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Abstract—Pneumonia is the leading cause of death in children
under five, with 1.1 million deaths annually - more than the
combined burden of HIV/AIDS, malaria, and tuberculosis for
this age group; the majority of these deaths occur in resource-
constrained settings. Accurate diagnosis of pneumonia relies on
expensive human expertise and requires the evaluation of multiple
clinical characteristics, measured using advanced diagnostic tools.
The shortage of clinical experts and appropriate diagnostic tools
in many low and middle income countries impedes timely and
accurate diagnosis. We demonstrate that the diagnostic process
can be automated using machine learning techniques, processing
several clinical measurements that could be obtained with af-
fordable and easy-to-operate point-of-care tools. We evaluated
our findings on a dataset of 1093 children, comprising 777
diagnosed with pneumonia and 316 healthy controls, on the basis
of 47 clinical characteristics. Seven feature selection techniques
were used to identify robust, parsimonious subsets of clinical
characteristics, which could be measured reliably and affordably.
Standard machine learning techniques, such as support vector
machines and random forests, were used to develop a predictive
algorithm based on the four jointly most predictive characteristics
(temperature, respiratory rate, heart rate and oxygen saturation);
this approach led to 96.6% sensitivity, 96.4% specificity, and an
Area Under the Curve (AUC) of 97.8%. The proposed approach
can be easily embedded in a mobile phone application, allowing
for point-of-care assessment and identification of children in need
of clinical attention by basically trained healthcare workers in
resource-constrained settings.

Keywords—Childhood pneumonia, diagnostics, machine learn-
ing, Random forests.

I. INTRODUCTION

NEUMONIA is the leading cause of death in children un-

der five. The disease is particularly prevalent in resource-
constrained settings and kills 1.1 million children annually,
more than HIV/AIDS, malaria, and tuberculosis combined [1]-
[3]. One of the main reasons for these devastating statistics
is diagnostic complexity: accurate diagnosis of pneumonia re-
quires the evaluation of multiple clinical parameters, measured
with advanced diagnostic tools, which are used as decision
support tools by highly-trained clinicians [4], [5]. The shortage
of clinical experts and appropriate diagnostic tools in many
Low and Middle Income Countries (LMICs) impedes timely
and accurate diagnosis. The gold standard for identification of
childhood pneumonia includes a combination of physical signs
(e.g. fever, chest recession and respiratory rate); cases with
suspected severe pneumonia are further examined using blood
culture and chest radiographs. However, in LMICs, many of
these advanced diagnostic tools are either unavailable or the
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local clinical staff lacks the expertise to interpret many of these
measurements.

The World Health Organisation (WHO) has developed a
set of guidelines for diagnosis of childhood pneumonia in
resource-constrained settings, in the context of a broader
strategy for Integrated Management of Childhood Illness
(IMCI) [6]. However, the integration of these guidelines into
clinical practice worldwide has been reported to deliver a
reasonably high sensitivity of diagnosis (69%-94%) but rather
poor specificity (16%-67%) [7]-[9]. This leads to unneces-
sary antibiotic prescription, causing drug stocks depletion and
increased microbial resistance. The IMCI-defined symptoms
for identification of pneumonia include: fast breathing (> 50
breaths per min in a child aged 2-11 months and > 40 breaths
per min in a child aged 1-5 years) and chest indrawing.

The technological revolution has transformed multiple ex-
isting industries and defined entirely new ones. Healthcare
systems worldwide have benefited from this phenomenon;
in LMICs, technology is often pointed out as the tool for
leapfrogging unaffordable and inefficient solutions from the
past (e.g. mobile health as an alternative to conventional
healthcare delivery). Specifically, computational algorithms,
combined with appropriate hardware, offer a potential solution
to the shortage of medical expertise. For example, data fusion
of multiple clinical parameters has been applied to various
health problems to improve diagnostic outcomes, e.g. intensive
care unit (ICU) monitoring systems for mortality prediction
and decision support systems for neonatal ICU [10]-[13]. A
data based decision support approach has been previously
applied to diagnostics of pneumonia, focusing on identification
of patients suitable for treatment at home, reducing hospi-
talisation and healthcare costs [14]-[16]. All these studies
have applied a wide range of machine learning techniques to
datasets collected in hospitals, where a substantial number of
clinical parameters have been recorded by highly trained staff
(between 46 - 158 parameters) and this data is used to predict
health outcomes.

On the other hand, no substantial research has been done
on fusing a few clinical variables, which can be measured
by basically trained health workers in resource-constrained
settings, to automate diagnostics of childhood pneumonia.
Previous work in this field has implemented basic analytical
tools such as thresholding of individual clinical variables
[17]-[19]; however, individually, none of these variables are
sensitive or specific enough (Table I).

Other diagnostic problems, involving continuous and dis-
crete clinical variables, have been investigated via a wide range
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TABLE 1. SUMMARY OF SENSITIVITY AND SPECIFICITY OF
INDIVIDUAL CLINICAL PARAMETERS IN IDENTIFYING CHILDHOOD
PNEUMONIA (ACCORDING TO THRESHOLDS DEFINED IN ACCEPTED

GUIDELINES) AS REPORTED IN THE RESEARCH LITERATURE [17]-[19].

Clinical parameter Sensitivity Specificity
X-ray scan Gold standard? Gold standard?
Rales 15% 99%
Respiratory rate 50-70% 43-95%
Rhonchi 26% 98%
Oxygen saturation 26-63% 77-93%
Tachycardia 51% 70%
Fever 47% 68%
Retractions 26% 98%
Crackles 43% 73%
Wheezing 4% 98%
Biomarkers 82-96% 53-61%

of machine learning techniques [20]-[23]. This paper presents
the development and application of a mixture of methods -
feature selection and classification - that were used in realising
a dual research objective: (1) identification of a minimal set of
clinical parameters that improves diagnosis and can be mea-
sured with affordable and easy-to-operate point-of-care tools in
resource-constrained settings; (2) design of machine learning
algorithms that fuse information from individual measurements
to deliver an accurate diagnostic outcome.

II. METHODS

The dataset used in this project was collected as part of
a clinical study described by Huang et al. [24]. The 1581
participants were Gambian children aged 2-59 months: 780
were diagnosed with childhood pneumonia and 801 were
recruited as healthy controls. Originally, the dataset consisted
of 57 variables (i.e. clinical characteristics); these variables
included measurable clinical parameters (e.g. white blood cell
count, neutrophils, haemoglobin etc.), observational clinical
parameters (e.g. sleepiness, sternal indrawing, cough heard
etc.) and conventional vital signs (e.g. respiratory rate, heart
rate, oxygen saturation etc.). The presence of pneumonia was
identified by a clinician on the basis of WHO guidelines [25]
and IMCI [6] and this was used as the outcome when training
and testing an algorithm. All analysis of this dataset was
performed in Matlab2014.

A. Preprocessing

The original dataset contained a substantial number of miss-
ing values, which necessitated preprocessing. The following
steps were taken: (1) features and samples where more than
20% of the data were missing were excluded from the analysis;
(2) for the remaining features, we used imputation methods
[26]. Three different imputation techniques were investigated
(feature mean, feature median and k-Nearest Neighbour); given
that the dataset contained a mixture of continuous and discrete
features, the latter two were more appropriate. However, no
substantial differences were recorded in the distributions of
features across imputation techniques; therefore, in cases of

missing values, we simply imputed with the corresponding
median for that feature. In order to investigate the effect of
imputation, we created additional vectors for each feature
that contained imputations - these vectors contained ’ones’
where imputation was done and ’zeros’ otherwise. For ease
of comprehension, we will refer to these vectors as ghost
vectors throughout the paper. After this initial preprocessing
we obtained a design matrix with 1093 samples and 47 features
(29 clinical characteristics and 18 ghost vectors).

B. Feature selection

Seven feature selection techniques were used to investigate
the relevance of clinical variables to the outcome: maximum
relevance on the basis of correlation coefficients, maximum rel-
evance minimum redundancy (mRMR), Relief, Gram-Schmidt
orthogonalisation, Least Angle Shrinkage and Selection Op-
erator (LASSO), Elastic Net and sparse Linear Discriminant
Analysis (sLDA). The performance of each technique has been
documented in the literature and some techniques have been
seen to perform better depending on the choice of classifier
applied next [26-35]. For the purposes of this diagnostic
challenge, we wanted to obtain a more objective selection of
features, irrespective of the bias that each technique carries.
We therefore developed a majority voting approach that con-
solidates results from all techniques, executed in the following
way: (1) the data is randomly split in ten sections of equal size;
(2) each feature selection technique is applied to each section,
delivering a rank for each feature; (3) the first two steps are
repeated 50 times to minimise the bias that comes from the
arbitrariness of the data split; (4) an accumulative frequency
was derived for each feature for each ranking position; (5)
based on this accumulative frequency, the most represented
features in the first 10 ranking positions were identified.
Additionally, each feature was assessed according to three
criteria: whether it is measurable in a quantifiable and objective
manner; and in case this is true, whether it is measurable
in a point-of care setting; and whether the measurement is
affordable. Assessment was done based on currently available
options as well as feasible design of novel tools. Finally, for
the feature to be selected for analysis it should satisfy all of
these three criteria as well as be present in the top 10 of at least
three ’fundamentally different” techniques. Namely, the pairs
of techniques, not considered fundamentally different, were:
correlation & mRMR and Lasso & Elastic Net, as they share
a very similar theoretical basis.

To visualise the effects of feature selection, a dimensionality
reduction technique originally defined by van der Maaten - t-
Stochastic Neighbourhood Embedding (t-SNE) was used [27].
More conventional methods in this field, such as Principle
Components Analysis (PCA) [28] and Multidimensionality
Scaling (MDS) [29], are linear and therefore mainly preserve
the separation between dissimilar data entries within a low-
dimensional space. However, most medical data occupies non-
linear manifolds, making it essential to also preserve the
closure between similar data entries. t-SNE has been previ-
ously reported to capture aspects of both the local as well as
the global structure, preserving the neighbouring probabilities
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of samples. It calculates Euclidean distances between data
entries and derives similarities (conditional probabilities) by
assuming a Student-t distribution [27]. t-SNE was applied
to the list of features, constructed after feature selection,
and the formation of clusters was compared to the outcome.
Additionally, the distribution of each feature across the two
clusters was investigated in order to identify potential reasons
for misclassification.

C. Classification

Three machine learning techniques were adapted and ap-
plied to this diagnostic challenge: Logistic Regression, Support
Vector Machines (SVM) and Random Forests (RF). The imple-
mentation of all three techniques to various medical diagnos-
tics problems has been documented in the literature [26], [30],
[31]. The first technique only required the optimisation of beta-
coefficients, whereas the other two involved more advanced
fine-tuning of several parameters. Specifically, a Gaussian
radial basis function kernel was used in SVM, determining
the optimal values of the kernel parameter v and the penalty
parameter C though a grid search of possible values. The
LIBSVM implementation was used [32]. Regarding RF, the
number of trees and number of features for splitting were
optimised through a grid search of parameters.

For each machine learning algorithm, we take an aggressive
validation approach by that has three elements. First, 4-fold
cross-validation was performed to test variance in performance,
training the data on 820 randomly selected cases (training set)
and testing on the remaining 273 (test set). Second, internal
5-fold cross-validation was performed to optimise parameters
in each training set, based on Area Under the Curve (AUC).
A separate algorithm was trained for a different number of
features; each one was applied to the test set, recording the
following performance metrics: sensitivity, specificity, AUC,
balanced accuracy. Third, the first two steps were repeated
100 times to offset any bias in the split of the data. Algorithm
performance in this paper is reported in terms of mean values
as well as variance across repetitions.

The performance of the three algorithms was measured as a
function of the number of features presented to the classifier,
identifying both the optimal number of features as well as the
best performing algorithm. Additionally, probabilistic predic-
tions were derived to reflect the degree of certainty with which
any given entry can be assigned to each of the two classes.
These predictions were mapped back to the cluster structure
established with t-SNE, contextualising classification accuracy
to the global structures of the data.

III. RESULTS
A. Feature selection

Using our multi-stage approach to feature selection, 17 out
of the 47 features were selected by at least one technique;
from those, 5 features were highlighted through the multi-
stage feature selection approach: Temperature, HR, RR, Osat
and Malnutrition Score (WHZ) (Figure 1). None of the ghost
vectors were ranked amongst the Top 10 on either of the

feature selection techniques, but relevant ghost vectors (the
WHZ ghost vector) were added to the list to test their effect
on classification. Applying t-SNE on the dataset of 1093 cases
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Fig. 1. Features voted in the Top 10 across all 10 folds and 50 iterations,
for each feature selection algorithm. Features were also assessed with respect
to their measurability, point-of-care and affordability. Based on these criteria,
the following features were selected: Respiratory rate (RR), Heart rate (HR),
Temperature (T), Oxygen saturation (Osat) and Malnutrition Score (WHZ)

and 5 features, we were able to identify 2 clear clusters; when
compared to the outcomes these were shown to be consistent
with the separation between Pneumonia and No Pneumonia
classes (Figure 2). With the exception of a few cases, the
clustering outcome gave us confidence that separation between
the two classes should be possible on the basis of these five
features.

Additionally, the distribution of each individual feature
across the two clusters was investigated (Figure 5). From
Figure 3 and 4, Pneumonia can be confirmed in cases with:
RR > 65, HR > 175, T' > 38.5, Osat < 87, WHZ < —5
and WHZ > 1.8. However, the data contains a substantial
amount of clinical uncertainty - there are many cases where
this type of simple thresholding is insufficient to separate the
two classes. A closer look at the overlap zones identified in
Figure 2, illustrates some of this uncertainty. In Zone A: the
No Pneumonia entries have elevated HR and low WHZ; the
Pneumonia entries have low RR, low T. In Zone B: the No
Pneumonia entries have elevated HR; the Pneumonia entries
have low RR, no fever; and WHZ values are equally spread
across both classes. In Zone C: the Pneumonia entries have low
HR, no fever; and WHZ values are equally spread across both
classes. This preliminary analysis indicated that more advanced
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Fig. 2. Dimensionality reduction with tSNE using data from the five selected
features. Data points were coloured according to the outcome for purposes of
visualisation; however, the outcome was not used in constructing the clusters.
Three zones of overlap (A, B, C) between the two classes were identified. Note
that these regions have been arbitrarily defined to facilitate visual inspection
and carry no mathematical meaning.

machine learning techniques might be needed to separate the
two classes.

B. Classification using machine learning algorithms

Classification with all three techniques was optimised when
the first four features were used: RR, HR, T and Osat.
The following hyperparamters were found to lead to best
classification performance: a v of 0.1 and a cost parameter
of 1000 for SVM; 750 decision trees and searching over 2
variables at each tree node for RF. Comparison between the
ROC curves of each technique revealed similar performance,
with somewhat more favourable sensitivity obtained via RF
than SVM and Logistic Regression, for same specificity values
(Figure 5).

The performance of the RF algorithm was investigated fur-
ther. Through the internal cross-validation, we found that the
optimal hyperparameter values in RF were 750 decision trees,
and searching over 2 variables at each tree node. Increasing
the number of features was seen to be particularly beneficial
with respect to specificity (Figure 6). With four features, RF
delivered: sensitivity of 96.6% (95% CI 95.8% - 97.6%);
specificity of 96.4% (95% CI 95.3%-98.0%); AUC of 97.8%
(95% CI 97.7%-97.9%); balanced accuracy of 96.6% (95% CI
96.1%-97.1%). The variance across iterations was observed to
be below 5% across all metrics. The ghost vector present in
the dataset was seen to have limited effect on classification,
with changes in all metrics limited to +/- 1%.

Finally, probabilistic values were derived from the RF
algorithm and these were mapped back to the cluster structure
derived with t-SNE (Figure 7). The optimal threshold for
conversion of this probabilistic outcome into a binary one was
recorded to be 0.35. The majority of data points are classified
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Fig. 3.  Distribution of individual features (RR, HR and T) across both
clusters. The shapes definition from Figure 4 has been preserved - o for
No Pneumonia and * for Pneumonia cases. The color scale represents the
corresponding magnitude of that feature per entry. Areas of interest are
identified through the boxes around them. The boxes on the right of each
plot contain the following information: (top) correlation coefficient between
feature and outcome; (middle) colour bar for the colour scale used in the plot;
(bottom) a boxplot of the data in each feature, split between the two classes
is included. In each box, the central/red line represents the median, the edges
are the 25th and the 75th percentiles, and the dashed lines extend to the most
extreme data points.
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with high certainty. Some data points are classified with less
certainty and these zones have been highlighted in Figure 8.
Zone A: A ’False Negative’ (FN) case and a ’False Positive’
(FP) case were observed, with the latter being very close to the
threshold value; some of the Pneumonia cases were classified
correctly but with less certainty. Zone B: contained no FN
cases but some Pneumonia cases with quite low probabilistic
values. Zone C: The most FP and FN cases were identified
here as well as a few borderline cases, where the probabilistic
assignment was seen to be quite close to the threshold value.

Correlation Coefficient: |

40y -0.400
100
301 95
90
20f 85 =
80 §
o 10f 75 ©
o 70 @)
£ 0 65
= 60
a =10t 55
100 = =
-20r 90 -+
80 (1)
-30f 70
. i 5 i : ; 60/ 0sat
-60 -40 -20 0 20 40 60 No
Dimension 1 Pneumonia Pneumonia
Correlation Coefficient:
40 0.051
2
30 1
0
20 -1
2
SN 10 -3
=
K- -4
(72}
£ 0 -5
£ -6
a -10 -7
-20
-30
60 40 -20 0 20 40 60
Dimension 1 Pneumonia Pneumonia
Fig. 4. Distribution of individual features (Osat and WHZ) across both

clusters. The shapes definition from Figure 4 has been preserved - o for
No Pneumonia and * for Pneumonia cases. The color scale represents the
corresponding magnitude of that feature per entry. Areas of interest are
identified through the boxes around them. The boxes on the right of each
plot contain the following information: (top) correlation coefficient between
feature and outcome; (middle) colour bar for the colour scale used in the plot;
(bottom) a boxplot of the data in each feature, split between the two classes
is included. In each box, the central/red line represents the median, the edges
are the 25th and the 75th percentiles, and the dashed lines extend to the most
extreme data points.
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Fig. 6. Sensitivity, specificity, AUC and balanced accuracy plots for RF and
an increasing number of features. Results are presented through a boxplot to
assess robustness and variability of this technique. In each box, the central/red
line represents the median, the edges are the 25th and the 75th percentiles,
and the dashed lines extend to the most extreme data points. Along the x
axis, features are listed in an additive manner, i.e. each x-entry represents
classification performed on a dataset including that specific feature and all
features on the left of it. Note that the y-axis has only been plotted in the
0.8-1 range to better visualise differences between different boxplot graphs.
The red box around the first three features indicates that all three of them can
be extracted from an individual signal/measurement (PPG signal)
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Fig. 7. A comparison between the two dimensional data representation
established with t-SNE and classification with RF. The shape of each data
point represents its class according to the real outcome. The colour of each
data point represent the probabilistic prediction derived from RF, where 1
corresponds to 100% certainty of pneumonia and O corresponds to 100%
certainty of ’No Pneumonia’. Zones of uncertainty have been identified on
the plot and labelled as A,B & C.

IV. DIScUSSION & CONCLUSIONS

This study highlighted a few interesting points in the context
of algorithms for automated diagnosis of childhood pneumonia
and these are summarised below.

This project reinforced the observation that certain clinical
features can be individually predictive of pneumonia. However,
it is only when these individual features are combined, that
high levels of both sensitivity and specificity are attained.

Oxygen saturation was seen to be very specific but not
very sensitive; low levels of SpO2 were seen to be highly
indicative of pneumonia. However, normal levels of SpO2 were
observed across both classes. This is consistent with the fact
that hypoxia mainly presents in very severe pneumonia cases
(in approximately 20%) of the cases [44].

Malnutrition has been documented to have high relevance to
pneumonia diagnostics, especially in the context of biomarkers,
where concentration levels can vary across subjects depending
on their malnutrition status [24]. In the dataset analysed here,
extreme malnutrition scores were seen to be related to the
presence of pneumonia; however, the majority of cases with
more neutral malnutrition scores were seen to be equally
distributed across both classes. Given that this study uses vital
sign measurements, this finding is unsurprising - the partial
mutual information analysis saw little overlap between the
malnutrition score and any of the other measurements.

Some features were identified by the feature selection
techniques amongst the most predictive (Cough, Neutrophils,
Lymphocytes) but were excluded from the analysis due to
diagnostic application considerations. Specifically, the cough
variable relies on a parent/accompanying adult identifying
cough in the child prior to the health consultation. Additionally,

Abeyratne et al. have reported on the use of cough recordings,
in combination with a few other basic clinical parameters,
achieving high sensitivity (94%) but moderate specificity
(75%) [33]. Moreover, the approach requires continuous sound
recording in a hospital setting; in practice, the large volume
of patients in primary care facilities and the limited tolerance
young children have for physical examinations mean that
consultation times are typically less than two minutes. The
“Neutrophils” and “Lymphocytes” variables are difficult to
measure in low resource settings, let alone in a point-of-care
fashion.

This analysis highlighted the fact that simple thresholding
of clinical features is insufficient to provide reliable diagnostic
outcomes. Clinical uncertainty in the presentation of individual
childhood pneumonia cases means that advanced interpretation
of several parameters simultaneously is needed to deal with
cases which would otherwise require expert training to deal
with.

The IMCI guidelines were used by a clinician in defining
the gold standard in this study. However, simply automating
diagnostics through that set of recommendations is insuffi-
cient. Therefore, this study aimed to identify measurable and
quantifiable features that, combined through machine learning,
would remove some of the ambiguity that stems from the use
of observational parameters such as chest indrawing which
often become obvious only in the later stages of disease.

In this context, the three standard machine learning tech-
niques investigated in this study demonstrated an ability to
automate childhood pneumonia diagnostics using quantifiable
clinical features that could be measured in point-of-care set-
tings. The superior performance of RF indicates non-linear
interactions between the features. The use of more advanced
machine learning methods, such as neural networks, could be
investigated in the future but would possibly require a bigger
dataset. Nevertheless, the classification performance recorded
with RF indicated that it is possible to address some of the
diagnostic challenges associated with childhood pneumonia
through machine learning, including the high degree of clin-
ical uncertainty, and provide clinical workers with an easily
interpretable recommendation.

The dataset analysed in this project is not necessarily repre-
sentative of a realistic medical setting. Namely, the control
cases contain some clinical variability (e.g. some elevated
HR and low SpO2) but overall are very healthy. For a
machine learning algorithm to be reliably applicable to a
realistic clinical scenario, it should be trained on a population
where the control cases also suffer from other symptomatically
similar diseases (e.g. malaria and tuberculosis). Nevertheless,
this initial analysis provides a substantial foundation; we are
currently working towards expanding these findings through
the use of larger and more diverse datasets.

The analysis presented in this study confirmed the original
hypothesis that fusion of individual clinical signs through ma-
chine learning methods has the potential to facilitate automated
and improved pneumonia diagnostics. Moreover, the approach
taken regarding feature selection allowed the identification of
informative features that can also be measured in an affordable
and reliable way. As highlighted in the results section, some of
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these features can be derived from the same clinical measure-
ment. Specifically, the first three features from the proposed set
(i.e. RR, HR, Osat) could be all derived simultaneously from
the PPG signal obtained through a pulse oximeter, keeping
cost and clinical input required low. Furthermore, the designed
algorithm could be embedded in a mobile application, which,
equipped with the right hardware, would support community
health workers in their clinical decision making process.

A brief market survey of off-the-shelf pulse oximeters,
which could connect to a mobile phone and allow derivation
of RR, HR and Osat, indicated a rough procurement cost of
$100. A simple digital thermometer could be added for less
than $5, increasing sensitivity by 3.5% and specificity by 4%.
A comparison with current associated healthcare costs (blood
culture and X-ray for a wide range of cases) suggests that such
an approach could improve patient outcomes in a cost-effective
way. More structured market research is needed to quantify the
cost-effectiveness of this approach and identify existing tools
that would be optimal for the application in mind.
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