., vol. 67,
pp. 819–831, 1999.

[92] T.-W. Chan and C.-Y. Chou, “Exploring the design of computer
supports for reciprocal tutoring,” Int. J. Artif. Intell. Edu., vol. 8,
pp. 1–29, 1997.

[93] C. C. Chase, D. B. Chin, M. Oppenzzo, and D. L. Schwartz,
“Teachable agents and the Prot�eg�e effect: Increasing the effort
towards learning,” J. Sci. Edu. Technol., vol. 18, pp. 334–352, 2009.

[94] L. Pareto, T. Arvemo, Y. Dahl, M. Haake, and A. Gulz, “A teach-
able-agent arithmetic game’s effects on mathematics understand-
ing, attitude and self-efficacy,” in Proc. Artif. Intell. Edu., 2011,
pp. 247–255.

[95] S. P. Marshall, K. E. Barthuli, M. A. Brewer, and F. E. Rose, “Story
Problem Solver: A schema-based system of instruction,” Center
for Research in Mathematics and Science Education. San Diego, CA,
USA: San Diego State Univ., 1989.

[96] J. Gonzalez-Sanchez, M.-E. Chavez-Echeagaray, K. VanLehn,
and W. Burleson, “From behavioral description to a pattern-
based model for intelligent tutoring systems,” presented at the
SPLASH: Software, Programming, Languages and Applications:
Software for Humanity, Portland, OR, USA, 2011.

[97] L. Zhang, W. Burleson, M.-E. Chavez-Echeagaray, S. Girard, J.
Gonzalez-Sanchez, Y. Hidalgo Pontet, et al., “Evaluation of a
meta-tutor for constructing models of dynamic systems,” in Proc.
16th Int. Conf. Artif. Intell. Edu., 2013, pp. 666–669.

[98] S. Girard, L. Zhang, Y. Hidalgo Pontet, K. VanLehn, W. Burleson,
M. E. Chavez Echeagary, and J. Gonzalez-Sanchez, “Using HCI
task modeling techniques to define how deeply students model,”
in Proc. 16th Int. Conf. Artif. Intell. Edu., 2013, pp. 766–769.

[99] S. Girard, M.-E. Chavez-Echeagaray, J. Gonzalez-Sanchez, Y.
Hidalgo Pontet, L. Zhang, W. Burleson, et al., “Defining the
behavior of an affective learning companion in the affective
meta-tutor project,” in Proc. 16th Int. Conf. Artif. Intell. Edu., 2013,
pp. 21–30.

[100] K. VanLehn, W. Burleson, M.-E. Chavez-Echeagaray, R. Christo-
pherson, J. Gonzalez-Sanchez, J. Hastings, et al., “The affective
meta-tutoring project: How to motivate students to use effective
meta-cognitive strategies,” presented at the 19th International
Conference on Computers in Education, Chiang Mai, Thailand,
2011.

[101] K. VanLehn, W. Burleson, M.-E. Chavez-Echeagaray, R.
Christopherson, J. Gonzalez-Sanchez, J. Hastings, et al., “The
level up procedure: How to measure learning gains without
pre- and post-testing,” in Proc. 19th Int. Conf. Comput. Edu.,
2011, pp. 96–100.

[102] S. L. Jackson, S. J. Stratford, J. Krajcik, and E. Soloway, “Making
dynamic modeling accessible to precollege science students,”
Interactive Learn. Environ., vol. 4, pp. 233–257, 1994.

[103] H. H. Clark and S. E. Brennan, “Grounding in communication,”
in Perspectives on Socially Shared Cognition, L. B. Resnick, J. M.
Levine, and S. D. Teasley, Eds. Washington, DC, USA: American
Psychological Assoc., 1991, pp. 127–149.

[104] Y. G. Mulder, L. Bollen, and T. De Jong, “Learning from errone-
ous models using SCYDynamics,” presented at the Proceedings
of the 32nd International Conference of the System Dynamics
Society, Delft, Netherlands, 2014.

[105] K. VanLehn, “The behavior of tutoring systems,” Int. J. Artif.
Intell. Edu., vol. 16, pp. 227–265., 2006.

[106] K. Vanlehn and M. Chi, “Adaptive expertise as acceleration of
future learning: A case study,” in Adaptive Technologies for Train-
ing and Education, P. J. Durlach and A. Lesgold, Eds. Cambridge,
U.K.: Cambridge Univ. Press, 2012.

[107] I. Roll, V. Aleven, B. McLaren, and K. R. Koedinger, “Improving
students’ help-seeking skills using metacognitive feedback in
an intelligent tutoring system,” Learn. Instruction, vol. 21,
pp. 267–280, 2011.

[108] V. Aleven, E. Stahl, S. Schworm, F. Fischer, and R. M. Wallace,
“Help seeking and help design in interactive learning environ-
ments,” Rev. Edu. Res., vol. 73, pp. 277–320, 2003.

[109] R. S. Baker, A. Corbett, K. R. Koedinger, S. Evenson, I. Roll, A. Z.
Wagner, et al., “Adapting to when students game an intelligent
tutoring system,” in Intelligent Tutoring Systems. Berlin, Germany:
Springer, 2006, pp. 392–401.

[110] R. C. Murray and K. VanLehn, “Effects of dissuading unneces-
sary help requests while providing proactive help,” in Proc. Artif.
Intell. Edu., 2005, pp. 887–889.

[111] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
2nd ed. Upper Saddle River, NJ, USA: Prentice Hall, 2009.

[112] K. VanLehn, “Cognitive skill acquisition,” in Annual Review of
Psychology, vol. 47, J. Spence, J. Darly, and D. J. Foss, Eds. Palo
Alto, CA, USA: Annual Reviews, 1996, pp. 513–539.

[113] R. E. Mayer, “Frequency norms and structural analysis of algebra
story problems into families, categories and templates,” Instruc-
tional Sci., vol. 10, pp. 135–175, 1981.

[114] B. C. Buckley, J. D. Gobert, A. C. H. Kindfield, P. Horwitz,
R. F. Tinker, B. Gerlits, et al., “Model-based teaching and
learning with BioLogica: What do they learn? How do they
learn? How do we know?,” J. Sci. Edu. Technol., vol. 13,
pp. 23–41, 2004.

[115] T. de Jong andW. R. van Joolingen, “Scientific discovery learning
with computer simulations of conceptual domains,” Rev. Edu.
Res., vol. 68, pp. 179–201, 1998.

[116] B. K. A. Weusijana, C. Riesbeck, and J. T. Walsh, “Fostering
reflection with Socratic tutoring software: Results of using
inquiry teaching strategies with web-based HCI techniques.,” in
Proc. 6th Int. Conf. Learn. Sci., 2004, pp. 535–541.

[117] K. VanLehn, G. Chung, S. Grover, A. Madni, and J. Wetzel,
“Learning about dynamic systems and domain principles: The
effectiveness of the Dragoon intelligent tutoring system,” Int.
J. Artif. Intell. Edu., in press.

[118] D. M. Iwaniec, D. L. Childers, K. VanLehn, and A. Wiek,
“Studying, teaching and applying sustainabilty visions using
systems modeling,” Sustainability, vol. 6, pp. 4452–4469, 2014.

[119] C. B. Lee, D. Jonassen, and T. Teo, “The role of model building in
problem solving and conceptual change,” Interactive Learn. Envi-
ron., vol. 19, pp. 247–265, 2011.

[120] E. B. Mandinach and H. F. Cline, “Modeling and simulation in
the secondary school curriculum: The impact on teachers,” Inter-
active Learn. Environ., vol. 4, pp. 271–289, 1994.

[121] O. Pala and J. A. M. Vennix, “Effect of system dynamics educa-
tion on systems thinking inventory task performance,” Syst. Dyn.
Rev., vol. 21, pp. 147–172, 2005.

[122] M. Hopper and K. Stave, “Assessing the effectiveness of systems
thinking interventions in the classroom,” presented at the Inter-
national Conference of the System Dynamics Society, Athens,
Greece, 2008.

Kurt VanLehn received the BS degree in mathe-
matics from Stanford in 1974, and the MS and
PhD degrees in computer science from M.I.T. in
1983 and 1978, respectively. He has been a pro-
fessor at C.M.U, the University of Pittsburgh, and
now at Arizona State University, where he is the
the Diane and Gary Tooker Chair for effective
education in science, technology, engineering
and math. He is on the editorial boards of the
International Journal of A.I. in Education and
Cognition and Instruction. He has published more

than 165 refereed journal articles and conference papers, including 11
that have received best paper awards. His main research area is intelli-
gent interactive instructional systems. He is a fellow in the Cognitive Sci-
ence Society.

166 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 10, NO. 2, APRIL-JUNE 2017

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 27,2024 at 01:39:23 UTC from IEEE Xplore. Restrictions apply.

JonWetzel received the BS andMEng degrees in
computer science & engineering from M.I.T. in
2006 and 2007, respectively, and the PhD degree
in computer science fromNorthwestern University
in 2014. He now has a postdoctoral scholar posi-
tion at Arizona State University, where he leads
the Dragoon project. He has received a US
National Science Foundation Graduate Resarch
Fellowship, and has publishedmore than 15 refer-
eed journal, conference, and workshop publica-
tions. He also has one patent. His main research

area is artificial intelligence for intelligent interactive tutoring systems.

Sachin Grover received the BTech degree from
the National Institute of Technology, Rourkela,
India in 2010 and is currently working toward the
MS degree in computer science from Arizona
State University. He has worked as an analyst for
web technologies at Sapient Inc and now works
as a graduate research assistant advised by Prof.
Kurt VanLehn. He has published one IEEE confer-
ence paper in the area of image processing. His
main areas of interest are planning in autonomous
agents and intelligent interactive tutoring systems.

Brett van de Sande received the BS degree in
physics from Caltech in 1988 and the PhD degree
in physics from Ohio State in 1995. He was a
professor at Geneva College, a research pro-
fessional at the University of Pittsuburgh and
Arizona State University, and is currently a
research/data scientist at Pearson Education. He
received a Von Humboldt Fellowship and has a
patent. He has published 27 refereed journal
articles and conference papers, including one
that has received a best paper award.

VANLEHN ET AL.: LEARNING HOW TO CONSTRUCT MODELS OF DYNAMIC SYSTEMS: AN INITIAL EVALUATION OF THE DRAGOON... 167

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 27,2024 at 01:39:23 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

