40th Annual IEEE Conference on Local Computer Networks

LCN 2015, Clearwater Beach, Florida, USA

Real-time Streaming with Millisecond Granularity

Simon Ofner
Fraunhofer FKIE
Friedrich-Ebert-Allee 144
D-53113 Bonn, Germany
Email: ofner@cs.uni-bonn.de

Abstract—We investigate the conditions for streaming real-
time laser data with commercial off-the-shelf hard- and software.
We design scheduling algorithms to work around the identified
limitations. We run end-to-end tests of our resulting software to
show that we can achieve streams with millisecond granularity.

Index Terms—Local area networks; UDP; Multimedia & real-
time streaming; Scheduling Algorithms; End-to-end analysis

I. INTRODUCTION

Laser shows are downright spectacular. They are highly
entertaining, and it’s for good reason that they are part of
many a rock concert or electronic music show. This paper
will take a peek behind the scenes. We’ll combine real-time
network communication with live laser show data.

We’re going to research, design, and evaluate software
methods to stream real-time laser data over local networks, at
a minimum data rate of 100 kHz. This will necessitate sending
data with millisecond granularity. We want to achieve this
on commercial off-the-shelf (COTS) computers rather than
specialized machines or peripherals.

A. Context & Motivation

There is an established infrastructure for computers to
control laser projectors. The International Laser Display As-
sociation (ILDA) [8] publishes standards for use in the field.
The systems consist of several components, notably media
playback software on one end, one or more laser projectors
on the other end, and supporting infrastructure in between [3].

The ILDA Standard Projector uses analog input signals.
With playback software generally generating digital data, the
supporting infrastructure converts that digital data to an analog
signal. That signal is then routed through an analog cable to
the projector, which ultimately displays the show [3].

Moving from an analog connection to network-based dig-
ital transmissions can be advantageous. Digital transmissions
can take advantage of existing network infrastructure and
solutions. They’re cheap, less susceptible to interference, and
decouple the playback computer and the laser projector. Cable
length would also be less of an issue [2], [3].

Our work takes place in the Laser & Light Lab (LLL) at
the Institute of Computer Science 4 at the University of Bonn
[6]. We took advantage of the StageMate ISP [5], an FPGA-
based digital-to-analog converter (DAC), which alleviates the
transition process from analog to digital. It can be attached to
an ILDA Standard Projector and features an Ethernet interface

Matthias Frank
University of Bonn

Institute of Computer Science 4 / Laser & Light Lab
Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany

Email: matthew @cs.uni-bonn.de
http://lll.net.cs.uni-bonn.de/

Linux

IDN
library

pd
i

LaProMo

Laser
Projector

StageMate
ISP

Fig. 1.

LLL sample setup with IDN library and StageMate ISP

for input [3]. Input laser data must be provided via real-time
streams of UDP (User Datagram Protocol) datagrams.

Figure 1 illustrates a sample setup with the StageMate. A
Linux computer is running LaProMo, which in turn is feeding
laser data to the IDN library. LaProMo is the short form of
”Laser-Projection-Module”, an application built and evolved
in the LLL. IDN is short for ILDA Digital Network. Note that
the laser projector is decoupled from the computer.

The goal of our larger project is to provide a working
and stress-tested IDN library with documented programming
interfaces and network protocols. It could then serve as a
reference implementation in the standardization process of a
digital laser projector interface. However, documenting the full
project is out of scope of this paper.

Instead, we will focus on the following key challenges.

B. Challenges

The first challenge is for our software to run on COTS
computers. We do not want to require special hardware or
special operating systems. Additionally, we want our software
to be cross-platform, running on both Linux and Windows.

Further challenges arise from the tight scheduling require-
ments. The DAC requires a real-time stream of UDP data-
grams. At a target projection rate of 100kHz and 100 laser
data samples per UDP datagram', we need to send one such

IDictated by typical maximum transmission unit (MTU) values

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 07:50:09 UTC from IEEE Xplore. Restrictions apply.

978-1-4673-6770-7/15/$31.00 ©2015 |IEEE

490

datagram each 1000 ps.

We therefore need to investigate how well suited our target
platforms are for this type of streaming. We will then need to
design a scheduler capable of working around any limitations
or idiosyncrasies we will have identified. Once the theoretical
design is done, we will need to assess its quality in practice.

II. BUILDING BLOCKS

Sleep functions are a simple and portable way to schedule
work. We have provided basic research of this topic in a
technical report [10]. We tested a suitable selection with
regard to our need to schedule UDP datagrams in 1000 ps
intervals. We tested on three different hardware configurations
per platform.

On Linux, there was little to no difference between the
individual sleep functions. We saw small amounts of jitter and
a priori unpredictable but run-time constant oversleeping of the
desired sleep time, up to 100 us off target.

On Windows, the internal timer operates at g = 15625 ps
[11] by default. Our initial results were clustered around that
value, far off the desired 1000 ps and thus clearly unacceptable.

The Windows API timeBeginPeriod [9] lowers the
timer resolution down to 1000 ps. With this enabled, our results
were generally comparable to Linux. However, oversleeping
still occurred with more variance than on Linux.

Thus we could not sleep deterministically on either plat-
form. We also saw enough jitter in the results that our
scheduler had to be self-correcting and account for occasional
hiccups in the sleep time.

Finally, while busy loop variants performed well on both
platforms, we chose to only consider them a fallback option.
Once our scheduler is integrated into a playback application,
we may no longer be able to monopolize the CPU.

The full details of our measurement setup and of our results
can be found in the long version of this paper on our website.

III. SCHEDULER

After several iterations we settled on a scheduler algorithm
that we believe is both simple and powerful. Algorithm 1
shows its essence in pseudo code. The main control structure
is a virtually endless loop. Its basic purpose is to call a
work item once per t ick_length. In our 100 kHz-scenario,
tick_length is 1000 ps.

For our specific purposes, the work item is the function
schedule_packets_for. Once it returns, the scheduler
calculates for how long it should sleep to wake up at the next
tick_length interval.

In case of sleep_for oversleeping, the next loop itera-
tions make up the difference. The same happens if the work
item were to occasionally take longer than tick_length.
On average, the work item will be called the correct number
of times in an average interval of tick_length.

Algorithm 2 presents our work item schedule_-
packets_for in pseudo code. As parameter, it receives the
time until the next scheduler tick. The algorithm’s job is to
send the receiver enough data until that time. The function

Algorithm 1 scheduler main loop
1: procedure SCHEDULER_LOOP(tick_length)

2: next < clock: :now ().

3:

4: while !stop do

5: schedule_packets_for (tick_length). > cf.
Algorithm 2

6:

7: next < next + tick_length.

8 current <— clock: :now ().

9: remainder < next — current.

10:

11: if remainder > 0 then

12: sleep_for (remainder).

13: end if

14: end while

15: end procedure

Algorithm 2 packet scheduler
1: procedure SCHEDULE_PACKETS_FOR(tick_length)
2: > data_left set to 0 at show start
3 while data_left < tick_length do
4 data_sent + send_next_packet ().
5 data_left + data_left + data_sent.
6: end while
7.
8
9:

data_left < data_left — tick_length.
end procedure

send_next_packet sends one UDP datagram or “IDN
packet” and returns the time the data in that packet represents.
Its implementation is not shown here, as it is not relevant to
the discussion at hand.

Once a datagram is sent, schedule_packets_for re-
members in data_left if more data than necessary was
sent for the next time it is called. In our 100 kHz-scenario,
data_sent will always be 1000 pus and therefore lines up
with tick_length, but generally this algorithm supports
any sensible configuration of parameters.

IV. END-TO-END TESTING

To put our scheduler to the test, we ran a slew of end-to-end
tests. We wanted to find out if there were any deviations from
our designs and expectations in practice. It is entirely possible
that our COTS infrastructure proves to be a bottleneck at
1000 ps scheduling granularity - especially since we’re already
pushing towards the boundaries on Windows (cf. section II).

A. Tools and Terminology

To aid in the testing process, we wrote a custom utility
called idn_server. It served as an emulated endpoint
for our UDP data stream. It has sufficient understanding of
the laser data network protocol to extract various data and
metadata from each datagram.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 07:50:09 UTC from IEEE Xplore. Restrictions apply.

491

To parse the data, we wrote idn_parser as an offline
analysis tool. Among its features is the calculation of inter-
packet arrival times. The difference of the arrival times of
two adjacent packets make up the packet offset. By keeping
track of all packet offsets in a data stream, idn_parser
can derive a number of statistics. For example, it can generate
histograms of the packet offsets, shown in this paper, which
help analyzing the sender’s scheduling behavior.

It can also compute the average packet offset and the
expected packet offset. Each datagram includes the amount
of projection display time its payload represents. Thus the
tool can compute the packet offset the datagrams should have
arrived with. For example, for a stream with a constant rate
of 200kHz, the metadata would indicate 500us of display
time per datagram, which would therefore be the expected
packet offset. The difference between the observed average
packet offset and the expected packet offset reveals whether
the sender’s scheduler was consistently too slow or too fast.

In our 100 kHz-scenario, the expected packet offset is fixed
at 1000 ps.

B. Methods

Each end-to-end test consisted of one host sending laser
data with a playback application and another host receiving
the data stream. The two computers were connected by a 1
Gbit/s Ethernet link and an appropriate switch.

To keep our systems close to COTS conditions, we did
not change the default configuration settings of the operating
systems and kept the number of installed applications low. As
the only exception, we changed power management options,
to avoid hard disks or monitors turning on or off during our
test runs.

To further minimize the amount of spurious activity, we did
not run any applications other than the measurement tools.
We made sure not to produce additional disk or network I/O.
We did not interact with the machines while the tests were
running. We allowed each machine a warm-up” phase of 15
minutes to make sure any automatic start-up applications or
services had run to completion.

On the sender side, we chose different configurations de-
pending on the platform as described in their respective
sections. We made sure that the input data from the playback
software, our internal scheduler, and the output data streams
were synced at 100kHz. We thus tried to minimize the
likelihood that deviations from a 100 kHz pattern in the result
data were caused by our measurement setup.

In each case, we were sending a single data stream to our
receiver for about 60 seconds. Each test run consisted of a
combination of five individual runs. If necessary, the data was
normalized to 60 seconds.

As receiving host, we chose a Core 2 Duo E7500 with
Ubuntu 14.04 LTS. A single instance of idn_server
was running at all times.

The results are primarily shown in a series of histograms.
They show the distribution of packet offsets received by
idn_server. Note that the y-axis in each histogram is

100.00%
10,00%
1.00%
0,10%
0.01%
o
MR g

Packet Offset

Packets [%]

Fig. 2. End-to-end test on Linux

scaled logarithmically. This is necessary to discern some of
the finer detail, especially on Windows. Each bucket on the x-
axis is 100 us wide. The x-axis is clipped at 17 000 ps, because
any data points beyond that were not discernible in the plots.
We kept the axis scales the same for each plot.

The histograms also feature a vertical line at the 1000 ps
mark on the x-axis, which is the expected packet offset our
scheduler is aiming for, given the 100 kHz setup.

C. Linux

Since we found Linux to have the best technical foundation
for our scheduler in section II, we started our measurement
series on this platform. We used a clone of the receiver as
sending host and IDN_lasetest as the playback application
generating its built-in test pattern. IDN_lasetest is a Linux
tool adapted from easylasetest [1]. We modified it to use
our scheduler and lifted its internal cap on playback speed to
allow for 100kHz (and above) streams.

Figure 2 shows the results of our first run. With 99.78% of
all packet offsets falling in the 900 us and 1000 us buckets, we
call this test a resounding success.

In our results we find no signs that the operating system, the
CPU, the network infrastructure, or indeed any external factors
are impeding the performance of our software. It is doing its
work as intended. This is a step towards confidence that any
deviation from this performance is due to factors external to
our design.

D. Windows

For Windows, we used a Core 2 Duo T9600 with
Windows 7 as the sending host and MedialLas M-IIT as
the playback application with its included Halloween show.
Medialas M-III isacommercial Windows application [4]
with a plugin architecture. We integrated our scheduler into
that architecture.

In figure 3 we see timeBeginPeriod in action. With
84.70% of the offsets falling in the 900 s and 1000 ps buckets,
it is notably worse than what we saw on Linux. However, a
value of 84.70% still represents the vast majority falling into
an acceptable range.

Contrast this with disabling the t imeBeginPeriod op-
timization for figure 4. Here we clearly see Windows’ default

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 07:50:09 UTC from IEEE Xplore. Restrictions apply.

492

100,00%

10.00%

1.00%

g
§ 0.10%
&
- |
0.00% ||l| I I“||l Il“lll
PEF S SIS S
Packet Offiset
Fig. 3. End-to-end test on Windows with t imeBeginPeriod enabled
100,00%
10.00%
_ 100%
g
é 0.10%
&
o "
0.00% |||J| ”lm ||.||| I I
TEF S S S S S
Packet Offset
Fig. 4. End-to-end test on Windows with t imeBeginPeriod disabled

scheduler resolution of 15.625 ps dominating the results. Al-
most no offsets fall in the region of 1000 us. Instead, most
offsets are very small, indicating that the scheduler spends the
vast majority of its time catching up to missed scheduler ticks,
sending multiple packets in bursts with little to no delay.

In contrast to the Linux results, it is evident that our
Windows infrastructure significantly impacts our performance.
It is not entirely clear how much our toolchain or playback
software contribute to this. But considering that an obscure
yet simple Windows API had such tremendous influence on
the results, it stands to reason that the default Windows
configuration is at least partially at fault.

E. Findings

In each case on either platform, the average packet offset
was less than 1lps off the target 1000us. Our scheduler
successfully kept up with the demand of streaming at 100 kHz
on average, even in face of the challenges on Windows.

The results on Linux were excellent and require no further
analysis at this time. On Windows, the default timer config-
uration showed undesirable behavior. In contrast, the results
with timeBeginPeriod enabled were more acceptable.

V. CONCLUSION

We have successfully built a scheduler capable of producing
real-time UDP laser data streams — even on COTS hard- and
software. From its low-level building blocks to its end-to-end

behavior we have covered a wide range of aspects of design
and implementation.

At the lowest level, we discussed sleep functions on Win-
dows and Linux. We then presented a scheduler design to
work around their peculiarities. Despite its simple algorithms,
it proved to be quite powerful even when embedded into larger
laser show playback applications.

In our end-to-end tests, the Linux setup performed excel-
lently. No factors external to our implementation impeded
our performance. The default Windows configuration showed
clearly undesirable behavior. The results were much improved
with a simple tweak, though still inferior to Linux.

Thus, comparing all three sets of results, it seems evident
that the configuration of the Windows operating system plays
a significant role in real-time scheduling performance.

There may exist further tweaks to improve the performance
on Windows. We did not follow this lead any further as
we were focusing on off-the-shelf behavior, but it may be a
worthwhile research endeavor nonetheless.

In the context of our larger project we looked at more
design, implementation and performance issues and performed
many more measurements that could not fit this paper. We
discussed and demonstrated some of these at a technical
seminar at the 2014 ILDA Conference [7] and have included
others in the long version of this paper on our website.

ACKNOWLEDGMENT

The authors would like to thank Dirk Apitz from Dexlogic
Karlsruhe for providing early IDN protocol descriptions,
StageMate ISP hardware, and excellent technical assistance.

REFERENCES

[1] M. Elektronik, easylasetest, Spaichingen,
http://www.jmlaser.com/ (last accessed: 2015-07-27).

[2] M. Frank, An Experimental Architecture of IP-based Network Control of
Laser Show Projection Systems, IEEE LCN 2011 demo pub., Bonn, Oc-
tober 2011, http://www.ieeelcn.org/prior/LCN36/lcn36demos.html (last
accessed: 2015-07-27).

, Demonstration of Bandwidth Demand and Jitter Properties
of a Software Sender/Scheduler for the (proposed) ILDA Digital
Network, IEEE LCN 2014 demo publication, Edmonton, September
2014, http://www.ieeelcn.org/prior/LCN39/Program_demos.html (last
accessed: 2015-07-27).

[4] M. E. GmbH, M-III Lasershow Software, Balingen, Germany,
http://www.medialas-showlaser.de/m3.html (last accessed: 2015-07-27).

[5] D. Hardware and S. Solutions, StageMate ISP, Karlsruhe, Ger-
many, http://dexlogic.com/work/4108-isp/StageMate-ISP-en.html (last
accessed: 2015-07-27).

[6] Laser & Light Lab (LLL), Institute of Computer Science 4, University
of Bonn, http://lll.net.cs.uni-bonn.de (last accessed: 2015-07-27).

[7]1 2014 ILDA Conference, International Laser Display Association, Las Ve-
gas, USA, http://www.laserist.org/c2014-day3a.htm#IDN (last accessed:
2015-07-27).

[8] ILDA, International Laser Display Association,
http://www.laserist.org/ (last accessed: 2015-07-27).

[9] MSDN, timeBeginPeriod, Microsoft, http://msdn.microsoft.com/en-
us/library/dd757624(v=vs.85).aspx (last accessed: 2015-07-27).

[10] S. Ofner, Application-level timing and scheduling techniques on Unix
and Windows, Seminar report, LLL, University of Bonn, June 2013.

[11] M. Russinovich, Inside the Windows Vista Kernel: Part 1,
Microsoft ~ Technet ~ Magazine, http://technet.microsoft.com/en-
us/magazine/2007.02.vistakernel.aspx (last accessed: 2015-75-27).

Germany,

[3]

Portland, USA,

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 07:50:09 UTC from IEEE Xplore. Restrictions apply.

493

