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Abstract— People who have suffered a motor function 

disability need to practice appropriate rehabilitation treatments. 

Motion sensors such as accelerometer and gyroscope in fact are 

increasingly being embedded in wearable computing devices and 

can provide a quantitative measure of the human movement for 

assessment. In this paper, we present a low-cost eRehabilitation 

platform employing efficient algorithms to provide high accuracy 

feedback. The provided online rehabilitation service is removing 

the traditional face-to-face services by using cutting-edge mobile 

and sensors technologies. It allows doctors to give the patients 

qualitative feedback and track their progress over time. This 

system considers the variability in movement speed and accurate 

angle measurements. To this end, the golden standard pattern 

collected under physiotherapist supervision is compared with the 

patient’s exercises based on Dynamic Time Warping (DTW) 

algorithm. The experiments were conducted in a laboratory with 

different subjects, and results confirm that low-cost MEMS 

technology achieves an acceptable accuracy level in real-time 

rehabilitation monitoring. We also address different encountered 

issues and discuss how to efficiently tackle with them.  

Keywords—rehabilitation, motion sensors, calibration, sensor 

fusion, Bluetooh Low Energy, orientation, qualitative feedback 

I. INTRODUCTION 

Many new intelligent, context-aware pervasive sensing 
platforms are emerged due to recent advances in wearable 
computing and wireless sensor technology  [1]. The on-body 
detachable sensor devices enable the remote monitoring of vital 
signals, the early detection of critical conditions and the remote 
control of certain medical treatments  [2]. They generally are 
widely employed for assessing and recognizing activities 
especially for standing, walking, running, jumping or cycling 
activities  [3]. Most human-activity recognitions achieve high 
accuracies employing hidden Markov model (HMM), principle 
component analysis (PCA), support vector machines (SVM), 
linear discriminant analysis (LDA), artificial neural networks 
(ANN) and dynamic time warping (DTW)  [4].  

In rehabilitation point of view, physiotherapists prescribe 
movement exercises to help the patients improve or recover 
muscle strength, endurance and range of motion. They 
typically observe the patient while they perform the exercises 
to ensure that such exercises are well performed. Therefore, 
there is a need for advice regarding effectiveness and safety of 
exercise programs, but it is very expensive to provide over 
extended periods of time. Even if financial factors are not a 
barrier, insufficient time to visit a hospital, residing far from 
the hospital or personal privacy preferences are other 
traditional rehabilitation issues  [5]. Therefore, more and more 
interest has been drawn toward the development of home based 
rehabilitation schemes  [6]. There are some approaches in 
literature which discuss different aspects of this filed. Zhou et 
al introduced a novel tracking strategy for human upper limb 
motion in which there were six joint variables to be 

considered  [7]. They exploited an extended Kalman filter that 
fused the data from the on-board accelerometers and 
gyroscopes due to depressing noise. The technique proposed 
in  [8] can automatically capture the number of repetitions and 
provide feedback on the performance of individual resistance 
repetitions using smartphones. They show that how 
smartphones without additional equipment can be leveraged to 
capture resistance training data and provide a reliable feedback. 

In  [9], a kinematics-based approach is developed to 
estimate human leg posture and velocity from wearable sensors 
during the performance of typical physiotherapy and training 
exercises. Inertial measurement units are attached to patients 
undergoing physiotherapy. The authors in  [10] proposed a 
method to recognize upper body postures. They evaluate the 
system for a set of gym exercises and show that the system is 
able to support resistance training exercises. Melzi et al used 
accelerometer sensor to capture the movement stream for 
supervision of resistance training while a PC is used to analyze 
the data and to provide feedback on the quality of 
exercising  [11].  

In this paper, we present how to design a mobile platform 
which offers low-cost, real-time and accurate therapies for 
people living with the effects of disabilities. We also benefit 
from Bluetooth smart technology and backend cloud storage to 
achieve a power-aware and responsive remote rehabilitation 
service. The general view of this system is shown in Fig. 1.  

 

 
Fig. 1 General view of the rehabilitation monitoring system 

II. SYSTEM OVERVIEW 

A. Sensory Node and Data Filtering 

In our system we used SensorTag from Texas Instruments 
as our sensor node and it costs 25$. SensorTag is the first 
Bluetooth low energy development kit on the market focusing 
on wireless sensor applications and design has passed 
FCC(US), ETSI(Europe), IC(Canada) and ARIB (Japan) RF 
certifications  [12]. It includes 6 low-power MEMS sensors 
(TMP006 infrared temperature, SHT21 digital humidity, T5400 

2014 IEEE Canada International Humanitarian Technology Conference - (IHTC) 
978-1-4799-3996-1/14/$31.00 ©2014 IEEEAuthorized licensed use limited to: IEEE Xplore. Downloaded on May 23,2024 at 02:32:56 UTC from IEEE Xplore.  Restrictions apply. 



barometric pressure, KXTJ9 tri-axis accelerometer, IMU-3000 
tri-axis gyroscope and MAG3110 3D magnetic sensors). It is 
equipped with the Bluetooth Smart radio powered by a single 
CR2032 coin cell battery and Texas Instrument also released 
its SDK for developers. The sensor and the battery supply are 
presented in the figure below.  

 
Fig. 2. SensorTag  [12] 

The samples received from motion sensors carry noise and 
applying denoising algorithms is essential to facilitate accurate 
assessment of human movement in body sensor networks 
(BSN). In our design, the signals are smoothed with a seven 
point frame third order Savitzky-Golay (SG) smoothing filter 
since it does not delay the signal and is able to preserve 
features such as local minima and maxima.  

B. Mobile Application and Cloud Database 

In the presented platform, the sensors’ data are transferred 
wirelessly to the smartphone/PC based on Bluetooth Low 
Energy (BLE) technology. The received sensors data are then 
stored in backend cloud storage in order to real-time and post-
exercise analysis. There are some well-known scalable, highly 
secured and available backend servers which can be employed 
in such a monitoring system. Therefore, it enables the remote 
monitoring of motions, and control of certain medical 
treatments. We utilized different algorithms to analyze the 
signals and provide rich feedback on performance accuracy. A 
baseline prototype has been developed running on an iPhone 
and obtained very promising results on a dataset delivered by 
different participants. It actually advances knowledge 
concerning the best rehabilitation services delivery at a 
distance, and reduces the cost of trained professionals’ time.  

III. SIGNAL SIMILARITIES 

Rehabilitation exercises should be prescribed and 
supervised to get favorable effects on muscular or joint 
problems. These exercises generally are recommended at a 
frequency of a couple of time per week or day. It is very 
important for patients to follow exact instructions since 
otherwise it may cause problems such as over-extension.  
In this system, the clients are asked to perform rehabilitation 
exercises under supervision of professional therapists to record 
a golden standard profile. The training patterns are then 
compared with the reference ones while the patients are 
performing the prescribed exercises wherever they are, 
regardless of their proximity to the doctors. Through quality 
feedback on performance accuracy, patients are informed how 
well they are executing the exercises. In the following sections 
we will discuss different design considerations and show how 
pattern matching algorithms, signal processing and data 
analysis retain qualitative information and help professionals to 
remotely assist the patients.  

A. Signals Synchronization 

 Signal synchronization aids to align two signals in time and 
make the patterns overlap in their equivalent places. 
Sometimes in multi-sensor system, the signals received from 
different nodes actually have different lengths and sampling 
rates. In order to calculating the differences between two 
signals, they should have identical sampling rates. To this end, 
we first use rational fraction estimation and then resample data 
by an anti-aliasing low pass FIR filter during the resampling 
process. In order to find the best starting match point, the 
maximum value of their cross-correlation implies the time 
leads or lags between two signals. By following this method, 
we can align two signals and delete unnecessary exercise 
sensory data from the beginning and end of each action. 

B. Dynamic Time Warping 

Dynamic Time Warping (DTW) has been originally used 
to compare different speech patterns and also extensively 
studied in the clustering algorithms  [13]. It is very applicable 
for measuring similarity between two patterns and for 
automatically coping with time deformations and different 
speeds associated with time-dependent data  [14].  
We employ DTW to identify all subsequences within a 
continuous sensor data stream that are similar to a given 
reference pattern.  
Here is the formal definition of classical DTW which is 
mostly derived from  [14]. 
Assume that we have two time sequences, X and Y, of length 
N and M, respectively, where 
 � ∶= ���, ��, … , �
�, � ∈ ℕ � ∶= ���, ��, … , ���, � ∈ ℕ 
 

An (N,M)-warping path is a sequence � = ���, ��, … , ��� 
with �� = ���, ��� ∈ �1: �� × �1:�� for � ∈ �1: �� which 

assigns �� 	the element of X to �� the element of Y and should 

satisfy the following conditions: 
 
(i) Boundary condition:  �� = �1,1� and �� = ��,�� 
(ii) Monotonicity condition: �� ≤ �� ≤ ⋯�$and �� ≤ �� ≤ ⋯�$  
(iii) Step size condition:  ��%� − �� ∈ 	 '�1,0�, �0,1�, �1,1�) for	� ∈ �1: � − 1�. 

 
The cost of a warping path p between X and Y is defined as: 

*+��, �� ≔ -*.�� , �/ 0$
�1�  

which *���, �/�	is the Manhattan distance (absolute value of 
the difference) between 	��	2�3	�/. A warping path actually 
defines an alignment between two sequences X and Y. The 
alignment is optimal in the sense that a cumulative distance 
measure between the aligned samples is minimized  [15]. It 

means we are required to find the optimal warping path (�∗) 
between X and Y which has the minimum total cost among all 
possible warping paths. Therefore, the matching cost 
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considered as an indicator of the similarity of two patterns is 
then defined as: 

�25*ℎ7�8	9:;5 = <=>��, �� = *+∗��, �� = �7�?*+��, ��⎹		�	7;	2�	��,�� − A2B�7�8	�25ℎC 
To determine an optimal path �∗, the exhaustive search 

leads to an exponential computational complexity; however, 
an O(NM) algorithm based on dynamic programming is 
utilized using accumulated cost matrix. This matrix is 
computed as:  
 

<��,�� ∶=
DEE
F
EEG
0																																																																														7H	� = � = 0				- *��I, ����

I1� 																																																													7H	� = 1
- *���, �I�/

I1� 																																																													7H	� = 1min'<�� − 1,� − 1�, <�� − 1,��,<��,� − 1�)+*���, �/�																																																																			, :5ℎNBA7;NOEE
P
EEQ

 

 
and <��,�� = 	�25*ℎ7�8	9:;5 = 	<=>��, ��. For further 
details and thorough explanation of DTW, the reader is 
referred to  [14]. 

 

(a) 

 
(b) 

Fig. 4 Warping path to compare the reference signal R with test signals T1 (a) 
and T2(b) – The colorbar represents the absolute difference between them 

Through an example, you can see how DTW works. We 
recorded a reference pattern (R) derived from accelerometer 
values of forearm motion. Then, we performed an exercise 
trying to simulate the reference activity (RS). In the next round, 
we did not execute it very well (RT) to see the differences. The 
results are shown in the Fig. 4, and as can be found out, the 
matching costs of signal R with signal RS and RT are 13.89 and 
28.41, respectively. Hence, DTW is a very effective method 
that calculates an optimal match between two given sequences. 
A part of developed GUI in MATLAB for the algorithms 
mentioned up to now is shown in the Fig. 3. 

IV. ISSUES IN ACCURACY PERFORMANCE 

A. Sensors Calibration 

Due to inherent deficiency or aging problems in cyber-
biological systems, sensors calibration is suggested.  
Calibration, which is defined as the process of mapping raw 
sensor readings into corrected values, can be used to 
compensate the systematic offset and gain  [16]. Since 
accelerometer is the main sensor for e-rehabilitation system, 
we need to improve its readouts accuracy. Generally, 
calibration of sensors requires experience and special accurate 
tools; however, a straightforward method to calibrate an 
accelerometer is performed at 6 stationary positions  [17]. We 
need to collect a few seconds of accelerometer raw data at 
each position. Then the least square method is applied to 
obtain the 12 accelerometer calibration parameters (Fig. 5). 
The calibration procedure is simple, and needs to be executed 
once. The calibration procedure can be briefly explained as: 
 

UVWX	VYXVZX[ = UVW 	VYVZ 	1[. ]V99��	V99��V99^�V99��	V99��V99^�V99�^	V99�^V99^^V99�_	V99�_V99^_
` 

 � = A. � 
Where: 

• Matrix X is the 12 calibration parameters that is 
determined as below: 

� = �Aa. A�b�. Aa. � 

 

Fig. 3. A part of the developed MATLAB GUI  
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• Matrix w is accelerator sensor raw data collected at 6 
stationary positions 

• Matrix Y is the known normalized Earth gravity 
vector.  

The details of this method are explained in  [17]. After sensor 
calibration, the presented platform provides very high 
accuracy e.g. in yielding the tilt angles for steady positions; 
the errors are within 0.5 degree. 

 
Fig. 5 Finding matrix “x” for accelerometer calibration (It is an offline 
procedure and executed once) 

B. Sensor Fusion 

Over the past few years, we have witnessed vast 
application for sensing and monitoring devices in cyber-
physical systems motivated by their dropping cost, size and 
power consumption  [18]. Consequently, it is demanded to 
deliver accurate sensor readouts especially for real-time health 
monitoring systems and be tolerant to multiple faults. Multi-
sensor data fusion is an efficient approach which combines 
data from multiple sensors to achieve more accurate readouts 
compared to the case where a single sensor is used  [19]. In our 
platform, we apply an optimal homogenous linear data fusion 
technique introduced in  [20] when we have multiple 
accelerometer or gyroscope sensors in the same position. It 
uses convex optimization scheme to maximize accuracy in the 
average case, while keeping the precision high in the worst-
case of sensor measurements. It significantly improves mean-
square-error (MSE) and precision compared to the other 
methods regardless of the number of faulty sensors.  

C. Orientation Algorithm 

In e-rehabilitation platform, the accurate measurement of 
orientation is an important factor to provide the patient with 
corrective feedback. For a non-moving object, the pitch and 
roll angles can be obtained with 3-axis accelerometer. This 
method is also very useful in calibrating accelerometer sensor 
to improve the readouts accuracy as we discussed earlier. But, 
the orientation is not valid if the sensory node moves due to 
consequence of a force and so the calculated orientation is not 
accurate anymore. Gyroscope that gives angular rate around 
the 3 axes cannot be used alone as it suffers from drifting 
values. Hyde et al  [21] have implemented frequency domain 
filters to favour accelerometer and the integrated gyroscope 
measurements of orientations at low and high angular 
velocities, respectively. Many modern techniques  [22] [23] and 
commercial inertial orientation sensors focus on algorithms 
which ameliorate the computational load and parameter tuning 
burdens associated with conventional Kalman-based 
approaches. However, in  [24], a novel orientation algorithm 
for IMU (Inertial Measurement Unit) and AHRS (Attitude and 
Heading Reference Systems) was presented offering 

significant reduction in the computation load relative to a 
Gauss-Newton method. It also permits gains to be defined 
based on observable system characteristics and eliminates the 
predefined direction of magnetic field. We use this approach 
in our platform because it not only achieves similar levels of 
performance at different frequencies but also the provided 
accuracy (e.g. static error c 2°, dynamic error c 7° with 
sampling rate 10Hz) is sufficient for human motion 
applications. It actually covers the diversity in signal 
characteristics, both rotational and linear movements. 

V. EXPERIMENTAL RESULTS 

In this section, we describe our experiments for four 
rehabilitation exercises referenced from  [25]. Considering all 
issues and algorithms discussed earlier, this approach is 
validated through a user study consisting of eight subjects 
performing arm, knee and hip rehabilitation. 

To summarize it up, we want to remotely analyze 
rehabilitation exercises. For each exercise, there is a reference 
pattern recorded under supervision of experts. Sensors values 
are wirelessly sent to a smartphone (in our case, iPhone) with 
Bluetooth Low Energy (BLE) protocol, and then stored in the 
cloud storage. Any desktop or phone application which is 
connected to the cloud database can sync with data in a near 
real-time. The application performs denoising, calibration and 
sensor fusion algorithms on the training signal; and then 
provides the angle pattern deriving from orientation algorithm. 

 In order to easily distinguish the count for each action, 
which is conducted by the subjects, they are asked to remain 
stationary for a few seconds after each complete action. For 
each determined exercise, the angle patterns of reference and 
training signals are synchronized to each other, and DTW 
algorithm starts finding their matching cost. If the matching 
cost is reasonable, angles and duration analysis are run to 
provide qualitative visual feedback on exercising performance.  

Two angle patterns of reference and training signals can be 
investigated in terms of time and angle analysis using the 
horizontal and vertical peak to peak intervals.  As shown in 
Fig. 6, the training pattern has a smaller duration compared to 
reference one which means the patient should be advised to 
perform his movement slower. And this figure also 
demonstrates how the patients are able to refine their motions 
referring to vertical peak to peak intervals. The workflow of 
the system is shown in Fig. 7. 

 
Fig. 6. Comparision of referecne and training angle patterns  
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Here are the results for a subject in four different exercises 
while considering the range of movements.   

A. Motion of the Forearm 

To measure the movement of the forearm the SensorTag is 
attached on the palm. The wrist first rotates 45° and then 
rotates in opposite for 60°. The subject’s movements are shown 
in Fig. 8 (a). The forearms should be at the side of the body and 
the elbow flexes 90°. This motion can be simply expressed as: 
Pronation (turning the forearm left) = 60° and Supination 
(turning the forearm right) = 45°. Fig. 8 (b) demonstrates how 
the subject can refine their movements in terms of speed and 
final joint angles. The circles shown in Fig. 8 (c) depict the 
average range of angles in the motion for five consecutive 
exercises. The transparent yellow area in this figure shows the 
allowed range of error for the exercise, which is set to ±5° in 
our experiments. Note that it was selected arbitrarily to show 
that some activities might be beyond the allowed range of 
angles. In real practice, this value can be selected by a therapist 
based on the requirements of a given treatment. The red 
sections represent the error between reference and measured 
angles. The bold number above the circle shows the average 
measured angle for the pronation and supination.  

 

(a) 

 

(b) 

 

(c) 
Fig. 8. (a) Forearm motion, (b) feedback in terms of speed and movement 
quality, (c)  average range of angles in the forearm motion (pronation: 

0°→60° and supination 0°→45°),  

B. Motion of the Arm at the Shoulder 

Forward flexion is the forward upward motion of the arm in 
the anterior sagittal plane of the body from zero to 180° (we set 
it here to 120°). The opposite motion to the zero position 
maybe termed “depression” of the arm, Fig. 10  [25]. To gather 
the motion data, in this exercise the SensorTag is mounted on 
the arm. As described before, the prescribed angle for this 
activity is 120°; however, the imprecisions of the subject’s 
movements are in average 2.76° which means that she could 
properly manage to follow the desired angle. In the circle, the 
measured angles of motion are presented in green, while the 
red are refers to the exercise execution error w.r.t. required 
value.  

 

Fig. 10. Average range of angles in the arm motion  

C. Motion of the Elbow 

In this scenario, the elbow flexes from 0°→30°, 0°→45°, 
0°→60° and 0°→90°. The subject followed the elbow 
movements as shown in Fig. 9. 

 

Fig. 7. Workflow of the system  
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Fig. 9. Elbow motions 

The sensor node has been mounted on the forearm to record 
sensors readouts. The differences between the prescribed 
angles (30°, 45°, 60° and 90°) and the joint angles measured 
from subject’s elbow motions in average are: 3.17°, 3.53°, 
3.54° and 5.48°, respectively.  

D. Motion of the Hip  

In this case, the SensorTag is attached on the thigh. In the 
first part of this movement the leg should be at 0° and then 
moved to 120° bended from the knee. The motion in flexion is 
recorded from 0°→120°. The imprecision of the subject’s 
flexion is in average 10.52° (Fig. 11). Therefore, the subject 
needs to correct her movement and follow the prescribed hip 
flexion.  

 

Fig. 11. Average range of angles in the hip motion 

VI. CONCLUSION 

In this paper, we discussed about different challenges in 
designing of a rehabilitation monitoring platform. Its main 
objective is to achieve a prescribed level of physical and 
psychological functioning while keeping affordability and 
accessibility up. The analysis of the data during the 
experiments illustrate that our system is capable of precise 
tracking different rehabilitation exercises, and can surpass the 
human estimation of the activity quality. The presented cost-
effective system for measuring and improving patient 
outcomes in the home could be further evidence of the 
consequent demand for technology to seamlessly work. The 
prominent benefits of such systems are those of cost, 
convenience, patient comfort and quality of service. The 
presented system potentially lifts the patient's motivation up 
towards treatment while accurately tracks the patient's real 
condition and improvement at low cost. 
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