
Understanding and Enforcing Opacity

Daniel Schoepe and Andrei Sabelfeld

Chalmers University of Technology

Abstract—This paper puts a spotlight on the specification
and enforcement of opacity, a security policy for protecting
sensitive properties of system behavior. We illustrate the fine
granularity of the opacity policy by location privacy and
privacy-preserving aggregation scenarios. We present a frame-
work for opacity and explore its key differences and formal
connections with such well-known information-flow models
as noninterference, knowledge-based security, and declassifica-
tion. Our results are machine-checked and parameterized in
the observational power of the attacker, including progress-
insensitive, progress-sensitive, and timing-sensitive attackers.
We present two approaches to enforcing opacity: a whitebox
monitor and a blackbox sampling-based enforcement. We report
on experiments with prototypes that utilize state-of-the-art
Satisfiability Modulo Theories (SMT) solvers and the random
testing tool QuickCheck to establish opacity for the location
and aggregation-based scenarios.

I. INTRODUCTION

This paper puts a spotlight on the specification and

enforcement of opacity [11, 46, 39, 14], a security policy

for protecting sensitive properties of system behavior. In-

tuitively, a predicate on system behaviors is opaque if for

any behavior that satisfies the predicate, there is another

behavior that is indistinguishable by the attacker but where

the predicate no longer holds.

Scenarios for opacity Opacity is a natural policy in many

scenarios. As of 2011, Flickr’s geoprivacy settings [25]

include geofences for geotagging policies in sensitive areas,

e.g., as depicted in Figure 1, no one can see the location

of the photos that a user tags in a geofenced area (e.g.,

the user’s home). Scenarios like Flickr’s aim at improving

privacy of location-based services (LBS), an important area

with much recent attention and progress [42, 62]. We elabo-

rate on variations of the scenario where an LBS is required

to protect users’ location, but only when they are within

sensitive areas. Note that there are many scenarios beyond

location privacy, e.g., regulating how the result of a health

test can be released depending on its outcome, in a similar

fashion as location release that depends on the location.

Suppose hX and hY store the user’s potentially sensitive

(or high) Cartesian location coordinates. We assume the

coordinates are static, as tracking users over time would

require additional protection. Say, a clinic, representing

a sensitive location, occupies a rectangular area with the

corners (200, 50) and (400, 150). Consider the scenario of

Figure 1. Flickr’s geofences

an LBS that outputs on a public (or low) channel, with the

goal of privacy-preserving output.

/* Program 1 */
/* Location privacy with fixed output */
clinicXmin := 200; clinicXmax := 400;
clinicYmin := 50; clinicYmax := 150;
if (hX >= clinicXmin && hX <= clinicXmax &&

hY >= clinicYmin && hY <= clinicYmax) {
out L (100, 200);

} else {
out L (hX, hY);

}

In Program 1, when the user is inside the clinic, the

program reports a default location (100, 200) and otherwise

the user’s real location. Can the common security definitions

directly support the scenario? Noninterference [29] and its

knowledge-based analogues [36, 22] allow no flow from high

to low whatsoever and thus wrongfully reject the intuitively

secure program. Declassification [58] and knowledge-based
release [3] models for intentional information release also

have difficulties with the scenario. Fundamentally, declassi-

fication is often about what can be released [19, 41, 57, 54,

28, 43], while opacity is, conversely, about what must be kept
secret. Declassification policies can be categorized along the

dimensions of what information is released, when and where
in the system the release takes place, and by whom the re-

lease is controlled [58]. When focusing on protecting secret

inputs, closest to opacity are the what policies since they

are concerned with separating secrets from non-secrets in the

provided input. These partial release [19, 41, 57, 54, 28, 43]

policies specify what is released by splitting the domain of

secrets into subdomains and only protecting secret variation

within the subdomains. When it comes to specifying partial

2015 IEEE 28th Computer Security Foundations Symposium

© 2015, Daniel Schoepe. Under license to IEEE.

DOI 10.1109/CSF.2015.41

554

2015 IEEE 28th Computer Security Foundations Symposium

© 2015, Daniel Schoepe. Under license to IEEE.

DOI 10.1109/CSF.2015.41

539

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 15:38:50 UTC from IEEE Xplore. Restrictions apply.

release, the subdomains can be expressed as kernels for

escape hatch expressions [54], but since in our scenarios

the released information depends on the location, escape

hatch expressions would need to be nearly as complex as

the program itself! We will come back to the relation to

declassification in Section VIII.

On the other hand, opacity is a natural policy for this

scenario. The property to protect is whether the user is

inside the clinic. If the user is indeed there, the program

will return the default location (100, 200). Rightfully, there

is another run of the program that originates outside the

clinic (in (100, 200)) and produces the same observation as

the original run.

Although the scope of this paper limits opacity to pro-

tecting information about input environments, opacity in

general allows arbitrary behavioral properties of a system

to be protected, and not only the values of secret inputs.

/* Program 2 */
/* Location privacy with random output */

clinicXmin := 200; clinicXmax := 400;
clinicYmin := 50; clinicYmax := 150;
if (hX >= clinicXmin && hX <= clinicXmax &&

hY >= clinicYmin && hY <= clinicYmax) {
randomize(x);
while (x >= clinicXmin && x <= clinicXmax) {

randomize(x);
}
randomize(y);
while (y >= clinicYmin && y <= clinicYmay) {

randomize(y);
}
out L (x, y);

} else {
out L (hX, hY);

}

Program 2 is similar to Program 1 except a

(pseudo)random outside location is returned whenever

the user is inside the clinic. It makes it more difficult for

the attacker to learn anything about the user’s location.

When observing the output, the attacker is unable to

deduce whether it is the user’s real location outside the

clinic or a randomly generated location while the user is

actually inside. As we elaborate later, this program satisfies

symmetric opacity in the sense that both the sensitive

predicate (whether the user is inside the clinic) and its

negation are protected.

/* Program 3 */
/* Location privacy with suppressed output */
privXmin := 78; privXmax := 159;
privYmin := 120; privYmax := 234;
if (!(hX >= privXmin && hX <= privXmax &&

hY >= privYmin && hY <= privYmax)) {
out L (hX, hY);

} else { skip; }

Program 3 directly models Flickr’s geoprivacy policy. The

user’s location is simply suppressed if within the sensitive

area and output normally otherwise. When observing the

output, the attacker learns that the user is outside the sen-

sitive area, which is safe. As elaborated later, this scenario

connects to progress-insensitive security [2, 4, 10].

/* Program 4 - Statistics aggregation */
int[10] hHasDisease; /* Declare hHasDisease as array */
i := 0;
result := 0;
while (i < 10) {

result := result + ((hHasDisease[i] > 0) ? 1 : 0);
i := i + 1;

}
out L result;

In a different scenario, Program 4 iterates over an array

hHasDisease (whose size is public) checking for patients

diagnosed with a disease and aggregate the total of positive

cases. The sensitive predicate to protect is whether a given

patient is diagnosed positively or negatively. Common secu-

rity definitions require a special treatment for such corner

cases as when there is only one patient and when the count

of the positively diagnosed patients is zero or the same as the

total count. On the other hand, opacity covers corner cases

by design because it directly focuses on the key property

(predicate) to be hidden. In similar vein, opacity is a good

fit for the electronic voting scenario, allowing to reveal the

total count of votes for a given candidate without revealing

the individual votes of any given voter.

Research questions With the above building the intuition

for opacity in a variety of scenarios, the paper seeks to

answer fundamental questions on understanding and enforc-

ing opacity. Given the rich literature on security definitions

and specifications [44, 26, 52, 55], the question is whether

such common concepts as noninterference [29], knowledge-
based security [36, 22, 3], and declassification [58] relate

to opacity. If so, what is the exact relation? How does the

relation depend on the power of the attacker?

An important unexplored problem is how to assure opac-

ity. This leads to several questions. How can opacity be

enforced? Is whitebox or blackbox enforcement more ap-

propriate or perhaps both can be useful? If so, how well can

such techniques help with the outlined scenarios?

Contributions To answer the questions above, we present

a framework for opacity, spell out the differences, and

formalize and machine-check the relation to noninterference

and knowledge-based security in a fashion parametric in

the attacker power, including progress-insensitive, progress-
sensitive, and timing-sensitive attackers (Section II). We

instantiate the formal connection results to batch-job (Sec-

tion III) and interactive (Section IV) settings. We relate opac-

ity to the what dimension of declassification, as captured

by the model of delimited release [54] (Section V). We

present two approaches to enforcement, a whitebox dynamic
monitor and a blackbox sampling-based mechanism, both

established sound (Section VI). We build prototypes that

555540

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 15:38:50 UTC from IEEE Xplore. Restrictions apply.

utilize state-of-the-art Satisfiability Modulo Theories (SMT)
solvers Z3 [20] and CVC4 [7] as well as the random testing
tool QuickCheck [16] and report on our experiments for

the scenarios of location privacy and statistics aggregation

(Section VII). Finally, the paper offers a discussion of related

work (Section VIII) and concluding remarks (Section IX).

II. FRAMEWORK

We characterize the connection between opacity and com-

mon security definitions in a general, language-independent

way, to be instantiated to a batch-job setting in Section III

and an I/O setting in Section IV. Our results are parame-

terized in the attacker’s power. Further, we relate opacity to

knowledge-based security.

Assume E to be the set of environments. Denote the set of

possible results of a program by R. A configuration 〈c, e〉 is
a pair consisting of a command c ∈ C and an environment

e ∈ E. Assume that there is an evaluation relation 〈c, e〉 ⇓ r
relating a configuration 〈c, e〉 with a result r ∈ R.

Note that this allows for nondeterministic semantics.

However, we assume that the secrets that should be kept

confidential are about initial environments, not about non-

deterministic components in outputs. Focusing on the protec-

tion of initial environments enables us to formally connect

opacity with the common security definitions. As foreshad-

owed earlier, hiding general system properties is one of the

advantages of opacity, opening promising avenues for future

work, such as reasoning about program obfuscation.

A. Opacity

Drawing on the original work on opacity [11, 46, 39, 14],

we present a general framework for opacity in a semantics-

based setting. For a predicate ϕ to be opaque for a command

c, any environment satisfying ϕ must correspond to another,

observably equivalent, environment that does not satisfy ϕ
while producing observably equivalent outputs. Intuitively

this states that an attacker can never be certain that ϕ holds

given public input and output of a program.

The notion is parametric in equivalence
i∼ on environ-

ments and relation
o∼ on results. The intuition is that

i∼
expresses what information the attacker can observe about

environments while
o∼ captures what parts of the result are

visible to the attacker.

Definition 1 (Op(c,
i∼, o∼)). ϕ is opaque for command c,

equivalence relation i∼ and relation o∼ (written ϕ ∈ Op(c,
i∼

,
o∼)) if and only if whenever 〈c, e1〉 ⇓ r1 and e1 ∈ ϕ, then

there exist e2, r2 such that 〈c, e2〉 ⇓ r2 ∧ e1 i∼ e2 ∧ r1 o∼
r2 ∧ e2 �∈ ϕ.

This definition allows for the attacker to learn that ϕ does

not hold, based on observing public behavior of a program.

In some scenarios, it should also be kept secret that the

predicate does not hold, i.e. an attacker should neither be

able to infer that ϕ is not satisfied.

Note that the implication trivially holds if e1 �∈ ϕ, e.g

the empty set is trivially opaque for any program c and any

relations
i∼ and

o∼.

Recall the scenario of keeping secret whether the user is

located in a clinic. Program 1 resolves this by outputting the

same outside coordinate when the user is actually inside.

Consider an initial memory m1 where m1(hX) = 5 and

m1(hY) = 5. In this case, the attacker observes the output

(5, 5). Based on the program the attacker can then infer

that the user must be actually located at position (5, 5): if

the user had been inside the sensitive area, the observable

output would have been (100, 200). The following defini-

tion captures scenarios where leakage of this form is not

acceptable:

Definition 2 (SOp(c,
i∼, o∼)). ϕ is symmetrically opaque for

command c and relation o∼ (denoted by ϕ ∈ SOp(c,
i∼, o∼))

if and only if ϕ ∈ Op(c,
i∼, o∼) and ϕ ∈ Op(c,

i∼, o∼), where
ϕ denotes the complement of ϕ.

As demonstrated above, this condition is violated by

Program 1. To achieve symmetric opacity, one solution is

to output random coordinates outside of the sensitive area

as in Program 2, discussed in detail in Section VII.

In order to reason about opacity of a predicate for a single

run of a program, we also consider a single-run version of

opacity:

Definition 3. A predicate ϕ ⊆ M is opaque for command
c, environment e1, and result r1 (written ϕ ∈ Op(c,

i∼, o∼
, e1, r1)) if and only if

e1 ∈ ϕ ∧ 〈c, e1〉 ⇓ r1 ⇒
∃e2, r2.〈c, e2〉 ⇓ r2∧e1 i∼ e2 ∧ r1 o∼ r2 ∧ e2 �∈ ϕ

This corresponds to the intuition of opacity: When an

attacker sees one particular run, he cannot infer whether a

predicate holds, since there is another run not satisfying the

predicate producing the same observations. Moreover, the

following lemma substantiates this intuition:

Lemma 1. ϕ ∈ Op(c,
i∼, o∼) if and only if ∀e1, r1.ϕ ∈

Op(c,
i∼, o∼, e1, r1).

All proofs have been formalized in Isabelle/HOL and can

be found online1, along with an extended version containing

pen-and-paper proofs.

Additionally, the following properties connect opacity to

various logical operations:

Lemma 2. If ϕ ∈ Op(c,
i∼, o∼) or ψ ∈ Op(c,

i∼, o∼), then
ϕ ∩ ψ ∈ Op(c,

i∼, o∼).
Lemma 3. If ϕ ∪ ψ ∈ Op(c,

i∼, o∼), then ϕ ∈ Op(c,
i∼, o∼)

and ψ ∈ Op(c,
i∼, o∼).

1http://www.cse.chalmers.se/~schoepe/opacity

556541

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 15:38:50 UTC from IEEE Xplore. Restrictions apply.

The reverse implications do not hold in general: Consider

ψ = ϕ. Since ϕ ∪ ϕ cannot be opaque, the converse of

Lemma 3 does not hold if ϕ and ϕ are opaque. Similarly,

a counter-example for the converse of Lemma 2 can be

constructed by choosing ϕ and ψ such that ϕ∩ ψ = ∅ with

ϕ or ψ opaque.

Moreover, Lemma 3 can be used to extend enforcement

mechanisms to several predicates at once, albeit at the loss

of precision.

B. Noninterference

We now present a definition of noninterference [29], also

parametric in equivalence
i∼ on environments and relation

o∼ on results.

Definition 4 (NI (
i∼, o∼)). c is noninterferent for equivalence

i∼ and relation o∼ (written c ∈ NI (
i∼, o∼)) if and only if

whenever 〈c, e1〉 ⇓ r1 and e1
i∼ e2 then there exists a result

r2 such that 〈c, e2〉 ⇓ r2 and r1
o∼ r2.

This definition of noninterference is sufficiently general to

capture different flavors of noninterference commonly con-

sidered in literature. By varying the relation
o∼ we can obtain

termination-insensitive [63] and termination-sensitive [64]

notions of noninterference in for batch-job programs (Sec-

tion III) as well as progress-insensitive [2, 4, 10], progress-
sensitive [4], and timing-sensitive [55] noninterference for

I/O programs (Section IV).

By varying
i∼, we can express both baseline noninterfer-

ence and delimited release [54], a notion of declassification

(Section V). The results for declassification apply to both

batch-job programs and I/O programs.

Recall that noninterference prohibits the example pro-

grams (Program 1, Program 2, Program 3, and Program 4),
although they are intuitively secure.

C. Main Lemma

We connect noninterference and opacity by identifying a

set of predicates that need to be opaque for a program to

satisfy noninterference.

Intuitively, noninterference holds when no secret is leaked

through the attacker’s observations of a program run. Con-

versely, opacity for one predicate allows leaks of any kind

except leaking whether the predicate in question is satisfied.

This leads to the following connection: A program satisfies

noninterference if and only if it is opaque for “almost all”

predicates.

We need to restrict the set of predicates under con-

sideration since a predicate referring only to the actual

observations, instead of secrets, can never be opaque: any

execution resulting in the same observations will result in

either both or none of the runs satisfying the predicate.

As an example, consider the predicate on memories

ϕl = {m|m(l) = 1}. If a memory m1 satisfies ϕl,

then m1(l) = 1. Hence any other memory m2 for which

m1
i∼ m2 holds (i.e. is indistinguishable to the attacker from

m1), will also satisfy m2(l) = 1 and therefore m2 ∈ ϕ.
Hence this predicate can never be opaque, not even for a

program producing no attacker-visible results (e.g. a pro-

gram consisting solely of the command skip). Predicates of

this form must be ruled out to obtain a connection between

noninterference and opacity.

We can express this by requiring that for every class of

equivalent environments, the predicate must be violated for

at least some memory in that class. Otherwise it cannot

possibly state information about secrets, since, within such

an equivalence class, all the secrets can vary arbitrarily.

Definition 5 (ker(
i∼)). The kernel of an equivalence relation

i∼ is the set of equivalence classes of environments with
respect to the relation: ker(i∼) = E /

i∼. The equivalence
class of an environment e is denoted by [e] i∼.

We say a predicate is informative if it refers to secrets;

formally, a predicate ϕ is informative wrt. some equivalence

class for observations on environments E if and only if ϕ �

E.

We can now provide a precise connection between non-

interference and opacity, building on the intuition sketched

above.

Lemma 4. For every equivalence i∼ and any reflexive
relation o∼, the following holds:

c ∈ NI (
i∼, o∼)⇔ ∀E ∈ ker(i∼).∀ϕ � E.ϕ ∈ Op(c,

i∼, o∼)
Alternatively, the connection can be phrased in terms of

predicates that span several equivalence classes, but do not

fully subsume any equivalence class:

Lemma 5. For every equivalence i∼ and any reflexive
relation o∼, it holds that c ∈ NI(i∼, o∼) if and only if

∀ϕ.(∀E ∈ ker(i∼).ϕ ∩ E � E)⇒ ϕ ∈ Op(c,
i∼, o∼)

Intuitively, each predicate required to be opaque in the

lemma can be seen as one possible leak of information via

the public behavior of the program. If all such predicates are

opaque, no such leak is present in the program and hence the

program is noninterferent. To illustrate the lemma further,

consider the program if (h > 0) { out L 1 } else { out L 2 },
leaking one bit of information about a secret variable h using

an if -statement.

This program is clearly not noninterferent, since the

output produced depends on whether h > 0 holds. Moreover,

the predicate {m|m(h) > 0} is not opaque: For an initial

memory m1 where m1(h) > 0, there is no corresponding

memory m2 �∈ ϕ producing the trace 〈1〉.
Moreover, the following lemma establishes that opacity

for a smaller set already implies opacity for the set of

predicates in Lemma 4:

557542

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 15:38:50 UTC from IEEE Xplore. Restrictions apply.

Lemma 6. ∀E ∈ ker(i∼).∀e ∈ E.(E \ {e}) ∈ Op(c,
i∼, o∼)

if and only if ∀E ∈ ker(i∼).∀ϕ � E.ϕ ∈ Op(c,
i∼, o∼).

Intuitively, for every informative predicate ϕ � E for

equivalence class E, there must exist some environment e
that does not satisfy ϕ. If the set E\{e} is then opaque, this

must yield an equivalent execution starting in environment

e, since it is the only environment in this equivalence class

not satisfying E \ {e}.

D. Knowledge-based Characterization

To give further insight into the connection between

noninterference and opacity, we also relate opacity and

knowledge-based formulations of the attacker’s uncer-

tainty [36, 22, 3].

The basic intuition of the knowledge-based approach is

to characterize what the attacker can infer about initial

memories in terms of the sets of memories that are possible

after seeing a certain result (and the initial values of low

variables). We define the set of possible initial memories

given some environment e0 as well as the set of possible

initial memories after observing some result.

Definition 6. We define the set of knowledge given an initial
environment e0 and an equivalence i∼ on environments as
k(

i∼, e0) = {e|e i∼ e0}.
The knowledge set after observing a run of 〈c, e0〉 pro-

ducing result r0 is defined by k(c, i∼, o∼, e0, r0) = {e|∃r.e i∼
e0 ∧ 〈c, e〉 ⇓ r ∧ r o∼ r0}.

In terms of knowledge, opacity then holds if there is

always a possible initial memory not satisfying ϕ.

Lemma 7. ϕ ∈ Op(c,
i∼, o∼) iff ∀m0.∀r0 ∈ R(c, e0).k(c,

i∼
,
o∼, e0, r0) ∩ ϕ �= ∅.
where R(c, e0) = {r0|〈c, e0〉 ⇓ r0}.
Intuitively this states that for a predicate to be opaque,

the attacker can gain more knowledge as long as he cannot

rule out that the predicate is still not satisfied.

III. BATCH-JOB PROGRAMS

To demonstrate the applicability of our definitions to

settings commonly considered in the literature, we first show

how we can capture batch-job programs. To do so we define

the set of possible results of a program as either a final

memory state or ⊥ to indicate divergence.

As is common, assume a lattice of security levels (L,�
,�). An attacker at level � can see information at all levels

�′ as long as �′ � �.

Instantiation 1. Let E = M where M = Var → Val for
some set of variables Var and set of possible values Val .
We assume that there is a security level Γ(x) ∈ L associated
with each variable x ∈ Var . Let R =M ∪ {⊥}.

This characterization then allows defining both

termination-insensitive and termination-sensitive variants of

noninterference by defining appropriate relations on R and

E.

We first define equivalence between initial memory states.

Two memories are equivalent for the attacker if they coincide

on all variables visible to the attacker:

Definition 7. m1 =� m2 iff ∀x.Γ(x) � � ⇒ m1(x) =
m2(x).

In the termination-insensitive [63] setting, termination is

not observable to the attacker. Therefore, if either of the

executions diverges, the result is indistinguishable to the

attacker. If both executions terminate, they must do so with

equal values for observable variables.

Definition 8 (∼�). m1 ∼� m2 iff (m1 = ⊥) ∨ (m2 =
⊥) ∨ (m1 =� m2).

This allows defining termination-insensitive noninterfer-

ence as follows:

Definition 9 (TINI (�)). A program c is termination-
insensitively noninterferent for level � (written c ∈ TINI (�))
iff c ∈ NI (=�,∼�).

In the termination-sensitive [64] setting, the attacker is

assumed to be able to observe whether or not a program

terminates. Hence, two final memory states are indistinguish-

able to the attacker if and only if they either both diverge,

or they coincide on variables visible to the attacker.

Definition 10 (≈�). m1 ≈� m2 iff (m1 = ⊥ ∧m2 = ⊥) ∨
(m1 =� m2).

By instantiating
i∼ in Definition 4 to ≈�, we obtain

termination-sensitive noninterference:

Definition 11 (TSNI (�)). A program c is termination-
sensitively noninterferent for level � (written c ∈ TSNI (�))
iff c ∈ NI (=�,≈�).

To illustrate the difference between the two notions in

the context of opacity, consider ϕ⊥ = {m | m(h) �= 1}
and a program c⊥ = if (h == 1) { loop } else { skip }.
Since information is only leaked via termination, it holds

that ϕ⊥ ∈ Op(c⊥,=�,∼�) and c⊥ ∈ TINI (�), but ϕ⊥ �∈
Op(c⊥,=�,≈�) and c⊥ �∈ TSNI (�).

Noninterference and Opacity: Theorems connecting

noninterference (without any declassification) and opacity

can then be obtained by instantiating
i∼ with =� in Lemma 4:

Theorem 1 (Opacity and noninterference). Termination-
(in)sensitive noninterference holds iff all informative predi-
cates are termination-(in)sensitively opaque:

c ∈ TINI (�)⇔ ∀M ∈ ker(=�).∀ϕ �M.ϕ ∈ Op(c,=�,∼�)

c ∈ TSNI (�)⇔ ∀M ∈ ker(=�).∀ϕ �M.ϕ ∈ Op(c,=�,≈�)

558543

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 15:38:50 UTC from IEEE Xplore. Restrictions apply.

IV. I/O PROGRAMS

In an interactive setting, instead of assuming that the

attacker can only see the final memory state of a program,

they see a sequence of output events of the program. Inputs

are modeled as memory states, a common simplification [2],

similar to modeling environments as streams. Clark and

Hunt [17] show that for the security of deterministic pro-

grams it makes no difference whether the environments are

modeled as streams or strategies.

Instantiation 2. Let E = M and R = O∗ for some set of
output events O. We assume that each output event o ∈ O

has an associated security level Γ(o) ∈ L. We denote the
empty trace by 〈〉 and appending trace t to output event o
by o.t.

Using this type of outputs we can reason about both

progress-insensitive [2, 4, 10], progress-sensitive [4], and

timing-sensitive [55] notions of noninterference by suitably

choosing the relation
o∼ in NI (

i∼, o∼).
Progress-insensitive noninterference assumes that the at-

tacker can not distinguish between the program silently

diverging or the program producing more outputs in the

future. Hence, for two traces to be progress-insensitively

indistinguishable, they either have to coincide on low events

or one of the traces has to diverge silently after producing

a matching prefix of the other trace.

Definition 12. We define the projection t �� of trace t to level

� recursively by 〈〉 ��= 〈〉 and o.t ��=
{
o.(t ��) Γ(o) � �

t �� Γ(o) �� �

Definition 13. t1 ∼� t2 iff (∃t′1, t′′1 .t′1 ��= t2 �� ∧ t1 =
t′1.t

′′
1) ∨ (∃t′2, t′′2 .t1 ��= t′2 �� ∧ t2 = t′2.t

′′
2)

This allows us to define progress-insensitive noninterfer-

ence using the generic notion of noninterference introduced

in Section II.

Definition 14 (PINI (�)). A command c is progress-

insensitively noninterferent for level � (written c ∈ PINI (�))
iff c ∈ NI (=�,∼�).

Progress-sensitive noninterference assumes that silent di-

vergence is observable, so two traces have to match on all

their low events:

Definition 15 (≈�). t1 ≈� t2 iff t1 ��= t2 ��.

As before, we define progress-sensitive noninterference

by instantiating
o∼ with ≈�:

Definition 16 (PSNI (�)). A command c is progress-

sensitively noninterferent for level � (written c ∈ PSNI (�))
iff c ∈ NI (=�,≈�).

A further strengthening of this property can be obtained

by assuming that the attacker also observes the occurrence of

some high-security event but without knowing which exact

event it is:

Definition 17 (∼∼∼�). t1 ∼∼∼� t2 is defined inductively by the
following rules

〈〉 ∼∼∼ 〈〉
Γ(o1) � � ∨ Γ(o2) � �⇒ o1 = o2 t1 ∼∼∼ t2

o1.t1 ∼∼∼ o2.t2

Definition 18 (TimeNI (�)). A command c is timing-

sensitively noninterferent for level � (written c ∈
TimeNI (�)) iff c ∈ NI (=�,∼∼∼�).

Time can be modeled using this definition by associating

each computation with one or more tick events that model

passing of time. In such a setting, computations where exe-

cution time depends on a secret, will not be noninterferent.
Noninterference and Opacity: We can now use

Lemma 4 to obtain a connection between the presented

forms of noninterference and opacity:

Theorem 2 (Opacity and noninterference). For ∼ ∈ {∼�,≈�

,∼∼∼�}, a program is noninterferent wrt. ∼ if all informative
predicates are opaque for ∼:

c ∈ PINI (�)⇔ ∀M ∈ ker(i∼).∀ϕ �M.ϕ ∈ Op(c,=�,∼�)

c ∈ PSNI (�)⇔ ∀M ∈ ker(i∼).∀ϕ �M.ϕ ∈ Op(c,=�,≈�)

c ∈ TimeNI (�)⇔ ∀M ∈ ker(i∼).∀ϕ �M.ϕ ∈ Op(c,=�,∼∼∼�)

V. INFORMATION RELEASE VS. INFORMATION HIDING

This section investigates the relation of opacity to the what
dimension of declassification [58], which, as mentioned in

Section I, is most closely related when the focus is on

protecting sensitive input.

As foreshadowed earlier, partial release [19, 41, 57, 54,

28, 43] policies specify what is released by splitting the

domain of secrets into subdomains and only protecting secret

variation within the subdomains. A convenient mechanism

to specify partial release is via escape hatch expressions [54]
that, intuitively, states that two initial environments are

indistinguishable if and only if they agree on the values of

the escape hatch expressions.

The accompanying policy of delimited release [54] speci-

fies partial release by allowing to lower the security level of

some expression, usually containing high variables, while

prohibiting any other leaks beyond what is revealed by

the declassified expression itself. Concretely, such poli-

cies can be expressed by adding expressions of the form

declassify(e) to the language in question.

Delimited release can be obtained from Definition 4 by

suitably instantiating
i∼. To do so, we strengthen =� by

requiring that two memory states not only coincide on

observable variables, but also on the values of declassified

expressions.

Definition 19 (=E
�). Two memories m1,m2 are low equiv-

alent for level � and set of declassified expressions E iff

559544

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 15:38:50 UTC from IEEE Xplore. Restrictions apply.

m1 =� m2∧ (∀e ∈ E.m1(e) = m2(e)) where m(e) denotes
evaluating expression e in memory m.

Definition 20 (DR(
o∼, �, E)). A program c satisfies delim-

ited release for level �, relation o∼, and declassified expres-
sions E (written c ∈ DR(o∼, �, E)) iff c ∈ NI (=E

� ,
o∼).

The intuition behind this definition is that resulting mem-

ory states only need to look the same to the attacker the

declassified expressions also have equal values.

Lemma 4 also allows deriving results connecting delim-

ited release and noninterference.

Theorem 3 (Opacity and delimited release). For any reflex-
ive relation ∼, we have c ∈ DR(

o∼, �, E) if and only if

∀M ∈ ker(=E
�).∀ϕ �M.ϕ ∈ Op(c,=E

� ,
o∼)

In the batch setting this theorem covers both termination-

sensitive and termination-insensitive noninterference. In

the I/O setting, progress-sensitive, progress-insensitive, and

timing-sensitive notions of noninterference are captured by

the theorem statement.

VI. ENFORCEMENT

A. Example Language

To illustrate our enforcement techniques, we introduce a

simple while-language with arrays and output. The command

ε denotes termination. Evaluation of a configuration 〈c,m〉
in one step to 〈c′,m′〉 while producing trace t is denoted

by 〈c,m〉 t−→ 〈c′,m′〉. →∗ denotes the reflexive-transitive

closure of →. We denote evaluation of an expression e in

memory m by m(e). Semantically, an array is modeled as

a function mapping natural numbers to values. Program ex-

ecution in this language is deterministic. The full definition

and semantics of the language can be found in the extended

version of the paper.

Without loss of generality, we consider only two security

levels, L for public data and H for private data.

For the rest of this section, we instantiate the evaluation

relation in the definitions of Section II as follows:

Instantiation 3. Let R = (L × Val)∗ and 〈c,m〉 ⇓ t iff

〈c,m〉 t−→∗ 〈c′,m′〉 ∧ (∀c′′,m′′, t′.〈c′,m′〉 t′−→
∗
〈c′′,m′′〉 ⇒

t′ = 〈〉) for some m′.

B. Dynamic Monitoring

We present a dynamic enforcement mechanism inspired

by common dynamic monitoring techniques for enforcing

noninterference [24, 56, 35] and using concolic execu-

tion [59] for enforcing security properties [1].

The intuition is to keep track of the set of memories

producing the same trace. Initially we consider the set

[m1] i∼ ∩ ϕ. This set becomes smaller over the course of

execution, since outputs of the real execution need to be

matched by another run. At each step of the program we

check if the current set of possible starting memories is

empty and, if so, stop execution before performing the next

evaluation step.

To keep track of this set, we define a function τ computing

this set for the next step of a configuration along with

keeping track of dependencies of variables, given starting

memory m1 and the set so far. τ(m1, 〈c,m〉,M, δ) produces
a pair (M ′, δ′) where M ′ is a subset of memories in M
producing the same trace as m1 for the next step that 〈c,m〉
takes.

In order to calculate which initial memories result in the

same trace during an execution, we symbolically keep track

of how variables change during the execution of a program.

Concretely, we express the value of a variable at a certain

point during execution in terms of variables in the initial

state. For example, when executing two steps in the program

x := y;x := x ∗ 2, we record the value of x as y ∗ 2.
This is achieved by extending configurations with a func-

tion δ : Var ∪ (Var × N) → E × P(E) that keeps track

of variable dependencies in the following way: Evaluating

the first component of δ(x) in m1 yields the same result

as m′
1(x). The second component of δ(x) records which

array-lookups the value of x depends on. Moreover, for any

memory m2 resulting in the same path through the program,

it holds that the value of m′
2(x) coincides with the first

component of δ(x), provided that the same array lookups

have been performed.

Similarly, δ keeps track of the dependencies of array

elements a[i]. These notions are made precise by Lemma 8.

We extend δ to an arbitrary expression e by replacing

all variables and array lookups occurring in e with their

values in δ. We denote this extension of δ applied to e by

δ〈e,m〉. Since our approach is value-sensitive wrt. the array

indices, the dependencies of an expression e also depend on

the current memory m.

Definition 21. We define δ〈e,m〉 ∈ E×P(E) for expression
e and memory m recursively as follows:

δ〈n,m〉 = (n, ∅)
δ〈true,m〉 = (true, ∅)
δ〈false,m〉 = (false, ∅)
δ〈x,m〉 = δ(x)

δ〈a[ei],m〉 = (e′, {e′i} ∪ Ei ∪ E)
where (e′, E) = δ(a[m(e)]) and (e′i, Ei) = δ〈ei,m〉

δ〈e1 ⊗ e2,m〉 = (e′1 ⊗ e′2, E1 ∪ E2)

where (e′1, E1) = δ〈e1,m〉 and (e′2, E2) = δ〈e2,m〉
δ〈(e1, e2),m〉 = ((e′1, e

′
2), E1 ∪ E2)

where (e′1, E1) = δ〈e1,m〉 and (e′2, E2) = δ〈e2,m〉
δ〈fst(e),m〉 = (fst(e′), E) where (e′, E) = δ〈e,m〉
δ〈snd(e),m〉 = (snd(e′), E) where (e′, E) = δ〈e,m〉

560545

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 15:38:50 UTC from IEEE Xplore. Restrictions apply.

δ〈!e,m〉 = (!e′, E)
where (e′, E) = δ〈e,m〉

δ〈e ? e1 : e2,m〉 = (e′ ? e′1 : e′2, E ∪ E1 ∪ E2)

where (e′, E) = δ〈e,m〉, (e′1, E1) = δ〈e1,m〉
and (e′2, E2) = δ〈e2,m〉

where ⊗ ∈ {+,−,×,≤,≥,&&, ‖}.
Definition 22. τ is defined by:

τ(m1, 〈ε,m〉,M, δ) = (M, δ)

τ(m1, 〈skip,m〉,M, δ) = (M, δ)

τ(m1, 〈x := e,m〉,M, δ) = (M, δ[x �→ δ〈e,m〉])
τ(m1, 〈a[e1] := e2,m〉,M, δ) =

(M ∩ [m1]δ〈e1,m〉, δ[a[m(e1)] �→ δ〈e2,m〉])

τ(m1, 〈out �′ e,m〉,M, δ) =

{
(M, δ) �′ �� �

(M ∩ [m1]δ〈e,m〉, δ) �′ � �

τ(m1, 〈if e { c1 } else { c2 },m〉,M, δ) =

(M ∩ [m1]δ〈e,m〉, δ)
τ(m1, 〈while e do c,m〉,M, δ) = (M ∩ [m1]δ〈e,m〉, δ)
τ(m1, 〈c1; c2,m〉,M, δ) = τ(m1, c1,M, δ)

where

[m1](e,E) = {m2|m1(e) = m2(e) ∧
(∀e′ ∈ E.m1(e

′) = m2(e
′))}

For every case except assignments and array assignments,

the mapping from variables to their dependencies is left

unchanged. Producing an event on a public channel will

constrain the set of possible starting memories to memories

producing the same output for the expression.

Control-flow instructions, i.e. while and if statements are

forced to take the same branches by allowing only memories

in which the guard evaluates to the same value. Note that

this still allows branching on low variables, as variables with

low security levels are required to be equal to m1 in the set

of considered memories anyway.

We then define the monitor via an instrumented semantics

(for a fixed m1) in Figure 2: As common for dynamic

monitoring for information flow properties [24, 56], we do

not inspect branches of conditionals or loops that are not

taken during the run that is being monitored. Therefore,

our definition of τ ensures that the set of possible starting

memories not satisfying ϕ takes the same branches as the

run under consideration. Section VI-C describes an approach

that avoids this loss of precision at the cost of an increased

performance overhead.

The following lemma makes the connection between the

instrumented semantics and soundness precise:

ENF-EVAL

τ(m1, 〈c,m〉,M, δ) = (M ′, δ′) 〈c,m〉 t→ 〈c′,m′〉
M ′ �= ∅ (∀c1, c2.c1 �= ε⇒ c �= c1; c2)

〈c,m,M, δ〉 t
↪−→ 〈c′,m′,M ′, δ′〉

ENF-SEQ

〈c1,m,M, δ〉 t
↪−→ 〈c′1,m′,M ′, δ′〉

〈c1; c2,m,M, δ〉 t
↪−→ 〈c′1; c2,m′,M ′, δ′〉

Figure 2. Instrumented semantics for monitoring

Lemma 8. Whenever 〈c,m1,M, δ0〉 t1
↪−→

∗
〈c′,m′

1,M
′, δ′〉

and m2 ∈M ′, then there exist t2,m′
2 such that:

〈c,m2〉 t2−→∗ 〈c′,m′
2〉 ∧ t1 ∼∼∼L t2

and
∀e ∈ E.m1(π1(δ〈e,m′

1〉)) = m′
1(e)

and

∀e ∈ E.m1 =π2(δ〈e,m′
1〉) m2 ⇒

m2(π1(δ〈e,m′
1〉)) = m′

2(e)

where δ0(x) = (x, ∅) and δ0(a[i]) = (a[i], ∅) and π1 and
π2 denote the first and second projections of a tuple.

This allows establishing the soundness of the presented

enforcement technique.

Theorem 4 (Soundness of monitoring). If 〈c,m1, [m1] i∼ ∩
ϕ, δ0〉 t1

↪−→
∗
〈ε,m′

1,M
′, δ′〉, then ϕ ∈ Op(c,=L,∼∼∼L

,m1, t1).

Similar to other dynamic enforcement mechanisms [56,

35], our soundness targets progress-insensitive security of

monitored runs:

Theorem 5. If 〈c,m1, [m1] i∼ ∩ϕ, δ0〉
t1
↪−→

∗
〈c′1,m′

1,M
′, δ′〉,

〈c,m2〉 t2−→∗ 〈c′2,m′
2〉, m2 ∈ M ′, then t1 ∼L t2, m1 =L

m2, and m2 �∈ ϕ.
C. Sampling-based Enforcement

Being a fine-grained policy, opacity is not, in general,

preserved by sequential composition of programs. In com-

parison, progress-sensitive noninterference is known to be

compositional while progress-insensitive is not [51].

Consider predicate ϕseq = {m|m(h) �= 5 ∧ m(h) �=
6} and programs c1 = (if (h == 5 ‖ h ==
4) { out L 1; } else { out L 2; }) and c2 = (if (h ==
6 ‖ h == 4) { out L 3; } else { out L 4; }). Both c1 and

c2 are opaque for ϕseq: For c1 and a memory m1 ∈ ϕseq ,

we can match the trace by a memory m2 �∈ ϕseq where

m2(h) = 6 if m1(h) �= 4 and m2(h) = 5 otherwise.

561546

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 15:38:50 UTC from IEEE Xplore. Restrictions apply.

Analogously we can satisfy opacity for c2. Moreover, notice

that ϕseq also satisfies symmetric opacity for both c1 and c2.
However, neither ϕseq nor ϕseq is opaque for the compo-

sition c1; c2: If m1 ∈ ϕseq with m1(h) �= 4, then the trace

t1 = 〈2, 4〉 is produced. In order for a memory m2 �∈ ϕseq

to match the output 2,m2(h) = 6 has to hold. For the output

4 to be matched, one needs to set m2(h) = 5. Hence ϕseq

is not opaque. Similarly if m1 �∈ ϕ, matching the traces

produced requires both m2(h) = 4 and m2(h) �= 4.
The lack of compositionality motivates us to propose

a blackbox randomized procedure to detect whether for a

given initial memory m1 satisfying a predicate ϕ, there

exists an equivalent run starting in a memory m2 �∈ ϕ. A

high-level description of the algorithm is displayed below.

This is a blackbox approach because the program code

is not inspected, but certain outputs in the trace are used

for the heuristics for the sampling process, detailed in

Section VII.

Input: Program c, predicate ϕ, initial memory m1, where

m1 ∈ ϕ.
Parameter: Sampling function S : C×M→ P([m1]=�

).
We assume that for all c and m1 that S(c,m1) is finite.

Output: Memory m2 and t2 satisfying 〈c,m2〉 ⇓ t2,

m1
i∼ m2, t1

o∼ t2, and m2 �∈ ϕ.

for m2 ∈ S(c,m1) do
if �〈c,m1〉� o∼ �〈c,m2〉� ∧m2 �∈ ϕ then

return (m2, �〈c,m2〉�)
end

end

Where �〈c,m〉� denotes the trace produced by executing

c starting in memory m. Note that this trace is uniquely

defined since the language is deterministic.

The advantage of this approach over the dynamic moni-

toring technique described in Section VI-B is that it does

not force all runs that are being considered to take the

same branches for if-statements and execute while-loops the

same number of times. However, this incurs a performance

overhead as the program is executed multiple times. In our

implementation, S is constructed using the random testing

tool QuickCheck [16], as detailed in Section VII.

The following theorem establishes the soundness of this

approach:

Theorem 6 (Soundness of Sampling-based Enforcement).
If the above algorithm returns a pair (m2, t2), for initial
memory m1 resulting in trace t1, then ϕ ∈ Op(c,=�,

o∼
,m1, t1).

VII. EXPERIMENTS

To demonstrate the practicality of the enforcement, we

implement both the monitoring sampling-based approaches

from Sections VI-B and VI-C in Haskell using BNFC [9] for

parser generation. The source code is also available online.

To provide more realistic examples we add a facility to

generate random numbers to the example language presented

in Section VI-A. Statement randomize(x) assigns a random

number to variable x. Note that this can be emulated by

instead computing the outputs of a deterministic pseudo-

random number generator programmatically, based on a

private variable hseed with Γ(hseed) �� �, which is then

updated after each use of the randomize(x) statement. Since

we assume randomness to be unpredictable, we require that

hseed not occur in predicates.

For simplicity, we specify predicates as expressions in

the language from Section VI-A, sufficient to express all

predicates in the examples. The enforcement approaches

are applicable to more complex languages for expressing

predicates.

A. Location Privacy

We apply our enforcement to enforcing location privacy

code (with the exception of Program 1, which is subsumed

by Program 2).
1) Dynamic Monitoring.: To implement the sets of pos-

sible memories that are possible at each point, we collect

constraints created by execution steps of a program and the

predicate. We utilize state-of-the-art SMT solvers (Z3 [20]

and CVC4 [7]) to ensure that the set of constraints is satis-

fiable, thereby showing that the set of memories producing

the same trace is nonempty. We use multiple SMT solvers

to cover cases where one solver might not be able to solve a

particular problem. In the cases we examined however, both

solvers were able to handle the generated formulas with Z3

often being faster.

As common for purely dynamic enforcement [56, 35]

we do not inspect the branches not taken, which makes

a difference for Program 2 with the clinic scenario for

the monitoring and sampling techniques. We will see that

the program is susceptible to sampling-based enforcement

while monitoring takes the same branches of if-statements

in the set of memories considered and hence has insufficient

information to verify the program.

However, we can make this program amenable to dynamic

enforcement by unconditionally computing random coordi-

nates and then deciding which set of coordinates to output

in the expression itself, as shown in Program 2a.

Note that this example also eliminates a possible timing

leak introduced by performing the random number genera-

tion only if the user is located inside the clinic.

We introduce variables for the SMT solver for all variables

occurring in the program and the predicate. The confi-

dential information is whether the user is currently in the

medical clinic, i.e. ϕloc = {m|m(hX) ≥ clinicXmin ∧
m(hX) ≤ clinicXmax∧m(hY) ≥ clinicYmin∧m(hY) ≤
clinicYmax}, where clinicXmin,max refer to the start and

562547

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 15:38:50 UTC from IEEE Xplore. Restrictions apply.

/* Program 2a - Adapted */
/* Location privacy with random output */

clinicXmin := 200; clinicXmax := 400;
clinicYmin := 50; clinicYmax := 150;
randomize(x);
while (x >= clinicXmin && x <= clinicXmax) {

randomize(x);
}
randomize(y);
while (y >= clinicYmin && y <= clinicYmax) {

randomize(y);
}
out L ((hX >= clinicXmin && hX <= clinicXmax &&

hY >= clinicYmin && hY <= clinicYmax)
? (x, y)
: (hX, hY));

end of the clinic location on the X-axis and clinicYmin,max

refer to the extent of the clinic location on the Y-axis.

If ϕloc is satisfied in the initial memory m1, then the

user is in the clinic. This fact should not be disclosed,

and hence we need to find a memory m2 such that

m2 �∈ ϕloc. Therefore, we add ¬(m(hX) ≥ clinicXmin ∧
m(hX) ≤ clinicXmax ∧m(hY) ≥ clinicYmin ∧m(hY) ≤
clinicYmax) to the set of constraints (we assume that ϕloc

holds in m1, but the enforcement approach works in the

same way for symmetric opacity).

Moreover,m2 needs to coincide withm1 on low variables,

hence we require all low variables occurring in the program

to be equal to their values inm1. In this case, no low variable

is used before being overwritten, so these constraints are

vacuous. For brevity, we omit them here.

During evaluation of assignment statements the mapping

δ is then updated with the dependencies of the variables.

For a randomize(x) instruction, δ(x) is updated with a

fresh random variable since the result of the random number

generation is assumed to be unpredictable. In the case of an

assignment x := e we set the dependencies of x to δ〈e,m〉.
When encountering a while-loop with expression e as the

guard, we then add the constraint that the initial memory

must agree with m1 on δ〈e,m〉. In particular, we generate

constraints stating the guards on both loops coincide with

m1, i.e. that the random variables introduced for calls to

randomize() result in the same number of loop iterations.

When evaluating the out statement we then add the

constraint that the output of the run starting with m1 has

to be matched by a run starting in a memory m2 satisfying

the generated constraints.

In this case the run of the program starting in m1 will

result in the output (x, y), where x and y are randomly gen-

erated, but outside the clinic. For example, assume that (x, y)
evaluates to (23, 45) form1. Therefore we add the constraint

(23, 45) = (hX ≥ 100 ∧ hX ≤ 200 . . . ? (r1, r2) :
(hX, hY) where r1 and r2 are the fresh variables introduced

by the randomize() instructions.

Whenever a constraint is added during monitoring, we

translate the constraints into the syntax of the SMT solvers

being used and check for satisfiability. If the solver returns

that the set is satisfiable, we have found a memory producing

the same trace which does not satisfy ϕloc and hence no

information about ϕloc is revealed. In this particular case, the

SMT solver will find a memory m2 such that m2(hX) = 23
and m2(hY) = 45. r1 and r2 can have any coordinates

outside the clinic.

Generally, we gain from SMT solvers to help with sat-

isfying the constraints, with the tradeoff that when the set

of constraints is unsatisfiable or the solver times out, then

we would block the execution to prevent a possible opacity

violation.

2) Sampling-based Enforcement.: Sampling-based en-

forcement consists of two steps: Running program c with the

initial memory m1 and trying random memories m2 (with

m1
i∼ m2) to check if they produce the same trace where

ϕ no longer holds. We use the QuickCheck tool [16] to

generate random samples.

To handle randomness in our language, we add the

following heuristic to our sampling-mechanism: If, during

evaluation with memory m1, we output values v1, . . . , vn,
we increase the likelihood of choosing v1, . . . , vn for vari-

ables x ∈ vars(c) where Γ(x) = H.

This heuristic allows us to check both the original clinic

code in Program 2 (with if-statements to decide what to

output), as well as the one adapted to dynamic monitoring.

Assuming that we start with a memory m1 where

(m1(hX),m2(hY)) is located within the medical clinic, we

will output random coordinates (r1, r2) outside of the clinic.

Using the heuristic described above, our sampling mecha-

nism will consider memories m2 with m2(hX) ∈ {r1, r2}
and m2(hY) ∈ {r1, r2} with increased likelihood.

Hence, the presented approach finds a witness for opacity

for this example after only a few tested memories.

3) Progress-sensitivity: Consider the example presented

in Program 3 which does not produce any output if the user

is located in a sensitive location. If the user is located outside

of a sensitive area, their real coordinates are output.

This example satisfies progress-insensitive opacity, since

the empty trace (produced if the user is in a sensitive

location) is a prefix of all other traces.

However, progress-sensitive opacity is violated since the

low output event that is generated if the user is located

outside of sensitive areas cannot be matched in a run starting

in a sensitive location.

Since this example relies on branching to achieve opacity,

dynamic monitoring cannot be used to run this program.

However, sampling-based enforcement is able to verify

that the example satisfies progress-insensitive opacity, while

progress-sensitive opacity correctly cannot be established.

B. Statistics Aggregation

We apply our enforcement to the healthcare statistics code

in Program 4.

563548

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 15:38:50 UTC from IEEE Xplore. Restrictions apply.

1) Dynamic Monitoring.: Assume a program run with

initial memory m1 results in 7. Assume the sensitive predi-

cate ϕ = {m1 | m1(hHasDisease[3]) > 0}, i.e. whether the

fourth patient is infected with a particular disease. Moreover,

assume that m1(hHasDisease[3]) = 1, i.e. that m1 ∈ ϕ.
The monitor will initially add the constraints that ϕ must

not be satisfied and that all low variables have the same

values as in m1. Among the constraints generated, when

reaching the statement out L result, we add:

7 = 0 + (hHasDisease[0] > 0 ? 1 : 0)

+ · · ·+ (hHasDisease[9] > 0 ? 1 : 0)

Running an SMT solver on the set of generated constraints

yields that they are satisfiable: Since the sum of ten values of

m1 is 7,m1(hHasDisease[i]) = 0 must hold for some i �= 3.
Therefore, we can satisfy the set of constraints by setting

m2(hHasDisease[3]) = 0 and m2(hHasDisease[i]) = i and
m2(x) = m1(x) otherwise. This memory yields the same

observations and m2 ∈ ϕ does not hold.

Consider now instead a run with memory m′
1 resulting

in the output 10. In this case, the monitor will end up with

an unsatisfiable set of constraints, since this implies that all

patients are infected with the disease. Since the total number

of patients is known to the attacker, they can infer that the

fourth patient must also have this disease. Hence, this run is

correctly terminated by our enforcement before the output

takes place.

2) Sampling-based Enforcement.: As before, the

sampling-based technique quickly finds a suitable witness

for opacity due to heuristics employed by the QuickCheck
library.

C. Discussion

The presented monitoring and sampling mechanisms offer

different tradeoffs of precision and performance.

Monitoring avoids executing the program multiple times

and utilizes SMT solving for problems that tend to be small,

relative to the capabilities of SMT solvers. Moreover, the

satisfiability only needs to be verified when encountering out
expressions. On the other hand, programs are not allowed to

branch on secrets, reducing precision. In some cases, these

programs can be amended to allow for execution with the

monitor, e.g. for Program 2.
Being blackbox, sampling-based enforcement is scalable

to rich languages. While sampling-based enforcement is

more precise, it uses heuristics for choosing an appropriate

starting environment that leads to a higher rate of successful

tries.

The table below summarizes the results for the two

enforcement mechanisms concerning the examples from

Section I. The checkmarks represent successful verification

with respect to the provided indistinguishability relations.

As a final note, our implementation is a proof-of-concept

implementation, with a number of possible performance

Example Sampling Monitoring

Program 2 � (≈)

Program 2a � (≈) � (∼∼∼)

Program 3 � (∼)

Program 4 � (≈) � (∼∼∼)

optimizations such as reducing the number of spawned pro-

cesses when handling constraints. While these optimizations

and scalability studies are promising directions of future

work, we note that indicative performance overhead does not

strike as unacceptable: sampling-based enforcement runs in

a few milliseconds and dynamic monitoring within a few

hundred milliseconds for each of the examples (run on an

Intel i7-4600 processor using Linux 3.15.2 and compiled

with GHC 7.8.3). While not insignificant, the proof-of-

concept prototype can be a good fit for testing applications

before deployment.

VIII. RELATED WORK

The origins of opacity can be traced back to Sutherland’s

nondeducibility [60], with the intuition of keeping attacker-

observable events consistent with possible variations of se-

cret inputs. Nondeducibility has been criticized for failing to

protect secret outputs [34] and address covert channels [66].

These criticisms have no bearing on the stream-based setting

as in this paper, but need to be addressed when generalizing

streams to strategies [66, 51].

Boisseau [11] and later Mazaré [46] introduce opacity in

the context of cryptographic protocols.

Hughes and Shmatikov [39] develop an algebraic the-

ory of opaqueness for reasoning about general knowledge

functions. They present a protocol graph framework and

study a hierarchy of anonymity system properties, noting

that anonymity is neither necessary nor sufficient for privacy.

Bryans et al. study opacity in the setting of Petri nets [14]

and in a general setting of transition systems [12, 13].

Ryan and Peacock [53] explore the relation between

noninterference, noninference [50], nondeducibility [60],

and nonleakage [65] in the setting of labeled transition

systems expressed in CSP [37]. Although cast in a different

setting and leaving out support for declassification and

enforcement, the connection between opacity and noninter-

ference is particularly relevant. They state that “formulating

noninterference as opacity proves difficult, but we can show

that noninterference implies opacity”. Our work takes the

next steps by connecting noninterference and opacity in

both directions, parameterizing the results in the power of

the attacker and declassification policies, and developing

enforcement mechanisms.

Freni et al. [27] treat location privacy in social networks.

Of particular interest is the definition of absence privacy to

protect the fact that a user is absent at certain location points

(reducing burglary risks). However, absence privacy requires

564549

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 15:38:50 UTC from IEEE Xplore. Restrictions apply.

for all locations p in sensitive regions that the adversary

cannot exclude that the user is located in p. With opacity,

there is no need to demand excluding all locations: with

home as a sensitive area, the fact that the user is absent in

the kitchen is not dangerous when the user is present in the

living room.

Although probabilistic behavior is not in the scope of

our model, a worthwhile direction for further investigations

is to extend it with probabilities. It would be interesting

to combine it with the work by Bérard et al. [8] who

study several probabilistic opacity properties in the setting

of probabilistic automata.

In the context of databases, properties similar to opacity

are desired for the inference problem [21] concerned with

protecting individual data while revealing statistical aggre-

gates. Mechanisms such as data swapping and query size

control have been developed and their limitations identified.

It is often possible to subvert these mechanisms by correlat-

ing the query results [23].

In an investigation of provenance security, Cheney [15]

defines the provenance obfuscation problem for protecting

database queries. The problem consists of inability of users

to answers queries using their observations. A query cannot

be answered if for any trace, there exists another trace with

the same observation but so that the results of applying the

query to the traces are different. Intuitively, this in line with

symmetric opacity, although the exact relation is yet to be

established by future work.

Del Tedesco et al. [61] study logical data erasure and

develop a semantic hierarchy of erasure policies. When

exploring the choices for ordering between knowledge sets

that result from observing system behavior, they utilize a

notion akin to opacity for modeling facts and queries over

knowledge sets. While the main focus is on the expressive-

ness of erasure policies, verification of erasure policies is

left for future work.

Griffis et al. [31] focus on the problem of personal data

vaults to separate the capturing and sharing of data. In

similar spirit to ours, they argue that common security defini-

tions fall short of capturing location sharing policies whose

granularity depends on the actual location. They propose

to use filters to augment information release mechanisms

by transforming sensitive information into coarse-grained

approximations.

Gruska reasons about passive and active timing attacks in

the context of opacity for timed process algebra [32] and

explores opacity for both confidentiality and integrity [33]

in a variant of CCS [47].

Hritcu et al. [38] utilize QuickCheck to aid the process of

proving noninterference for a low-level abstract information-

flow machine. The approach is directly suitable for checking

unwinding conditions [30].

Wu and Lafortune [67] investigate a family of opacity

policies for deterministic finite-state automata. They propose

verification methods that are suitable for certifying opacity

in the presence of a team of collaborating intruders.

The line of work on abstract noninterference [28, 40, 45]

leads up to a powerful generalization by Mastroeni [45],

formulated in a noninterference style with quantifying over

pairs of runs with initial states indistinguishable by the

attacker. The generalization is parametric in the indistin-

guishability on both inputs and outputs, which can be used

for hiding differences between inputs.

Relation to declassification policies deserves discussion

in the rest of the section. Let us come back to Program 1

where the goal is to make opaque whether the user is inside

the hospital. Traditional declassification mechanisms require

specifying what is released when the user is located in the

clinic, i.e. the method of masking the user’s location in

that case is part of the policy. For example, declassifica-

tion via escape-hatch expressions would allow expressing

the policy in this scenario by downgrading the informa-

tion using an expression of the form declassify(hX >=
clinicXmin . . . ? (100, 200) : (hX, hY)). From a policy

standpoint however, it is unimportant how exactly the user’s

real location is concealed if he is located in a sensitive area,

making opacity a more natural fit for this scenario.

More elaborate approaches for specifying conditional

declassification policies have been proposed. Banerjee et

al. [6] present an approach allowing to specify under which

condition confidential information can be released while

still providing delimited-release style guarantees that nothing

else is leaked, using flowspecs. Nanevski et al. [49] propose

a framework for expressing information flow policies based

on dependent types. Their approach allows constructing

functions that declassify information only under specified

conditions.

Opacity policies however remain non-trivial to express

in such frameworks. Fundamentally, the above frameworks

allow expressing under which conditions output that is

released to the attacker has to be equal in two runs that

vary in the parts of secret input that may be released. In the

case of Program 1, however, whenever the user is located

outside of the clinic, the outputs of the program need not be

equal between the two run. Moreover, the crucial comparison

for opacity is between runs that differ on whether or not

the user is located in the clinic; i.e. when the criterion for

declassification is true in one run and violated in the other.

Such policies are not natural to express under conditional

release.

Generally, declassification deals with what values can be

released, whereas opacity is concerned with properties. If

properties are to be protected, it can be hard to see whether

or not releasing a value will affect the attacker’s knowledge

about whether or not this property holds, especially if the

property involves several variables.

565550

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 15:38:50 UTC from IEEE Xplore. Restrictions apply.

IX. CONCLUSIONS

Driven by the research questions on understanding and

enforcing opacity, we have presented a formal framework

for opacity and demonstrated its differences and similari-

ties to the common security definitions of noninterference,

knowledge-based security, and information release. Our re-

sults give insight into the formal relation to the common

policies, which can be achieved by quantifying over the

system properties that need to be opaque. These results are

parametric in the power of the attacker and formalized in

Isabelle/HOL.

Our policy framework is accompanied by two en-

forcement strategies: a whitebox monitor and a black-

box sampling-based enforcement. We have established the

soundness of the mechanisms and showed their usefulness

by a prototype for the scenarios of location privacy and

privacy-preserving aggregation.

Future work: A promising track for future work is explor-

ing epistemic logic for expressing and enforcing opacity as

well as applying it to reason about surreptitious code and

program obfuscation [48]. The recent work on epistemic

logic for information-flow security [5, 18] is a promising

starting point.

In general, which properties should be opaque depends

on the application and what properties of user input are

desired to be protected. Weaker or stronger predicates might

be appropriate, with no systematic way available a priori.

Deriving opacity properties from code, to guide policy

makers in tuning their policies, is an intriguing problem to

investigate.

Our location privacy policies exemplify typical static

policies, as commonly used in location privacy protocols [42,

62], and as used in Flickr’s geofences. These policies need to

be refined when disclosing location over time. For example,

if a patient on the way to a hospital exposes a trajectory

leading up to a geofence that surrounds the hospital, the

attacker might conclude that the patient is at the hospital at

a later time. Tracking location over time is a major challenge

for much work on location privacy [42, 62]. Developing a

sharper analysis that incorporates topological, spatial, and

temporal sensitivity is much desired. We believe that opacity

can be fruitfully applied to describe properties on trajectories

Acknowledgments: This work was funded by the Eu-

ropean Community under the ProSecuToR and WebSand

projects and the Swedish research agencies SSF and VR.

References
[1] S. Anand, M. Naik, M. J. Harrold, and H. Yang.

Automated concolic testing of smartphone apps. In

SIGSOFT FSE, page 59, 2012.

[2] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands.

Termination-Insensitive Noninterference Leaks More

Than Just a Bit. In ESORICS, 2008.
[3] A. Askarov and A. Sabelfeld. Gradual Release: Uni-

fying Declassification, Encryption and Key Release

Policies. In S&P, 2007.
[4] A. Askarov and A. Sabelfeld. Tight enforcement of

information-release policies for dynamic languages. In

CSF, 2009.
[5] M. Balliu, M. Dam, and G. L. Guernic. Epistemic

temporal logic for information flow security. In PLAS,
2011.

[6] A. Banerjee, D. A. Naumann, and S. Rosenberg. Ex-

pressive declassification policies and modular static

enforcement. In IEEE Symposium on Security and Pri-
vacy, pages 339–353. IEEE Computer Society, 2008.

[7] C. Barrett, C. L. Conway, M. Deters, L. Hadarean,

D. Jovanovic, T. King, A. Reynolds, and C. Tinelli.

Cvc4. In CAV, 2011.
[8] B. Bérard, J. Mullins, and M. Sassolas. Quantifying

opacity. In QEST, 2010.
[9] BNF Converter. http://bnfc.digitalgrammars.com/,

2014.

[10] A. Bohannon, B. Pierce, V. Sjöberg, S. Weirich, and

S. Zdancewic. Reactive Noninterference. In CCS, Nov.

2009.

[11] A. Boisseau. Abstractions pour la vérification de
propriétés de sécurité de protocoles cryptographiques.
PhD thesis, École Normale Supérieure de Cachan,

Sept. 2003.

[12] J. Bryans, M. Koutny, L. Mazaré, and P. Y. A. Ryan.

Opacity Generalised to Transition Systems. In FAST,
2005.

[13] J. Bryans, M. Koutny, L. Mazaré, and P. Y. A. Ryan.

Opacity generalised to transition systems. Int. J. Inf.
Sec., 2008.

[14] J. Bryans, M. Koutny, and P. Y. A. Ryan. Modelling

opacity using petri nets. Electr. Notes Theor. Comput.
Sci., 2005.

[15] J. Cheney. A formal framework for provenance secu-

rity. In CSF, 2011.
[16] K. Claessen and J. Hughes. Quickcheck: a lightweight

tool for random testing of haskell programs. Acm
sigplan notices, 46(4), 2011.

[17] D. Clark and S. Hunt. Noninterference for determin-

istic interactive programs. In Workshop on Formal
Aspects in Security and Trust (FAST’08), Oct. 2008.

[18] M. R. Clarkson, B. Finkbeiner, M. Koleini, K. K.

Micinski, M. N. Rabe, and C. Sánchez. Temporal

logics for hyperproperties. In POST, 2014.
[19] E. S. Cohen. Information transmission in sequential

programs. In Foundations of Secure Computation.
Academic Press, 1978.

[20] L. M. de Moura and N. Bjørner. Z3: An efficient smt

solver. In TACAS, 2008.
[21] D. E. Denning. Cryptography and Data Security.

Addison-Wesley, 1982.

[22] C. Dima, C. Enea, and R. Gramatovici. Nonde-

566551

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 15:38:50 UTC from IEEE Xplore. Restrictions apply.

terministic noninterference and deducible information

flow. Technical Report 2006-01, University of Paris

12, LACL, 2006.

[23] C. Farkas and S. Jajodia. The inference problem: A

survey. SIGKDD Explorations, 2002.
[24] J. S. Fenton. Memoryless subsystems. Comput. J.,

1974.

[25] Flickr. Flickr geoprivacy settings. http://www.flickr.

com/account/geo/privacy/, 2011.

[26] R. Focardi and R. Gorrieri. Classification of security

properties (part i: Information flow). In FOSAD, 2000.

[27] D. Freni, C. R. Vicente, S. Mascetti, C. Bettini, and

C. S. Jensen. Preserving location and absence privacy

in geo-social networks. In CIKM, 2010.

[28] R. Giacobazzi and I. Mastroeni. Abstract non-

interference: Parameterizing non-interference by ab-

stract interpretation. In POPL, Jan. 2004.
[29] J. A. Goguen and J. Meseguer. Security policies and

security models. In S&P, 1982.
[30] J. A. Goguen and J. Meseguer. Unwinding and infer-

ence control. In S&P, 1984.
[31] E. Griffis, J. A. Vaughan, and T. Millstein. A platform

for expressive and secure data sharing with untrusted

third parties. Technical Report 120017, University of

California, Los Angeles, 2011.

[32] D. P. Gruska. Observation based system security.

Fundam. Inform., 2007.
[33] D. P. Gruska. Informational analysis of security and

integrity. Fundam. Inform., 2012.
[34] J. D. Guttman and M. E. Nadel. What needs securing.

In CSFW, 1988.

[35] D. Hedin and A. Sabelfeld. Information-flow security

for a core of javascript. In CSF, 2012.
[36] J. Hintikka. Knowledge and belief. Cornell University

Press, 1962.

[37] C. A. R. Hoare. Communicating sequential processes.
Prentice Hall, 1985.

[38] C. Hritcu, J. Hughes, B. C. Pierce, A. Spector-Zabusky,

D. Vytiniotis, A. A. de Amorim, and L. Lampropoulos.

Testing noninterference, quickly. In ICFP, 2013.
[39] D. J. D. Hughes and V. Shmatikov. Information hiding,

anonymity and privacy: a modular approach. JCS,
2004.

[40] S. Hunt and I. Mastroeni. The per model of abstract

non-interference. In SAS, pages 171–185, 2005.

[41] R. Joshi and K. R. M. Leino. A semantic approach

to secure information flow. Science of Computer
Programming, 37(1–3), 2000.

[42] J. Krumm. A survey of computational location privacy.

PUC, 2009.

[43] P. Li and S. Zdancewic. Downgrading policies and

relaxed noninterference. In POPL, 2005.
[44] H. Mantel. Possibilistic definitions of security - an

assembly kit. In CSFW, 2000.

[45] I. Mastroeni. Abstract interpretation-based approaches

to security - a survey on abstract non-interference and

its challenging applications. In Festschrift for Dave
Schmidt, pages 41–65, 2013.

[46] L. Mazaré. Using unification for opacity properties. In

WITS, 2004.
[47] R. Milner. Communication and concurrency. Prentice

Hall, 1989.

[48] J. Nagra and C. Collberg. Surreptitious Software:
Obfuscation, Watermarking, and Tamperproofing for
Software Protection. Pearson Education, 2009.

[49] A. Nanevski, A. Banerjee, and D. Garg. Verification

of information flow and access control policies with

dependent types. In IEEE Symposium on Security
and Privacy, pages 165–179. IEEE Computer Society,

2011.

[50] C. O’Halloran. A Calculus of Information Flow. In

ESORICS, 1990.
[51] W. Rafnsson and A. Sabelfeld. Compositional

information-flow security for interactive systems. In

CSF, 2014.
[52] P. Ryan. Mathematical models of computer security—

tutorial lectures. In FOSAD. Springer, 2001.

[53] P. Y. A. Ryan and T. Peacock. Opacity - further insights

on an information flow property. Technical Report CS-

TR-958, University of Newcastle upon Tyne, 2006.

[54] A. Sabelfeld and A. C. Myers. A Model for Delimited

Information Release. In ISSS, 2003.
[55] A. Sabelfeld and A. C. Myers. Language-based

information-flow security. JSAC, 2003.

[56] A. Sabelfeld and A. Russo. From dynamic to static

and back: Riding the roller coaster of information-flow

control research. In PSI, 2009.
[57] A. Sabelfeld and D. Sands. A per model of secure

information flow in sequential programs. HOSC, 14(1),

Mar. 2001.

[58] A. Sabelfeld and D. Sands. Declassification: Dimen-

sions and principles. JCS, 17, 2009.
[59] K. Sen, D. Marinov, and G. Agha. Cute: a concolic unit

testing engine for c. In ESEC/SIGSOFT FSE, pages

263–272, 2005.

[60] D. Sutherland. A model of information. In NCSC,

1986.

[61] F. D. Tedesco, S. Hunt, and D. Sands. A semantic

hierarchy for erasure policies. In ICISS, 2011.
[62] M. Terrovitis. Privacy preservation in the dissemination

of location data. SIGKDD Explorations, 2011.
[63] D. M. Volpano, C. E. Irvine, and G. Smith. A sound

type system for secure flow analysis. JCS, 1996.
[64] D. M. Volpano and G. Smith. Eliminating covert flows

with minimum typings. In CSFW, 1997.

[65] D. von Oheimb. Information flow control revisited:

Noninfluence = noninterference + nonleakage. In

ESORICS, 2004.

567552

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 15:38:50 UTC from IEEE Xplore. Restrictions apply.

[66] J. T. Wittbold and D. M. Johnson. Information flow

in nondeterministic systems. In IEEE Symposium on
Security and Privacy, 1990.

[67] Y.-C. Wu and S. Lafortune. Comparative analysis of re-

lated notions of opacity in centralized and coordinated

architectures. DEDS, 2013.

568553

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 19,2024 at 15:38:50 UTC from IEEE Xplore. Restrictions apply.

