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Abstract—Protocols for tasks such as authentication, elec-
tronic voting, and secure multiparty computation ensure desir-
able security properties if agents follow their prescribed pro-
grams. However, if some agents deviate from their prescribed
programs and a security property is violated, it is important
to hold agents accountable by determining which deviations
actually caused the violation. Motivated by these applications,
we initiate a formal study of program actions as actual causes.
Specifically, we define in an interacting program model what
it means for a set of program actions to be an actual cause
of a violation. We present a sound technique for establishing
program actions as actual causes. We demonstrate the value of
this formalism in two ways. First, we prove that violations of a
specific class of safety properties always have an actual cause.
Thus, our definition applies to relevant security properties.
Second, we provide a cause analysis of a representative protocol
designed to address weaknesses in the current public key
certification infrastructure.

Keywords-Security Protocols, Accountability, Audit, Causa-
tion

I. INTRODUCTION

Ensuring accountability for security violations is essential

in a wide range of settings. For example, protocols for

authentication and key exchange [1], electronic voting [2],

auctions [3], and secure multiparty computation (in the semi-

honest model) [4] ensure desirable security properties if

protocol parties follow their prescribed programs. However,

if they deviate from their prescribed programs and a security

property is violated, determining which agents should be

held accountable and appropriately punished is important

to deter agents from committing future violations. Indeed

the importance of accountability in information systems has

been recognized in prior work [5], [6], [7], [8], [9], [10],

[11]. Our thesis is that actual causation (i.e., identifying

which agents’ actions caused a specific violation) is a useful

building block for accountability in decentralized multi-

agent systems, including but not limited to security protocols

and ceremonies [12].

Causation has been of interest to philosophers and ideas

from philosophical literature have been introduced into

computer science by the seminal work of Halpern and

Pearl [13], [14], [15]. In particular, counterfactual reasoning

is appealing as a basis for study of causation. Much of

the definitional activity has centered around the question of

what it means for event c to be an actual cause of event

e. An answer to this question is useful to arrive at causal

judgments for specific scenarios such as “John’s smoking

causes John’s cancer” rather than general inferences such as

“smoking causes cancer” (The latter form of judgments are

studied in the related topic of type causation [15]). Notably,

Hume [16] identified actual causation with counterfactual

dependence—the idea that c is an actual cause of e if had

c not occurred then e would not have occurred. While this

simple idea does not work if there are independent causes,

the counterfactual interpretation of actual causation has been

developed further and formalized in a number of influential

works (see, for example, [17], [15], [18], [19], [20], [14]).

Even though applications of counterfactual causal analysis

are starting to emerge in the fields of AI, model-checking,

and programming languages, causation has not yet been

studied in connection with security protocols and violations

thereof. On the other hand, causal analysis seems to be an

intuitive building block for answering some very natural

questions that have direct relevance to accountability such as

(i) why a particular violation occurred, (ii) what component

in the protocol is blameworthy for the violation and (iii)

how the protocol could have been designed differently to

preempt violations of this sort. Answering these questions

requires an in-depth study of, respectively, explanations,

blame-assignment, and protocol design, which are interest-

ing problems in their own right, but are not the explicit focus

of this paper. Instead, we focus on a formal definition of

causation that we believe formal studies of these problems

will need. Roughly speaking, explanations can be used to

provide an account of the violation, blame assignment can

be used to hold agents accountable for the violation, and

protocol design informed by these would lead to protocols
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with better accountability guarantees. We further elaborate

on explanations and blame-assignment in Section V.

Formalizing actual causes as a building block for ac-

countability in decentralized multi-agent systems raises new

conceptual and technical challenges beyond those addressed

in the literature on events as actual causes. In particular,

prior work does not account for the program dynamics that

arise in such settings. Let us consider a simple protocol

example. In the movie Flight [21], a pilot drinks and snorts

cocaine before flying a commercial plane, and the plane goes

into a locked dive in mid-flight. While the pilot’s behavior

is found to be deviant in this case—he does not follow

the prescribed protocol (program) for pilots—it is found

to not be an actual cause of the plane’s dive. The actual

cause was a deviant behavior by the maintenance staff—

they did not replace a mechanical component that should

have been replaced. Ideally, the maintenance staff should

have inspected the plane prior to take-off according to their

prescribed protocol.

This example is useful to illustrate several key ideas that

influence the formal development in this paper. First, it

illustrates the importance of capturing the actual interactions
among agents in a decentralized multi-agent system with

non-deterministic execution semantics. The events in the

movie could have unfolded in a different order but it is

clear that the actual cause determination needs to be done

based on the sequence of events that happened in reality.

For example, had the maintenance staff replaced the faulty

component before the take-off the plane would not have

gone into a dive. Second, the example motivates us to hold

accountable agents who exercise their choice to execute a

deviant program that actually caused a violation. The main-

tenance staff had the choice to replace the faulty component

or not where the task of replacing the component could

consist of multiple steps. It is important to identify which

of those steps were crucial for the occurrence of the dive.

Thus, we focus on formalizing program actions executed in

sequence (by agents) as actual causes of violations rather

than individual, independent events as formalized in prior

work. Finally, the example highlights the difference between

deviance and actual causes—a difference also noted in prior

work on actual causation. This difference is important from

the standpoint of accountability. In particular, the punish-

ment for deviating from the prescribed protocol could be

suspension or license revocation whereas the punishment for

actually causing a plane crash in which people died could be

significantly higher (e.g., imprisonment for manslaughter).

The first and second ideas, reflecting our program-based

treatment, are the most significant points of difference from

prior work on actual causation [14], [22] while the third

idea is a significant point of difference from prior work in

accountability [23], [24], [11], [7].

The central contribution of this paper is a formal def-

inition of program actions as actual causes. Specifically,

we define what it means for a set of program actions to

be an actual cause of a violation. The definition considers

a set of interacting programs whose concurrent execution,

as recorded in a log, violates a trace property. It identifies

a subset of actions (program steps) of these programs as

an actual cause of the violation. The definition applies in

two phases. The first phase identifies what we call Lamport
causes. A Lamport cause is a minimal prefix of the log of

a violating trace that can account for the violation. In the

second phase, we refine the actions on this log by removing

the actions which are merely progress enablers and obtain

actual action causes. The former contribute only indirectly

to the cause by enabling the actual action causes to make

progress; the exact values returned by progress enabling

actions are irrelevant.

We demonstrate the value of this formalism in two ways.

First, we prove that violations of a precisely defined class

of safety properties always have an actual cause. Thus, our

definition applies to relevant security properties. Second,

we provide a cause analysis of a representative protocol

designed to address weaknesses in the current public key

certification infrastructure. Moreover, our example illustrates

that our definition cleanly handles the separation between

joint and independent causes –a recognized challenge for

actual cause definitions [13], [14], [15].

In addition, we discuss how this formalism can serve as a

building block for causal explanations and exoneration (i.e.,

soundly identifying agents who should not be blamed for

a violation). We leave the technical development of these

concepts for future work.

The rest of the paper is organized as follows. Section II

describes a representative example which we use throughout

the paper to explain important concepts. Section III gives

formal definitions for program actions as actual causes of

security violations. We apply the causal analysis to the

running example in Section IV. We discuss the use of our

causal analysis techniques for providing explanations and

assigning blame in Section V. We survey additional related

work in Section VI and conclude in Section VII.

II. MOTIVATING EXAMPLE

In this section we describe an example protocol designed

to increase accountability in the current public key infras-

tructure. We use the protocol later to illustrate key concepts

in defining causality.

Security protocol: Consider an authentication protocol

in which a user (User1) authenticates to a server (Server1)

using a pre-shared password over an adversarial network.

User1 sends its user-id to Server1 and obtains a public

key signed by Server1. However, User1 would need inputs

from additional sources when Server1 sends its public key

for the first time in a protocol session to verify that the

key is indeed bound to Server1’s identity. In particular,

User1 can verify the key by contacting multiple notaries
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in the spirit of Perspectives [25]. For simplicity, we assume

User1 verifies Server1’s public key with three authorized

notaries—Notary1, Notary2, Notary3—and accepts the key

if and only if the majority of the notaries say that the key is

legitimate. To illustrate some of our ideas, we also consider

a parallel protocol where two parties (User2 and User3)

communicate with each other.

We assume that the prescribed programs for Server1,

User1, Notary1, Notary2, Notary3, User2 and User3 impose

the following requirements on their behavior: (i) Server1
stores User1’s password in a hashed form in a secure

private memory location. (ii) User1 requests access to the

account by sending an encryption of the password (along

with its identity and a timestamp) to Server1 after verifying

Server1’s public key with a majority of the notaries. (iii) The

notaries retrieve the key from their databases and attest the

key correctly. (iv) Server1 decrypts and computes the hashed

value of the password. (v) Server1 matches the computed

hash value with the previously stored value in the memory

location when the account was first created; if the two hash

values match, then Server1 grants access to the account to

User1. (vi) In parallel, User2 generates and sends a nonce to

User3. (vii) User3 generates a nonce and responds to User2.

Security property: The prescribed programs in our

example aim to achieve the property that only the user who

created the account and password (in this case, User1) gains

access to the account.

Compromised Notaries Attack: We describe an attack

scenario and use it to illustrate nuances in formalizing pro-

gram actions as actual causes. User1 executes its prescribed

program. User1 sends an access request to Server1. An

Adversary intercepts the message and sends a public key to

User1 pretending to be Server1. User1 checks with Notary1,

Notary2 and Notary3 who falsely verify Adversary’s public

key to be Server1’s key. Consequently, User1 sends the

password to Adversary. Adversary then initiates a protocol

with Server1 and gains access to User1’s account. In parallel,

User2 sends a request to Server1 and receives a response

from Server1. Following this interaction, User2 forwards the

message to User3. We assume that the actions of the parties

are recorded on a log, say l. Note that this log contains

a violation of the security property described above since

Adversary gains access to an account owned by User1.

First, our definition finds program actions as causes of

violations. At a high-level, as mentioned in the introduction,

our definition applies in two phases. The first phase (Sec-

tion III, Definition 12) identifies a minimal prefix (Phase 1,

minimality) of the log that can account for the violation

i.e. we consider all scenarios where the sequence of actions

execute in the same order as on the log, and test whether it

suffices to recreate the violation in the absence of all other

actions (Phase 1, sufficiency). In our example, this first phase

will output a minimal prefix of log l above. In this case, the

minimal prefix will not contain interactions between User2

and User3 after Server1 has granted access to the Adversary
(the remaining prefix will still contain a violation).

Second, a nuance in defining the notion of sufficiency
(Phase 1, Definition 12) is to constrain the interactions which

are a part of the actual cause set in a manner that is consistent

with the interaction recorded on the log. This constraint

on interactions is quite subtle to define and depends on

how strong a coupling we find appropriate between the

log and possible counterfactual traces in sufficiency: if the

constraint is too weak then the violation does not reappear

in all sequences, thus missing certain causes; if it is too

strong it leads to counter-intuitive cause determinations. For

example, a weak notion of consistency is to require that each

program locally execute the same prefix in sufficiency as it

does on the log i.e. consistency w.r.t. program actions for

individual programs. This notion does not work because for

some violations to occur the order of interactions on the log

among programs is important. A notion that is too strong is

to require matching of the total order of execution of all

actions across all programs. We present a formal notion of

consistency by comparing log projections (Section III-B) that

balance these competing concerns.

Third, note that while Phase 1 captures a minimal prefix

of the log sufficient for the violation, it might be possible to

remove actions from this prefix which are merely required

for a program execution to progress. For instance note that

while all three notaries’ actions are required for User1 to

progress (otherwise it would be stuck waiting to receive a

message) and the violation to occur, the actual message sent

by one of the notaries is irrelevant since it does not affect

the majority decision in this example. Thus, separating out

actions which are progress enablers from those which pro-

vide information that causes the violation is useful for fine-

grained causal determination. This observation motivates the

final piece (Phase 2) of our formal definition (Definition 14).

Finally, notice that in this example Adversary, Notary1,

Notary2, Notary3, Server1 and User2 deviate from the

protocol described above. However, the deviant programs are

not sufficient for the violation to occur without the involve-

ment of User1, which is also a part of the causal set. We thus

seek a notion of sufficiency in defining a set of programs

as a joint actual cause for the violation. Joint causation is

also significant in legal contexts [26]. For instance, it is

useful for holding liable a group of agents working together

when none of them satisfy the cause criteria individually but

together their actions are found to be a cause. The ability

to distinguish between joint and independent (i.e., different

sets of programs that independently caused the violation)

causes is an important criterion that we want our definition

to satisfy. In particular, Phase 2 of our definition helps

identify independent causes. For instance, in our example,

we get three different independent causes depending on

which notary’s action is treated as a progress enabler. Our

ultimate goal is to use the notion of actual cause as a building
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block for accountability — the independent vs. joint cause

distinction is significant when making deliberations about

accountability and punishment for liable parties. We can

use the result of our causal determinations to further remove

deviants whose actions are required for the violation to occur

but might not be blameworthy (Section V).

III. ACTUAL CAUSE DEFINITION

We present our language model in Section III-A, auxiliary

notions in Section III-B, properties of interest to our analysis

in Section III-C, and the formal definition of program actions

as actual causes in Section III-D.

A. Model

We model programs in a simple concurrent language,

which we call L. The language contains sequential expres-

sions, e, that execute concurrently in threads and communi-

cate with each other through send and recv commands.

Terms, t, denote messages that may be passed through

expressions or across threads. Variables x range over terms.

An expression is a sequence of actions, α. An action may

do one of the following: execute a primitive function ζ on

a term t (written ζ(t)), or send or receive a message to

another thread (written send(t) and recv(), respectively).

We also include very primitive condition checking in the

form of assert(t).

Terms t ::= x | . . .
Actions α ::= ζ(t) | send(t) | recv()
Expressions e ::= t | (b : x = α); e2 | assert(t); e

Each action α is labeled with a unique line number,

written b. Line numbers help define traces later. We omit

line numbers when they are irrelevant. Every action and

expression in the language evaluates to a term and potentially

has side-effects. The term returned by action α is bound to

x in evaluating e2 in the expression (b : x = α); e2.

Following standard models of protocols, send and recv
are untargeted in the operational semantics: A message

sent by a thread may be received by any thread. Targeted

communication may be layered on this basic semantics using

cryptography. For readability in examples, we provide an

additional first argument to send and recv that specifies

the intended target (the operational semantics ignore this

intended target). Action send(t) always returns 0 to its

continuation.

Primitive functions ζ model thread-local computation like

arithmetic and cryptographic operations. Primitive functions

can also read and update a thread-local state, which may

model local databases, permission matrices, session infor-

mation, etc. If the term t in assert(t) evaluates to a non-

true value, then its containing thread gets stuck forever, else

assert(t) has no effect.

We abbreviate (b : x = α);x to b : α and (b : x = α); e
to (b : α); e when x is not free in e. As an example,

the following expression receives a message, generates a

nonce (through a primitive function new) and sends the

concatenation of the received message and the nonce on

the network to the intended recipient j (line numbers are

omitted here).

m = recv(); //receive message, bind to m
n = new(); //generate nonce, bind to n
send(j, (m,n)); //send (m,n) to j

For the purpose of this paper, we limit attention to this

simple expression language, without recursion or branching.

Our definition of actual cause is general and applies to

any formalism of (non-deterministic) interacting agents, but

the auxiliary definitions of log projection and the function

dummify introduced later must be modified.

Operational Semantics: The language L’s operational

semantics define how a collection of threads execute con-

currently. Each thread T contains a unique thread identifier

i (drawn from a universal set of such identifiers), the

executing expression e, and a local store. A configuration
C = T1, . . . , Tn models the threads T1, . . . , Tn executing

concurrently. Our reduction relation is written C → C′ and

defined in the standard way by interleaving small steps of

individual threads (the reduction relation is parametrized

by a semantics of primitive functions ζ). Importantly, each

reduction can either be internal to a single thread or a

synchronization of a send in one thread with a recv in

another thread.

We make the locus of a reduction explicit by annotating

the reduction arrow with a label r. This is written C r−→ C′.
A label is either the identifier of a thread i paired with a

line number b, written 〈i, b〉 and representing an internal

reduction of some ζ(t) in thread i at line number b, or a tuple

〈〈is, bs〉, 〈ir, br〉〉, representing a synchronization between a

send at line number bs in thread is with a recv at line

number br in thread ir, or ε indicating an unobservable

reduction (of t or assert(t)) in some thread. Labels 〈i, b〉
are called local labels, labels 〈〈is, bs〉, 〈ir, br〉〉 are called

synchronization labels and labels ε are called silent labels.

An initial configuration can be described by a triple

〈I,A,Σ〉, where I is a finite set of thread identifiers,

A : I → Expressions and Σ : I → Stores. This defines

an initial configuration of |I| threads with identifiers in I ,

where thread i contains the expression A(i) and the store

Σ(i). In the sequel, we identify the triple 〈I,A,Σ〉 with the

configuration defined by it. We also use a configuration’s

identifiers to refer to its threads.

Definition 1 (Run): Given an initial configuration C0 =
〈I,A,Σ〉, a run is a finite sequence of labeled reductions

C0 r1−→ C1 . . . rn−→ Cn.

A pre-trace is obtained by projecting only the stores from

each configuration in a run.

Definition 2 (Pre-trace): Let C0 r1−→ C1 . . . rn−→ Cn
be a run and let Σi be the store in configuration
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Ci. Then, the pre-trace of the run is the sequence

( ,Σ0), (r1,Σ1), . . . , (rn,Σn).
If ri = ε, then the ith step is an unobservable reduction

in some thread and, additionally, Σi−1 = Σi. A trace is a

pre-trace from which such ε steps have been dropped.

Definition 3 (Trace): The trace of the pre-trace

( ,Σ0), (r1,Σ1), . . . , (rn,Σn) is the subsequence obtained

by dropping all tuples of the form (ε,Σi). Traces are

denoted with the letter t.

B. Logs and their projections

To define actual causation, we find it convenient to

introduce the notion of a log and the log of a trace, which is

just the sequence of non-silent labels on the trace. A log is

a sequence of labels other than ε. The letter l denotes logs.

Definition 4 (Log): Given a trace t =
( ,Σ0), (r1,Σ1), . . . , (rn,Σn), the log of the trace,

log(t), is the sequence of r1, . . . , rm. (The trace t does not

contain a label ri that equals ε, so neither does log(t).)
We need a few more straightforward definitions on logs

in order to define actual causation.

Definition 5 (Projection of a log): Given a log l and a

thread identifier i, the projection of l to i, written l|i is the

subsequence of all labels in l that mention i. Formally,

•|i = •
(〈i, b〉 :: l)|i = 〈i, b〉 :: (l|i)
(〈i, b〉 :: l)|i = l|i if i �= j
(〈〈is, bs〉, 〈ir, br〉〉 :: l)|i = 〈〈is, bs〉, 〈ir, br〉〉 :: (l|i)

if is = i or ir = i
(〈〈is, bs〉, 〈ir, br〉〉 :: l)|i = l|i

if is �= i and ir �= i

Definition 6 (Projected prefix): We call a log l′ a pro-
jected prefix of the log l, written l′ ≤p l, if for every thread

identifier i, the sequence l′|i is a prefix of the sequence l|i.
The definition of projected prefix allows the relative order

of events in two different non-communicating threads to

differ in l and l′ but Lamport’s happens-before order of

actions [27] in l′ must be preserved in l. Similar to projected

prefix, we define projected sublog.

Definition 7 (Projected sublog): We call a log l′ a pro-
jected sublog of the log l, written l′ �p l, if for every

thread identifier i, the sequence l′|i is a subsequence of the

sequence l|i (i.e., dropping some labels from l|i results in

l′|i).
C. Properties of Interest

A property is a set of (good) traces and violations are

traces in the complement of the set. Our goal is to define

the cause of a violation of a property. We are specifically

interested in ascribing causes to violations of safety proper-

ties [28] because safety properties encompass many relevant

security requirements. We recapitulate the definition of a

safety property below. Briefly, a property is safety if it is

fully characterized by a set of finite violating prefixes of

traces. Let U denote the universe of all possible traces.

Definition 8 (Safety property [29]): A property P (a set

of traces) is a safety property, written Safety(P ), if ∀t �∈
P. ∃t′ ∈ U. (t′ is a prefix of t) ∧ (∀t′′ ∈ U. (t′ · t′′ �∈ P )).

As we explain soon, our causal analysis ascribes thread

actions (or threads) as causes. One important requirement

for such analysis is that the property be closed under

reordering of actions in different threads if those actions

are not related by Lamport’s happens-before relation [27].

For properties that are not closed in this sense, the global
order between actions in a race condition may be a cause of

a violation. Whereas causal analysis of race conditions may

be practically relevant in some situation, we limit attention

only to properties that are closed in the sense described here.

We call such properties reordering-closed or RC.

Definition 9 (Reordering-equivalence): Two traces t1, t2
starting from the same initial configuration are called

reordering-equivalent, written t1 ∼ t2 if for each thread

identifier i, log(t1)|i = log(t2)|i. Note that ∼ is an equiv-

alence relation on traces from a given initial configuration.

Let [t]∼ denote the equivalence class of t.
Definition 10 (Reordering-closed property): A property

P is called reordering-closed, written RC(P ), if t ∈ P
implies [t]∼ ⊆ P . Note that RC(P ) iff RC(¬P ).

D. Program Actions as Actual Causes

In the sequel, let ϕV denote the complement of a

reordering-closed safety property of interest. (The subscript

V stands for “violations”.) Consider a trace t starting from

the initial configuration C0 = 〈I,A,Σ〉. If t ∈ ϕV , then t
violates the property ¬ϕV .

Definition 11 (Violation): A violation of the property

¬ϕV is a trace t ∈ ϕV .

Our definition of actual causation identifies a subset of

actions in {A(i) | i ∈ I} as the cause of a violation t ∈
ϕV . The definition applies in two phases. The first phase

identifies what we call Lamport causes. A Lamport cause

is a minimal projected prefix of the log of a violating trace

that can account for the violation. In the second phase, we

refine the log by removing actions that are merely progress
enablers; the remaining actions on the log are the actual
action causes. The former contribute only indirectly to the

cause by enabling the actual action causes to make progress;

the exact values returned by progress enabling actions are

irrelevant.

The following definition, called Phase 1, determines

Lamport causes. It works as follows. We first identify a

projected prefix l of the log of a violating trace t as a

potential candidate for a Lamport cause. We then check

two conditions on l. The sufficiency condition tests that

the threads of the configuration, when executed at least up

to the identified prefix, preserving all synchronizations in

the prefix, suffice to recreate the violation. The minimality
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condition tests that the identified Lamport cause contains no

redundant actions.
Definition 12 (Phase 1: Lamport Cause of Violation):

Let t ∈ ϕV be a trace starting from C0 = 〈I,A,Σ〉 and l
be a projected prefix of log(t), i.e., l ≤p log(t). We say

that l is the Lamport cause of the violation t of ϕV if the

following hold:

1) (Sufficiency) Let T be the set of traces starting from

C0 whose logs contain l as a projected prefix, i.e., T =
{t′ | t′ is a trace starting from C0 and l ≤p log(t′)}.
Then, every trace in T has the violation ϕV , i.e., T ⊆
ϕV . (Because t ∈ T , T is non-empty.)

2) (Minimality) No proper prefix of l satisfies condition 1.

At the end of Phase 1, we obtain one or more minimal pre-

fixes l which contain program actions that are sufficient for

the violation. These prefixes represent independent Lamport

causes of the violation. In the Phase 2 definition below, we

further identify a sublog ad of each l, such that the program

actions in ad are actual causes and the actions in l\ad are

progress enabling actions which only contribute towards the

progress of actions in ad that cause the violation. In other

words, the actions not considered in ad contain all labels

whose actual returned values are irrelevant.
Briefly, here’s how our Phase 2 definition works. We

first pick a candidate projected sublog ad of l, where log

l is a Lamport cause identified in Phase 1. We consider

counterfactual traces obtained from initial configurations in

which program actions omitted from ad are replaced by

actions that do not have any effect other than enabling the

program to progress (referred to as no-op). If a violation

appears in all such counterfactual traces, then this sublog

ad is a good candidate. Of all such good candidates, we

choose those that are minimal.
The key technical difficulty in writing this definition is

replacing program actions omitted from ad with no-ops.

We cannot simply erase any such action because the action

is expected to return a term which is bound to a variable

used in the action’s continuation. Hence, our approach is

to substitute the variables binding the returns of no-op’ed

actions with arbitrary (side-effect free) terms t. Formally,

we assume a function f : I × LineNumbers → Terms that

for line number b in thread i suggests a suitable term f(i, b)
that must be returned if the action from line b in thread i is

replaced with a no-op. In our cause definition we universally

quantify over f , thus obtaining the effect of a no-op. For

technical convenience, we define a syntactic transform called

dummify() that takes an initial configuration, the chosen

sublog ad and the function f , and produces a new initial

configuration obtained by erasing actions not in ad by terms

obtained through f .
Definition 13 (Dummifying transformation): Let

〈I,A,Σ〉 be a configuration and let ad be a log. Let

f : I × LineNumbers → Terms. The dummifying transform

dummify(I,A,Σ, ad, f) is the initial configuration

〈I,D,Σ〉, where for all i ∈ I , D(i) is A(i) modified

as follows:

• If (b : x = send(t)); e appears in A(i) but 〈i, b〉 does

not appear in ad, then replace (b : x = send(t)); e
with e[0/x] in A(i).

• If (b : x = α); e appears in A(i) but 〈i, b〉 does not

appear in ad and α �= send( ), then replace (b : x =
α); e with e[f(i, b)/x] in A(i).

We now present our main definition of actual causes.

Definition 14 (Phase 2: Actual Cause of Violation): Let

t ∈ ϕV be a trace from the initial configuration 〈I,A,Σ〉
and let the log l ≤p log(t) be a Lamport cause of the

violation determined by Definition 12. Let ad be a projected

sublog of l, i.e., let ad �p l. We say that ad is the actual

cause of violation t of ϕV if the following hold:

1) (Sufficiency’) Pick any f . Let C′0 =
dummify(I,A,Σ, ad, f) and let T be the

set of traces starting from C′0 whose logs

contain ad as a projected sublog, i.e., T =
{t′ | t′ is a trace starting from C′0 and ad �p log(t′)}.
Then, T is non-empty and every trace in T has the

violation ϕV , i.e, T ⊆ ϕV .

2) (Minimality’) No proper sublog of ad satisfies condi-

tion 1.

At the end of Phase 2, we obtain one or more sets of

actions ad. These sets are deemed the independent actual

causes of the violation t.
The following theorem states that for all safety properties

that are re-ordering closed, the Phase 1 and Phase 2 defini-

tions always identify at least one Lamport and at least one

actual cause.

Theorem 1: Suppose ϕV is reordering-closed and the

complement of a safety property, i.e., RC(ϕV ) and

safety(¬ϕV ). Then, for every t ∈ ϕV : (1) Our Phase

1 definition (Definition 12) finds a Lamport cause l, and

(2) For every such Lamport cause l, the Phase 2 definition

(Definition 14) finds an actual cause ad.

Proof: (1) Pick any t ∈ ϕV . We follow the Phase 1

definition. It suffices to prove that there is a log l ≤p log(t)
that satisfies the sufficiency condition. Since safety(¬ϕV ),
there is a prefix t0 of t s.t. for all t1 ∈ U , t0·t1 ∈ ϕV . Choose

l = log(t0). Since t0 is a prefix of t, l = log(t0) ≤p log(t).
To prove sufficiency, pick any trace t′ s.t. l ≤p log(t′). It

suffices to prove t′ ∈ ϕV . Since l ≤p log(t′), for each

i, log(t′)|i = l|i · l′i for some l′i. Let t′′ be the (unique)

subsequence of t′ containing all labels from the logs {l′i}.
Consider the trace s = t0 ·t′′. First, s extends t0, so s ∈ ϕV .

Second, s ∼ t′ because log(s)|i = l|i · l′i = log(t0)|i ·
log(t′′)|i = log(t0 · t′′)|i = log(t′)|i. Since RC(ϕV ), t

′ ∈
ϕV .

(2) Pick any t ∈ ϕV and let l be a Lamport cause of

t as determined by the Phase 1 definition. Following the

Phase 2 definition, we only need to prove that there is at
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least one ad �p l that satisfies the sufficiency’ condition. We

choose ad = l. To show sufficiency’, pick any f . Because

ad = l, ad specifies an initial prefix of every A(i) and

the transform dummify() has no effect on this prefix. First,

we need to show that at least one trace t′ starting from

dummify(I,A,Σ, ad, f) satisfies ad �p log(t′). For this,

we can pick t′ = t. Second, we need to prove that any trace

t′ starting from dummify(I,A,Σ, ad, f) s.t. ad �p log(t′)
satisfies t′ ∈ ϕV . Pick such a t′. Let t0 be the prefix of

t corresponding to l. Then, log(t0)|i = l|i for each i. It

follows immediately that for each i, t′|i = t0|i · t′′i for some

t′′i . Let t′′ be the unique subsequence of t′ containing all

labels from traces {t′′i }. Let s = t0 · t′′. First, because for

each i, l|i = log(t0)|i, l ≤p log(t0) trivially. Because l is a

Lamport cause, it satisfies the sufficiency condition of Phase

1, so t0 ∈ ϕV . Since safety(¬ϕV ), and s extends t0, s ∈ ϕV .

Second, s ∼ t′ because log(s)|i = log(t0)|i · log(t′′)|i =
log(t′)|i and both s and t′ are traces starting from the initial

configuration dummify(I,A,Σ, ad, f). Hence, by RC(ϕV ),
t′ ∈ ϕV .

Our Phase 2 definition identifies a set of program actions

as causes of a violation. However, in some applications it

may be necessary to ascribe thread identifiers (or programs)

as causes. This can be straightforwardly handled by lifting

the Phase 2 definition: A thread i (or A(i)) is a cause if one

of its actions appears in ad.

Definition 15 (Program Cause of Violation): Let ad be

an actual cause of violation ϕV on trace t starting from

〈I,A,Σ〉. We say that the set X ⊆ I of thread identifiers is

a cause of the violation if X = {i | i appears in ad}.
Remarks: We make a few technical observations about

our definitions of cause. First, because Lamport causes

(Definition 12) are projected prefixes, they contain all actions

that occur before any action that actually contributes to the

violation. Many of the actions in the Lamport cause may

not contribute to the violation intuitively. Our actual cause

definition filters out such “spurious” actions. As an example,

suppose that a safety property requires that the value 1 never

be sent on the network. The (only) trace of the program

x = 1; y = 2; z = 3;send(x) violates this property. The

Lamport cause of this violation contains all four actions of

the program, but it is intuitively clear that the two actions

y = 2 and z = 3 do not contribute to the violation. Indeed,

the actual cause of the violation determined by Definition 14

does not contain these two actions; it contains only x = 1
and send(x), both of which obviously contribute to the

violation.

Second, our definition of dummification is based on a pro-

gram transformation that needs line numbers. One possibly

unwanted consequence is that our traces have line numbers

and, hence, we could, in principle, specify safety properties

that are sensitive to line numbers. However, our definitions

of cause are closed under bijective renaming of line numbers,

so if a safety property is insensitive to line numbers, the

actual causes can be quotiented under bijective renamings

of line numbers.

Third, our definition of actual cause (Definition 14)

separates actions whose return values are relevant to the

violation from those whose return values are irrelevant for

the violation. This is closely related to noninterference-

like security definitions for information flow control, in

particular, those that separate input presence from input

content [30]. Lamport causes (Definition 12) have a trivial

connection to information flow: If an action does not occur

in any Lamport cause of a violation, then there cannot be an

information flow from that action to the occurrence of the

violation.

IV. CAUSES OF AUTHENTICATION FAILURES

In this section, we model an instance of our running exam-

ple based on passwords (Section II) in order to demonstrate

our actual cause definition. As explained in Section II, we

consider a protocol session where Server1, User1, User2,

User3 and multiple notaries interact over an adversarial net-

work to establish access over a password-protected account.

We describe a formal model of the protocol in our language,

examine the attack scenario from Section II and provide a

cause analysis using the definitions from Section III.

A. Protocol Description

We consider our example protocol with eight threads

named {Server1, User1, Adversary, Notary1, Notary2,

Notary3, User2, User3}. In this section, we briefly describe

the protocol and the programs specified by the protocol for

each of these threads. For this purpose, we assume that we

are provided a functionN : I → Expressions such thatN (i)
is the program that ideally should have been executing in the

thread i. For each i, we call N (i) the norm for thread i. The

violation is caused because some of the executing programs

are different from the norms. These actual programs, called

A as in Section III, are shown later. The norms are shown

here to help the reader understand what the ideal protocol is

and also to facilitate some of the development in Section V.1

The norms in Figure 1 and the actuals in Figure 2 assume

that User1’s account (called acct in Server1’s program) has

already been created and that User1’s password, pwd is

associated with User1’s user id, uid. This association (in

hashed form) is stored in Server1’s local state at pointer

mem. The norm for Server1 is to wait for a request from

an entity, respond with its (Server1’s) public key, wait for

a username-password pair encrypted with that public key

and grant access to the requester if the password matches

the previously stored value in Server1’s memory at mem.

To grant access, Server1 adds an entry into a private access

1The appendix in the full version of this paper [32] describes an
expansion of this example with more than the eight threads considered
here to illustrate our definitions better. The proof included in the full version
deals with timestamps and signatures.
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matrix, called P . (A separate server thread, not shown here,

allows User1 to access its account if this entry exists in P .)

The norm for User1 is to send an access request to

Server1, wait for the server’s public key, verify that key

with three notaries and then send its password pwd to

Server1, encrypted under Server1’s public key. On receiving

Server1’s public key, User1 initiates a protocol with the

three notaries and accepts or rejects the key based on the

response of a majority of the notaries. For simplicity, we

omit a detailed description of this protocol between User1
and the notaries that authenticates the notaries and ensures

freshness of their responses. These details are included in our

appendix. In parallel, the norm for User2 is to generate and

send a nonce to User3. The norm for User3 is to receive a

message from User2, generate a nonce and send it to User2.

Each notary has a private database of (public key, prin-
cipal) tuples. The notaries’ norms assume that this database

has already been created correctly. When User1 sends a

request with a public key, the notary responds with the

principal’s identifier after retrieving the tuple corresponding

to the key from its database.

Notation: The programs in this example use several

primitive functions ζ. Enc(k,m) and Dec(k′,m) denote

encryption and decryption of message m with key k and

k′ respectively. Hash(m) generates the hash of term m.

Sig(k,m) denotes message m signed with the key k, paired

with m in the clear. pub key i and pvt key i denote

the public and private keys of thread i, respectively. For

readability, we include the intended recipient i and expected

sender j of a message as the first argument of send(i,m)
and recv(j) expressions. As explained earlier, i and j are

ignored during execution and a network adversary, if present,

may capture or inject any messages.

Security property: The security property of interest to

us is that if at time u, a thread k is given access to account

a, then k owns a. Specifically, in this example, we are

interested in case a = acct and k = User1. This can be

formalized by the following logical formula, ¬ϕV :

∀u, k. (acct, k) ∈ P (u) ⊃ (k = User1) (1)

Here, P (u) is the state of the access control matrix P for

Server1 at time u.

B. Attack

As an illustration, we model the “Compromised Notaries ”

violation of Section II. The programs executed by all threads

are given in Figure 2. User1 sends an access request to

Server1 which is intercepted by Adversary who sends its

own key to User1 (pretending to be Server1). User1 checks

with the three notaries who falsely verify Adversary’s public

key to be Server1’s key. Consequently, User1 sends the

password to Adversary. Adversary then initiates a protocol

with Server1 and gains access to the User1’s account. Note

that the actual programs of the three notaries attest that the

Norm N (Server1):
1 : = recv(j); //access req from thread j
2 : send(j, pub key Server1); //send public key to j
3 : s = recv(j); //encrypted uid, pwd, thread id J
4 : (uid, pwd, J) = Dec(pvt key Server1, s);
5 : t = hash(uid, pwd);
assert(mem = t) //compare hash with stored value

6 : insert(P, (acct, J));

Norm N (User1):
1 : send(Server1); //access request
2 : pub key = recv(Server1); //key from Server1
3 : send(Notary1, pub key);
4 : send(Notary2, pub key);
5 : send(Notary3, pub key);
6 : Sig(pub key, l1) = recv(Notary1); //notary1 responds
7 : Sig(pub key, l2) = recv(Notary2); //notary2 responds
8 : Sig(pub key, l3) = recv(Notary3); //notary3 responds
assert(At least two of {l1,l2,l3} equal Server1)

9 : t = Enc(pub key, (uid, pwd,User1));
10 : send(Server1, t); //send t to Server1

Norms N (Notary1),N (Notary2),N (Notary3):
// o denotes Notary1, Notary2 or Notary3
1 : pub key = recv(j);
2 : pr = KeyOwner(pub key); //lookup key owner
3 : send(j, Sig(pvt key o, (pub key, pr));

Norm N (User2):
1 : send(User3);
2 : = recv(User3);

Norm N (User3):
1 : = recv(User2);
2 : send(User3);

Figure 1. Norms for all threads. Adversary’s norm is the trivial empty
program.

public key given to them belongs to Server1. In parallel,

User2 sends a request to Server1 and receives a response

from Server1. Following this interaction, User2 interacts

with User3, as in their norms.

Figure 3 shows the expressions executed by each

thread on the property-violating trace. For instance,

the label 〈〈User1, 1〉, 〈Adversary, 1〉〉 indicates that both

User1 and Adversary executed the expressions with the

line number 1 in their actual programs, which re-

sulted in a synchronous communication between them,

while the label 〈Adversary, 4〉 indicates the local ex-

ecution of the expression at line 4 of Adversary’s

program. The initial configuration has the programs:

{A(User1),A(Server1),A(Adversary),A(Notary1),
A(Notary2),A(Notary3),A(User2),A(User3)}. For this at-

tack scenario, the concrete trace t we consider is such

that log(t) is any arbitrary interleaving of the actions for

X = {Adversary,User1,User2,User3, Server1,Notary1,
Notary2,Notary3} shown in Figure 3(a). Any such inter-

leaved log is denoted log(t) in the sequel. At the end

of this log, (acct,Adversary) occurs in the access control
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Actual A(Server1):
1 : = recv(j); //access req from thread j
2 : send(j, pub key Server1); //send public key to j
3 : = recv(j); //receive nonce from thread User2
4 : send(j); //send signed nonce
5 : s = recv(j); //encrypted uid, pwd, thread id from j
6 : (uid, pwd, J) = Dec(pvt key Server1, s);
7 : t = hash(uid, pwd);
assert(mem = t)[A] //compare hash with stored value

8 : insert(P, (acct, J));

Actual A(User1):
1 : send(Server1); //access request
2 : pub key = recv(Server1); //key from Server1
3 : send(Notary1, pub key);
4 : send(Notary2, pub key);
5 : send(Notary3, pub key);
6 : Sig(pub key, l1) = recv(Notary1); //notary1 responds
7 : Sig(pub key, l2) = recv(Notary2); //notary2 responds
8 : Sig(pub key, l3) = recv(Notary3); //notary3 responds
assert(At least two of {l1,l2,l3} equal Server1)[B]

9 : t = Enc(pub key, (uid, pwd,User1));
10 : send(Server1, t); //send t to Server1

Actual A(Adversary)

1 : recv(User1); //intercept access req from User1
2 : send(User1, pub key A); //send key to User
3 : s = recv(User1); //pwd from User1
4 : (uid, pwd,User1) = Dec(pvt key A, s); //decrypt pwd
5 : send(Server1, uid); //access request to Server1
6 : pub key = recv(Server1); //Receive Server1’s public key
7 : t = Enc(pub key, (uid, pwd,Adversary)); //encrypt pwd
8 : send(Server1, t); //pwd to Server1

Actuals A(Notary1),A(Notary2),N (Notary3):
// o denotes Notary1, Notary2 or Notary3
1 : pub key = recv(j);
2 : send(j, Sig(pvt key o, (pub key, Server1)));

Actual A(User2):
1 : send(Server1); //send nonce to Server1
2 : = recv(Server1);
3 : send(User3); //forward nonce to User3
4 : = recv(User3);

Actual A(User3):
1 : = recv(User2);
2 : send(User2); //send nonce to User2

Figure 2. Actuals for all threads.

matrix P , but Adversary does not own acct. Hence, this log

corresponds to a violation of our security property.

Note that if any two of the three notaries had attested the

Adversary’s key to belong to Server1, the violation would

still have happened. Consequently, we may expect three

independent program causes in this example: {Adversary,

User1, Server1, Notary1, Notary2} with the action causes

ad as shown in Figure 3(c), {Adversary, User1, Server1,

Notary1, Notary3} with the actions a′d, and {Adversary,

User1, Server1, Notary2, Notary3} with the actions a′′d
where a′d and a′′d can be obtained from ad (Figure 3) by

considering actions for {Notary1, Notary3} and {Notary2,

Notary3} respectively, instead of actions for {Notary1,

Notary2}. Our treatment of independent causes follows the

tradition in the causality literature. The following theorem

states that our definitions determine exactly these three

independent causes – one notary is dropped from each of

these sets, but no notary is discharged from all the sets. This

determination reflects the intuition that only two dishonest

notaries are sufficient to cause the violation. Additionally,

while it is true that all parties who follow the protocol

should not be blamed for a violation, an honest party may

be an actual cause of the violation (in both the common

and the philosophical sense of the word), as demonstrated

in this case study. This two-tiered view of accountability

of an action by separately asserting cause and blame can

also be found in prior work in law and philosophy [5], [31].

Determining actual cause is nontrivial and is the focus of

this work.

Theorem 2: Let I = {User1, Server1,Adversary,Notary1,
Notary2,Notary3,User2,User3} and Σ and A be as

described above. Let t be a trace from 〈I,A,Σ〉 such that

log(t)|i for each i ∈ I matches the corresponding log

projection from Figure 3(a). Then, Definition 15 determines

three possible values for the program cause X of violation

t ∈ ϕV : {Adversary, User1, Server1, Notary1, Notary2},
{Adversary, User1, Server1, Notary1, Notary3}, and

{Adversary, User1, Server1, Notary2, Notary3} where the

corresponding actual causes are ad, a
′
d and a′′d , respectively.

It is instructive to understand the proof of this theorem, as

it illustrates our definitions of causation. We verify that our

Phase 1, Phase 2 definitions (Definitions 12, 14, 15) yield

exactly the three values for X mentioned in the theorem.

Lamport cause (Phase 1): We show that any l whose

projections match those shown in Figure 3(b) satisfies

sufficiency and minimality. From Figure 3(b), such an l
has no actions for User3 and only those actions of User2
that are involved in synchronization with Server1. For all

other threads, the log contains every action from t. The

intuitive explanation for this l is straightforward: Since l
must be a (projected) prefix of the trace, and the violation

only happens because of insert in the last statement of

Server1’s program, every action of every program before

that statement in Lamport’s happens-before relation must be

in l. This is exactly the l described in Figure 3(b).

Formally, following the statement of sufficiency, let T be

the set of traces starting from C0 = 〈I,A,Σ〉 (Figure 2)

whose logs contain l as a projected prefix. Pick any t′ ∈
T . We need to show t′ ∈ ϕV . However, note that any t′

containing all actions in l must also add (acct,Adversary)
to P , but Adversary �= User1. Hence, t′ ∈ ϕV . Further, l is

minimal as described in the previous paragraph.

Actual cause (Phase 2): Phase 2 (Definitions 14,

15) determines three independent program causes for

X: {Adversary, User1, Server1, Notary1, Notary2},
{Adversary, User1, Server1, Notary1, Notary3},
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(a)
log(t)|Adversary
〈〈User1, 1〉, 〈Adversary, 1〉〉,
〈〈Adversary, 2〉, 〈User1, 2〉〉
〈〈User1, 10〉, 〈Adversary, 3〉〉,
〈Adversary, 4〉,
〈〈Adversary, 5〉, 〈Server1, 1〉〉,
〈〈Server1, 2〉, 〈Adversary, 6〉〉,
〈Adversary, 7〉,
〈〈Adversary, 8〉, 〈Server1, 5〉〉,

log(t)|Server1
〈〈Adversary, 5〉, 〈Server1, 1〉〉,
〈〈Server1, 2〉, 〈Adversary, 6〉〉,
〈〈User2, 1〉, 〈Server1, 3〉〉,
〈〈Server1, 4〉, 〈User2, 2〉〉,
〈〈Adversary, 8〉, 〈Server1, 5〉〉,
〈Server1, 6〉
〈Server1, 7〉
〈Server1, 8〉

log(t)|User1
〈〈User1, 1〉, 〈Adversary, 1〉〉,
〈〈Adversary, 2〉, 〈User1, 2〉〉
〈〈User1, 3〉, 〈Notary1, 1〉〉,
〈〈User1, 4〉, 〈Notary2, 1〉〉,
〈〈User1, 5〉, 〈Notary3, 1〉〉,
〈〈Notary1, 2〉, 〈User1, 6〉〉,
〈〈Notary2, 2〉, 〈User1, 7〉〉,
〈〈Notary3, 2〉, 〈User1, 8〉〉,
〈User1, 9〉
〈〈User1, 10〉, 〈Adversary, 3〉〉,

log(t)|Notary1

〈〈User1, 3〉, 〈Notary1, 1〉〉,
〈〈Notary1, 2〉, 〈User1, 6〉〉,

log(t)|Notary2

〈〈User1, 4〉, 〈Notary2, 1〉〉,
〈〈Notary2, 2〉, 〈User1, 7〉〉,

log(t)|Notary3

〈〈User1, 5〉, 〈Notary3, 1〉〉,
〈〈Notary3, 2〉, 〈User1, 8〉〉,

log(t)|User2
〈〈User2, 1〉, 〈Server1, 3〉〉,
〈〈Server1, 4〉, 〈User2, 2〉〉,
〈〈User2, 3〉, 〈User3, 1〉〉,
〈〈User2, 4〉, 〈User3, 2〉〉,

log(t)|User3
〈〈User2, 3〉, 〈User3, 1〉〉,
〈〈User2, 4〉, 〈User3, 2〉〉,

(b)
l|Adversary
〈〈User1, 1〉, 〈Adversary, 1〉〉,
〈〈Adversary, 2〉, 〈User1, 2〉〉
〈〈User1, 10〉, 〈Adversary, 3〉〉,
〈Adversary, 4〉,
〈〈Adversary, 5〉, 〈Server1, 1〉〉,
〈〈Server1, 2〉, 〈Adversary, 6〉〉,
〈Adversary, 7〉,
〈〈Adversary, 8〉, 〈Server1, 5〉〉,

l|Server1
〈〈Adversary, 5〉, 〈Server1, 1〉〉,
〈〈Server1, 2〉, 〈Adversary, 6〉〉,
〈〈User2, 1〉, 〈Server1, 3〉〉,
〈〈Server1, 4〉, 〈User2, 2〉〉,
〈〈Adversary, 8〉, 〈Server1, 5〉〉,
〈Server1, 6〉
〈Server1, 7〉
〈Server1, 8〉

l|User1
〈〈User1, 1〉, 〈Adversary, 1〉〉,
〈〈Adversary, 2〉, 〈User1, 2〉〉
〈〈User1, 3〉, 〈Notary1, 1〉〉,
〈〈User1, 4〉, 〈Notary2, 1〉〉,
〈〈User1, 5〉, 〈Notary3, 1〉〉,
〈〈Notary1, 2〉, 〈User1, 6〉〉,
〈〈Notary2, 2〉, 〈User1, 7〉〉,
〈〈Notary3, 2〉, 〈User1, 8〉〉,
〈User1, 9〉
〈〈User1, 10〉, 〈Adversary, 3〉〉,

l|Notary1

〈〈User1, 3〉, 〈Notary1, 1〉〉,
〈〈Notary1, 2〉, 〈User1, 6〉〉,

l|Notary2

〈〈User1, 4〉, 〈Notary2, 1〉〉,
〈〈Notary2, 2〉, 〈User1, 7〉〉,

l|Notary3

〈〈User1, 5〉, 〈Notary3, 1〉〉,
〈〈Notary3, 2〉, 〈User1, 8〉〉,

l|User2
〈〈User2, 1〉, 〈Server1, 3〉〉,
〈〈Server1, 4〉, 〈User2, 2〉〉,

(c)
ad|Adversary
〈〈User1, 1〉, 〈Adversary, 1〉〉,
〈〈Adversary, 2〉, 〈User1, 2〉〉
〈〈User1, 10〉, 〈Adversary, 3〉〉,
〈Adversary, 4〉,
〈〈Adversary, 5〉, 〈Server1, 1〉〉,
〈〈Server1, 2〉, 〈Adversary, 6〉〉,
〈Adversary, 7〉,
〈〈Adversary, 8〉, 〈Server1, 5〉〉,

ad|Server1
〈〈Adversary, 5〉, 〈Server1, 1〉〉,
〈〈Server1, 2〉, 〈Adversary, 6〉〉,

〈〈Adversary, 8〉, 〈Server1, 5〉〉,
〈Server1, 6〉
〈Server1, 7〉
〈Server1, 8〉

ad|User1
〈〈User1, 1〉, 〈Adversary, 1〉〉,
〈〈Adversary, 2〉, 〈User1, 2〉〉
〈〈User1, 3〉, 〈Notary1, 1〉〉,
〈〈User1, 4〉, 〈Notary2, 1〉〉,

〈〈Notary1, 2〉, 〈User1, 6〉〉,
〈〈Notary2, 2〉, 〈User1, 7〉〉,

〈User1, 9〉
〈〈User1, 10〉, 〈Adversary, 3〉〉,

ad|Notary1

〈〈User1, 3〉, 〈Notary1, 1〉〉,
〈〈Notary1, 2〉, 〈User1, 6〉〉,

ad|Notary2

〈〈User1, 4〉, 〈Notary2, 1〉〉,
〈〈Notary2, 2〉, 〈User1, 7〉〉,

Figure 3. Left to Right: (a): log(t)|i for i ∈ I . (b): Lamport cause l for Theorem 2. l|i = ∅ for i ∈ {User3} as output by Definition 12. (c): Actual
cause ad for Theorem 2. ad|i = ∅ for i ∈ {Notary3,User2,User3}. ad is a projected sublog of Lamport cause l.

and {Adversary, User1, Server1, Notary2, Notary3}
with the actual action causes given by ad, a

′
d and

a′′d , respectively in Figure 3. These are symmetric,

so we only explain why ad satisfies Definition 14.

(For this ad, Definition 15 immediately forces

X = {Adversary,User1, Server1,Notary1,Notary2}.)
We show that (a) ad satisfies sufficiency’, and (b) No

proper sublog of ad satisfies sufficiency’ (minimality’).

Note that ad is obtained from l by dropping Notary3, User2
and User3, and all their interactions with other threads.

We start with (a). Let ad be such that ad|i matches

Figure 3(c) for every i. Fix any dummifying func-

tion f . We must show that any trace originating from

dummify(I,A,Σ, ad, f), whose log contains ad as a pro-

jected sublog, is in ϕV . Additionally we must show

that there is such a trace. There are two potential is-

sues in mimicking the execution in ad starting from

dummify(I,A,Σ, ad, f) — first, with the interaction be-

tween User1 and Notary3 and, second, with the interaction

between Server1 and User2. For the first interaction, on

line 5, A(User1) (Figure 2) synchronizes with Notary3

according to l, but the synchronization label does not exist

in ad. However, in dummify(I,A,Σ, ad, f), the recv()
on line 8 in A(User1) is replaced with a dummy value,

so the execution from dummify(I,A,Σ, ad, f) progresses.

Subsequently, the majority check (assertion [B]) succeeds as

in l, because two of the three notaries (Notary1 and Notary2)

still attest the Adversary’s key. A similar observation can be

made about the interaction between Server1 and User2.

Next we prove that every trace starting from
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dummify(I,A,Σ, ad, f), whose log contains ad (Figure 3)

as a projected sublog, is in ϕV . Fix a trace t′ with log l′.
Assume l′ contains ad. We show t′ ∈ ϕV as follows:

1) Since the synchronization labels in l′ are a superset of

those in ad, Server1 must execute line 8 of its program

A(Server1) in t′. After this line, the access control

matrix P contains (acct, J) for some J .

2) When A(Server1) writes (x, J) to P at line 8, then J is

the third component of a tuple obtained by decrypting

a message received on line 5.

3) Since the synchronization projections on l′ are a su-

perset of ad, and on ad 〈Server1, 5〉 synchronizes with

〈Adversary, 8〉, J must be the third component of an

encrypted message sent on line 8 of A(Adversary).
4) The third component of the message sent on line 8 by

Adversary is exactly the term “Adversary”. (This is easy

to see, as the term “Adversary” is hardcoded on line 7.)

Hence, J = Adversary.

5) This immediately implies that t′ ∈ ϕV since

(acct,Adversary) ∈ P , but Adversary �= User1.

Last, we prove (b) — that no proper subsequence of ad
satisfies sufficiency’. Note that ad (Figure 3(c)) contains

exactly those actions from l (Figure 3) on whose returned

values the last statement of Server1’s program (Figure 2) is

data or control dependent. Consequently, all of ad as shown

is necessary to obtain the violation.

(The astute reader may note that in Figure 2, there is no

dependency between line 1 of Server1’s program and the

insert statement in Server1. Hence, line 1 should not be

in ad. While this is accurate, the program in Figure 2 is a

slight simplification of the real protocol, which is shown in

our appendix in the full version of this paper [32]. In the real

protocol, line 1 returns a received nonce, whose value does

influence whether or not execution proceeds to the insert
statement.)

V. TOWARDS ACCOUNTABILITY

In this section, we discuss the use of our causal analysis

techniques for providing explanations and assigning blame.

A. Using Causality for Explanations

Generating explanations involves enhancing the epistemic

state of an agent by providing information about the cause

of an outcome [33]. Automating this process is useful for

several tasks such as planning in AI-related applications and

has also been of interest in the philosophy community [33],

[34]. Causation has also been applied for explaining counter

examples and providing explanations for errors in model

checking [35], [36], [37], [38] where the abstract nature of

the explanation provides insight about the model.

In prior work, Halpern and Pearl have defined explanation

in terms of causality [33]. A fact, say E, constitutes an

explanation for a previously established fact F in a given

context, if had E been true then it would have been a

sufficient cause of the established fact F . Moreover, having

this information advances the prior epistemic state of the

agent seeking the explanation, i.e. there exists a world (or a

setting of the variables in Halpern and Pearl’s model) where

F is not true but E is.

Our definition of cause (Section III) could be used to

explain violations arising from execution of programs in a

given initial configuration. Given a log l, an initial configu-

ration C0, and a violation ϕV , our definition would pinpoint

a sequence of program actions, ad, as an actual cause of the

violation on the log. ad would also be an explanation for

the violation on l if having this causal information advances

the epistemic knowledge of the agent. Note that there could

be traces arising from the initial configuration where the

behavior is inconsistent with the log. Knowing that ad is

consistent with the behavior on the log and that it is a cause

of the violation would advance the agent’s knowledge and

provide an explanation for the violation.

B. Using Causality for Blame Attribution

Actual causation is an integral part of the prominent the-

ories of blame in social psychology and legal settings [39],

[40], [31], [41]. Most of these theories provide a com-

prehensive framework for blame which integrates causality,

intentionality and foreseeability [39], [40], [42]. These the-

ories recognize blame and cause as interrelated yet distinct

concepts. Prior to attributing blame to an actor, a causal

relation must be established between the actor’s actions and

the outcome. However, not all actions which are determined

as a cause are blameworthy and an agent can be blamed

for an outcome even if their actions were not a direct cause

(for instance if an agent was responsible for another agent’s

actions). In our work we focus on the first aspect where we

develop a theory for actual causation and provide a building

block to find blameworthy programs from this set.

We can use the causal set output by the definitions in

Section III and further narrow down the set to find blame-

worthy programs. Note that in order to use our definition as a

building block for blame assignment, we require information

about a) which of the executed programs deviate from the

protocol, and b) which of these deviations are harmless.

Some harmless deviants might be output as part of the

causal set because their interaction is critical for the violation

to occur. Definition 17 below provides one approach to

removing such non-blameworthy programs from the causal

set. In addition we can filter the norms from the causal set.

For this purpose, we use the notion of protocol specified

norms N introduced in Section IV. We impose an additional

constraint on the norms, i.e., in the extreme counterfactual

world where we execute norms only, there should be no

possibility of violation. We call this condition necessity.

Conceptually, necessity says that the reference standard

(norms) we employ to assign blame is reasonable.
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Definition 16 (Necessity condition for norms): Given

〈I,Σ,N , ϕV 〉, we say that N satisfies the necessity

condition w.r.t. ϕV if for any trace t′ starting from the

initial configuration 〈I,N ,Σ〉, it is the case that t′ �∈ ϕV .

We can use the normsN and the program cause X with its

corresponding actual cause ad from Phase 2 (Definitions 14,

15), in order to determine whether a program is a harmless

deviant as follows. Definition 17 presents a sound (but not

complete) approach for identifying harmless deviants.

Definition 17 (Harmless deviant): Let X be a program

cause of violation V and ad be the corresponding actual

cause as determined by Definitions 14 and 15. We say that

the program corresponding to index i ∈ X is a harmless

deviant w.r.t. trace t and violation ϕV if A(i) is deviant

(i.e. A(i) �= N (i)) and ad|i is a prefix of N (i).
For instance in our case study (Section IV), Theorem 2

outputs X and ad (Figure 3) as a cause. X includes Server1.

Considering Server1’s norm (Figure 1), A{Server} will be

considered a deviant, but according to Definition 17, Server1
will be classified as a harmless deviant because ad|Server1
is a prefix of N (Server1). Note that in order to capture

blame attribution accurately, we will need a richer model

which incorporates intentionality, epistemic knowledge and

foreseeability, beyond causality.

VI. RELATED WORK

Currently, there are multiple proposals for providing ac-

countability in decentralized multi-agent systems [23], [24],

[11], [7], [10], [8], [43], [44], [45]. Although the intrinsic

relationship between causation and accountability is often

acknowledged, the foundational studies of accountability do

not explicitly incorporate the notion of cause in their formal

definition or treat it as a blackbox concept without explicitly

defining it. Our thesis is that accountability is not a trace

property since evidence from the log alone does not provide

a justifiable basis to determine accountable parties. Actual

causation is not a trace property; inferring actions which

are actual causes of a violating trace requires analyzing

counterfactual traces (see our sufficiency conditions). Ac-

countability depends on actual causation and is, therefore,

also not a trace property.

On the other hand, prior work on actual causation in

analytical philosophy and AI has considered counterfactual

based causation in detail [13], [14], [19], [20], [18], [15].

These ideas have been applied for fault diagnosis where

system components are analyzed, but these frameworks do

not adequately capture all the elements crucial to model

a security setting. Executions in security settings involve

interactions among concurrently running programs in the

presence of adversaries, and little can be assumed about the

scheduling of events. We discuss below those lines of work

which are most closely related to ours.

Accountability: Küsters et al [11] define a protocol P
with associated accountability constraints that are rules of

the form: if a particular property holds over runs of the

protocol instances then particular agents may be blamed.

Further, they define a judge J who gives a verdict over a

run r of an instance π of a protocol P , where the verdict

blames agents. In their work, Küsters et al assume that the

accountability constraints for each protocol are given and

complete. They state that the judge J should be designed

so that J’s verdict is fair and complete w.r.t. these account-

ability constraints. They design a judge separately for every

protocol with a specific accountability property. Küsters

et al.’s definition of accountability has been successfully

applied to substantial protocols such as voting, auctions, and

contract signing. Our work complements this line of work in

that we aim to provide a semantic basis for arriving at such

accountability constraints, thereby providing a justification

for the blame assignment suggested by those constraints. Our

actual cause definition can be viewed as a generic judging

procedure that is defined independent of the violation and

the protocol. We believe that using our cause definition as

the basis for accountability constraints would also ensure the

minimality of verdicts given by the judges.

Backes et al [7] define accountability as the ability to

show evidence when an agent deviates. The authors analyze

a contract signing protocol using protocol composition logic.

In particular, the authors consider the case when the trusted

third-party acts dishonestly and prove that the party can be

held accountable by looking at a violating trace. This work

can be viewed as a special case of the subsequent work of

Küsters et al. [11] where the property associated with the

violating trace is an example of an accountability constraint.

Feigenbaum et al [23], [24] also propose a definition

of accountability that focuses on linking a violation to

punishment. They use Halpern and Pearl’s definition [13],

[14] of causality in order to define mediated punishment,

where punishment is justified by the existence of a causal

chain of events in addition to satisfaction of some utility

conditions. The underlying ideas of our cause definition

could be adapted to their framework to instantiate the

causality notion that is currently used as a black box in

their definition of mediated punishment. One key difference

is that we focus on finding program actions that lead to the

violation, which could explain why the violation happened

while they focus on establishing a causal chain between

violation and punishment events.

Causation for blame assignment: The work by Barth

et al [43] provides a definition of accountability that uses the

much coarser notion of Lamport causality, which is related

to Phase 1 of our definition. However, we use minimality

checks and filter out progress enablers in Phase 2 to obtain

a finer determination of actual cause.

Gössler et al’s work [44], [46] considers blame assignment

for safety property violations where the violation of the

global safety property implies that some components have

violated their local specifications. They use a counterfactual
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notion of causality similar in spirit to ours to identify a

subset of these faulty components as causes of the violation.

The most recent work in this line applies the framework to

real-time systems specified using timed automata [47].

A key technical difference between this line of work

and ours is the way in which the contingencies to be

considered in counterfactual reasoning are constructed. We

have a program-based approach to leverage reasoning meth-

ods based on invariants and program logics. Gössler et al

assume that a dependency relation that captures information

flow between component actions are given and construct

their contingencies using the traces of faulty components

observed on the log as a basis. A set of faulty components

is the necessary cause of the violation if the violation would

disappear once the traces of these faulty components are

modified to match the components’ local specifications.

They determine the longest prefixes of faulty components

that satisfy the specification and replace the faulty suffixes

with a correct one. Doing such a replacement without taking

into account its impact on the behavior of other components

that interact with the faulty components would not be satis-

factory. Indeed, Wang et al [45] describe a counterexample

to Gössler et al’s work [44] where all causes are not found

because of not being able to completely capture the effect

of one component’s behavior on another’s. The most recent

definitions of Gössler et al [46], [47] address this issue by

over approximating the parts of the log affected by the faulty

components and replacing them with behavior that would

have arisen had the faulty ones behaved correctly.

In constructing the contingencies to consider in counter-

factual reasoning, we do not work with individual traces as

Gössler et al. Instead, we work at the level of programs

where “correcting” behavior is done by replacing program

actions with those that do not have any effect on the violation

other than enabling the programs to progress. The relevant

contingencies follow directly from the execution of programs

where such replacements have been done, without any need

to develop additional machinery for reconstructing traces.

Note also that we have a sufficiently fine-grained definition

to pinpoint the minimal set of actions that make the compo-

nent a part of the cause, where these actions may a part be

of faulty or non-faulty programs. Moreover, we purposely

separate cause determination and blame assignment because

we believe that in the security setting, blame assignment is

a problem that requires additional criteria to be considered

such as the ability to make a choice, and intention. The

work presented in this paper focuses on identifying cause as

a building block for blame assignment.

VII. CONCLUSION

We have presented a first attempt at defining what it

means for a sequence of program actions to be an actual

cause of a violation of a security property. This question is

motivated by security applications where agents can exercise

their choice to either execute a prescribed program or deviate

from it. While we demonstrate the value of this definition by

analyzing a set of authentication failures, it would be inter-

esting to explore applications to other protocols in which ac-

countability concerns are central, in particular, protocols for

electronic voting and secure multiparty computation in the

semi-honest model. Another challenge in security settings is

that deviant programs executed by malicious agents may not

be available for analysis; rather there will be evidence about

certain actions committed by such agents. A generalized

treatment accounting for such partial observability would be

technically interesting and useful for other practical appli-

cations. This work demonstrates the importance of program

actions as causes as a useful building block for several

such applications, in particular for providing explanations,

assigning blame and providing accountability guarantees for

security protocols.
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