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Abstract—The recent increase in reported incidents of surveil-
lance and security breaches compromising users’ privacy call into
question the current model, in which third-parties collect and con-
trol massive amounts of personal data. Bitcoin has demonstrated
in the financial space that trusted, auditable computing is possible
using a decentralized network of peers accompanied by a public
ledger. In this paper, we describe a decentralized personal data
management system that ensures users own and control their
data. We implement a protocol that turns a blockchain into an
automated access-control manager that does not require trust in
a third party. Unlike Bitcoin, transactions in our system are not
strictly financial – they are used to carry instructions, such as
storing, querying and sharing data. Finally, we discuss possible
future extensions to blockchains that could harness them into a
well-rounded solution for trusted computing problems in society.
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I. INTRODUCTION

The amount of data in our world is rapidly increasing.
According to a recent report [22], it is estimated that 20% of
the world’s data has been collected in the past couple of years.
Facebook, the largest online social-network, collected 300
petabytes of personal data since its inception [1] – a hundred
times the amount the Library of Congress has collected in over
200 years [13]. In the Big Data era, data is constantly being
collected and analyzed, leading to innovation and economic
growth. Companies and organizations use the data they col-
lect to personalize services, optimize the corporate decision-
making process, predict future trends and more. Today, data is
a valuable asset in our economy [21].

While we all reap the benefits of a data-driven society, there
is a growing public concern about user privacy. Centralized
organizations – both public and private, amass large quantities
of personal and sensitive information. Individuals have little or
no control over the data that is stored about them and how it
is used. In recent years, public media has repeatedly covered
controversial incidents related to privacy. Among the better
known examples is the story about government surveillance
[2], and Facebook’s large-scale scientific experiment that was
apparently conducted without explicitly informing participants
[10].

Related Work. There have been various attempts to ad-
dress these privacy issues, both from a legislative perspective
([4], [20]), as well as from a technological standpoint. Open-
PDS, a recently developed framework, presents a model for

The first two authors contributed equally to this work.

autonomous deployment of a PDS which includes a mecha-
nism for returning computations on the data, thus returning
answers instead of the raw data itself [6]. Across the industry,
leading companies chose to implement their own proprietary
authentication software based on the OAuth protocol [19], in
which they serve as centralized trusted authorities.

From a security perspective, researchers developed various
techniques targeting privacy concerns focused on personal
data. Data anonymization methods attempt to protect person-
ally identifiable information. k-anonymity, a common property
of anonymized datasets requires that sensitive information of
each record is indistinguishable from at least k−1 other records
[24]. Related extensions to k-anonymity include l-diversity,
which ensures the sensitive data is represented by a diverse
enough set of possible values [15]; and t-closeness, which
looks at the distribution of sensitive data [14]. Recent research
has demonstrated how anonymized datasets employing these
techniques can be de-anonymized [18], [5], given even a small
amount of data points or high dimensionality data. Other
privacy-preserving methods include differential privacy, a tech-
nique that perturbs data or adds noise to the computational
process prior to sharing the data [7], and encryption schemes
that allow running computations and queries over encrypted
data. Specifically, fully homomorphic encryption (FHE) [9]
schemes allow any computation to run over encrypted data,
but are currently too inefficient to be widely used in practice.

In recent years, a new class of accountable systems
emerged. The first such system was Bitcoin, which allows
users to transfer currency (bitcoins) securely without a cen-
tralized regulator, using a publicly verifiable open ledger (or
blockchain). Since then, other projects (collectively referred
to as Bitcoin 2.0 [8]) demonstrated how these blockchains
can serve other functions requiring trusted computing and
auditability.

Our Contribution. 1) We combine blockchain and off-
blockchain storage to construct a personal data management
platform focused on privacy. 2) We illustrate through our
platform and a discussion of future improvements to the
technology, how blockchains could become a vital resource
in trusted-computing.

Organization. Section II discusses the privacy problem we
solve in this paper; section III provides an overview of the
platform, whereas section IV describes in detail the techni-
cal implementation; section V discusses future extensions to
blockchains, and concluding remarks are found in section VI.
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II. THE PRIVACY PROBLEM

Throughout this paper, we address the privacy concerns
users face when using third-party services. We focus specifi-
cally on mobile platforms, where services deploy applications
for users to install. These applications constantly collect high-
resolution personal data of which the user has no specific
knowledge or control. In our analysis, we assume that the
services are honest-but-curious (i.e., they follow the protocol).
Note that the same system could be used for other data-
privacy concerns, such as patients sharing their medical data
for scientific research, while having the means to monitor how
it is used and the ability to instantly opt-out. In light of this, our
system protects against the following common privacy issues:

Data Ownership. Our framework focuses on ensuring that
users own and control their personal data. As such, the system
recognizes the users as the owners of the data and the services
as guests with delegated permissions.

Data Transparency and Auditability. Each user has
complete transparency over what data is being collected about
her and how they are accessed.

Fine-grained Access Control. One major concern with
mobile applications is that users are required to grant a set
of permissions upon sign-up. These permissions are granted
indefinitely and the only way to alter the agreement is by
opting-out. Instead, in our framework, at any given time the
user may alter the set of permissions and revoke access to
previously collected data. One application of this mechanism
would be to improve the existing permissions dialog in mobile
applications. While the user-interface is likely to remain the
same, the access-control policies would be securely stored on
a blockchain, where only the user is allowed to change them.

III. PROPOSED SOLUTION

We begin with an overview of our system. As illustrated
in Figure 1, the three entities comprising our system are
mobile phone users, interested in downloading and using
applications; services, the providers of such applications who
require processing personal data for operational and business-
related reasons (e.g., targeted ads, personalized service); and
nodes, entities entrusted with maintaining the blockchain and a
distributed private key-value data store in return for incentives.
Note that while users in the system normally remain (pseudo)
anonymous, we could store service profiles on the blockchain
and verify their identity.

The system itself is designed as follows. The blockchain
accepts two new types of transactions: Taccess, used for access
control management; and Tdata, for data storage and retrieval.
These network operations could be easily integrated into a
mobile software development kit (SDK) that services can use
in their development process.

To illustrate, consider the following example: a user installs
an application that uses our platform for preserving her privacy.
As the user signs up for the first time, a new shared (user,
service) identity is generated and sent, along with the asso-
ciated permissions, to the blockchain in a Taccess transaction.
Data collected on the phone (e.g., sensor data such as location)
is encrypted using a shared encryption key and sent to the
blockchain in a Tdata transaction, which subsequently routes

it to an off-blockchain key-value store, while retaining only
a pointer to the data on the public ledger (the pointer is the
SHA-256 hash of the data).

Both the service and the user can now query the data using
a Tdata transaction with the pointer (key) associated to it. The
blockchain then verifies that the digital signature belongs to
either the user or the service. For the service, its permissions
to access the data are checked as well. Finally, the user can
change the permissions granted to a service at any time by
issuing a Taccess transaction with a new set of permissions, in-
cluding revoking access to previously stored data. Developing
a web-based (or mobile) dashboard that allows an overview
of one’s data and the ability to change permissions is fairly
trivial and is similar to developing centralized-wallets, such as
Coinbase for Bitcoin1.

The off-blockchain key-value store is an implementation of
Kademilia [16], a distributed hashtable (or DHT), with added
persistence using LevelDB2 and an interface to the blockchain.
The DHT is maintained by a network of nodes (possibly
disjoint from the blockchain network), who fulfill approved
read/write transactions. Data are sufficiently randomized across
the nodes and replicated to ensure high availability. It is
instructive to note that alternative off-blockchain solutions
could be considered for storage. For example, a centralized
cloud might be used to store the data. While this requires some
amount of trust in a third-party, it has some advantages in terms
of scalability and ease of deployment.

user�

Taccess �
   (u grants s Access)�

encrypted response�

service�

blockchain�

DHT�

Fig. 1. Overview of the decentralized platform.

IV. THE NETWORK PROTOCOL

We now describe in detail the underlying protocol used
in the system. We utilize standard cryptographic building
blocks in our platform: a symmetric encryption scheme defined
by the 3-tuple (Genc, Eenc,Denc) – the generator, encryption
and decryption algorithms respectively; a digital signature
scheme (DSS) described by the 3-tuple (Gsig,Ssig,Vsig) – the
generator, signature and verification algorithms respectively,

1Coinbase bitcoin wallet, http://www.coinbase.com
2LevelDB, http://github.com/google/leveldb
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implemented using ECDSA with secp256k1 curve [12]; and
a cryptographic hash function H, instantiated by a SHA-256
[11] implementation.

A. Building Blocks

We now briefly introduce relevant building blocks that are
used throughout the rest of this paper. We assume familiarity
with Bitcoin [17] and blockchains.

1) Identities: Blockchains utilize a pseudo-identity mech-
anism. Essentially a public-key, every user can generate as
many such pseudo-identities as she desires in order to increase
privacy. We now introduce compound identities, an extension
of this model used in our system. A compound identity
is a shared identity for two or more parties, where some
parties (at least one) own the identity (owners), and the rest
have restricted access to it (guests). Protocol 1 illustrates the
implementation for a single owner (the user) and a single guest
(the service). As illustrated, the identity is comprised of signing
key-pairs for the owner and guest, as well as a symmetric
key used to encrypt (and decrypt) the data, so that the data
is protected from all other players in the system. Formally,
a compound identity is externally (as seen by the network)
observed by the 2-tuple:

Compound(public)u,s = (pku,ssig , pk
s,u
sig ) (1)

Similarly, the entire identity (including the private keys) is
the following 5-tuple:

Compoundu,s = (pku,ssig , sk
u,s
sig , pk

s,u
sig , sk

s,u
sig , sk

u,s
enc) (2)

Protocol 1 Generating a compound identity

1: procedure COMPOUNDIDENTITY(u, s)
2: u and s form a secure channel
3: u executes:
4: (pku,ssig , sk

u,s
sig )← Gsig()

5: sku,senc ← Genc()
6: u shares sku,senc, pk

u,s
sig with s

7: s executes:
8: (pks,usig , sk

s,u
sig )← Gsig()

9: s shares pks,usig with s
10: // Both u and s have sku,senc, pk

u,s
sig , pk

s,u
sig

11: return pku,ssig , pk
s,u
sig , sk

u,s
enc

12: end procedure

2) Blockchain Memory: We let L be the blockchain mem-
ory space, represented as the hastable L : {0, 1}256 →
{0, 1}N , where N >> 256 and can store sufficiently-
large documents. We assume this memory to be tamper-
proof under the same adversarial model used in Bitcoin and
other blockchains. To intuitively explain why such a trusted
data-store can be implemented on any blockchain (including
Bitcoin), consider the following simplified, albeit inefficient,
implementation: A blockchain is a sequence of timestamped
transactions, where each transaction includes a variable num-
ber of output addresses (each address is a 160-bit number). L
could then be implemented as follows – the first two outputs
in a transaction encode the 256-bit memory address pointer,
as well as some auxiliary meta-data. The rest of the outputs
construct the serialized document. When looking up L[k], only

the most recent transaction is returned, which allows update
and delete operations in addition to inserts.

3) Policy: A set of permissions a user u grants service s,
denoted by POLICYu,s. For example, if u installs a mobile
application requiring access to the user’s location and contacts,
then POLICYu,s = {location, contacts}. It is instructive to
note that any type of data could be stored safely this way,
assuming the service will not subvert the protocol and label
the data incorrectly. Safeguards to partially prevent this could
be introduced to the mobile SDK, but in any case, the user
could easily detect a service that cheats, as all changes are
visible to her.

4) Auxiliary Functions: Parse(x) de-seralizes the mes-
sage sent to a transaction, which contains the arguments;
CheckPolicy(pkksig, xp), illustrated in Protocol 2, verifies that
the originator has the appropriate permissions.

Protocol 2 Permissions check against the blockchain

1: procedure CHECKPOLICY(pkksig, xp)
2: s← 0
3: apolicy = H(pkksig)
4: if L[apolicy] �= ∅ then
5: pku,ssig , pk

s,u
sig , POLICYu,s ← Parse(L[apolicy])

6: if pkksig = pku,ssig or
7: (pkksig = pks,usig and xp ∈ POLICYu,s) then
8: s← 1
9: end if

10: end if
11: return s
12: end procedure

B. Blockchain Protocols

Here we provide a detailed description of the core protocols
executed on the blockchain. Protocol 3 is executed by nodes
in the network when a Taccess transaction is received, and
similarly, Protocol 4 is executed for Tdata transactions.

As mentioned earlier in the paper, Taccess transactions
allow users to change the set of permissions granted to a
service, by sending a POLICYu,s set. Sending the empty set
revokes all access-rights previously granted. Sending a Taccess

transaction with a new compound identity for the first time is
interpreted as a user signing up to a service.

Similarly, Tdata transactions govern read/write operations.
With the help of CheckPolicy, only the user (always) or the
service (if allowed) can access the data. Note that in lines 9 and
16 of Protocol 4 we used shorthand notation for accessing the
DHT like a normal hashtable. In practice, these instructions
result in an off-blockchain network message (either read or
write) that is sent to the DHT.

C. Privacy and Security Analysis

We rely on the blockchain being tamper-free, an assump-
tion that requires a sufficiently large network of untrusted
peers. In addition, we assume that the user manages her keys
in a secure manner, for example using a secure-centralized
wallet service. We now show how our system protects against
adversaries compromising nodes in the system. Currently, we
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Protocol 3 Access Control Protocol

1: procedure HANDLEACCESSTX(pkksig,m)
2: s← 0
3: pku,ssig , pk

s,u
sig , POLICYu,s = Parse(m)

4: if pkksig = pku,ssig then
5: L[H(pkksig)] = m
6: s← 1
7: end if
8: return s
9: end procedure

Protocol 4 Storing or Loading Data

1: procedure HANDLEDATATX(pkksig,m)
2: c, xp, rw = Parse(m)
3: if CheckPolicy(pkksig, xp) = True then
4: pku,ssig , pk

s,u
sig , POLICYu,s ←

Parse(L[H(pku,ssig )])
5: axp = H(pku,ssig ‖ xp)
6: if rw = 0 then � rw=0 for write, 1 for read
7: hc = H(c)
8: L[axp ]← L[axp ] ∪ hc

9: (DHT) ds[hc]← c
10: return hc

11: else if c ∈ L[axp ] then
12: (DHT) return ds[hc]
13: end if
14: end if
15: return ∅
16: end procedure

are less concerned about malicious services that change the
protocol or record previously read data, as they are likely to be
reputable, but we provide a possible solution for such behavior
in section V-A.

Given this model, only the user has control over her data.
The decentralized nature of the blockchain combined with
digitally-signed transactions ensure that an adversary cannot
pose as the user, or corrupt the network, as that would imply
the adversary forged a digital-signature, or gained control over
the majority of the network’s resources. Similarly, an adversary
cannot learn anything from the public ledger, as only hashed
pointers are stored in it.

An adversary controlling one or more DHT nodes cannot
learn anything about the raw data, as it is encrypted with keys
that none of the nodes posses. Note that while data integrity is
not ensured in each node, since a single node can tamper with
its local copy or act in a byzantine way, we can still in practice
minimize the risk with sufficient distribution and replication of
the data.

Finally, generating a new compound identity for each user-
service pair guarantees that only a small fraction of the data is
compromised in the event of an adversary obtaining both the
signing and encryption keys. If the adversary obtains only one
of the keys, then the data is still safe. Note that in practice
we could further split the identities to limit the exposure of a
single compromised compound identity. For example, we can
generate new keys for every hundred records stored.

V. DISCUSSION OF FUTURE EXTENSIONS

In this section, we slightly digress to present possible
future extensions to blockchains. These could play a significant
role in shaping more mature distributed trusted computing
platforms, compared to current state-of-the-art systems. More
specifically, they would greatly increase the usefulness of the
platform presented earlier.

A. From Storage to Processing

One of the major contributions of this paper is demonstrat-
ing how to overcome the public nature of the blockchain. So
far, our analysis focused on storing pointers to encrypted data.
While this approach is suitable for storage and random queries,
it is not very efficient for processing data. More importantly,
once a service queries a piece of raw data, it could store it for
future analysis.

A better approach might be to never let a service observe
the raw data, but instead, to allow it to run computations
directly on the network and obtain the final results. If we split
data into shares (e.g., using Shamir’s Secret Sharing [23]),
rather than encrypting them, we could then use secure Multi-
party Computation (MPC) to securely evaluate any function
[3].

In Figure 2, we illustrate how MPC might work with
blockchains and specifically in our framework. Consider a
simple example in which a city holds an election and wishes
to allow online secret voting. It develops a mobile application
for voting which makes use of our system, now augmented
with the proposed MPC capabilities. After the online elections
take place, the city subsequently submits their back-end code
to aggregate the results. The network selects a subset of nodes
at random and an interpreter transforms the code into a secure
MPC protocol. Finally, the results are stored on the public
ledger, where they are safe against tampering. As a result, no
one learns what the individual votes were, but everyone can
see the results of the elections.

procedure EVOTE((∗)v1, ..., (∗)vn)
s←∑n

i=1 vi
if s < 0 then

L[aelection]← u1

else if s > 0 then
L[aelection]← u2

end if
end procedure

Select
MPC ⊂
NET

MPC Computes:
[s]pi

←∑n
i=1[vi]pi

broadcast: [s]pi
→MPC

s← reconstruct([s])
broadcast: s→ NET

NET Computes:
if s < 0 then

L[aelection]← u1

else if s > 0 then
L[aelection]← u2

end if

Fig. 2. Example of a flow of secure computation in a blockchain network. The
top left block (EVote procedure) is the unsecure code, where the arguments
marked in (*) are private and stored as shares on the DHT. The network
selects a subset of nodes at random to compute a secure version of EVote and
broadcasts the results back to the entire network, that stores it on the ledger.
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B. Trust and Decision-Making in Blockchains

Bitcoin, or blockchains in general, assumes all nodes are
equally untrusted and that their proportion in the collective
decision-making process is solely based on their computational
resources (known as the Proof-of-work algorithm) [17]. In
other words – for every node n, trustn ∝ resources(n)
(probabilistically) decides the node’s weight in votes. This
leads to adverse effects, most notably vulnerability to sybil
attacks, excessive energy consumption and high-latency.

Intuitively, Proof-of-Work reasons that nodes which pour
significant resources into the system are less likely to cheat.
Using similar reasoning we could define a new dynamic
measure of trust that is based on node behavior, such that good
actors that follow the protocol are rewarded. Specifically, we
could set the trust of each node as the expected value of it
behaving well in the future. Equivalently, since we are dealing
with a binary random variable, the expected value is simply the
probability p. A simple way to approximate this probability is
by counting the number of good and bad actions a node takes,
then using the sigmoid function to squash it into a probability.
In practice, every block i we should re-evaluate the trust score
of every node as –

trust(i)n =
1

1 + e−α(#good−#bad)
, (3)

where α is simply the step size.

With this measure, the network could give more weight to
trusted nodes and compute blocks more efficiently. Since it
takes time to earn trust in the system, it should be resistant to
sybil attacks. This mechanism could potentially attract other
types of attacks, such as nodes increasing their reputation just
to act maliciously at a later time. This might be mitigated by
randomly selecting several nodes, weighted by their trust, to
vote on each block, then taking the equally-weighted majority
vote. This should prevent single actors from having too much
influence, regardless of their trust-level.

VI. CONCLUSION

Personal data, and sensitive data in general, should not be
trusted in the hands of third-parties, where they are suscep-
tible to attacks and misuse. Instead, users should own and
control their data without compromising security or limiting
companies’ and authorities’ ability to provide personalized
services. Our platform enables this by combining a blockchain,
re-purposed as an access-control moderator, with an off-
blockchain storage solution. Users are not required to trust
any third-party and are always aware of the data that is
being collected about them and how it is used. In addition,
the blockchain recognizes the users as the owners of their
personal data. Companies, in turn, can focus on utilizing data
without being overly concerned about properly securing and
compartmentalizing them.

Furthermore, with a decentralized platform, making legal
and regulatory decisions about collecting, storing and sharing
sensitive data should be simpler. Moreover, laws and regula-
tions could be programmed into the blockchain itself, so that
they are enforced automatically. In other situations, the ledger
can act as legal evidence for accessing (or storing) data, since
it is (computationally) tamper-proof.

Finally, we discussed several possible future extensions
for blockchains that could harness them into a well-rounded
solution for trusted computing problems in society.
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