

Context Maps-Classifying Contextual Influence for Decision Support System Design

Rachel Haga Karen Feigh, PhD

34th DASC 17 Sept 2015

GEORGIA INSTITUTE OF TECHNOLOGY

Motivation

- Decision Support Systems (DSS) are becoming increasingly common
 - **The Good**: Great at quick computation, collecting data
 - The Bad: Blind to context, inflexible, generally unable to prioritize data

SOLUTION

Make DSS Proactive / Context Aware

The Problem

Hollnagel's Contextual Control Modes (CCM)

Example: Navigating a car

Research Objectives

- Enable engineers to evaluate their current DSS
- Provide guidance on how to leverage this methodology to improve DSS with interface requirement and evaluation metrics
- Implement the methodology in a complex, dynamic, and safety critical environment

Human-In-The-Loop (HITL) Experiments

- See how users react to a given task in various decision modes
- How do these different decision modes impact performance when using current DSS
- What tools are they using and what information do they lack?

This Work's Objectives

- Systematically construct realistic scenarios using environmental context
- The scenarios must experimentally drive users into the three primary decision modes
- The scenario needs to be operationalized by breaking down environmental context into independent variables

Domain Requirements

Task:

Instrument Rated GA Pilot planning and re-planning due to weather

What data is collected?
How is the data analyzed?
What is the output of each step?

4 Step Methodology

4 Step Methodology

Step 0: Background Knowledge Step 1: Focus Group Step 2: Scenario Interview Step 3: Validation Interview

Step 2

Step 3

Background Research:

Purpose & Data Collection

- Enable the designer to follow up with an expert with informed questions
- Make the interviews and subsequent transcription process more time efficient.
- Will be specific to the work domain of interest and the designer's current knowledge.
 - Very structure domains may be able to rely on available documentation
 - Others may need to collect data via surveys, etc.

Step 0 Step 1 Step 2 Step 3

Background Research:

Deliverable

- A comprehensive list of the tools, aids, and any other resources available to your user population when making decisions
- A list of acronyms, terminology, and informal jargon used in the domain.
- Be forewarned that 1 minute of an interview takes approximately 10 to 11 minutes to transcribe

4 Step Methodology

Step 0: Background Knowledge Step 1: Focus Group Step 2: Scenario Interview

Step 3: Validation Interview

Focus Group:

Purpose

- The group format should allow the operator population to 'feed' off of each other
 - e.g. 'oh yeah, something similar happened to me...'
- Weed out any 'outlier' experiences
 - e.g. 'I have no idea what you're talking about; that's never something that concerns me.'
- Initially explore the decision space and identify the boundaries

Step 1

Step 2

Step 3

Focus Group:

Data Collection

- Invite roughly 3 -5 participants
- Identify the key context features that impact your operator population
- Begin to associate the manifestation of these context features with the three decision modes.

Step 0 Step 1 Step 2 Step 3

Focus Group:

Data Collection

Step 0 Step 1 Step 2 Step 3

Focus Group:

Deliverable

Context Feature	Reactionary	Procedural	Optimizing
Weather Location	En route, Arrival airport [2,3,5]	En route [1,2,3]	Arrival Airport [1,2,3]
Weather Predictability	Low [2,4,5]	High [1,4,5]	Low [1,2,3,5]
ATC Involvement	Reactive [1,2,3,4]	Proactive [1,2,3]	Reactive [3,4,5]
Stage of Flight	On arrival [1,2]	En route[3,4,5]	At departure airport [2,3,4,5]

4 Step Methodology

Step 0: Background Knowledge Step 1: Focus Group Step 2: Scenario Interview Step 3: Validation Interview

Scenario Interview:

Purpose & Data Collection

- First pass at realistic scenarios that can be operationalized using environmental context
- Introduce the task to the participant and ask them to describe experiences that fit into each mode
 - Maintain a focus on the 'story' as opposed to a question and answer session
 - At the end of a story, follow up on any context features identified in the focus group that were not mentioned in their recollection

Step 0Step 1Step 2Step 3

Scenario Interview:

Data Analysis

Step 0

Step 1

Step 2

Step 3

Scenario Interviews:

Deliverable

Interviews

Narrative Stories

Experiment

Experimental Scenarios

4 Step Methodology

Step 0: Background Knowledge Step 1: Focus Group Step 2: Scenario Interview Step 3: Validation Interview

Validation Interview:

Purpose & Data Collection

- Used to review the individual context maps
 - Determine the validity of the scenarios, context levels, and their relationships to CCMs
 - Confirm that you correctly captured the participant's experiences.
- Used to consolidate the individual context maps into a final aggregate context map
 - Scenarios that are similar to other SMEs
 - Scenarios from other SMEs not mentioned by current interviewee

Step 0 Step 1

Step 2

Step 3

Validation Interview:

Deliverable

Unsolicited Advice

- When collecting any type of qualitative data, there is a fine line between leaving no stone unturned and leading your participants
 - Avoid the temptation to drive down into specifics too quickly
- Avoid examples from your domain of interest when explaining CCM
- Consider giving the CCMs 'code names' to avoid biasing the SMEs

Conclusions

Summary

- The Problem
 - What is context? How do we bound it?
 - Hollnagel's Contextual Control Modes
- The Objectives
 - Create a methodology for engineers to systematically account for varying context in DSS design
 - Systematically construct realistic scenarios using environmental context
- The Solution
 - 4 Step Methodology to translate user narratives into experimental scenarios

Questions?

Extra Slides

- Enable engineers to evaluate their current DSS
 - Which decision modes do they currently support and what impact does this have on performance?
 - Which DSS features are used when?
 - What information do users need that they are not getting?

- Provide guidance on how to leverage this information to improve DSS
 - Generic interface requirements for DSS design to support operator across decision metrics
 - Evaluation metrics to assess existing DSS

 Implement the methodology in a complex, dynamic, and safety critical environment

4 Step Methodology

