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Abstract—Research in computer-based learning environments has long recognized the vital role of adaptivity in promoting effective,

individualized learning among students. Adaptive scaffolding capabilities are particularly important in open-ended learning

environments, which provide students with opportunities for solving authentic and complex problems, and the choice to adopt a variety

of strategies and approaches to solving these problems. To help students overcome their difficulties and become effective learners and

problem solvers, we have to develop methods that can track and interpret students’ open-ended learning and problem-solving

behaviors. The complexity of the problems and the open-ended nature of the solution processes pose considerable challenges to

accurately interpret and evaluate student behaviors and performance as they work on the system. In this paper, we develop a

framework that combines model-driven strategy detection with data-driven pattern discovery for analyzing students’ learning activity

data in open-ended environments. We present results from an in-depth case study of multiple activity patterns identified in data from

the Betty’s Brain learning environment. The results illustrate the benefits of combining model- and data-driven techniques to precisely

characterize the learning behavior of students in an open-ended environment.

Index Terms—Open-ended learning, environments, modeling learner, behaviors, hierarchical task modeling, activity sequence mining,

coherence analysis, strategy modeling
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1 INTRODUCTION

ADAPTING to learners’ needs and providing timely and
useful individualized feedback to help them succeed has

been a hallmark of many computer-based learning environ-
ments (e.g., [1]). In addition to providing a structure and
resources that facilitate learning and problem solving, these
systems take explicit actions [2], such as reminding learners of
relevant information or modifying the learning activity to sup-
port learning processes [3], [4]. To promote deep learning, criti-
cal thinking, and problem-solving skills in STEM disciplines,
researchers have been developing open-ended learning envi-
ronments (OELEs) [5]. These systems provide students with a
learning goal, usually in the form of a complex problem, and a
set of tools that support the problem-solving task [6].

However, open-ended problem solving can present sig-
nificant challenges for novice learners [7], [8]. To succeed,
they need to make choices on how to structure the solution
process, explore alternative solution paths, develop aware-
ness of their own knowledge and problem-solving skills,
and develop strategies that support more effective learning
and problem solving [9], [10]. In other words, to become suc-
cessful problem solvers, students need to employmetacogni-
tive processes for planning, monitoring, controlling, and
reflecting on relevant cognitive processes as they search for

information, interpret it, and apply it to construct and test
potential solutions. However, students often lack proficiency
in using the system tools, as well as the experience and
understanding they need to explicitly regulate their own
learning and problem solving in these environments [11].

To help students overcome their difficulties and become
effective learners and problem solvers, we have to develop
methods that can track and interpret students’ open-ended
learning and problem-solving behaviors. Traditionally,
learning behaviors in OELEs have been assessed with
model-driven metrics and context-driven hypotheses about
the students’ learning tasks [12], [13], [14]. More recently,
researchers have been developing exploratory mining tech-
niques that provide the basis for discovering behavior
patterns (c.f., [15], [16]). Together, these techniques may pro-
vide a more expansive framework for analyzing how stu-
dents learn while tackling open-ended problems.

This paper extends and formalizes an approach we have
developed for analyzing students’ learning activity data col-
lected from log files in OELEs. The framework brings
together two approaches we have developed: (1) model-
based analysis of students’ activity sequences that assesses
the coherence among students’ actions [14]; and (2) data-
driven pattern discovery methods [15] to provide a more
complete analysis of students’ behavior as they work in an
OELE. In previous work, we described an initial integration
of a task-modeling approach that captures a relevant set of
problem-solving tasks and a data-driven pattern discovery
approach [17], [18]. In this paper, we augment the task
model with a strategy model that formalizes the manner in
which the model-driven portion of the framework directly
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influences the data-driven analysis. Strategies are defined as
consciously-controllable processes for completing tasks [19],
and they are known to comprise a significant portion of
metacognitive knowledge [20]. We present a formal defini-
tion of a strategy model but restrict the definition to strategies
represented as a sequence of tasks and sub-tasks that can be
accomplished in the learning environment. These strategies
are further characterized by the context in which they are
applied and the specific relations among component activi-
ties in the strategy.

In addition to using task and strategy models to provide a
more specific analysis and characterization of the action pat-
terns discovered by the data-driven analysis, our framework
incorporates a novel extension that operates in the reverse
direction. In otherwords, we also use data-driven discovery of
frequent patterns to iteratively extend existing strategy mod-
els. To enable an effective and systematic application of this
approach, we extend a lift measure [21], initially developed for
analysis of association rules, to the analysis of sequential pat-
terns. This sequential lift analysis identifies activity patterns
that occur more frequently than expected from a random
behavior model and are, therefore, candidates for defining
additional strategies not yet covered by the strategymodel.

We apply this combined model- and data-driven analysis
framework to Betty’s Brain [22], an OELE where students
learn science by constructing causal models. A detailed case
study illustrates the benefits of applying our analytic frame-
work to characterize the learning behaviors of students in
an OELE. The results show that this approach provides
valuable information about differences among students that
may employ similar patterns of actions but in different ways
and for different purposes. Further, we identify aggregate
behavior differences between student groups that provide a
better understanding of their approach to learning and
problem solving in OELEs. Finally, we identify and analyze
additional strategies that were employed by students but
had not previously been included in the strategy model.

2 BACKGROUND: METACOGNITION

Metacognition describes the ability to reason about and
explicitly manage one’s own cognitive processes [23]. From
an information-processing perspective, Winne [24] describes
cognition as dealing with knowledge of objects and opera-
tions on objects (the object level), while characterizing meta-
cognition as the corresponding meta level that contains
information about when to use particular cognitive pro-
cesses and how to combine them to accomplish larger tasks.
Metacognitive monitoring brings the two levels together, as
it describes the process of observing and evaluating one’s
own execution of cognitive processes and, when necessary,
exercising control over one’s cognition in order to improve
one’s overall effectiveness in accomplishing tasks.

When applied to learning, metacognition is often consid-
ered a subset of the more encompassing conception of self-
regulated learning (SRL). SRL is an active theory of learning
that describes how learners set goals, create plans for
achieving those goals, continually monitor their progress,
and reflect and revise their plans when necessary to become
more successful at achieving their overall goals [25]. Within
this SRL framework, metacognition deals directly with the

regulation of cognition without explicitly considering its
interactions with emotional or motivational constructs [26].
Despite this, models of self-regulation are valuable in
depicting key metacognitive processes.

For example, Winne and Hadwin [27], [28] have pro-
posed a model of SRL called COPES. Learning according to
this model occurs in four weakly sequenced and recursive
stages: (1) task definition, where the student develops an
understanding of the learning task, (2) goal setting and
planning, which follow the task definition phase and repre-
sent the student’s approach to working on the learning task,
(3) enactment of tactics, during which the student carries
out plans for learning, and (4) adaptations to metacognition,
which are linked to both in-the-moment adjustments of the
student’s tactics and post-hoc evaluation of the student’s
approach based on successes and failures during enactment.

Like COPES, we adopt a task-oriented framework to
interpret students’ learning activities and behaviors in
OELEs. In particular, our focus on metacognition is centered
on students’ understanding of and use of strategies, which,
as discussed earlier, have been defined as consciously-
controllable processes for completing tasks [19]. Strategies
consist of declarative, procedural, and conditional knowl-
edge that describe their purpose and how and when to
employ them [20]. The research community has identified
several types of strategies based on the tasks for which they
are designed. For example, strategies may be (1) cognitive
(e.g., a strategy for solving an addition problem); (2) meta-
cognitive (e.g., a strategy for monitoring one’s own cogni-
tive operations when working on an equation-solving task),
(3) focused on management (e.g., managing one’s environ-
ment to promote focused attention); (4) directed toward
learning (e.g., a strategy that facilitates learning of feedback
processes); or (5) a combination of the four strategy types
discussed above [29], [30]. For example, a metacognitive
learning strategy may involve activating prior knowledge
before learning about a topic by consciously bringing to
mind information one already knows about the topic [31].
When faced with a complex task, students may invoke
known strategies, or invent one using their current cogni-
tive and metacognitive knowledge.

An important characteristic of a strategy is its level of gen-
erality. Some strategies apply to very specific situations
(e.g., an approach to adding two-digit numbers) while other
strategies apply to a broader set of situations (e.g., summa-
rizing recently learned information to improve retention).
An understanding of more general strategies, and their spe-
cific implementations when applied to concrete tasks, is
important for developing one’s ability to adapt existing
strategies to new situations or even invent new strategies.
Thus, an important goal in developing adaptive support for
students’ working in OELEs is to explicitly teach students
general strategies for regulating their learning as they solve
complex, open-ended problems. Doing so can prepare stu-
dents for future learning [32] by developing their ability to
independently investigate and solve open-ended problems.

3 BACKGROUND: STRATEGY UNDERSTANDING

Measuring students’ understanding of strategies by observ-
ing their behavior is a difficult task; it requires determining
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whether their behaviors are consistent with a strategy. For
small tasks the interpretation is straightforward. For exam-
ple, to assess a student’s understanding of an algebraic
problem-solving strategy, a learning environment can pres-
ent multiple problems and observe the steps that a student
takes to solve these problems. If the student consistently
carries out a sequence of steps that matches the sequence
prescribed by the strategy, the learning environment can
reasonably assume that the student understands the strat-
egy. This approach is employed in many step-based intelli-
gent tutoring systems, such as Cognitive Tutors [33], [34].

However, for complex tasks, such as those presented by
OELEs, interpretation is more difficult. Succeeding in these
tasks involves breaking up the overall task into sub-tasks,
setting goals, and applying strategies for completing each
sub-task. Thus, learning environments need methods for
inferring: (1) the student’s chosen task decomposition;
(2) the goal and corresponding sub-task that the student is
currently working on; (3) the strategy being used to com-
plete that sub-task; and (4) whether or not they are execut-
ing the strategy correctly. The open-ended nature of OELEs
further exacerbates the measurement problem; students
may constantly change their chosen task decomposition,
their chosen goal, and, therefore, the tasks they are currently
attempting or the strategies they are utilizing. The corre-
sponding analysis techniques must have the ability to detect
and interpret these switches as they track students’
problem-solving activities.

Researchers have approached this problem from multi-
ple angles. For example, MetaTutor [31] adopts a very
direct approach with some similarities to self-report;
it provides interface features through which students
explicitly state the tasks they are attempting (called sub-
goals) and the strategies they are using to complete those
tasks. This allows the system to directly capture students’
strategy use without having to make inferences based
solely on their activities in the system. However, this
relies on students accurately communicating their intent
to the system.

Another approach involves first defining a model of
behavior as prescribed by the strategy and then checking
students’ behaviors to see if they are consistent with that
model. For example, Zhang and colleagues [30] instructed
students in the use of a target node strategy while construct-
ing system dynamics models and then measured their use
of that strategy. Results showed that in one experiment, 34
and 39 percent of students’ steps (in two different groups)
were consistent with the strategy. In a second experiment,
two additional groups of students achieved consistency
scores of 66 and 70 percent, indicating a wide variation in
how often students were successfully using the strategy
between experiments.

Previous work in educational data mining has been used
to understand the strategies students use while learning in
OELEs. For example, Perera et al. [35] used sequence min-
ing to derive frequently-used learning behaviors of more-
and less-successful student groups. They then provided
mirroring and feedback tools to support effective teamwork
among students, using the derived feedback based on
more-successful groups’ behaviors. Results showed that
mirroring and feedback helped all groups improve their

work by emulating the behaviors of the strong groups. In
previous work, we have compared sequential patterns
derived from student activity sequences to identify ones
that differ in use between two or more groups of stu-
dents [15] and over time [36]. Nesbit et al. [37] use
sequential pattern mining to find the longest common sub-
sequences across a set of action files from the gStudy learn-
ing environment and study how students self-regulate as
they learn.

A variety of other researchers have also employed
sequential pattern mining to generate student models for
customizing learning to individual students [38], [39]. In
this body of work, however, researchers are not explicitly
tracking students’ understanding and/or use of strategies.
Rather, they are characterizing students’ behaviors in order
to understand how learning happens in complex learning
environments.

4 FRAMEWORK INTEGRATING MODEL- AND
DATA-DRIVEN ANALYSIS

Our framework for analyzing OELE learning activity data
integrates task and strategy modeling with data-driven
sequential pattern discovery, as illustrated in Fig. 1. The
model-driven component, shown in the top of the figure,
is based on a hierarchical task model that describes the
relationships between top-level domain-general OELE
tasks to domain-specific tasks and subtasks. At the lowest
level, these subtasks link to tool-specific actions in the
particular OELE that facilitate learning and problem solv-
ing in a particular learning domain. The strategy model
complements this task model by describing how related
actions combined across tasks and subtasks define learn-
ing and problem-solving strategies. By specifying a tem-
poral order and conceptual relationships among elements
of the task model that define a strategy, the strategy
model codifies the semantics that provide the basis for
analyzing students’ actions beyond the categorical infor-
mation available in the task model.

The complementary, data-driven portion of the frame-
work, outlined in the bottom of the figure, describes how
model-driven analytics and relations can be combined with
sequence mining techniques to improve the detection and
interpretation of behavior patterns that can be linked to
students’ learning and problem solving behaviors. As
shown, data-driven analysis of these behaviors first
employs sequential pattern mining techniques to identify
frequent action patterns. However, it goes beyond a tradi-
tional application of pattern mining by then mapping the
identified patterns back into the activity sequences to ana-
lyze specific instances with respect to the task and strategy
models and the context in which these actions and strategies
are applied. This integrated analysis allows us to map the
discovered behavior patterns to cognitive and metacogni-
tive processes that can be associated with students’ activi-
ties in the learning environment. In addition, behaviors that
do not match known strategies can be identified to fill gaps
in the coverage of the current models. They may also imply
suboptimal strategies and processes that students employ
when working on their learning and problem solving tasks
in these environments [7].
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In the rest of this section, we describe the task and strat-
egy modeling representations, context relations that we
instantiate in this framework for defining cognitive and
metacognitive strategies, and the pattern discovery techni-
ques and measures employed for analyzing learning and
problem-solving behavior. The combined model- and data-
driven framework provides the basis for dynamic learner
modeling (the central part of Fig. 1), but an extended discus-
sion of learner modeling is outside the scope of this paper.

4.1 Model-Driven Strategy Detection

In our integrated framework, learning and problem-solving
activities are modeled through linked task and strategy
models, as illustrated at the top of Fig. 1. The task model is
represented as a directed (acyclic) graph, which provides a
successive, hierarchical breakdown of the tasks into their
component subtasks1 in the OELE. At the lowest levels of
the hierarchy the tasks are linked to the observable actions
that can be performed with the tools provided in the OELE.
The links in the task model are categorical in nature,

indicating, for example, that two subtasks like “Identifying
Relevant Information” and “Interpreting Information” are
part of a (more general) parent task like “Information
Acquisition.” However, the task model does not indicate
whether (or in what circumstances) both subtasks need to
be completed for effective information acquisition, nor
whether there are any necessary relations (such as ordering)
among them. Similarly, links from a task/subtask to actions
indicate have to be executed to complete the task or a subset
of the actions might suffice.

Instead, it is the strategy model that captures this infor-
mation in a form that can be directly leveraged for analysis.
This model describes how actions, or higher-level tasks and
subtasks, can be combined to provide different approaches
or strategies for accomplishing learning and problem-
solving goals. In our approach, strategies manifest as par-
tially-ordered sets of elements from the task model with
additional relationships among those elements determining
whether a particular, observed behavior can be interpreted
as matching the specified strategy. Fig. 1 illustrates unary
relationships for additional features or characterizations of
a single strategy element, binary relationships among pairs
of elements, and the temporal ordering among elements of
the strategy. Further, if a relationship is not specified
between any two elements in a strategy, then the strategy is

Fig. 1. Integrated analytic framework.

1. While we use the terms “task” and “subtask” for describing dif-
ferent granularities of tasks in our description, there is no explicit dis-
tinction in the task model representation between “tasks” and
“subtasks.”
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agnostic to the existence or non-existence of that relation-
ship.2 Because the elements of the task model used in the
definition of strategies are hierarchically related, strategies
may also naturally be related from more general strategy
definitions to more specific variants. In this representation,
specifying additional relationships, additional elements, or
more specific elements (e.g., a specific action replacing a
more general task/subtask) derive a more specific strategy
from a general one.

The structure of our task and strategy models incorpo-
rates two key insights that relate to understanding
students’ cognitive and metacognitive processes in an
OELE. First, higher-level tasks may comprise multiple
lower-level tasks. This implies that students may fail to
complete higher-level tasks for multiple reasons based on
their ability (or lack of ability) to complete corresponding
lower-level tasks. For example, students may struggle to
successfully evaluate their solution in an OELE because:
(1) they do not evaluate their solution with the provided
system tools; or (2) because they are unable to interpret the
results of such an evaluation. Second, the combination of
multiple tasks/subtasks in the strategy representation
illustrates the coordination of multiple learning and prob-
lem-solving activities, with corresponding skills and cogni-
tive processes, which is a vital component of metacognitive
monitoring and regulation.

Many relations can be defined among tasks/actions for
strategy representation in this framework, such as those
defined for coherence analysis (CA) [14], which analyzes
learners’ behaviors to produce measures describing the
coherence of OELE activities. Multiple CA relations and
measures (described in [14]) could be employed in the strat-
egy representation, but here we will focus on the CA rela-
tion called support:

Two ordered actions (x ! y), i.e., x before y, taken by a
student in an OELE exhibit the support relationship if
the second action, y, is based on information generated as
a result of the first action, x. In this case, x provides sup-
port for y, and y is supported by x. Note that while x
must occur before y, they need not be consecutive actions.

The assumption behind describing the coherence of actions
with the support measure is that students are more likely
demonstrating effective metacognitive regulation when an
action they perform is supported by information that was
generated from one of their previous actions [14]. In addi-
tion, to assess an aspect of student’s cognitive skills, we also
define a unary relation of effectiveness that judges whether a
change to a problem solution moves it closer to a correct
solution. Overall, students with higher proportions of effec-
tive actions are considered to have a higher mastery of the
related cognitive skills.

4.2 Integrating Data-Driven Discovery

The task and strategy models defined in the previous sec-
tion describe the learning and problem-solving activities for
an OELE in a form that can be directly related to observed

patterns in interaction traces. The task model links any task
to a set of observable actions, and strategies are defined
with respect to the task model, which ultimately allows the
automated interpretation of any given pattern of actions
observed in the OELE as an instance of any matching
strategies.3

To identify patterns of actions for model-driven analy-
sis and interpretation, we employ a data-driven approach
based on sequential pattern mining [40], [41]. The mining
algorithm discovers common behaviors as action patterns
from the sequences of student actions in the OELE, which
are collected in log files. To generate meaningful results
from the sequential data mining, raw activity logs must
first be transformed into an appropriate abstracted
sequence of actions [15]. The set of possible actions are
defined in the task model and the set of action relation-
ships used in the strategy model identifies additional con-
text information that may be needed for strategy
matching. Pre-processing log files into sequences of these
actions, augmented with the necessary information for
identifying the action relationships, yields a representa-
tion amenable to mining and further analysis while filter-
ing out unnecessary detail (e.g., cursor position) and
combining qualitatively-similar event types (e.g., when
an action can be performed through either of two avail-
able interface features). A more detailed discussion on
pre-processing and defining the set of actions that make
up the action sequences is presented in [15], [42].

After pre-processing, the resulting action sequences are
mined for common patterns. A sequential pattern mining
algorithm ( e.g., Pex-SPAM [43] in the analysis presented
here) is used to identify all patterns that meet a given
sequence frequency threshold (i.e., the identified patterns
are observed for at least a given percentage of students).
One difficulty in mining frequent patterns in learning inter-
action traces is that the action sequences are “noisy.” Stu-
dents may coordinate their activities in a particular
behavior pattern, but they may also perform additional
actions interspersed with the actions that constitute the pat-
tern making it more difficult to identify. To increase the
number of behavior patterns that can be identified in such
data, we allow up to one irrelevant or variable action
between consecutive actions in identifying or matching a
pattern (i.e., a maximum gap of 1 in sequence mining).4 Fur-
ther, to identify sufficiently common patterns, i.e., patterns
observed for the majority of the students, we apply a
sequence frequency threshold of 50 percent with the
sequential pattern mining algorithm.

In general, common behavior patterns identified by
sequence mining algorithms then have to be interpreted
and analyzed by researchers to identify a relevant subset of
important patterns that provide a basis for generating
actionable insights (e.g., how to support users and encour-
age specific, more productive learning and problem-solving
behaviors). Our framework systematizes and automates a

2. Explicitly requiring the lack of a relationship in a strategy defini-
tion is accomplished by defining an additional relationship that simply
indicates the lack of the original relationship.

3. The hierarchical structure of the task and strategy models implies
that a given pattern of actions may match multiple strategy descrip-
tions, defined at different levels of detail/specificity.

4. The choice of gap size depends both on the data being analyzed
and the goals of the analysis performed. In some situations, other sizes
of gaps or no gap at all may be the most appropriate choice.
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significant portion of this process by integrating the model-
driven and data-driven perspectives. The first step in relat-
ing mined patterns to modeled strategies is to map the pat-
terns back into student sequences to identify the individual
instances of each pattern (i.e., each occurrence of the pattern,
including the details specific to the actions taken in that
occurrence). The patterns are then analyzed in the context
of these individual instances to calculate all relationships
(defined by the strategy model) that hold among the specific
actions performed in each instance. This enables more effec-
tive interpretation and differentiation among behaviors that
result in the same action pattern but have different relation-
ships among the instances of those actions. For example, the
sequential pattern mining algorithm might identify the pat-
tern “A brief reading action followed by adding a component to
the solution.” In order to identify common patterns like this
example, the definition of distinct actions necessarily omits
a variety of details, such as the specific page read and the
particular component that was added to the solution in a
given instance. As a result, this pattern may occur a number
of times for a single student and across students, and each
time it may involve reading a different page and adding a
different component. The specific details of each instance of
this pattern are then used to determine whether a particular
relationship holds among the actions. For example, the sup-
port relation is satisfied if the information available on the
page read is linked to the component that was added to the
evolving solution structure.

By taking into account relations, such as support, our
framework can distinguish between different variants of
a strategy (e.g., effective versus ineffective) that are
defined by the same action pattern but differ in their
instantiation (e.g., whether one of the component actions
supports another). While a binary relation like support
can often only be calculated after identifying a specific
pattern instance, unary relations (e.g., whether an action
is effective) apply to individual actions and could be used
to refine the definition of canonical actions in the task
model. However, though this information can be very
useful in contextualizing the meaning and use of derived
patterns that contain these actions, that approach of defin-
ing finer-grained actions also has the effect of reducing
the frequency of observed patterns. In particular, the
qualification of actions by an additional feature may
reduce the occurrence of some patterns containing these
actions to below the mining frequency threshold, prevent-
ing those patterns from being discovered at all. Our
approach circumvents this problem by calculating both
binary relationships (of necessity) and unary relationships
(by choice) with respect to instances of patterns defined
and discovered with actions that were initially undiffer-
entiated by those relationships.

In addition to using task and strategy models to enhance
the data-driven analysis, our framework enables the
reverse, in which data-driven pattern discovery can be used
to iteratively extend existing models. Specifically, action
patterns that have no matches in the strategy model can
suggest candidates for defining new strategies to increase
model coverage. However, many patterns may be common
simply due to the frequency of their component actions,
rather than representing an intentional process combining

those actions. Therefore, our approach goes one step further
by extending a heuristic from the analysis of association
rules, called the lift measure [21], to sequential patterns. The
original lift measure compares the frequency with which an
association rule is matched in the data to the expected fre-
quency using a baseline random model that assumes inde-
pendence of the left- and right-hand sides of the rule. We
extend this approach to a sequential lift measure, which is
straightforward for length-2 sequential patterns: we calcu-
late the ratio of the observed frequency of each pattern to
the expected frequency from a random model that assumes
that each action is chosen independently. In the random
model, the probability of a particular action occurring at
any point in a sequence is simply its a priori probability
(which is approximated by the observed action frequency
across all students) without respect to previous actions per-
formed by the student. A high lift (i.e., the ratio of observed
pattern frequency to the expected frequency from the ran-
dom model) implies that the pattern is more likely to corre-
spond to an explicit strategy or procedure, rather than a
random combination of the component actions. In this case,
we refer to the independent random model as a “level-1”
model because it employs only the frequency of length-1
patterns (i.e., single actions) in the data.

However, using the same level-1 random model for
calculating lift in length-3 or longer patterns may be less
effective. The high lift patterns with this approach would
include a variety of extensions to the high lift length-2
patterns, where an additional frequent action is added at
the beginning or end. In other words, the lift in many of
the length-3 patterns can largely be attributed to a length-
2 sub-pattern with high lift. To account for this, we use
an incremental modeling approach in which we employ a
level-2 random model for calculating lift with length-3
patterns. The level-2 random model uses knowledge of
length-2 pattern frequency from the data to approximate
the conditional probability of a second action following a
first action. Then the expected frequency of the length-3
pattern for this level-2 random model is based on the
probability of the first action, the conditional probability
of the second action given the first, and the conditional
probability of the third action given the second. This
incremental approach can be extended to length-4 pat-
terns by using a level-3 random model (i.e., one in which
probabilities of subsequent actions are conditioned on the
preceding two actions), and so on.

Thus, our framework integrates the model- and data-
driven perspectives to iteratively improve both the mod-
els and the analysis. Illustrated from the top down in
Fig. 1, the integration of a model-driven perspective
addresses two important challenges in effective use of
pattern discovery with student activity traces: (1) in the
context of a specific sequence of actions performed by a
student, comparison to known strategies can improve the
ability to distinguish chance occurrences of a particular
pattern from instances that imply effective learning and
problem-solving behaviors; and (2) matches of a portion
of a pattern to strategies in the model can help determine
whether and where to split discovered patterns into dis-
tinct behaviors for more accurate analysis and interpreta-
tion. Illustrated from the bottom up in Fig. 1, the
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integration of a data-driven perspective addresses an
important challenge in developing task and strategy mod-
els: with appropriate heuristics like the sequential lift
analysis, patterns that are more likely to correspond to
explicit strategies rather than coincidental combinations
of actions can be identified in order to extend the cover-
age of existing models in a data-driven manner.

5 APPLYING THE FRAMEWORK TO BETTY’S BRAIN

The Betty’s Brain learning environment [22], [44] presents
students with the task of teaching a virtual agent named
Betty, a science topic by constructing a visual causal map
that represents the relevant science phenomena as a set of
entities connected by directed links that represent causal
relations. Once taught, Betty can use the map to answer
causal questions and explain those answers. The goal for
students using Betty’s Brain is to teach Betty a causal map
that matches a hidden, expert model of the domain. The
students’ learning and teaching tasks are organized around
three activities: (1) reading hypertext resources, (2) building
the map, and (3) assessing the correctness of the map. The
hypertext resources describe the science topic under study
(e.g., climate change) by breaking it down into a set of sub-
topics. Each sub-topic describes a system or a process (e.g.,
the greenhouse effect) in terms of entities (e.g., absorbed
heat energy) and causal relations among those entities
(absorbed heat energy increases the average global temperature).
As students read, they need to identify causal relations and
then explicitly teach those relations to Betty by adding them
to the current causal map. Fig. 2 illustrates the Betty’s Brain
system interface.

Learners can assess the quality of their current map in
two ways. First, they can ask Betty to answer a cause-and-
effect question using a template. After Betty answers the
question, learners can ask Mr. Davis, another pedagogical
agent who serves as a mentor, to evaluate her answer. If the
portion of the map that Betty uses to answer the question
matches the expert model, then Betty’s answer is correct.
Learners can also have Betty take a quiz on one or all of the
sub-topics in the resources. Quiz questions are selected
dynamically by comparing Betty’s current causal map to
the expert map. Since the quiz is designed to reflect the cur-
rent state of the student’s map, a set of questions is chosen
(in proportion to the completeness of the map) for which
Betty will generate correct answers. The rest of the quiz
questions produce either incorrect or incomplete answers.
These answers help students determine the correctness of
causal links. Students may also realize that Betty is unable
to answer questions because they have not taught her cer-
tain links. Should learners be unsure of how to proceed in
their learning task, they can ask Mr. Davis for help via a
menu-based conversation that allows the user to choose
from a set of pre-specified options. Mr. Davis responds by
asking learners about what they are trying to do and
responds with suggestions appropriate to the user’s indi-
cated goals [44].

5.1 Task and Strategy Modeling for Betty’s Brain

In Betty’s Brain, we instantiate the task portion of the model
as shown in Fig. 3. The top level of the model identifies the
three broad classes of OELE tasks related to: (i) information
seeking and acquisition, (ii) solution construction and refinement,

Fig. 2. Betty’s Brain system showing the quiz interface.
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and (iii) solution assessment. Each of these task categories is
further broken down into three levels that represent: (i) gen-
eral task descriptions that are common across many OELEs;
(ii) Betty’s Brain-specific instantiations of these tasks; and
(iii) actions using tools and interface features in Betty’s
Brain through which students can accomplish their tasks.

Information seeking and acquisition involves identify-
ing, evaluating the relevance of, and interpreting informa-
tion in the context of the overall task. Solution
construction and refinement tasks involve applying infor-
mation gained both by conducting information seeking
tasks and by analyzing the solution assessment results to
construct and refine an existing solution (e.g., an evolving
model of a science process). Finally, solution assessment
tasks involve interpreting the results of solution assess-
ments as actionable information that can be used to refine
the solution in progress. In order to accomplish these gen-
eral tasks in Betty’s Brain, students must understand how
to perform the related Betty’s Brain specific tasks by utiliz-
ing the system’s interface features and tools. For example,
successful information seeking in Betty’s Brain involves
identifying and correctly interpreting the causal relations
described in the resource pages. Students must then trans-
late this information into an equivalent “causal relation”
form that can be used to construct and refine the causal
map. Similarly, solution evaluation tasks involve interpret-
ing Betty’s quiz results as actionable information that can
be used to evaluate and refine the causal map.

To specify and match strategies to instances of action pat-
terns (with respect to this task model), we instantiate the
support relation for two cases of causal link edits: (i) those
that are supported by one or more information seeking
actions, e.g., reading resources pages where the concepts
associated with the link edit appear on those pages; and (ii)
those that are supported by solution evaluation actions, e.g.,
having Betty take a quiz or asking Betty to explain her
answer to a quiz question, and these evaluation actions pro-
vide evidence that a particular causal link is correct or
maybe incorrect.5

6 OELE STUDY AND DATA

The analyses presented in this paper used data from a
recent classroom study with Betty’s Brain. The study was

designed to assess the effect of two support modules that
used the pedagogical agents to scaffold students’ under-
standing of skills and strategies important for success.
One module (Mod-1) provided guidance and practice on
identifying causal relations in the resources and using the
information to structure the causal map. A second mod-
ule (Mod-2) provided guidance and practice on monitor-
ing Betty’s progress using the quiz results to identify
correct and incorrect causal links in the map. Participants
were divided into four treatment groups with one for
each of the support modules, one with both support mod-
ules, and a control with neither support module and only
the baseline level of support from the agents that was
available in all groups.

6.1 Participants

Ninety-eight sixth-grade students from four middle Tennes-
see science classrooms, taught by the same teacher, partici-
pated in the study. We did not collect demographic
information for this group of students, but the school web-
site reports that the student population is 51.4 percent
female. We believe that this demographic holds for the stu-
dents who participated in our study. The current version of
Betty’s Brain requires that students’ possess the ability to
independently read and understand the resources, there-
fore, this study was not suitable for students with limited
English proficiency. Also, the system does not currently
support students who are visually impaired or have cogni-
tive disabilities. As a result, we did not analyze data from
English Language Learners or those with special education
needs. We also excluded data of students who missed more
than two class periods of work on the system. The experi-
mental analysis reported in this paper used data from
68 students.

6.2 Topic Unit and Text Resources

Students used the Betty’s Brain system to learn about cli-
mate change. The expert map contained 22 concepts and
25 links representing the greenhouse effect (solar energy,
absorbed light energy, absorbed heat energy, global tem-
perature, and heat reflected to earth), human activities
affecting the global climate (deforestation, vegetation,
vehicle use, factories, electricity generation, fossil fuel
use, carbon dioxide, garbage and landfills, and methane),
and impacts on climate (sea ice, ocean level, coastal flood-
ing, carrying capacity, condensation, water vapor, precip-
itation, and drought). The resources were organized into

Fig. 3. Task model for Betty’s Brain.

5. In the analysis presented in this paper, an action only provides
support for a causal map edit if both the action and the edit take place
within 10 minutes of each other.
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one introductory page, three pages covering the green-
house effect, four pages covering human activities, and
two pages covering impacts on climate. Additionally, a
glossary section provided a description of some of the
concepts, one per page. The complete resources was
made up of 31 hypertext pages (4,188 words and accom-
panying figures) with a Flesch-Kincaid reading grade
level of 8.4.6

6.3 Learning and Performance Metrics

Learning was assessed using a pre-post test design. Each
written test was made up of five questions that asked stu-
dents to consider a given scenario (e.g., a significant
increase in the use of road vehicles) and explain its causal
impact on climate change. These questions were challenging
because they required students to remember information
from the science resources, follow a chain of causal relations
from the expert model on climate change, and then express
those ideas in writing. The score for a question was com-
puted by counting the number of correct causal relations
that students used in their answers. Correctness was evalu-
ated by comparing the set of causal relations used in the
students’ answers to the causal relations that would be gen-
erated from the expert map. Students received 1 point for
each link in their answers that corresponded to an expert
causal link. The maximum combined score for the five ques-
tions was 16.

Two coders independently scored the same test for a
small subset of students and then discussed any differences
in their scoring with each other and a researcher. They
repeated this process with additional subsets of tests until
they achieved at least 85 percent agreement when indepen-
dently scoring a set of tests. At this point, the two coders
split the remaining tests, and scored them independently.
Performance on the system was assessed by calculating the
number of correct links (the links in the student’s map that
appeared in the expert map) minus the number of incorrect
links in the student’s final map.

6.4 Study Procedure

The study was conducted for nine school days, with stu-
dents participating for a 60-minute class period each day.
During the first class period, students completed the pre-
test. During the second and third class periods, researchers
taught students how to build and reason with causal models
and how to identify causal relations while reading text pas-
sages. Students also worked on simple paper-and-pencil

exercises that required them to identify causal relations,
build simple maps, and answer questions using their causal
map. During the fourth class period, students were pro-
vided with hands-on system training by the researchers.
Students then spent four class periods (days 5-8) working
with their respective versions of the Betty’s Brain system
with minimal intervention by the teachers and the research-
ers. On the ninth day, students completed the post-test that
was identical to the pre-test.

6.5 Log Analysis

To extract the activity sequences for mining, log events cap-
tured by the learning environment were mapped to sequen-
ces of canonical actions as described in Section 4.2. As in
previous work analyzing Betty’s Brain log data, we
abstracted student activities into a few primary categories
with some additional subcategories [15]. Further, each of
these actions was linked to relevant tasks from the task
model (at both the OELE-general and Betty’s Brain-specific
level) so strategies specified in the strategy model could be
matched at the corresponding level of detail to student
actions. The primary actions extracted from the logs to gen-
erate the action sequences were:

� Read: students access a page in the resources;
� Note: students use a note-taking tool to create or edit

a note;
� Edit: students edit the causal map, with actions fur-

ther divided by: (i) whether they operate on a causal
link or concept and whether the action was an addi-
tion (Add), removal (Remove), or modification
(Change), e.g., LinkAdd or ConceptRemove;

� Query: students use a template to ask Betty a ques-
tion, and she answers the question using a causal
reasoning algorithm [22];

� Quiz: students assess howwell they have taught Betty
by having her take a quiz, which is a set of questions
chosen and graded by theMentor agent; and

� Explain: students probe Betty’s reasoning by asking
her to explain her answer to a question (either from
the quiz or from a query).

7 RESULTS

To illustrates the benefits of our combined model- and data-
driven analysis framework, we applied it to the Betty’s
Brain data from the study described in Section 6. As back-
ground, we first present results describing the overall out-
comes of the intervention. To determine if our intervention
helped students learn the science content and causal reason-
ing skills, we computed: (i) student pre-to-post learning
gains, and (ii) students’ causal map scores.7 Table 1 presents
these results for each treatment in the intervention. A
repeated measures ANOVA performed on the pre- and
post-test data revealed a significant effect of time on pre-to-
post-test scores (F=28.656, p<.001, h2p = 0.481), but it failed to

TABLE 1
Performance [Mean (s.d.)] by Treatment

(Max Pre- and Post-Test Score = 16, Correct Map Score = 25)

Group Pre-Test Post-Test Gains Best Map

Control 3.07 (1.83) 6.53 (1.55) 3.47 (2.64) 8.87 (8.20)
Mod-1 3.10 (1.94) 6.25 (2.05) 3.15 (2.13) 9.55 (6.64)
Mod-2 2.65 (1.27) 6.59 (2.00) 3.94 (2.41) 9.53 (7.55)
Mod-1&2 3.06 (1.24) 5.88 (2.34) 2.81 (2.29) 7.25 (6.36)

6. The Betty’s Brain system can be downloaded from http://www.
teachableagents.org/downloadsoftware.php.

7. We use the highest causal map score a student achieved at any
time during the intervention rather than their final map score to avoid
penalizing students for incorrect guesses or deletions made in haste
near the end of the intervention when there was insufficient time to cor-
rect them.
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reveal a significant effect of treatment (F ¼ 1.402, p ¼ n.s., h2p
¼ 0.044). Similarly, an ANOVA revealed no significant
effect of the treatment on the map scores (F ¼ 0.044, p ¼ n.s.,

h2p ¼ 0.011).

Clearly the students learned as the result of the interven-
tion and several students produced a significant portion of
the correct causal map (for the class as whole, the mean
map score was 8.85, s.d. 7.08). However, the small sample
sizes and the large variations in performance within groups
(much more so than across groups) make detailed analysis
of the experimental treatments difficult. Therefore, in
this paper, we focus on analyzing the different action pat-
terns corresponding to strategies of interest across the entire
sample of students. Further, we compare behaviors of stu-
dents with high map scores with those of students who had
low map scores, without regard to treatment. The median
map score was 7.5 (i.e., there were an even number of stu-
dents with the median falling between a student with a
map score of 7 and one with a map score of 8, since map
scores are whole numbers), so we consider the students
below the median (a map score of 7 or lower) as the
“LowMap” group and the ones above the median (a map
score of 8 or higher) as the “HiMap” group.

As a case study of our model- and data-driven frame-
work, we analyze some basic strategies that use information
seeking (IS) and solution assessment (SA) to drive solution
construction (SC) activities. Specifically, we consider several
variants of two high-level strategies defined by IS¼)SC
and SA¼)SC, where ¼) captures both temporal and sup-
port relationships. Therefore, IS¼)SC indicates that the
SC activity follows the IS activity and uses information that
was generated by the IS activity. In short, IS supports SC,
following the definition in Section 4.1.

Following the methodology described in Section 4, each
pattern identified by the data-driven sequence mining is
analyzed with respect to these strategies and the more
specific variants described below. Because we present an
exploratory analysis of behavior and strategy use, rather
than an attempt to verify experimental hypotheses, we do
not present statistical significance tests that could be mis-
interpreted in this context. Instead, we only describe dif-
ferences in strategy use with descriptive statistics, effect
sizes (as Cohen’s d), and data visualizations. Further, in
analyzing features beyond counts of strategy and activity
pattern occurrences (e.g., effectiveness of an SC activity
or length of an IS activity in the occurrences), we only
include students with at least three occurrences of the
given strategy/pattern to avoid giving undue weight to
single occurrences.

Analyzing the basic strategy of applying information
from resources to constructing the causal model (i.e.,
IS¼)SC), we find that HiMap students exhibit this gen-
eral strategy much more often than LowMap students (d
= 1.32), although both groups make a relatively large per-
centage of errors when doing so: the percentage of
IS¼)SC instances that are effective (i.e., result in an
improvement in map score) for the HiMap group is only
62 percent (s.d. = 9%) and for the LowMap group is only
53 percent (s.d. = 16%).

To better understand how students employ this general
strategy, we consider two specific variants possible in

Betty’s Brain: IS¼)Add½ition� of a causal link to the map
and IS¼)Correct½ion� by changing or removing an incor-
rect causal link in the map. Results indicate that IS¼)Add
is used more often than IS¼)Correct in both the HiMap
and LowMap groups, as shown in Table 2. In addition,
these results indicate that employing information from the
resources to correct the solution (IS¼)Correct), while less
frequent, is more often effective than using information
from the resources to add to the solution (IS¼)Add) in
both the HiMap and LowMap groups.

Further, we analyzed the more common of these two
strategies (IS¼)Add) to illustrate how a purely data-
driven perspective (even with a task model relating indi-
vidual actions to IS and Add½ition� tasks) might differ
from our approach that integrates an explicit strategy
model. To do this we compared instances of the corre-
sponding logfile activity pattern (Read ! LinkAdd) iden-
tified by sequence mining, depending on whether the
individual occurrence matched the strategy. For this par-
ticular strategy the distinction between matching the
basic activity pattern and matching the strategy was
whether the LinkAdd action was supported by the pre-
ceding Read action for a given occurrence within the
student’s logged sequence of actions. In general, a variety
of other relationships or specific combinations of relation-
ships in longer patterns, as well as the hierarchical rela-
tionship of tasks to multiple corresponding actions, might
distinguish a match to the strategy model versus a simple
match to an activity pattern.

Fig. 4 illustrates that there were important differences
between the occurrences of this activity pattern that
matched the strategy model and those that did not. The pat-
tern occurrences matching the IS¼)Add strategy tended to
involve longer reading times (mean 46s [s.d. 17s] versus
mean 35s [s.d. 22 s] for non-strategy occurrences) and were
more often effective (mean 60 percent [s.d. 14 percent] ver-
sus mean 33 percent [s.d. 20 percent] for non-strategy occur-
rences), regardless of which group the student belonged to.
Further, of the Read ! LinkAdd activity pattern occur-
rences, HiMap students tended to have a higher percentage
that matched the IS¼)Add strategy than the LowMap stu-
dents. While some IS¼)Add strategy matches could still
be coincidence rather than intended applications of the
corresponding strategy, it allows us to disregard many
Read ! LinkAdd activity pattern occurrences that cannot be
coherent applications of the strategy (because the LinkAdd
action is not supported by the Read action). This allows a
more precise characterization of how students employ this
strategy (e.g., in terms of associated reading time and effec-
tiveness of the causal map additions) and can highlight

TABLE 2
IS¼)SC Behaviors (Effectiveness Calculated for Students with

at Least Three Occurrences)

Group IS¼)Add IS¼)Correct

Occurrence Effective Occurrence Effective

LowMap 8.9 (7.5) 48.4% (22.2%) 2.9 (3.6) 81.1% (23.5%)
HiMap 23.9 (12.0) 59.3% (13.1%) 5.3 (4.0) 75.1% (17.2%)

All 17.3 (12.7) 55.2% (17.7%) 4.2 (4.0) 76.8% (18.9%)
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important differences across students (e.g., the relatively
more frequent application of the strategy, as opposed to
coincidental or other instances of Read ! LinkAdd, in the
HiMap group).

Finally, we consider how uses of causal map correction
activities differ depending on whether they are driven by
information seeking or solution assessment activities. Spe-
cifically, we analyze the frequency of the strategies
IS¼)Correct and SA¼)Correct. Overall, both correction
strategies are much less frequent in the LowMap group
than the HiMap group (IS-based d = 0.66, SA-based d =
0.90). Further, the HiMap group employs SA-based correc-
tion (relative to total use of both correction strategies) more
than the LowMap group (between groups d = 0.41). This
analysis suggests that the lower-performing students may
not be as aware of, or as skilled in, correcting their causal
map using the quiz assessment functionality. Given that
both groups add a variety of incorrect links to their map,
the strategies for identifying and correcting mistakes are
vital for eventually getting to the correct map. Therefore,
these strategies are important to tracking and provide
support for when students show a lack of proficiency
with them.

In addition to leveraging the task and strategy models
for analysis of activity data, our framework completes the
modeling-analysis cycle by using the data-driven results
to identify gaps in the coverage of the strategy model. To
identify patterns that may represent these previously
unconsidered strategies (i.e., ones not represented in the
strategy model), we employ the sequential lift analysis
method described in Section 4.2. When considering the
2-length patterns with high lift first, many of the top pat-
terns are repetitions of the same activity. This seems rea-
sonable as many activities lend themselves to repetitive
use, making their observed repetition frequency higher
than what an independent random model would predict.
For example, patterns of marking links in the model (as
correct, maybe wrong, or unknown) one after another
provide four of the top five lift patterns, and all have a
lift of at least 5 (i.e., five times more frequent than what

the level-1 random model predicts). Pairs of searching
actions (in the resources) and of note-taking actions also
have high lift values (22.0 and 6.3, respectively). The
especially high lift value of Search ! Search suggests
that students rarely find the information they are search-
ing for on the first try, indicating that the search function-
ality provided in the system (or other forms of support
that help students identify good keywords for searches)
could be improved. Most of the other high lift 2-length
patterns involve related activities that illustrate simple or
partial strategies like getting an explanation for a quiz
question after taking a quiz or taking a note after reading
a page in the resources.

Of more interest, are the longer patterns with high lift.
The 3-length pattern with the highest lift value, as com-
pared to the (level-2) random model, is TakeNote !
Read ! TakeNote (lift = 7.6). This indicates that even
accounting for the frequency of reading following note-
taking and of note-taking following reading, this pattern
of repeated alternation between note-taking and reading is
more frequent than what we would expect. Therefore, it
should be included in our strategy model. Even more
interesting are the high lift patterns that take the form
SA ! LinkAdd ! SA with two specific variants:
QuizExplanation ! LinkAdd ! Quiz (lift = 2.2) and
Quiz ! LinkAdd ! Quiz (lift = 2.0). These patterns sug-
gest an informed guess-and-check strategy in which the
quiz results (either the overall results or the information
gleaned from a QuizExplanation for a specific quiz ques-
tion) is used to suggest a potentially-missing link, which is
then added to the map. This is followed by checking the
correctness of the “guess” by taking another quiz. As
expected, for a guess-and-check strategy, the link added was
usually incorrect (average percentage of correct additions
per student = 19%, s.d. = 14%).

Given the more detailed information available from the
quiz question explanation, we initially expected better per-
formance in adding a correct link for that variant of the
strategy. However, this variant actually had a marginally
lower percentage of correct additions compared to the other

Fig. 4. Average reading time and percentage effectiveness of Read ! LinkAdd occurrences per student.
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variant. Further, analysis of effectiveness over the course of
students’ work in the environment illustrated that perfor-
mance (correctness percentage) with SA ! LinkAdd ! SA
was better early and late while being especially poor in the
middle. The performance heatmap shown in Fig. 5, indi-
cates that while the HiMap students performed best with
this strategy early and (to a lesser extent) late in the inter-
vention, the LowMap students did not make correct link
additions with this strategy until relatively late (after at least
60 percent of their total actions on the system). This may
imply that it took the LowMap students until late in the
intervention to understand how to interpret and use the
quiz results. On the other hand, the HiMap students used
this strategy with more success in the early phases of map
building. The HiMap students’ effectiveness with this strat-
egy may have dropped off once they started dealing with
the more difficult material (for which they had little prior
knowledge) toward the middle of their activities, finally
rebounding some as they gained proficiency. In addition to
illustrating the importance of incorporating the overall
informed guess-and-check strategy in the strategy model,
analysis of this high lift pattern suggests that there may be
additional interactions with prior knowledge and skills
worth investigating through further experiments.

8 CONCLUSIONS

In this paper, we presented a framework for analyzing
students’ activity data in open-ended learning environ-
ments that integrates model-driven behavior characteriza-
tion and data-driven pattern discovery. In this framework,
the model-driven approach uses linked task and strategy
models to provide more precise interpretation of students’
activity sequences as learning and problem-solving strate-
gies, while the pattern mining approach enables the identi-
fication of new variations of strategies and of gaps in the
coverage of the current strategy model. This analytic
framework extends an initial combination of task models
and pattern discovery [17], [18] by providing a systematic
integration of the model- and data-driven approaches to
address challenges from each direction. This integration is
achieved through the design and incorporation of (1) an
explicit strategy model used to analyze individual instan-
ces of discovered action patterns (in the context of a
student’s complete action sequence) and (2) a sequential
lift analysis that uses the data to augment the set of mod-
eled strategies.

We instantiated and applied this framework for the
Betty’s Brain OELE where the task and strategy models
include (1) the primary tasks of knowledge acquisition,
application of this knowledge to problem solving (in this
case, model building), and verification of solutions using
information generated through assessment tools in the

environment; (2) strategies combining these tasks with
respect to the support relation from coherence analysis [14];
and (3) the impact of these activities on performance in the
learning task. A case study of activity patterns identified
through this approach illustrated that the framework
enabled a more precise interpretation of behaviors and
found additional strategies employed by the students.

The results showed potentially important differences
between high- and low-performing students in terms of
their strategy use, which were not apparent from analy-
sis with either the model-driven measures or the action
pattern mining in isolation. The sequential lift analysis
identified strategies for addition to the strategy model
that included an informed guess-and-check approach
and a systematic reading and note-taking approach.
Overall, these results illustrated the benefits and power
of incorporating model- and data-driven techniques to
precisely characterize the learning behavior of students
in OELEs and to iteratively refine and extend strategy
models.

An effective analysis framework applied to the rich
behavioral data produced by OELEs has the potential to
enable deeper analyses of students’ cognitive and meta-
cognitive behavior in complex learning tasks. Ultimately,
we believe that this analysis framework can form the
basis for designing richer learner modeling schemes that
characterize students’ activities by analyzing their learn-
ing behaviors and performance with respect to both
cognition and metacognition. This can in turn help
researchers identify opportunities for providing relevant
scaffolds that are triggered based on students’ recent
behavior, as well as performance. In future work, we will
incorporate pattern detectors derived from the applica-
tion of our integrated analysis framework into the Betty’s
Brain system to directly test its efficacy in improving
dynamic learner scaffolding.
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