
Compositional Typed Analysis of ARBAC Policies

Stefano Calzavara, Alvise Rabitti and Michele Bugliesi
Dipartimento di Scienze Ambientali, Informatica e Statistica (DAIS)

Università Ca’ Foscari Venezia

Abstract—Model-checking is a popular approach to the secu-
rity analysis of ARBAC policies, but its effectiveness is hindered
by the exponential explosion of the ways in which different users
can be assigned to different role combinations. In this paper
we propose a paradigm shift, based on the observation that,
while verifying ARBAC by exhaustive state search is complex,
realistic policies often have rather simple security proofs, and
we propose to use types as an effective tool to leverage this
simplicity. Concretely, we present a static type system to verify the
security of ARBAC policies, along with a sound and complete type
inference algorithm used to automate the verification process. We
then introduce compositionality results, which identify sufficient
conditions to preserve the security guarantees obtained by the
verification of different sub-policies when these sub-policies are
combined together: this compositional reasoning is crucial when
policy administration is highly distributed and naturally supports
the security analysis of evolving ARBAC policies. We evaluate our
approach by implementing TAPA, a static analyser for ARBAC
policies based on our theory, which we test on a number of
relatively large, publicly available policies from the literature.

I. INTRODUCTION

Role-based access control (RBAC) is one of the most
widespread authorization models deployed nowadays [1]. In
RBAC, permissions are collected into abstractions known as
roles, which in turn are assigned to individual users (subjects).
User privileges only depend on the assigned roles: since the
number of roles is typically static and much smaller than the
number of users, RBAC greatly simplifies the deployment of
authorization policies for large organizations. Administrative
RBAC (ARBAC) promotes the role-based abstraction into role
administration itself, by allowing policy writers to specify
which roles are entitled to assign or revoke other roles to users.
On the one hand, ARBAC is particularly intuitive and effective,
especially when role administration is highly distributed. On
the other hand, however, writing correct ARBAC policies is
notoriously hard, since the privileges assigned to individual
users dynamically change due to administrative actions, po-
tentially leading to privilege escalations by untrusted users or
to conflict of interest scenarios, where two roles which are
intended as mutually exclusive are instead assigned to the same
user of the system [2], [3]. An automated analysis of ARBAC
policies which captures their inherently dynamic nature is thus
highly desirable and substantial research work has focused on
this problem in the last decade, see, e.g., [4], [5], [6], [7],
[8]. Though with notable differences in their technical devel-
opment, advantages and limitations, the very large majority of
these papers relies on model-checking techniques: the common
idea is to explore (an abstraction of) the state-transition system
representing the different user-role combinations permitted by
the ARBAC policy, looking for possible security violations,
such as the possession of a security-critical role by an untrusted
user of the system. The specific state exploration process may

be geared towards error finding or policy verification, i.e.,
proving the absence of security flaws.

Unfortunately, it is extremely hard to verify the security of
ARBAC by an exhaustive exploration of the state space, due
to the exponential explosion of the ways in which different
users can be assigned to different role combinations [9], [6].
Researchers have tackled this problem in many orthogonal
ways, from the identification of fragments of ARBAC which
enable more efficient security analyses [4], [2], [10] to the
design of abstraction/pruning techniques used to reduce the
size of the state space to explore [11], [12], [13], [14]. In
the end, however, when it comes to ARBAC verification,
all these approaches rely on sophisticated (abstract) model-
checking frameworks. In this paper we propose a paradigm
shift, based on the observation that, while verification by
exhaustive state search is complex, ARBAC policies most often
have rather simple security proofs, and we propose to use types
and type systems as effective tools to leverage this simplicity
and develop a novel framework for static verification.

Compared to other approaches, type systems have several
distinctive advantages. Being syntactic in nature, they enable
a rather direct inspection of the ARBAC policies to analyse,
which in turn capture the role assignment invariants which
constitute the security proof intended by the policy writer.
Since most of these proofs are easy, typing saves the need for
awkward syntactic restrictions on the ARBAC policy to verify,
and similarly for the complex policy transformations required
to make model-checking reasonably efficient. The syntactic
nature of typing is also helpful when a policy is not secure,
since the inability to type-check one of the policy rules likely
suggests the “culprit” of the security violation, providing the
policy writer with useful information on how to fix the flaw.

But the major advantage of types is their ability to support
compositional security proofs. Under appropriate conditions,
different sub-policies can be verified independently and com-
bined together into a larger policy, without weakening any
of the security guarantees provided by verification. This is
crucial when policy administration is highly distributed and
different (possibly mutually distrusted) administrators state
different security requirements. This compositional reasoning
holds promise for ensuring the scalability of verification by
design, and naturally supports the security analysis of evolving
ARBAC policies, where new policy rules are added by the
administrators to accommodate late security needs [15], [16].

All in all, we argue that types have a number of desirable
features which make them a promising tool for the verification
of ARBAC policies and we set forth a first investigation of their
benefits from both a theoretical and a practical perspective.
Clearly, typing cannot entirely subsume model-checking in
ARBAC verification, as type systems necessarily provide an

2015 IEEE 28th Computer Security Foundations Symposium

© 2015, Stefano Calzavara. Under license to IEEE.

DOI 10.1109/CSF.2015.10

33

2015 IEEE 28th Computer Security Foundations Symposium

© 2015, Stefano Calzavara. Under license to IEEE.

DOI 10.1109/CSF.2015.10

33

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 06,2024 at 03:06:48 UTC from IEEE Xplore. Restrictions apply.

over-approximated security analysis when more precise solu-
tions may be sometimes desirable in practice. In our view,
however, types constitute an additional analysis layer with
clear practical benefits (and an interesting theory).

A. Contributions

Our contributions can be summarized as follows:

1) we present a static type system to verify the security
of ARBAC policies by proving the absence of undesired
privilege escalations and conflict of interest scenarios;

2) we describe a sound and complete type inference algo-
rithm, to automatically build a security proof from an
ARBAC policy by constraint solving;

3) we discuss useful compositionality results, which identify
sufficient conditions to preserve the security guarantees
obtained by the verification of different sub-policies when
these sub-policies are combined together;

4) we present simple syntactic transformations for ARBAC
policies, which ease the construction of a type-based
security proof and boost the expressiveness of the analysis
on realistic examples;

5) we implement TAPA (Typed Arbac Policy Analyser), a
static analyser for ARBAC policies based on our theory;
we evaluate both the efficiency and the expressiveness
of our approach by type-checking a number of relatively
large, publicly available policies from the literature.

B. Related Work

Security Analysis of ARBAC: many research papers
have studied the computational complexity of the security
analysis of (restricted fragments of) the ARBAC model [2],
[3], [6], [9], [4], [17]. Model-checking has been first proposed
as a valuable tool for ARBAC verification in [6] and largely
adopted since then [7], [18], [19], [8], [20], [10]. Many of these
works consider strong syntactic restrictions on the format of
the ARBAC policies to simplify the security analysis, e.g., the
absence of negative preconditions in the role assignment rules
or the separate administration assumption [4]. In this work, we
do not assume any of these restrictions, which severely limit
the expressiveness of the ARBAC model.

Abstraction techniques for the analysis of ARBAC systems
have been first independently proposed by Bugliesi et al. [12]
and Ferrara et al. [11]. More specifically, the first paper
advocates the use of abstract model-checking techniques to
overcome the state space explosion problem affecting plain
model-checking solutions, while the second one proposes a
program verification approach based on abstract interpretation.
This abstract interpretation approach shares a similar mindset
with our present proposal, but lacks many of the advantages
enabled by typing, most notably a compositionality result. In
more recent work, the authors of [11] proposed an aggressive
pruning technique to significantly simplify the security analysis
of large ARBAC policies [13]. The proposal is very effective
at shrinking even complicated policies and constitutes a useful
preprocessing step for many different analyses, but it is based
on convoluted syntactic transformations, which significantly
complicate error reporting for insecure policies [21]. The
pruning algorithm is non-compositional and goal-based: if new
rules are added to the original policy or additional security

properties have to be verified, the administrator has to run the
algorithm again and reassess the results of verification. This
limits the approach to a largely centralized setting.

Compositionality in Access Control: policy composi-
tion is an important topic in access control and several formal
frameworks have been proposed to study its foundations, most
notably Belnap logic [22] and policy algebras [23], [24], [25].
The main goal of these works is to isolate meaningful combina-
tors for policy composition and/or to identify conditions which
ensure that some composition of policies presents desirable
features, e.g., lack of conflicts on authorization decisions.
Policy composition in ARBAC is naturally interpreted just as
the union of different policies and no conflict may arise upon
such composition, since the current ARBAC standard does not
include negative permissions [1]. To the best of our knowledge,
compositional verification results for ARBAC like the ones we
present in this paper have never been proposed before.

One of the advantages of compositionality is the ability
to reuse previous verification results: in the context of AR-
BAC, some incremental analysis algorithms which support
the verification of evolving policies have been proposed [15],
[16]. Both these works describe special model-checking algo-
rithms which exploit the information computed from previous
analyses to update the verification results when the original
policy changes. In both cases, the evolution of the policy is
represented by the addition/deletion of a single rule to/from
the original policy, hence it is not obvious whether these
algorithms are efficient when a relatively large sub-policy is
included into the original one.

Types for Access Control: types have been extensively
used to prove that programs or distributed processes comply
with an underlying access control policy, see, e.g., [26], [27],
[28], [29], [30]. In the realm of ARBAC, types have been
studied by Braghin et al. [31] and Jagadeesan et al. [32]. The
first paper proposes a type system which over-approximates the
minimum set of roles that guarantees that all the executions
of a distributed process (in an extension of the π-calculus) are
successful. The second paper develops a similar analysis for
a λ-calculus and a dual analysis which deduces the minimal
set of roles activated in all the execution paths. These papers
use types to verify programs or processes subject to an access
control policy, rather than the policy itself, hence they bear
only limited similarities to the present approach.

C. Structure of the Paper

Section II describes the operational semantics of ARBAC
and defines a formal notion of safety. Section III presents the
type system and discusses the security guarantees it provides.
Section IV introduces the type inference algorithm. Section V
presents the compositionality results. Section VI proposes an
intuitive policy transformation which simplifies the construc-
tion of type-based security proofs. Section VII describes TAPA
and presents the experimental results. Section VIII concludes.
For space reasons, most of the proofs of the formal results are
only available in the online long version [33].

II. THE ARBAC MODEL

We consider a simple operational semantics for the ARBAC
model [1]. For the sake of simplicity, we do not represent

3434

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 06,2024 at 03:06:48 UTC from IEEE Xplore. Restrictions apply.

sessions and the role hierarchy. Notice that any hierarchical
policy can be transformed into a non-hierarchical one using a
standard transformation [17]. A similar model with the same
simplifications has been adopted by Ferrara et al. [11].

A. ARBAC Systems

We presuppose an unbounded set of users Û and a finite

set of roles R̂.

Definition 1 (Policy): An ARBAC policy is a pair P =
(CA,CR), where:

• CA ⊆ R̂× 2
̂R × 2

̂R × R̂ is the can-assign relation;

• CR ⊆ R̂× R̂ is the can-revoke relation.

A can-assign rule (ra, Rp, Rn, rt) ∈ CA states that a user
with role ra can assign role rt to any user who has all the
roles in the set Rp (the positive preconditions) and none of
the roles in the set Rn (the negative preconditions). A can-
revoke rule (ra, rt) ∈ CR, instead, states that a user with role
ra can unconditionally revoke role rt from any user.

We say that a role ra is administrative iff it appears as
the first element of a can-assign or a can-revoke rule. In
this paper we identify administrative roles with regular roles,
i.e., we do not assume a separate administration policy [4].
Separate administration requires that administrative roles are
never assigned or revoked, which greatly simplifies the security
analysis, but it is unrealistic in many settings [5].

A configuration consists of a finite set of users, along with
the roles assigned to them.

Definition 2 (Configuration): An ARBAC configuration is
a pair σ = (U,UR), where:

• U ⊆ Û is a finite set of users;

• UR ⊆ U × R̂ is the user-to-role assignment relation.

In the following, we let UR(u) = {r | (u, r) ∈ UR}.
The operational semantics of the ARBAC model is defined

in terms of the changes which can be performed to an initial
configuration, based on the administrative actions enabled by
the underlying policy. The evolution of a configuration σ under
a policy P is defined by the reduction relation P � σ −→ σ′
given in Table I.

Rules (R-ASSIGN) and (R-REVOKE) formalize the in-
tuitive semantics of the can-assign and can-revoke relations
respectively, while rules (R-JOIN) and (R-LEAVE) account
for the dynamic joining and leaving of users. Since users

joining a configuration are drawn from an unbounded set Û ,
the semantics gives rise to an infinite-state transition system.
We let −→∗ stand for the reflexive-transitive closure of −→.

Definition 3 (System): An ARBAC system is a pair S =
(P, σ) including a policy P and an initial configuration σ.

B. Security Analysis

Many existing works study the security of ARBAC systems
in terms of the so-called role reachability problem [17]: given
a system S = (P, σ), a user u and a target role goal, does there

exist a configuration σ′ = (U,UR) such that P � σ −→∗ σ′
and (u, goal) ∈ UR?

This is a very useful property, since many classic security
queries can be encoded in terms of it [34], [11]. Here, however,
we propose a more structured approach to ARBAC verification,
which enables a more powerful reasoning and fosters compo-
sitionality, without sacrificing expressiveness (see below).

We presuppose the existence of a security lattice (L̂,�)
with a bottom element. In our examples we always consider

a two-point lattice L̂ = {L,H} with L � H, but the theory is
defined for an arbitrary lattice with bottom.

Definition 4 (Security Labelling): A security labelling is a
pair L = (γ, δ), where:

• γ : Û → L̂ is a mapping from users to security labels,
representing their level of trust;

• δ : 2
̂R → L̂ is a monotonic mapping from sets of roles

to security labels, representing the least level of trust
needed for the possession of a given role combination.

We always presuppose that δ(∅) = ⊥.

Intuitively, a security labelling L = (γ, δ) represents a
meta-policy dictating constraints over role assignment. By
stipulating that δ(R) = H for a given set of roles R, we specify
that the role combination R must never be granted to any
user u such that γ(u) = L. The definition of an appropriate
security labelling depends on the application scenario, e.g.,
the enterprise/organization modelled by the ARBAC system,
which defines the identity of the users and the semantics of
the permissions granted by the individual roles.

We define the safety of an ARBAC system in terms of an
underlying security labelling.

Definition 5 (Admissible Configuration): A configuration
σ = (U,UR) is admitted by the security labelling L = (γ, δ),
written L |= σ, iff for every u ∈ U we have δ(UR(u)) � γ(u).

Definition 6 (Safety): An ARBAC system S = (P, σ) is
safe with respect to the security labelling L iff, for any σ′
such that P � σ −→∗ σ′, we have L |= σ′.

It is easy to show that proving safety is enough to guarantee
that a given role is unreachable. Specifically, given a security
labelling L = (γ, δ) such that γ(u) = L for some user u
and δ({goal}) = H for some role goal, then proving safety
with respect to L ensures that role goal is not reachable by
u. Notice also that this safety notion is expressive enough to
directly encode static separation of duty constraints, expressing
for instance that no user should be able to acquire the roles
Doctor and Patient at the same time [1].

We conclude this section by observing that our notion of
security labelling is reminiscent of previous proposals which
combine ARBAC with an underlying security ordering, most
notably the SHRBAC model by Crampton [35]. In SHRBAC, a
seniority function assigns to each role and user of the system a
level of seniority from an underlying poset, to enforce security
properties like “role activation”, which ensures that each user
is at least as senior as the roles she activates. However, the
enforcement of this property is purely dynamic in SHRBAC,
where a policy monitor applies order-based policies like role

3535

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 06,2024 at 03:06:48 UTC from IEEE Xplore. Restrictions apply.

TABLE I Reduction semantics P � σ −→ σ′, where P = (CA,CR)

(R-ASSIGN)

(ua, ra) ∈ UR (ra, Rp, Rn, rt) ∈ CA Rp ⊆ UR(u) Rn ⊆ R̂ \UR(u)
P � (U,UR) −→ (U,UR ∪ {(u, rt)})

(R-REVOKE)

(ua, ra) ∈ UR (ra, rt) ∈ CR

P � (U,UR) −→ (U,UR \ {(u, rt)})

(R-JOIN)

P � (U,UR) −→ (U ∪ {u},UR)
(R-LEAVE)

UR′ = {(u′, r) ∈ UR | u′ 	= u}
P � (U,UR) −→ (U \ {u},UR′)

activation; conversely, the security labelling we propose here
does not alter the semantics of the original ARBAC model and
just represents an encoding of the security goals one wants to
ensure by static typing, without any need of additional runtime
checks by a custom reference monitor.

C. Examples

Let R̂ = {ra, r1, r2, r3} and Û = {u1, u2}. We assume a
security labelling (γ, δ) such that γ(u1) = H, γ(u2) = L and:

∀i ∈ {1, 2, 3} : δ({ri}) = L,
δ({ra}) = H,
δ({r1, r2}) = H.

In words, user u1 is trusted, while user u2 is not; role ra
and the combination of roles {r1, r2} should only be given to
trusted users, while no restriction is put on the possession of
the individual roles r1, r2, r3. In all the examples, we assume

the same initial configuration σ = (Û , {(u1, ra)}).
Example 1 (Mutual Exclusion): Let:

CA1 = {(ra, ∅, {r1}, r2), (ra, ∅, {r2}, r1)}.
The system ((CA1,CR), σ) is safe for any CR, since ra is
only given to the high user u1, while roles r1, r2 are mutually
exclusive, hence they cannot be assigned to any user at the
same time.

Example 2 (Secure Flow): Let:

CA2 = {(ra, {ra}, ∅, r2), (ra, ∅, ∅, r1)}.
The system ((CA2,CR), σ) is safe for any CR, since r2 can
only be assigned to users who are granted ra, i.e., it can only
be assigned to high users. This means in particular that only
high users can possess r1 and r2 at the same time.

Example 3 (Irrevocable Guard): Let:

CA3 = {(ra, {r3}, ∅, r1), (ra, ∅, {r3}, r2), (ra, ∅, {r2}, r3)}.
The system ((CA3,CR), σ) is safe for any CR which does
not allow the revocation of r3, i.e., for any CR such that there
does not exist r such that (r, r3) ∈ CR. The observation here
is that r2 and r3 are mutually exclusive, and to grant r1 we
must first assign r3 (which excludes r2).

Notice that the system would not be safe if r3 could be
revoked, since the low user u2 with no role assigned could
first acquire r3, then acquire r1, revoke r3 and finally acquire
r2, thus getting the high combination of roles {r1, r2}.

III. TYPES FOR ARBAC VERIFICATION

The core idea behind any type-based analysis is to identify
useful invariants which hold true for selected resources of
interest. These invariants are distilled into types assigned to
the resources and enforced by a set of typing rules, dictating
syntactic checks which preserve the invariants. In a sound type
system, this is enough to entail a semantic property of the
system under study: in this paper, we assign types to roles to
prove the safety of ARBAC systems.

A. Types and Typing Environments

In our setting, a type τ ∈ T̂ is a triple � [R+, R−]. If a role
r is given this type, then r can be assigned only to users with
a label �′ � �, and users who are granted r must always have
all the roles in the set R+ and none of the roles in the set R−.

Given a type τ = � [R+, R−], we let lab(τ) = �. We say
that a type τ = � [R+, R−] is consistent, written cons(τ), iff
R+ ∩ R− = ∅. If a role is given an inconsistent type, it can
never be assigned to any user in a well-typed system, since
the intended invariant predicated by the type would lead to a
contradiction.

We let Γ : R̂→ T̂ stand for a typing environment, assigning
to each role a corresponding type. We write Γ+(r) = R+ and
Γ−(r) = R− whenever Γ(r) = τ and τ = � [R+, R−] for
some label �. For a set of roles R, let Γ+(R) =

⋃
r∈R Γ

+(r)
and Γ−(R) =

⋃
r∈R Γ

−(r).

B. Closures

Given a typing environment, we can exploit the syntac-
tic information contained therein to soundly infer additional
invariants over role assignment. For instance, pick three roles
r1, r2, r3 and assume that Γ+(r2) = {r1} and Γ+(r3) = {r2};
then any user who is assigned r2 must have r1 and any user
who is assigned r3 must have r2. It is then natural to conclude
that any user who is assigned r3 must be assigned also r1, even
though this is not explicit in the typing environment.

We formalize and generalize this reasoning by defining a
closure operation (R+

1 , R
−
1) ⇓Γ (R+

2 , R
−
2). The idea is that,

given a set of assigned roles R+
1 and a set of unassigned roles

R−1 , we exploit the type information in Γ to build a new set
of assigned roles R+

2 ⊇ R+
1 and a new set of unassigned roles

R−2 ⊇ R−1 . The closure operation plays a central role in the
typing rules in the next section.

Definition 7 (Closure): A pair (R+, R−) is closed under
Γ iff all the following clauses hold true:

3636

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 06,2024 at 03:06:48 UTC from IEEE Xplore. Restrictions apply.

1) if r ∈ R+, then Γ+(r) ⊆ R+ and Γ−(r) ⊆ R−;

2) if Γ+(r) ∩R− 	= ∅ for some r ∈ R̂, then r ∈ R−;

3) if Γ−(r) ∩R+ 	= ∅ for some r ∈ R̂, then r ∈ R−.

We write (R+
1 , R

−
1) ⇓Γ (R+

2 , R
−
2) iff R+

2 and R−2 are the least
sets including R+

1 and R−1 respectively such that (R+
2 , R

−
2) is

closed under Γ. We call (R+
2 , R

−
2) the closure of (R+

1 , R
−
1)

under Γ.

Condition (1) states that, if r is assigned, then all the
roles in Γ+(r) are assigned and none of the roles in Γ−(r) is
assigned, as dictated by the intuitive reading of types; condition
(2) ensures that any role which would imply the assignment
of some unassigned role is not assigned; condition (3) has the
dual aim of ensuring that any role which would forbid the
possession of some assigned role is not assigned.

C. Judgements and Typing Rules

We consider two different judgements:

Γ � P P is well-typed in Γ
Γ;L � σ σ is well-typed in Γ under L

For a policy P = (CA,CR), we write Γ � P iff Γ �asg CA
and Γ �rev CR can be proved by the typing rules in Table II.
We typically omit the subscript from the turnstile when it is
clear from the context.

We start by commenting on the typing rules for role
assignment. Let ca = (ra, Rp, Rn, rt) be a can-assign rule:
if the type of the administrative role ra is inconsistent, then
ra will never be assigned; hence, ca will never be fired and
we can trivially accept it as safe by rule (CA-TRIVIAL1).
Otherwise, we observe that, when ca is fired, the user who
is being assigned rt has all the roles in Rp and none of
the roles in Rn ∪ {rt}, hence we apply a closure operation
(Rp, Rn ∪ {rt}) ⇓Γ (R+, R−) to build larger, more precise
sets of assigned and unassigned roles R+ and R− respectively.
If R+ ∩ R− 	= ∅, the can-assign rule will never be fired and
we can trivially accept it as safe by rule (CA-TRIVIAL2). If
this is not the case, by rule (CA-SINGLE) we check that:

1) the label of the target role rt is bounded above by the
labels of the roles in R+, which is needed to ensure that
high roles are never given to low users;

2) the target role rt is not conflicting with any of the roles

in R̂ \ R−, i.e., any of the roles which may be assigned
to the user (recall that R− contains roles which are not
assigned to the user when the can-assign rule is fired);

3) the set of roles conflicting with the target role rt are
included in R− \ {rt}, i.e., the roles which are not
assigned to the user (after the assignment of rt) include
all the roles which conflict with rt;

4) the set of roles which must be possessed when the target
role rt is assigned are included in R+ ∪ {rt}.

Notice that typing multiple can-assign rules just amounts to
typing each individual rule by rule (CA-UNION).

We now explain the typing rules for role revocation. Let
cr = (ra, rt) be a can-revoke rule: if either ra or rt is incon-
sistent, then cr will never be fired and we can trivially accept it
by rule (CR-SINGLE). Otherwise, the typing rule has to ensure

that rt is not assumed to be always given in combination with
some other role r 	= rt according to the information in the
typing environment, i.e., rt 	∈ Γ+(r). Indeed, if it was the
case, the revocation of rt in a configuration where a user is
also assigned the role r would break the expected invariant
that the possession of r implies the possession of rt. Typing
multiple can-revoke rules just amounts to typing the individual
rules by rule (CR-UNION).

Having discussed the typing rules for policies, we now
present the typing rules for configurations, deriving the second
kind of judgements. These rules are simpler than the other
ones, since they just ensure that any well-typed configura-
tion is compliant with the information stored in the typing
environment, according with the informal reading of types we
introduced in Section III-A.

Definition 8 (Well-typed Configuration): Let σ = (U,UR)
and L = (γ, δ), we write Γ;L � σ iff for all u ∈ U and all
r ∈ UR(u) we have:

1) lab(Γ(r)) � γ(u);

2) Γ−(r) ∩ UR(u) = ∅;
3) Γ+(r) ⊆ UR(u).

Given a system S = (P, σ), we write Γ;L � S as a
shortcut for Γ � P and Γ;L � σ.

D. Safety by Typing

We now discuss how the typing rules can be used to prove
the safety of an ARBAC system (Theorem 2 below).

A crucial result is the following subject reduction theorem,
which ensures that the invariants collected by the typing
environment are preserved in any reachable configuration.

Theorem 1 (Subject Reduction): Let Γ � P and Γ;L � σ.
If P � σ −→ σ′, then Γ;L � σ′.

The proof of the theorem uses the following lemma,
providing a formal characterization of the intuitive semantics
of the closure operation (Definition 7).

Lemma 1 (Implied and Conflicting Roles): Let R,R′ be
two sets of roles. If Γ;L � (U,UR) and for some u ∈ U
we have R ⊆ UR(u) and R′ ∩ UR(u) = ∅, then (R,R′) ⇓Γ
(R+, R−) implies R+ ⊆ UR(u) and R− ∩ UR(u) = ∅.

Proof: By induction on the number of operations involved
in the closure construction. If (R,R′) is closed under Γ, then
R+ = R and R− = R′, hence we are done. Otherwise, we use
the induction hypothesis and the assumption Γ;L � (U,UR)
to prove the conclusion. Recall in fact that Γ;L � (U,UR)
ensures that for all u ∈ U and all r ∈ UR(u) we have Γ+(r) ⊆
UR(u) and Γ−(r) ∩ UR(u) = ∅.

In contrast with many type-based analyses, safety is not
an immediate consequence of the subject reduction result. In
our case, we have to combine together the type information
for the different roles and exploit the invariants collected by
the typing environment to ensure compliance with respect to
the security labelling used for defining safety, thus obtaining a
correct security proof. We reuse a closure operation to identify
sufficient conditions on the typing environment which allow to
prove safety under the desired security labelling.

3737

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 06,2024 at 03:06:48 UTC from IEEE Xplore. Restrictions apply.

TABLE II Typing rules for policies

Definition of Γ �rev CR:

(CR-SINGLE)

cons(Γ(ra)) ∧ cons(Γ(rt))⇒ ¬∃r ∈ R̂ \ {rt} : rt ∈ Γ+(r)
Γ �rev (ra, rt)

(CR-UNION)

Γ �rev CR Γ �rev CR
′

Γ �rev CR ∪ CR′
(CR-EMPTY)

Γ �rev ∅

Definition of Γ �asg CA:

(CA-SINGLE)

(Rp, Rn ∪ {rt}) ⇓Γ (R+, R−)
lab(Γ(rt)) � �r∈R+ lab(Γ(r)) ∀r ∈ R̂ \R− : rt 	∈ Γ−(r)

Γ−(rt) ⊆ R− \ {rt} Γ+(rt) ⊆ R+ ∪ {rt}
Γ �asg (ra, Rp, Rn, rt)

(CA-TRIVIAL1)

¬cons(Γ(ra))
Γ �asg (ra, Rp, Rn, rt)

(CA-TRIVIAL2)

(Rp, Rn ∪ {rt}) ⇓Γ (R+, R−)
R+ ∩R− 	= ∅

Γ �asg (ra, Rp, Rn, rt)

(CA-UNION)

Γ �asg CA Γ �asg CA′

Γ �asg CA ∪ CA′
(CA-EMPTY)

Γ �asg ∅
Convention: in rule (CA-SINGLE) we let �r∈R+ lab(Γ(r)) = ⊥ whenever R+ = ∅

Definition 9 (Enforceability): A security labelling L =
(γ, δ) is enforceable by a typing environment Γ, written

Γ �� L, iff for all R ∈ 2
̂R, whenever (R, ∅) ⇓Γ (R+, R−),

either of the following conditions holds true:

1) ∃r ∈ R+ : δ(R) � lab(Γ(r));

2) R+ ∩R− 	= ∅.

In words, for every possible combinations of roles R, we
require that either (1) one of the roles implied by R is at least
as sensitive as R itself, which is enough to ensure that R is
not assigned to untrusted users in a well-typed configuration
by the first condition of Definition 8; or (2) R is not assignable
at all, since there exists at least one role which is both implied
by and conflicting with R.

Using the subject reduction theorem and Lemma 1, we can
prove the main safety result as follows.

Lemma 2 (Static Safety): Let Γ �� L. If Γ;L � σ, then
L |= σ.

Proof: Let σ = (U,UR) and let L = (γ, δ), we pick
any user u ∈ U and we show that δ(UR(u)) � γ(u). Let
(UR(u), ∅) ⇓Γ (R+, R−). Since Γ �� L, we have two cases:

1) either ∃r ∈ R+ : δ(UR(u)) � lab(Γ(r));
2) or R+ ∩R− 	= ∅.

By Lemma 1, we have R+ ⊆ UR(u) and R− ∩ UR(u) = ∅,
hence R+ ∩ R− = ∅ and we must be in the first of the two
cases. Let then r ∈ R+ be a role s.t. δ(UR(u)) � lab(Γ(r)).
Since Γ;L � σ and r ∈ R+ ⊆ UR(u), we have lab(Γ(r)) �
γ(u). By transitivity we get δ(UR(u)) � γ(u).

Theorem 2 (Safety by Typing): Let Γ �� L. If Γ;L � S ,
then S is safe with respect to L.

Proof: Let P � σ −→∗ σ′, by Theorem 1 we know that
Γ;L � σ′. Hence, we have L |= σ′ by Lemma 2.

E. Examples

Here, we use the typing rules and the main theorem given
above to build type-based security proofs of the three examples
given in Section II-C. Recall that in all cases we want to prove
safety with respect to a security labelling L dictating that the
dangerous combination of roles {r1, r2} is not assigned to low
users. These are toy examples, which we use to present the
type system: an experimental evaluation on realistic policies
is given in Section VII-B.

Example 1 (Mutual Exclusion): Let:

Γ = ra : H [∅, ∅], r1 : L [∅, {r2}], r2 : L [∅, {r1}],
we have:

R+ = ∅ R− = {r1, r2}
lab(Γ(r2)) = L � L ∀r ∈ {ra} : r2 	∈ Γ−(r)

Γ−(r2) = {r1} ⊆ R− \ {r2} Γ+(r2) = ∅ ⊆ R+ ∪ {r2}
Γ � (ra, ∅, {r1}, r2)

The proof of Γ � (ra, ∅, {r2}, r1) is analogous.

We then observe that ({r1, r2}, ∅) ⇓Γ ({r1, r2}, {r1, r2}),
hence we have Γ �� L by condition (2) of Definition 9 and
the system is safe.

Example 2 (Secure Flow): Let:

Γ = ra : H [∅, ∅], r1 : L [∅, ∅], r2 : L [{ra}, ∅],
we have:

R+ = {ra} R− = {r2}
lab(Γ(r2)) � lab(Γ(ra)) = H ∀r ∈ {ra, r1} : r2 	∈ Γ−(r)
Γ−(r2) = ∅ ⊆ R− \ {r2} Γ+(r2) = {ra} ⊆ R+ ∪ {r2}

Γ � (ra, {ra}, ∅, r2)
We then prove:

R+ = ∅ R− = {r1, r2}
lab(Γ(r1)) = L � L ∀r ∈ {ra} : r1 	∈ Γ−(r)

Γ−(r1) = ∅ ⊆ R− \ {r1} Γ+(r1) = ∅ ⊆ R+ ∪ {r1}
Γ � (ra, ∅, {r2}, r1)

3838

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 06,2024 at 03:06:48 UTC from IEEE Xplore. Restrictions apply.

Since ({r1, r2}, ∅) ⇓Γ ({ra, r1, r2}, ∅) and lab(Γ(ra)) = H,
we have Γ �� L by condition (1) of Definition 9 and the
system is safe.

Notice that we are assuming here that ra is not revocable,
so that we can include it in Γ+(r2). If ra was revocable,
we could still construct a security proof for the policy by
promoting the label of r2 to H in the typing environment.

Example 3 (Irrevocable Guard): Let:

Γ = ra : H [∅, ∅], r1 : L [{r3}, ∅], r2 : L [∅, {r3}],
r3 : L [∅, {r2}],

we have:

R+ = {r3} R− = {r1, r2}
lab(Γ(r1)) = L � lab(Γ(r3)) ∀r ∈ {ra, r3} : r1 	∈ Γ−(r)
Γ−(r1) = ∅ ⊆ R− \ {r1} Γ+(r1) = {r3} ⊆ R+ ∪ {r1}

Γ � (ra, {r3}, ∅, r1)
Then, we observe that:

R+ = ∅ R− = {r1, r2, r3}
lab(Γ(r2)) = L � L ∀r ∈ {ra} : r2 	∈ Γ−(r)

Γ−(r2) = {r3} ⊆ R− \ {r2} Γ+(r2) = ∅ ⊆ R+ ∪ {r2}
Γ � (ra, ∅, {r3}, r2)

Finally, we have:

R+ = ∅ R− = {r1, r2, r3}
lab(Γ(r3)) = L � L ∀r ∈ {ra} : r3 	∈ Γ−(r)

Γ−(r3) = {r2} ⊆ R− \ {r3} Γ+(r3) = ∅ ⊆ R+ ∪ {r3}
Γ � (ra, ∅, {r2}, r3)

To conclude the proof, we observe that ({r1, r2}, ∅) ⇓Γ
({r1, r2, r3}, {r2, r3}), hence we have Γ �� L by condition
(2) of Definition 9 and the system is safe.

Notice that to construct this security proof it is required
that r3 cannot be revoked, as observed when discussing the
safety of the example. Indeed, since r3 ∈ Γ+(r1), any can-
revoke rule enabling the revocation of r3 would not satisfy the
premise of rule (CR-SINGLE). The fact that r3 ∈ Γ+(r1), in
turn, is crucial to prove Γ �� L.

F. Discussion

In principle, it would be possible to design a more expres-
sive type system, where the invariants about role assignment
are parametric with respect to the label of the user who is
assigned the role. For instance, we could have types which
guarantee that low users are never assigned two given roles in
combination, without imposing this restriction on high users:
technically, it would be enough to enrich the syntax of types,
so as to keep track of different invariants for different security
labels, and the corresponding proof of type safety would be
a straightforward extension of the current one. However, this
kind of guarantee exclusively depends on the initial configura-
tion and not on the policy itself, since the latter is deliberately
agnostic to users. Since real-world configurations can be huge
and they are typically much bigger than the corresponding
policies, the resulting type-based analysis would likely be
much less efficient than the one we present here. Moreover,
we think that most of the useful invariants intended by policy
administrators are hidden in the policy itself rather than in

the initial configuration, thus we privilege the former in our
investigation.

We also notice that it would be possible to extend the type
system to include negative information, capturing invariants
which are true when a given role is not assigned. From
a theoretical perspective, the resulting formalism would be
more expressive than the present one, but the additional value
in the real world is unclear. We think that most of the
useful invariants for real policies predicate on role assignment,
something which seems confirmed by our experiments (see
Section VII-B). That said, we do not foresee any significant
challenge in extending the type system to include this addi-
tional information, if future research highlighted its value.

IV. TYPE INFERENCE

The typing rules in Section III allow to check whether a
given ARBAC system complies with the information stored
in the typing environment Γ, but they do not provide any
constructive way to automatically build a security proof from
a system S and a security labelling L. To fully automate
this process and make the analysis practically useful, we then
devise a type inference algorithm.

A. Specification

The core idea behind the type inference algorithm is to
generate a set of constraints from a system S and a security
labelling L in a syntax-directed way: any solution to the
constraints is a typing environment Γ such that Γ;L � S and
Γ �� L. The main challenge here is ensuring the efficiency of
constraint solving, most notably by dealing with the closure
operations used to type-check the can-assign rules and to en-
sure the enforceability (Definition 9) of the security labelling,
without sacrificing the completeness of the type inference.

Formally, we define a function �·�L to generate a set of
constraints from the system to analyse with respect to L. The
definition relies on three auxiliary functions �·�asg, �·�rev and
�·�Lconf generating constraints for the can-assign relation, the
can-revoke relation and the initial configuration respectively.
The formal definition of the four functions is given in Table III
and commented below.

For the function �·�rev the generated constraints just corre-
spond to a bottom-up reading of the type-checking rules for
the can-revoke relation in Table II, so that a solution to the
constraints will be an environment Γ which type-checks the
can-revoke relation by construction. Similarly, �·�Lconf mimics
the conditions dictated by Definition 8, to guarantee that the
initial configuration will be well-typed. The most interesting
definitions are those of �·�asg and �·�L.

The definition of �·�asg reminds a bottom-up reading of
the typing rules for the can-assign relation in Table II, but
with the important difference that, given ca = (ra, Rp, Rn, rt),
the closure operation (Rp, Rn ∪ {rt}) ⇓Γ (R+, R−) used to
type-check ca under Γ is subsumed by a stronger syntactic

requirement on Γ itself. Specifically, let Γ : R̂→ 2
̂R be defined

as follows:

∀r ∈ R̂ : Γ(r) = {r} ∪ {r′ ∈ R̂ | r ∈ Γ+(r′)},

3939

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 06,2024 at 03:06:48 UTC from IEEE Xplore. Restrictions apply.

TABLE III Constraint generation for type inference, where P = (CA,CR) and L = (γ, δ)

�(ra, rt)�rev = {cons(Γ(ra)) ∧ cons(Γ(rt))⇒ ¬∃r ∈ R̂ \ {rt} : rt ∈ Γ+(r)}
�CR ∪ CR′�rev = �CR�rev ∪ �CR′�rev
�∅�rev = ∅

�(ra, Rp, Rn, rt)�asg = {cons(Γ(ra)) ∧ (Γ+(Rp) ∩ (Γ(Rn ∪ {rt}) ∪ Γ−(Rp)) = ∅)⇒
lab(Γ(rt)) �

⊔
r∈Γ+(Rp)

lab(Γ(r)) ∧ (∀r ∈ R̂ : r 	∈ Γ(Rn ∪ {rt}) ∪ Γ−(Rp)⇒ rt 	∈ Γ−(r)) ∧
Γ−(rt) ⊆ (Γ(Rn ∪ {rt}) ∪ Γ−(Rp)) \ {rt} ∧ Γ+(rt) ⊆ Γ+(Rp) ∪ {rt}}

�CA ∪ CA′�asg = �CA�asg ∪ �CA′�asg
�∅�asg = ∅

�(U,UR)�Lconf = {∀u ∈ U : ∀r ∈ R̂ : r ∈ UR(u)⇒ lab(Γ(r)) � γ(u) ∧ Γ−(r) ∩ UR(u) = ∅ ∧ Γ+(r) ⊆ UR(u)}

�(P, σ)�L = �CA�asg ∪ �CR�rev ∪ �σ�Lconf ∪
{∀R ∈ D̂L : ∃r ∈ Γ+(R) : δ(R) � lab(Γ(r)) ∨ (Γ+(R) ∩ Γ−(R) 	= ∅)}

Definitions: we let:

- D̂L = {R ∈ 2 ̂R : ∀R′ ⊂ R : δ(R′) � δ(R)}
- Γ(r) = {r} ∪ {r′ ∈ R̂ | r ∈ Γ+(r′)} for all r ∈ R̂

- Γ(R) =
⋃

r∈R Γ(r) for all R ∈ 2 ̂R

and let Γ(R) =
⋃

r∈R Γ(r); intuitively, Γ(R) tracks the roles
which are not assigned when none of the roles in R is assigned.
Now, when analysing rule ca, we replace the set of assigned
roles R+ with Γ+(Rp), i.e., the set of roles implied by the
positive preconditions Rp, and the set of unassigned roles R−

with Γ(Rn ∪ {rt}) ∪ Γ−(Rp), i.e., the set of roles excluded
by the negative preconditions Rn (and the target rt) and the
set of roles conflicting with the positive preconditions Rp.
Hence, we replace the closure of the pair (Rp, Rn ∪ {rt})
with some information which is entirely local to the can-assign
rule and readily available in the typing environment. Perhaps
surprisingly, as we discuss below, this formulation does not
entail any loss of precision for the analysis, but it leads to a
constraint system which is much easier to solve.

The definition of �·�L exploits the same intuition when
generating the constraints dictating that the security labelling
L must be enforceable by the solution. We also notice that the
definition of enforceability includes a universal quantification
over all the possible sets of roles, but the monotonicity
requirement on the security labelling (Definition 4) allows
to tame this source of complexity. Indeed, given a security
labelling L = (γ, δ), it is enough for security to focus on the
set of the dangerous role combinations:

D̂L = {R ∈ 2 ̂R : ∀R′ ⊂ R : δ(R′) � δ(R)},
i.e., on the set of roles where there is a steep in the security
labelling. The intuition is that each role combination R such

that δ(R) 	= ⊥ must contain some R′ ∈ D̂L: if we constrain
the assignment of R′, we implicitly constrain also the assign-
ment of its superset R. Notice that, for any realistic security

labelling L, we have that D̂L is much smaller than 2
̂R.

B. Formal Results

It is straightforward to prove the following (syntactic)
soundness result for the type inference algorithm.

Theorem 3 (Sound Inference): If Γ is a solution for �S�L,
then Γ;L � S and Γ �� L.

Notice that the converse of the previous result does not
hold true in general, since different typing environments may
compute the same closures and thus type-check the same
policies, but not all these environments are a solution to the
constraints generated by the type inference. To exemplify,
consider a security labelling L = (γ, δ) such that γ(u) = L
for every user u ∈ Û and δ({r1, r4}) = H. Consider then the
following typing environment:

Γ = r1 : L [{r2}, ∅], r2 : L [{r3}, ∅], r3 : L [∅, {r4}],
r4 : L [∅, {r1}].

Let P = (CA, ∅) with CA = {(r3, {r2}, ∅, r1)} and let:

σ = ({u1}, {(u1, r1), (u1, r2), (u1, r3)}).
We have that Γ � P as follows:

R+ = {r2, r3} R− = {r1, r4}
lab(Γ(r1)) = L � L ∀r ∈ {r2, r3} : r1 	∈ Γ−(r)

Γ−(r1) = ∅ ⊆ R− \ {r1} Γ+(r1) = {r2} ⊆ R+ ∪ {r1}
Γ � (r3, {r2}, ∅, r1)

Moreover, Γ;L � σ, since u1 has r1, r2, r3, but not r4. Since
({r1, r4}, ∅) ⇓Γ ({r1, r2, r3, r4}, {r1, r4}), we have Γ �� L.
However, Γ is not a solution to the constraints in �(P, σ)�L,
since it does not satisfy the constraints generated by the can-
assign rule. For instance, we have to satisfy:

∀r ∈ R̂ : r 	∈ {r1} ∪ Γ−(r2)⇒ r1 	∈ Γ−(r),
which is false, since r4 	∈ {r1} ∪ Γ−(r2), but r1 ∈ Γ−(r4).

This counter-example highlights that there exist typing en-
vironments which would allow to prove the security of a given
system, but will never be returned by the type inference algo-
rithm. Luckily, however, for any of these environments there
exists another typing environment which is a solution to the

4040

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 06,2024 at 03:06:48 UTC from IEEE Xplore. Restrictions apply.

constraint system generated by the type inference algorithm,
hence the type inference is still complete. To exemplify the
intuition, we construct from the previous Γ a new environment
Γp by propagating the positive and negative information in Γ
throughout the types assigned to the individual roles, much in
the same spirit of a closure operation, thus getting:

Γp = r1 : L [{r1, r2, r3}, {r4}], r2 : L [{r2, r3}, {r4}],
r3 : L [{r3}, {r4}], r4 : L [{r4}, {r1}].

It is possible to show that Γp;L � S and Γp �� L, and that Γp

is a solution to the constraints in �(P, σ)�L. Notice in particular
that the previously violated constraint is satisfied by Γp.

By generalizing over the example above, we let Γ↓ be the

typing environment such that for all r ∈ R̂:

1) lab(Γ↓ (r)) = lab(Γ(r));
2) (Γ↓)+(r) = {r} ∪ Γ+(r) ∪ Γ+(Γ+(r));
3) (Γ ↓)−(r) = Γ−(r) ∪ Γ−(Γ+(r)) ∪ {r′ ∈ R̂ | Γ+(r′) ∩

Γ−(r) 	= ∅} ∪ {r′ ∈ R̂ | Γ−(r′) ∩ Γ+(r) 	= ∅}.
Let then Γ0 = Γ and Γn = (Γn−1) ↓ for each natural n, we
denote by Γω the environment Γm such that m is the least
natural such that Γm = Γm+1. We can prove the following
key technical lemma, which ensures that Γω captures the same
information of Γ without any need to compute closures.

Lemma 3 (Removing Closures): For any typing environ-
ment Γ and sets of roles R,R′, we have:

1) (R,R′) ⇓Γ (R+, R−) iff (R,R′) ⇓Γω (R
+, R−);

2) whenever (R,R′) ⇓Γω (R
+, R−), we have R+ ⊆ Γ+ω (R)

and R− ⊆ Γ−ω (R) ∪ Γω(R
′).

The first point of the lemma is used in the proof of the next
result, which in turn is important to prove the completeness of
the type inference algorithm.

Lemma 4: All the following statements hold true:

1) if Γ � P , then Γω � P;

2) if Γ;L � σ, then Γω;L � σ;

3) if Γ �� L, then Γω �� L.

Based on this, we can prove the completeness of the type
inference algorithm.

Theorem 4 (Complete Inference): If Γ;L � S and Γ �� L,
then Γω is a solution for �S�L.

Proof: Let S = (P, σ), by hypothesis we have Γ � P
and Γ;L � σ and Γ �� L. By Lemma 4, we have Γω � P and
Γω;L � σ and Γω �� L. Recall that, for P = (CA,CR), the
judgement Γω � P means Γω �asg CA and Γω �rev CR.

Now we observe that Γω �rev CR implies that Γω is a
solution for �CR�rev, since the constraints in the latter set
correspond to a bottom-up reading of the typing rules. For the
very same reason, Γω;L � σ implies that Γω is a solution for
�σ�Lconf. To show that Γω �asg CA implies that Γω is a solution
for �CA�asg, we observe that the gap between a bottom-up
reading of the typing rules and the constraints in �CA�asg is
filled in by the second point of Lemma 3, i.e., the closures
under Γω computed by the typing rules can be replaced by the
information locally available in the typing environment. We
similarly proceed for the enforceability constraints.

V. COMPOSITIONAL SECURITY PROOFS

One of the biggest advantages of type-based verification is
the compositional nature of its security proofs, i.e., the results
of the verification of small sub-policies can be combined
together to obtain a security proof of a larger policy including
them. This is important to ensure the scalability of the type
inference algorithm to huge ARBAC policies and to support
scenarios where policy administration is strongly distributed.

In the following, we write P1∪P2 and σ1∪σ2 respectively
to stand for the policy/configuration which is obtained by
performing the pointwise union of the components of the two
policies/configurations.

A. Preliminaries

In the most general setting, the problem of compositional
verification can be stated as follows: given n ARBAC systems
Si = (Pi, σi) which are proved safe against n different security
labellings Li = (γi, δi), can we prove the security of the
system S = (

⋃n
j=1 Pj ,

⋃n
j=1 σj) against each Li?

Our compositionality results only apply to the restricted
case where, for each i, j ∈ [1, n], σi = σj and γi = γj .
This means that the different safe sub-systems Si all share
the same initial configuration and that the different security
labellings Li assign the same trust level to each user. This
is a useful and realistic assumption, since this information
is inherent to the nature of the enterprise/organization which
is modelled by the ARBAC system. If the verification of
different sub-systems is performed by different administrators,
these administrators may be entitled to write different sub-
policies and to have different views of the dangers connected
to the possession of some role combinations, but they must all
know the underlying configuration and agree on the trust level
of each user. Similar assumptions are reasonable also when
dealing with evolving ARBAC policies, where new policy rules
are added to accommodate changing security needs.

We now present a number of formal results, which com-
bined together give rise to the main compositionality principle
we present in this paper (Theorem 5 below).

B. Compositional Verification of Policies

Assume that Γ1 � P1 and Γ2 � P2, we show how to
combine Γ1 and Γ2 to type-check P1 ∪ P2.

Definition 10 (Joining Environments): Let Γ1 and Γ2 be
two typing environments, their join is the typing environment

Γ1 + Γ2 such that for all r ∈ R̂:

• lab((Γ1 + Γ2)(r)) = lab(Γ1(r)) � lab(Γ2(r));

• (Γ1 + Γ2)
+(r) = Γ+1 (r) ∪ Γ+2 (r);

• (Γ1 + Γ2)
−(r) = Γ−1 (r) ∪ Γ−2 (r).

Based on this definition, we prove the following formal
result, enabling a compositionality principle for policies.

Lemma 5: If Γ1 � P and Γ2 � P , then Γ1 + Γ2 � P .

Assume then that Γ1 � P1 and Γ2 � P2. To type-check
P1 ∪P2, it is enough to check whether Γ1 � P2 and Γ2 � P1.
Indeed, if this is the case, then by the previous theorem we
have Γ1+Γ2 � P1 and Γ1+Γ2 � P2; by the definition of the
typing rules, this allows one to conclude Γ1 + Γ2 � P1 ∪ P2.

4141

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 06,2024 at 03:06:48 UTC from IEEE Xplore. Restrictions apply.

C. Compositional Verification of Configurations

We start by defining a pre-order on security labellings.

Definition 11 (Security Ordering): Given two security la-
bellings L1 = (γ1, δ1) and L2 = (γ2, δ2), we say that L1 is
no more restrictive than L2, written L1 <: L2, if and only if:

• for all u ∈ Û , γ2(u) � γ1(u);

• for all R ∈ 2 ̂R, δ1(R) � δ2(R).

Let L1 <: L2, then any system which is proved safe with
respect to L2 is safe also with respect to L1 by definition.

Definition 12 (Joining Labellings): The join of two secu-
rity labellings L1 = (γ, δ1) and L2 = (γ, δ2) is the security

labelling L1 � L2 = (γ, δ) such that, for all R ∈ 2
̂R,

δ(R) = δ1(R) � δ2(R).

Notice that Li <: L1�L2 for any i ∈ {1, 2}, hence proving
security with respect to L1 � L2 is enough to prove security
with respect to any of the two security labellings.

Lemma 6: If Γ1;L1 � σ and Γ2;L2 � σ, then we have
Γ1 + Γ2;L1 � L2 � σ.

The lemma is important since it allows to compose different
results obtained by type-checking the initial configuration,
without weakening their security guarantees.

D. Compositional Verification of Systems

We first introduce a pre-order on typing environments.

Definition 13 (Environment Ordering): Given two typing
environments Γ1 and Γ2, we say that Γ1 is no more restrictive
than Γ2, written Γ1 <: Γ2, iff for all r ∈ R̂ we have:

• lab(Γ1(r)) � lab(Γ2(r));

• Γ+1 (r) ⊆ Γ+2 (r);

• Γ−1 (r) ⊆ Γ−2 (r).

Let Γ <: Γ′, then any security labelling which can be
enforced by Γ can also be enforced by the more restrictive Γ′.
This is formalized by the next lemma.

Lemma 7: If Γ �� L and Γ <: Γ′, then Γ′ �� L.

To state the next compositionality result, we need a further
definition, which is needed to compose different security
labellings so as to preserve their security guarantees.

Definition 14 (Compatibility): Two security labellings
L1 = (γ, δ1) and L2 = (γ, δ2) are compatible iff for all

R ∈ 2 ̂R we have δ1(R)� δ2(R) = δi(R) for some i ∈ {1, 2}.
Lemma 8: Let L1 and L2 be two compatible security

labellings. If Γ �� L1 and Γ �� L2, then Γ �� L1 � L2.

Assume then that Γ1 �� L1 and Γ2 �� L2. Since Γi <:
Γ1 + Γ2 for any i ∈ {1, 2}, we have Γ1 + Γ2 �� L1 and
Γ1+Γ2 �� L2 by Lemma 7. If L1 and L2 are compatible, we
then conclude Γ1 + Γ2 �� L1 � L2 by Lemma 8.

By combining all the results and the observations presented
in this section, we finally get our main theorem.

Theorem 5 (Compositionality): Let Γ1;L1 � (P1, σ) and
Γ2;L2 � (P2, σ) with Γ1 �� L1 and Γ2 �� L2. If Γ2 �
P1 and Γ1 � P2 and L1,L2 are compatible, then the system
(P1 ∪ P2, σ) is safe with respect to L1 � L2.

The theorem ensures that the union of two policies pre-
serves the security guarantees enforced by the individual
policies, provided that the first policy is typeable in the typing
environment used to verify the second policy and vice-versa.
The result allows one to verify the security of a large ARBAC
policy by decomposing it into smaller sub-policies where the
security analysis is much more efficient.

VI. BOOSTING THE EXPRESSIVENESS

Though already quite expressive, the type system presented
in Section III fails at proving the safety of many correct
ARBAC systems. In particular, we observe two potential
expressiveness problems for the type system:

1) it is crucial for many security proofs, including that of
Example 3, that some roles are never revoked. However,
many real ARBAC policies allow the revocation of a
significant number of roles or even all the roles, which
limits the power of reasoning by typing;

2) even though the ARBAC policy ensures a number of
useful invariants, the initial configuration may violate
some of them, hence Theorem 2 could not be applied
to construct a security proof.

While it is certainly possible to devise more sophisticated
type disciplines to deal with these problems, doing so would
complicate the formal framework and likely make the analysis
less efficient and more difficult to understand. Our choice
then is keeping the analysis simple, while proposing syntactic
transformations of the ARBAC system which preserve the
soundness of the analysis, while simplifying the construction
of a security proof.

A. Safety by Rewriting and Typing

We motivate our approach with a very practical example.
Consider a policy P = (CA,CR) where a role r does not
occur in the negative preconditions of any can-assign rule:
for this policy, the revocation of r does not enable any new
administrative action. Hence, building a security proof for the
policy P ′ = (CA, {(ra, r′) ∈ CR | r′ 	= r}) is enough to
prove the safety of P , even though P may not admit a type-
based security proof.

By generalizing over the observations above, we presup-
pose a rewriting relation S � S ′ to support the analysis, with
the idea that: (1) no security violation is lost upon rewriting
and (2) the existence of a type-based security proof is not lost
upon rewriting. Hence, proving the safety of S ′ is enough to
prove the safety of S, but it is no harder. This is formalized
by the following two definitions.

Definition 15 (Sound Rewriting): The rewriting S � S ′ is
sound for the security labelling L iff, whenever S ′ is safe with
respect to L, also S is safe.

Definition 16 (Precise Rewriting): The rewriting S � S ′
is precise for the security labelling L iff, for all Γ such that

4242

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 06,2024 at 03:06:48 UTC from IEEE Xplore. Restrictions apply.

Γ �� L and Γ;L � S , there exists Γ′ such that Γ′ �� L and
Γ′;L � S ′.

While the soundness of rewriting is clearly a strict re-
quirement to preserve the correctness of the analysis, one
may occasionally choose to sacrifice precision, which may be
harder to prove. Notice however that, due to the nature of the
typing rules, any rewriting which just drops can-assign or can-
revoke rules from the original policy is necessarily precise.

B. A Sensible Rewriting

We now discuss one possible rewriting which is a good
candidate to support our type-based analysis, since it allows
one to eliminate many can-revoke rules from the original
policy and significantly reduce its size.

We start by defining when a role is irrelevant for security.

Definition 17 (Irrelevant Role): Let P = (CA,CR). A
role r is irrelevant for P under L = (γ, δ) iff both the
following conditions hold:

1) ∀(ra, Rp, Rn, rt) ∈ CA : ra 	= r ∧ r 	∈ Rp;

2) ∀R ∈ 2 ̂R : δ(R) = δ(R \ {r}).
In words, a role r is irrelevant whenever (1) it cannot be

used to assign other roles and it is not needed to acquire new
roles, (2) its presence in a set of roles is not important to detect
a security violation. Notice that the second condition implies
that δ({r}) = ⊥, since δ(∅) = ⊥ by definition.

Let S = (P, σ) with P = (CA,CR) and σ = (U,UR),
we let 〈S〉Li be the system obtained by applying the i-th rule
from the following list:

1) if (u, r) ∈ UR and r is irrelevant for P under L, then
remove (u, r);

2) if ca = (ra, Rp, Rn, rt) ∈ CA and rt is irrelevant for P
under L, then remove ca;

3) if cr = (ra, rt) ∈ CR and there does not exist any
(r′a, Rp, Rn, r

′
t) ∈ CA with rt ∈ Rn, then remove cr.

We let 〈S〉Lfix be the system obtained by repeatedly applying
the rules above (in any order) up to a fix point: notice that there
must exist one, since any rule application shrinks the size of
the system. Moreover, observe that the fix point is unique,
since different rule applications commute one with each other.

Lemma 9: The rewriting S � 〈S〉Lfix is both sound and
precise for any L.

VII. IMPLEMENTATION

We implemented TAPA, a static type-checker for ARBAC
policies based on our theory. TAPA consists of around 1100
lines of Python code.

A. Overview

Given an ARBAC system S encoded in a standard for-
mat [11] and a security labelling L, TAPA first performs the
rewriting described in Section VI-B to simplify the security
problem and then generates the constraints required by the
type inference algorithm in Section IV. The constraints are
then solved by the open-source SMT solver CVC4 [36].

If the constraints are solvable, the system S is safe with re-
spect to L and a corresponding typing environment is returned
as an output, otherwise S is not typeable and it may be safe
or not (since the type system is sound, but not complete). If a
can-assign rule is type-checked by rule (CA-TRIVIAL1) or by
rule (CA-TRIVIAL2), or if a can-revoke rule is type-checked
by a vacuous application of rule (CR-SINGLE), TAPA warns
the policy administrator about the presence of a policy rule
which can never be triggered.

B. Experiments

We evaluate TAPA against several ARBAC policies from
the literature, representing a hospital, a university and a bank
with sixteen identical branches [10], [4], [20]. The security
analysis considers both privilege escalation (PE) problems and
separation of duty (SoD) constraints, including both safe and
unsafe examples. For each example, we keep track of its size
before and after the rewriting, the verification time required
by the type inference algorithm and the output of the type-
checker; moreover, we report whether the ill-typed examples
are actually unsafe or not, to understand the expressiveness
of the analysis. The experimental results collected by running
TAPA on an Intel i7-4600U quad-core 2.1 GHz with 6 GB
RAM are given in Table IV and commented below.

For the hospital and the university policies the tool was
extremely effective, finding security proofs for all the safe
examples in less than 2 seconds and failing in less than 1
second on the unsafe instances. The bank policy is much
larger and involved, but still TAPA performed quite well
in our experiments. From a performance point of view, we
observe that most of the examples are solved in less than
10 seconds, though the verification is particularly challenging
for examples B4 and B5. However, we are able to deal with
these cases by appealing to our compositionality results to
dramatically improve the verification time. For instance, B5
checks whether the role combination {OBi,FAi, STi, SEi} for
some i ∈ [1, 16] can be assigned to the same user, i.e., if
there exists one branch of the bank where four given roles
can be assigned together. Since the sixteen branches of the
bank are identical, the example is a good candidate to apply
our compositionality results: example B5c just checks if the
role combination {OB1,FA1, ST1, SE1} can be assigned, i.e.,
if the first branch of the bank admits a security violation.
As it turns out, verifying B5 requires 7m45s, while checking
B5c just takes 4.2s. By replicating B5c on the other branches,
we are able to verify security in 16 x 4.2s = 67.2s, with a
7x speed-up with respect to B5. This performance boost is
mostly due to the fact that the rewriting performs poorly on
B5, since the number of irrelevant roles is much smaller than
in B5c, thus leading to a significantly harder security problem.
The improvement in performances is even more apparent for
example B4, where verification takes more than 20 minutes,
but by solving example B4c and using compositionality we
are able to verify security in approximately 2m30s.

From the expressiveness point of view, we observe that the
tool reported only one false positive, namely example B1, since
it was not able to prove by typing that the role combination
R = {OBAsst1,OBJunior1,OBSenior1,OBClerk1} is never
assigned to the same user. The reason is that each of the roles
in R can be assigned together with any other of the roles in

4343

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 06,2024 at 03:06:48 UTC from IEEE Xplore. Restrictions apply.

TABLE IV Experimental results

Input Original Rewritten Verification
Policy #roles #CA #CR #users #UR #roles #CA #CR #users #UR time safe type

H1 15 13 12 1093 1123 3 2 2 1093 142 1.2s y y
H2 15 13 12 1093 1123 5 5 3 1093 872 1.2s y y
H3 15 13 12 1093 1123 4 1 1 1093 332 0.4s n n
H4 15 13 12 1093 1123 5 2 1 1093 710 0.4s n n
H5 15 13 12 1093 1123 5 4 4 1093 872 1.3s y y
U1 34 374 75 944 971 5 7 6 944 36 1.0s y y
U2 34 374 75 944 971 5 4 6 944 35 0.3s n n
U3 34 374 75 944 971 7 5 6 944 700 1.7s y y
U4 34 374 75 944 971 13 93 14 944 249 0.3s n n
U5 34 374 75 944 971 5 4 4 944 35 1.3s y y
U6 34 374 75 944 971 10 20 12 944 735 1.5s y y
B1 531 4625 516 2000 1 11 57 8 2000 1 7.7s y n
B2 531 4625 516 2000 1 6 3 4 2000 1 5.1s y y
B3 531 4625 516 2000 1 11 58 9 2000 1 6.1s n n
B4 531 4625 516 2000 1 146 913 135 2000 1 >20m y -
B4c 531 4625 516 2000 1 11 58 8 2000 1 9.4s y y
B5 531 4625 516 2000 1 66 65 64 2000 1 7m45s y y
B5c 531 4625 516 2000 1 6 5 4 2000 1 4.2s y y

H1 = SoD {Doctor,Receptionist} U1 = SoD {DeptChair,Dean} B1 = SoD {OBAsst1,OBJunior1,
H2 = SoD {PrimDoctor,Patient} U2 = PE {President,Provost,Dean} OBSenior1,OBClerk1}
H3 = SoD {Doctor,Nurse} U3 = SoD {UnderGrad,Grad} B2 = SoD {OB1,FA1}
H4 = PE {PatientWithTPC} U4 = SoD {GACommitte,AOfficer} B3 = SoD {OB1,FASpecial1}
H5 = H1 + H2 U5 = SoD {President,Dean} B4 = SoD {OBi,FASpeciali}i∈[1,16]

U6 = U1 + U3 with each FAi irrevocable
B4c = SoD {OB1,FASpecial1}

with FA1 irrevocable
B5 = SoD {OBi,FAi, STi, SEi}i∈[1,16]
B5c = SoD {OB1,FA1, ST1, SE1}

R, even though they cannot all be assigned at the same time,
hence the invariants on the individual role assignments are too
weak to build a security proof. Improving the expressiveness
of the type system to deal with this complex example would
be an interesting avenue for future work.

VIII. CONCLUSION

In this paper, we performed a first investigation on the
benefits of types as an effective tool for the static verification
of ARBAC policies. Our type system comes with a sound and
complete type inference algorithm, and novel compositionality
results which make verification scale by design to extremely
large policies. We evaluated our theory by implementing
TAPA, a static analyser for ARBAC policies, and by testing it
on a number of publicly available examples from the literature.
Our experimental results confirm both the efficiency and the
expressiveness of the analysis we proposed.

As future work, we plan to further improve the expres-
siveness of the type system and to apply it to the verifica-
tion of parametric ARBAC policies [37]. In these policies,
parametrized roles are built from a set of role templates to limit
the scope of access control permissions: for instance, a role
template Professor[·] with read permission can be instantiated
to the parametrized role Professor[Math] to provide read access
only to the resources related to the Math degree. A limited
form of parametrized roles can be encoded into ARBAC by

creating a different role for each different instantiation of
the role templates, but at the cost of significantly increasing
the size of the system to analyse. We think that types for
role templates look like a promising approach to the scalable
verification of parametric ARBAC policies.

ACKNOWLEDGEMENTS

We would like to thank Morgan Deters and Kshitij Bansal
for their guidance in the use of CVC4. This work was
supported by the MIUR projects ADAPT and CINA.

REFERENCES

[1] D. F. Ferraiolo, R. S. Sandhu, S. I. Gavrila, D. R. Kuhn, and R. Chan-
dramouli, “Proposed NIST standard for role-based access control,” ACM
Trans. Inf. Syst. Secur., vol. 4, no. 3, pp. 224–274, 2001.

[2] N. Li and M. V. Tripunitara, “Security analysis in role-based access
control,” ACM Trans. Inf. Syst. Secur., vol. 9, no. 4, pp. 391–420, 2006.

[3] N. Li, M. V. Tripunitara, and Z. Bizri, “On mutually exclusive roles
and separation-of-duty,” ACM Trans. Inf. Syst. Secur., vol. 10, no. 2,
2007.

[4] S. D. Stoller, P. Yang, C. R. Ramakrishnan, and M. I. Gofman, “Efficient
policy analysis for administrative role based access control,” in Proceed-
ings of the 2007 ACM Conference on Computer and Communications
Security, CCS 2007, Alexandria, Virginia, USA, October 28-31, 2007,
2007, pp. 445–455.

4444

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 06,2024 at 03:06:48 UTC from IEEE Xplore. Restrictions apply.

[5] P. Yang, M. I. Gofman, and Z. Yang, “Policy analysis for administrative
role based access control without separate administration,” in Data
and Applications Security and Privacy XXVII - 27th Annual IFIP WG
11.3 Conference, DBSec 2013, Newark, NJ, USA, July 15-17, 2013.
Proceedings, 2013, pp. 49–64.

[6] S. Jha, N. Li, M. V. Tripunitara, Q. Wang, and W. H. Winsborough,
“Towards formal verification of role-based access control policies,”
IEEE Trans. Dependable Sec. Comput., vol. 5, no. 4, pp. 242–255,
2008.

[7] A. Armando and S. Ranise, “Automated symbolic analysis of arbac-
policies,” in Security and Trust Management - 6th International Work-
shop, STM 2010, Athens, Greece, September 23-24, 2010, Revised
Selected Papers, 2010, pp. 17–34.

[8] K. Jayaraman, V. Ganesh, M. V. Tripunitara, M. C. Rinard, and
S. J. Chapin, “Automatic error finding in access-control policies,” in
Proceedings of the 18th ACM Conference on Computer and Commu-
nications Security, CCS 2011, Chicago, Illinois, USA, October 17-21,
2011, 2011, pp. 163–174.

[9] A. Sasturkar, P. Yang, S. D. Stoller, and C. R. Ramakrishnan, “Policy
analysis for administrative role based access control,” in 19th IEEE
Computer Security Foundations Workshop, (CSFW-19 2006), 5-7 July
2006, Venice, Italy, 2006, pp. 124–138.

[10] M. I. Gofman, R. Luo, A. C. Solomon, Y. Zhang, P. Yang, and S. D.
Stoller, “RBAC-PAT: A policy analysis tool for role based access
control,” in Tools and Algorithms for the Construction and Analysis of
Systems, 15th International Conference, TACAS 2009, Held as Part of
the Joint European Conferences on Theory and Practice of Software,
ETAPS 2009, York, UK, March 22-29, 2009. Proceedings, 2009, pp.
46–49.

[11] A. L. Ferrara, P. Madhusudan, and G. Parlato, “Security analysis of
role-based access control through program verification,” in 25th IEEE
Computer Security Foundations Symposium, CSF 2012, Cambridge,
MA, USA, June 25-27, 2012, 2012, pp. 113–125.

[12] M. Bugliesi, S. Calzavara, R. Focardi, and M. Squarcina, “Gran: Model
checking grsecurity RBAC policies,” in 25th IEEE Computer Security
Foundations Symposium, CSF 2012, Cambridge, MA, USA, June 25-27,
2012, 2012, pp. 126–138.

[13] A. L. Ferrara, P. Madhusudan, and G. Parlato, “Policy analysis for self-
administrated role-based access control,” in Tools and Algorithms for the
Construction and Analysis of Systems - 19th International Conference,
TACAS 2013, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013.
Proceedings, 2013, pp. 432–447.

[14] S. Calzavara, A. Rabitti, and M. Bugliesi, “Formal verification of
Liferay RBAC,” in Engineering Secure Software and Systems - 7th
International Symposium, ESSoS 2015, Milan, Italy, March 4-6, 2015.
Proceedings, 2015, pp. 1–16.

[15] M. I. Gofman, R. Luo, and P. Yang, “User-role reachability analysis of
evolving administrative role based access control,” in Computer Security
- ESORICS 2010, 15th European Symposium on Research in Computer
Security, Athens, Greece, September 20-22, 2010. Proceedings, 2010,
pp. 455–471.

[16] S. Ranise and A. T. Truong, “Incremental analysis of evolving admin-
istrative role based access control policies,” in Data and Applications
Security and Privacy XXVIII - 28th Annual IFIP WG 11.3 Working Con-
ference, DBSec 2014, Vienna, Austria, July 14-16, 2014. Proceedings,
2014, pp. 260–275.

[17] A. Sasturkar, P. Yang, S. D. Stoller, and C. R. Ramakrishnan, “Policy
analysis for administrative role-based access control,” Theor. Comput.
Sci., vol. 412, no. 44, pp. 6208–6234, 2011.

[18] F. Alberti, A. Armando, and S. Ranise, “ASASP: automated symbolic
analysis of security policies,” in Automated Deduction - CADE-23
- 23rd International Conference on Automated Deduction, Wroclaw,
Poland, July 31 - August 5, 2011. Proceedings, 2011, pp. 26–33.

[19] S. Ranise, A. T. Truong, and A. Armando, “Boosting model checking
to analyse large ARBAC policies,” in Security and Trust Management
- 8th International Workshop, STM 2012, Pisa, Italy, September 13-14,
2012, Revised Selected Papers, 2012, pp. 273–288.

[20] K. Jayaraman, M. V. Tripunitara, V. Ganesh, M. C. Rinard, and S. J.
Chapin, “Mohawk: Abstraction-refinement and bound-estimation for

verifying access control policies,” ACM Trans. Inf. Syst. Secur., vol. 15,
no. 4, p. 18, 2013.

[21] A. L. Ferrara, P. Madhusudan, T. L. Nguyen, and G. Parlato, “Vac - ver-
ifier of administrative role-based access control policies,” in Computer
Aided Verification - 26th International Conference, CAV 2014, Held as
Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July
18-22, 2014. Proceedings, 2014, pp. 184–191.

[22] G. Bruns and M. Huth, “Access control via belnap logic: Intuitive,
expressive, and analyzable policy composition,” ACM Trans. Inf. Syst.
Secur., vol. 14, no. 1, p. 9, 2011.

[23] P. A. Bonatti, S. D. C. di Vimercati, and P. Samarati, “An algebra for
composing access control policies,” ACM Trans. Inf. Syst. Secur., vol. 5,
no. 1, pp. 1–35, 2002.

[24] Q. Ni, E. Bertino, and J. Lobo, “D-algebra for composing access control
policy decisions,” in Proceedings of the 2009 ACM Symposium on
Information, Computer and Communications Security, ASIACCS 2009,
Sydney, Australia, March 10-12, 2009, 2009, pp. 298–309.

[25] D. Wijesekera and S. Jajodia, “A propositional policy algebra for access
control,” ACM Trans. Inf. Syst. Secur., vol. 6, no. 2, pp. 286–325, 2003.

[26] M. Bartoletti, P. Degano, and G. L. Ferrari, “Enforcing secure service
composition,” in 18th IEEE Computer Security Foundations Workshop,
(CSFW-18 2005), 20-22 June 2005, Aix-en-Provence, France, 2005, pp.
211–223.

[27] ——, “Planning and verifying service composition,” Journal of Com-
puter Security, vol. 17, no. 5, pp. 799–837, 2009.

[28] R. De Nicola, G. L. Ferrari, R. Pugliese, and B. Venneri, “Types for
access control,” Theor. Comput. Sci., vol. 240, no. 1, pp. 215–254, 2000.

[29] M. Hennessy and J. Riely, “Resource access control in systems of
mobile agents,” Inf. Comput., vol. 173, no. 1, pp. 82–120, 2002.

[30] M. Bugliesi, D. Colazzo, S. Crafa, and D. Macedonio, “A type system
for discretionary access control,” Mathematical Structures in Computer
Science, vol. 19, no. 4, pp. 839–875, 2009.

[31] C. Braghin, D. Gorla, and V. Sassone, “Role-based access control for a
distributed calculus,” Journal of Computer Security, vol. 14, no. 2, pp.
113–155, 2006.

[32] R. Jagadeesan, A. Jeffrey, C. Pitcher, and J. Riely, “Lambda-rbac:
Programming with role-based access control,” Logical Methods in
Computer Science, vol. 4, no. 1, 2008.

[33] S. Calzavara, A. Rabitti, and M. Bugliesi, “Compositional typed anal-
ysis of ARBAC policies (long version),” Tech. Rep., 2015, available at
http://www.dais.unive.it/˜calzavara/papers/csf15-full.pdf.

[34] N. Li and M. V. Tripunitara, “On safety in discretionary access control,”
in 2005 IEEE Symposium on Security and Privacy (S&P 2005), 8-11
May 2005, Oakland, CA, USA, 2005, pp. 96–109.

[35] J. Crampton, “Authorization and antichains,” University of London,
Tech. Rep., 2002.

[36] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovic,
T. King, A. Reynolds, and C. Tinelli, “CVC4,” in Computer Aided
Verification - 23rd International Conference, CAV 2011, Snowbird, UT,
USA, July 14-20, 2011. Proceedings, 2011, pp. 171–177.

[37] L. Giuri and P. Iglio, “Role templates for content-based access control,”
in ACM Workshop on Role-Based Access Control, 1997, pp. 153–159.

4545

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 06,2024 at 03:06:48 UTC from IEEE Xplore. Restrictions apply.

