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Abstract-Two network-wide optimization contexts are traffic 
engineering and topology optimization. Various optimization 
objective functions and metrics have been proposed for both 
contexts. Yet, it is hard to evaluate the efficiency of those opti­
mization objectives. Previously, a study analyzed the efficiency 
of some optimization metrics for traffic engineering by using 
linear programming (LP). On the other hand, in the topology 
optimization domain, there has not been any work on evaluation 
of different metrics. Because, it is hard to evaluate these metrics 
as the optimization algorithms are objective function tailored 
heuristics generally. As a result, a fair comparison of different 
objectives becomes hard. In this work, using machine learning 
we compare and analyze different traffic optimization objectives 
for topology optimization. 

I. INTRODUCTION 

Traffic engineering (TE) and topology optimization are 
two domains in network optimization. TE focuses on rout­
ing optimization and load balancing. On the other hand, 
topology optimization focuses on which routers to connect. 
Both approaches try to optimize a performance goal such as 
minimizing maximum link utilization, average delay, weighted 
hop count, average queuing delay or maximizing available 
bandwidth. These are some well known network-wide opti­
mization objectives. 

In TE domain, most of the research have focused on opti­
mizing the link weights to achieve an optimization objective 
[1], [2]. On the other hand, little has been done on the 
evaluation of how well optimization objectives do, such as the 
work in [3]. In that pioneering work, the researchers investi­
gated the efficiency of different optimization objectives. They 
took linear programming approach for evaluating of different 
objectives while making some linear approximations on non­
linear optimization objectives. Rightfully, they acknowledge 
the shortcoming of linear approximations. As a result, there 
remains a need for a fair comparison of different optimization 
objectives. 

Optical communications is capable of carrying many chan­
nels simultaneously using wavelength-division multiplexing 
(WDM). This capability of optical medium allow establish­
ment of many different virtual topologies on top of the very 
same physical topology. Selecting an efficient virtual topology 
(VT) is an important problem in autonomous systems (AS), 
such as metropolitan area networks (MAN). 

In this work, we compare several topology optimization 
objectives, which has not been done before. However, the 
main contribution of our work is to provide a fair comparison 
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Fig. 1. Illustration of topology optimization problem. A physical topology 
with 4 routing nodes (A, B, C and D) and the corresponding virtual topology 
at the IP layer is shown. 

for different optimIzation objectives. We strive to provide 
fair comparison by using a machine learning algorithm. Pre­
viously, non-linear objective functions were evaluated using 
linear approximations [3]. On the other hand, with machine 
learning such unfairness in the evaluation can be avoided. 
More importantly, we evaluate those objectives under realistic, 
dynamic traffic. This allows us to make our conclusions more 
comprehensive. 

II. MOTIVATION 

There has been only a single work which considered differ­
ent TE optimization objectives and the authors concluded that 
some objective functions are worthy than others [3]. However, 
as the authors acknowledge the use of linear approximation for 
nonlinear objective functions limits the scope of conclusion, 
and an alternative approach is crucial to understand perfor­
mance of different optimization objectives. 

To illustrate why the selection of objective function matters, 
let us look at a very common objective in topology optimiza­
tion. One rule of thumb is to keep maximum link utilization 
under 50 percent or minimize it. However, minimizing max­
imum link utilization is overly sensitive to bottleneck links 
[3]. In other words, maximum link utilization is a very local 
metric, which may be far from capturing the global network 
performance. This is a common problem with objective func­
tions based on min-max formulations. Yet, this has been the 
most common optimization metric. 

Topology optimization takes place at the physical layer at 
the core of the Internet. Figure 1 illustrates the topology op-
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timization problem. In an all-optical, IP-over-WDM network, 
each router is equipped with a set of transmitters and receivers. 
Each fiber link can carry a certain number of wavelengths. 
Optical cross-connects serve as a switching device for optical 
signals, and associates and incoming link with an outgoing 
link. This allows the possibility of establishing various "virtual 
topologies" on top of a physical topology. Topology optimiza­
tion problem is more specifically referred as virtual topology 
design (VTD) among the community. 

The problem is called virtual topology reconfiguration 
(VTR), when the virtual topology is updated periodically. In 
this work, we focus on VTR problem which is illustrated in 
Figure 1. In the illustration, each fiber link can carry two 
wavelengths. Wavelength 1 was used to connect I-hop nodes 
(i.e. A-B, B-D and C-D), and wavelength 2 was used to 
connect pair A-D. Thus, now A and D are connected, and in 
IP layer this connection seem as seamless, the edge connecting 
nodes in IP layer called "lightpaths". 

III. PRELIMINARIES 

The machine learning algorithm we use in this work is 
called Attractor Selection Based (ASB) topology control. In 
this section, we briefly review ASB. The details of ASB can 
be found in the prior work [4], [5]. 

ASB is built on neural networks. The learning type it utilizes 
can be regarded as reinforcement learning in a broad sense. 
ASB explores topologies randomly, it remembers good topolo­
gies by storing them in a memory. During an exploration, 
once a good performing topology has been found, it is stored 
in a list of "good topologies". At any point in time, those 
good topologies attract the algorithm to converge a topology 
similar to themselves. Thus, we refer these good topologies as 
"attractors". By similar, we mean two topologies having small 
Hamming distance. 

A. ASB Algorithm 

ASB algorithm utilizes neural memories to store found 
good topologies. The type of neural memory we use is auto­
associative memories. Auto-associative memories can be used 
to correct noisy inputs by trying associate a given input to one 
of the stored patterns (e.g. topologies). ASB aims to find an 
optimal virtual topology (VT), and it changes topologies using 
the following equation [4]: 

d;', � [I (t, W,jXj) - x'l a + N(O, 1) (I) 

auto-associative memory 
'-v-" 

random walk 

where N(O, 1) is the standard normal random variable, f can 
be sign or sigmoid function. The value 0: is the optimization 
metric to be maximized. For example, if we want to minimize 
umax, then 0: should be inversely proportional to Umax (i.e. 
0: ex _1_ ) . For example, if Umax = 0.1, this means its a Urn,ax 
very good state since Umax is very low. Here, Xi represents 
the likelihood of establishing a path for node pair i. In each 
round, ASB makes changes to the present topology based 

on Xi values. For example, if Xi is greater than 0.5, then 
lightpath for pair i is established; otherwise the lightpath is 
terminated (if it exists). Of course, the Iightpath is established 
only if corresponding resources are available (i.e. wavelength 
and ports). 

IV. REL ATED WORK 

A previous work compares the various traffic engineering 
objective functions [3]. The authors consider linear and non­
linear objective functions, and find the optimal solution using 
linear programming. In nonlinear objective functions, such as 
mean delay, they make linear approximations. 

On topology optimization, some researchers used mixed­
integer linear programming (MILP). However, there are some 
drawbacks of using linear programming. The problem be­
comes intractable for networks that have more than 10 
nodes[6]. Even for topologies of 23 nodes, running time can 
be as long as 9 hours [7]. In addition to performance issues 
with MILP methods, a few metrics we propose here cannot 
be formulated as a linear programming problem since they are 
nonlinear, such as mean delay. Balon and his colleagues ad­
dressed this problem by using linear approximation [3]. They 
also highlighted the drawback of this linear approximation. 

V. COMPARISON OF OPTIMIZATION METRICS 

In this section, first we justify the use of machine learning. 
Then we look at the commonly used optimization metrics, and 
finally we present our evaluation methodology. 

A. Why Machine Learning? 

In this work, we use machine learning to evaluate the dif­
ferent optimization metrics for two reasons. Most of the VTR 
optimization methods use heuristics. For each optimization, 
it is necessary to use a different heuristic. Using different 
heuristics, prevents comparison of different objectives on fair 
grounds. 

Before we are able to use machine learning, we need to 
show that this optimization problem is feasible to solve with 
machine learning. Machine learning works well when there is 
a trend or pattern in the data or variables that can be captured 
statistically. There is no consensus on self similarity of Internet 
traffic in the the research community. However, long range 
dependency (LRD) was accepted and observed in real traffic 
settings [8]-[ 10]. 

l) Traffic Analysis: First, we analyze real traffic trace from 
GEANT topology, which consists of 23 nodes, provided by 
TOTEM project [11]. To understand the correlation in a finer 
detail, a measure called Hurst exponent is used. Figure 2 shows 
the Hurst exponents of GEANT traffic taken from GEANT 
topology between January 1st to January 11th 2006 . .  A Hurst 
exponent close to 0.5 indicates an uncorrelated series, and a 
Hurst exponent between 0.5 and 1 means long-term positive 
autocorrelation. Higher Hurst exponent values means stronger 
correlation. Note that, GEANT traffic shows slightly stronger 
correlations than our synthetic traffic. 
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Fig. 2. The histogram shows the Hurst parameters for the real traffic trace 
from GEANT topology. and our synthetic traffic. An uncorrelated series has 
a Hurst exponent of 0.5. 

B. Optimization Objectives 

In VTR, three commonly objectives are minimizing max­
imum link utilization, minimizing average weighted number 
of hops and minimizing average end-to-end delay [6]. Though 
many optimization objectives has been proposed, we limit our 
discussion to the most commonly used, and non-parametric 
ones. 

1) Maximum Utilization (maxUtil): Link utilization of a 
link can be described by Ui = �, where li is the load of the 
link i, and Ci is the capacity of the link. Then link utilization 
of the most heavily loaded link is denoted as umax. 

2) Blanchy: The sensitivity of Umax can be solved by 
considering all link utilizations. Blanchy et. al. proposed a 
metric that tries to reduce variance of link utilizations by using 

Blanchy = 2) Ui - umean) 2 
iEE 

(2) 

Here, Umean is average utilization of all links. The aim here 
is to balance the load across all links (i.e. E). 

3) Average Weighted Number of Hops (weightedHop): 

Along with maxUtil, average weighted number of hops is 
most common metric in topology optimization. We simply 
refer it as weightedHop. weightedHop is the average number 
of paths traversed by one unit traffic [6]. It is a traffic weighted 
hop count, rather than the pure hop count. Balon and his 
colleagues used minimum hop count in their work [3]. 

4) Delay: It has been discussed that a natural choice link 
cost is delay [12], and it can be calculated by: 

1 
Delay = L 

C -I iEE t t 
(3) 

5) Normalized Available Bandwidth (N ABW): In traffic 
engineering context, a method called minimum interference 
routing algorithm (MIRA) has been introduced previously [2]. 
Authors propose an objective function to maximize available 
bandwidth on all possible pairs. In MIRA, basic motivation 
is to maximize future traffic demands. It is not possible to 
apply directly MIRA in topology optimization context due 
to inherent differences of topology optimization with TE. 

However, we propose a new algorithm called normalized 
available bandwidth (NABW), which tries to achieve similar 
maximum future demands. 

Let's assume that lmax (i, j) is the maximum utilization on 
the path i - j, we define an objective function for each path 
i -j as 

N ABW( ath .. ) = 
1 -lmax (i, j) 

P t,] 
# of paths passing through lmax (i, j) 

(4) 
then, we sum for all paths as 

total(NABW) = L NABW(pathi,j) (5) 
Vi,jEN 

The intuition is, if there are more paths passing through a 
link, then that link has to have more importance than another 
link having same amount of residual bandwidth. Our goal is 
to maximize total (N ABW). 

C. Modifying ASB 

Due to the inherent nature of ASB, we must make a few 
modifications to provide fairness for different objectives. In 
ASB, 0: is calculated by 

(6) 

For other metrics, we need to have similar mapping to [0,1] 
range. However, for metrics like weightedHop, this mapping 
is not straightforward. Unlike Umax, it is not possible to know 
what can be a good weightedHop for a given traffic demand 
and topology. Theoretically the lower bound for weightedHop 
can be 1, but it is hard to find an upper bound and come up 
with a mapping function from weightedHop to 0: .  This is also 
true for Delay, N ABW and Blanchy. 

The approach we take in this work is as following. In 
the training phase, the first 200 rounds, we record the min­
imum and maximum seen values such as N ABW min and 
N ABW max' Then, after the training period, we can calculate 
0: as 

NABW - NABWmin 
0: =  ---------------------

NABWmax - NABWmin 
(7) 

VI. SIMULATION RESULTS 

In this section, we first present the simulation settings, then 
present our results. 

The simulations has been randomized using different seeds, 
number of ports and number of attractors. Dijsktra's shortest 
path algorithm was used for both traffic and Iightpath routing. 

Table I presents the results of simulations for three well 
established performance metrics. The best performances are 
shown in bold, while worst performances in italic. Delay 
performs best on all three metrics. weightedH op performs 
very close to Delay in total available bandwidth (ABW). 

Figure 3 shows the algorithms performance under various 
traffic loads. As the figure shows, Delay performs best for 
minimizing maximum link utilization, and M axUtil comes 
closer under very heavy traffic loads. This result also shows 
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objective 
maxUtil 
NABW 
Delay 
Blanchy 

TABLE I 
COMPARISON OF OBJECTIVES. 

/-lmax total ABW weighted hop 
0.53 0.50 2.07 
0.53 0.54 2.05 
0.33 0.71 1.94 
0.56 0.54 2.09 

weightedHop 0.49 0.68 2.01 

how our work differs from previous work [3]. Since we 
use dynamic traffic, and try to optimize based on traffic 
matrix of previous round. As a result, we do not necesarily 
expect the objective function to achieve the best result in its 
related metric, such as M axUtil achieving the best umax, or 
weightedH op to best weighted hop. 

Next, we look at the total ABW as the traffic load in­
creases. Figure 4 shows Delay outperforms all other objec­
tives, however at high loads again maxUtil comes closer to 
Delay. Overall, we observed that maxUtil performs poorly. 
Conversely, Delay performs best for all three metrics we 
considered. 
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Fig. 3. Maximum utilization for different optimization objectives as the traffic 
load is varied. The bars correspond to 95% confidence intervals. Note that 
NABW and Blanchy results in overloaded links (i.e. utilization higher than 
1) for high traffic loads. 

VII. CONCLUSION 

Previously, only in one work, using linear progranuning 
some researchers evaluated the efficiency of such objectives. 
However, use of linear approximation for nonlinear objective 
functions can be problematic. In addition, even though it was 
suggested that Delay is a better optilnization objective than 
maxUtil, the research community has been sticking with 
maxUtil. 

We compared different topology optimization metrics using 
machine learning. Comparison of optimization objectives and 
use of machine learning are two novel aspects of this study. 
Use of machine learning is especially crucial, as it strives 
to provide a fair framework for all objective functions.We 
found out that Delay is the best metric, which is in agreement 
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Fig. 4. Total ABW as the traffic load increases. Delay achieves much higher 
ABW than all the other metrics. weightedH op is not shown, as it performs 
very similar to Delay. 

with conclusions of Balon and his colleagues. However, our 
conclusion is more comprehensive. Instead of static traffic, 
we used a dynamic traffic and analyzed the 33 days of traffic. 
In the end, we showed the predictive capability of different 
objective functions. Even though we took a different approach, 
our conclusion agrees with the previous work. 
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