
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 16, NO. 5, OCTOBER 2015 2797

Recursive Path Planning Using Reduced States
for Car-Like Vehicles on Grid Maps

Sangyol Yoon, Sung-Eui Yoon, Senior Member, IEEE, Unghui Lee, and David Hyunchul Shim

Abstract—We present a recursive path-planning method that
efficiently generates a path by using reduced states of the search
space and taking into account the kinematics, shape, and turning
space of a car-like vehicle. Our method is based on a kinematics-
aware node expansion method that checks for collisions based
on the shape and turning space of a vehicle. We present two
heuristics that simultaneously consider the kinematics of a vehicle
with and without obstacles. In particular, for challenging environ-
ments containing complex obstacles and even narrow passages, we
recursively identify intermediate goals and nodes that allow the
vehicle to compute a path to its destination. We show the benefits of
our method through simulations and experimental results by using
an autonomous ground vehicle. Furthermore, we show that our
method can efficiently generate a collision-free path for vehicles in
complex environments with passageways.

Index Terms—A∗, path planning, car-like vehicle, turning space.

I. INTRODUCTION

AUTONOMOUS vehicles have lately drawn considerable
attention, especially following the successes of the

Defense Advanced Research Projects Agency’s (DARPA)
Grand and Urban Challenges [1], [2] and Google’s Self-Driving
Car [3]. Autonomous vehicles are built atop various functional
blocks, including sensing technologies and other controls. At a
high level of abstraction, autonomous driving consists of four
steps [4]: 1) perceiving the environment of the vehicle [5], [6],
2) localizing the vehicle in the environment [7], [8], 3) generat-
ing a collision-free path to the chosen goal [9], [10], and 4) op-
erating the vehicle as desired to follow the path [11], [12]. In
this paper, we focus on the efficient generation of collision-free
paths that vehicles can easily follow in various environments.

Considerable research has been devoted in the last few
decades to generating collision-free paths for autonomous
ground vehicles [10]. Most existing approaches can be classi-
fied into grid- and sampling-based path planners [13]. In the

Manuscript received September 16, 2014; revised December 10, 2014 and
February 12, 2015; accepted April 9, 2015. Date of publication May 4, 2015;
date of current version September 25, 2015. This work was supported by the
National Research Foundation of Korea, funded by the Korean Government
(MEST), under Grant 20110031920. The Associate Editor for this paper was
W. Fan.

S. Yoon is with LG Electronics Inc., Incheon 404-170, Korea (e-mail:
sangyol.yoon@kaist.ac.kr).

S.-E. Yoon is with the Department of Computer Science, Korea Ad-
vanced Institute of Science and Technology, Daejeon 305-701, Korea (e-mail:
sungeui@gmail.com).

U. Lee and D. H. Shim are with the Department of Aerospace Engineering,
Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
(e-mail: lamer0712@kaist.ac.kr; hcshim@kaist.ac.kr).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TITS.2015.2422991

grid-based approach, the A∗ algorithm is known to be very
effective at finding the shortest path to goal while avoiding
obstacles [14], [15]. Many variants that purport to overcome
the drawbacks associated with A∗ have been developed. No-
table approaches include identifying fewer grid edges (e.g.,
Field D∗ [16] and Theta∗ [17]), designing better heuristics
by considering the kinematics of the vehicle or the obstacles
[18]–[20], respecting the shapes of vehicles [21], replanning
(e.g., Lifelong Planning A∗ (LPA∗) [22] and D∗ Lite [23]), post-
processing [24], etc. Sampling-based approaches include the
Probabilistic Road Map (PRM) [25], [26], Rapidly-exploring
Random Trees (RRT) [27], and RRT∗ [28].

Computing an optimal, collision-free path for car-like ve-
hicles with nonholonomic constraints has been known to be
NP-hard [29]. As mentioned above, several approaches have
been proposed to improve both grid- (variants of A∗) and
sampling-based (variants of PRM and RRT) algorithms for
car-like vehicles. Grid-based techniques have been adopted for
autonomous vehicles and have shown successful results [20].
This is mainly because grid-based techniques tend to be more
efficient than sampling-based path planners, especially when
the dimensions of the state spaces are fewer than six [13]. One
can also use RRT∗, but it generally runs on the order of a few
seconds, although its efficiency depends on the size of the map
of the path in question [30]. Furthermore, if no collision-free
path to goal exists, grid-based path planners can report this
failure much more quickly than sampling-based ones.

In light of this, we focus on improving existing grid-based
path planners that efficiently compute collision-free paths in
a discrete space for a given environment with obstacles. Ex-
isting grid-based path planners are not designed for complex
environments containing many obstacles or narrow passages,
and thus tend to either run slowly or fail to find paths to goal.
In this paper, we present an efficient, recursive path-planning
method operating with grid maps and two online heuristic
functions that takes into account the kinematics, shape, and
turning space of car-like vehicles and uses reduced states of
the search space to compute the shortest path to goal. The
main idea underlying our method is that when we cannot find
a path in an initial attempt in complex scenarios, we identify
intermediate goals and nodes and recursively find paths to these
goals and nodes. We use simulations and conduct experiments
with an autonomous vehicle to show the benefits of our method
in challenging scenarios (Fig. 1).

II. RELATED WORKS

In this section, we discuss past research directly related to
our work.

1524-9050 © 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

2798 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 16, NO. 5, OCTOBER 2015

Fig. 1. (a) KAIST autonomous ground vehicle, (b) built-in computer systems for path planning, inertial navigation system (INS) operation, steering wheel
control, etc., and (c) overall system architecture.

A. A∗ Algorithms

A∗ algorithms have been extensively studied and are known
to be effective for finding the shortest path to goal using grid
maps [14], [15]. A brief review of these algorithms is provided
in Section III. Earlier techniques of this sort tended to find
zigzag paths when the goal was not located on a horizontal, a
vertical, or a 45-◦ slope to the starting position. Moreover, most
techniques perform their procedures without using information
from nodes already searched, even when the obstacles move
slightly.

To overcome these problems, techniques that identify fewer
grid edges (Field D∗ [16] and Theta∗ [17]) and replanning by
using information from nodes already searched (LPA∗ [22] and
D∗ Lite [23]) have been proposed. However, these techniques
do not take into account the kinematics, shape, and turning
space of car-like vehicles.

B. Heuristic

In general, Euclidean distance is used as the heuristic for
several types of A∗ algorithms. However, this often results in
the algorithm performing poorly because the quality of the
heuristic function affects the search time for goal [31].

Ziegler et al. [18], Likhachev et al. [19], and Dolgov et al.
[20] proposed methods that use two kinds of complementing
heuristics such that the one yielding the maximum value is
chosen as the final heuristic. The first heuristic takes into
account the kinematics of the car-like vehicle by assuming an
obstacle-free environment, whereas the second one considers
obstacles but ignores the vehicle’s kinematics. The first heuris-
tic is based on rotation-translation-rotation paths. Alternatively,
it can first make offline calculations given precomputed param-
eters, including the initial and target positions and orientations
of the vehicle, and then translate and rotate to account for

configurations that are not precomputed. On the other hand,
the second heuristic is computed online using a Voronoi graph
or dynamic programming regardless of the kinematics of the
car-like vehicle. The above-mentioned researchers showed that
a combination of the two heuristics effectively reduces the
search time for the path to goal. However, these complement-
ing heuristics cannot simultaneously accommodate kinematics,
thus resulting in expansions to unpromising regions. Moreover,
the second heuristic can require longer to compute a solution
because of the Voronoi graph or dynamic programming used.

Our proposed method uses the two types of heuristics de-
scribed above. Unlike prior approaches, however, both our
online obstacle-free and obstacle-aware kinematic heuristics
consider the kinematics of the car-like vehicle. Furthermore,
our obstacle-aware kinematic heuristic can be efficiently evalu-
ated online within the A∗ framework, since it is based on the
geometric concept of the Dubins model [32]. Our obstacle-
free kinematic heuristic computes the shortest distance from a
current position to goal while considering the kinematics of the
car-like vehicle by assuming an obstacle-free environment, i.e.,
it is more aggressive and focuses on identifying the shortest
path to goal, whereas our obstacle-aware kinematic heuristic
computes the obstacle distance while considering its kinematics
in the presence of obstacles, i.e., it is more conservative and
focuses on identifying paths that avoid obstacles.

C. Narrow Passages

Computing a collision-free path in environments with many
obstacles and narrow passages poses significant technical chal-
lenges for path planners. To address them, many variants of
PRM [25], [26], RRT [27], and RRT∗ [28] have been proposed.
At a high level of abstraction, the probability of finding a path
through narrow passages depends upon the sampling density

YOON et al.: PATH PLANNING USING REDUCED STATES FOR CAR-LIKE VEHICLES ON GRID MAPS 2799

and the sampling strategies. A few prior techniques employed
adaptive sampling [33], hybrid approaches using approximate
cell decomposition [34], free-space information [35], and re-
traction techniques that utilize the boundary of the obstacle
space [36]. Nonetheless, finding paths to goal by taking into
account the kinematics of car-like vehicles has not been exten-
sively researched for environments with narrow passages.

A few approaches for A∗ techniques have been proposed for
finding a collision-free path in narrow passages. One proposed
method [37] for PRM techniques used a kind of regular struc-
ture, i.e., an adaptive grid structure commonly generated by
approximate cell decomposition, and captured the connectivity
of free space between the cells of the regular structure in a
manner used for roadmap construction. These techniques are
not primarily designed for use in A∗ methods, but can be
applied to A∗ techniques. However, such techniques do not
consider the kinematics of car-like vehicles.

By contrast, our method directly handles the narrow passage
problem within the A∗ framework. When our method cannot
compute a collision-free path to goal in an initial attempt, we
treat it as involving narrow passages, and recursively compute
intermediate goals and nodes by utilizing expanded node in-
formation extracted from our prior attempts to compute a path
to goal.

D. Shape and Turning Space of Vehicles

Ground vehicles can be broadly classified into tank-like and
car-like vehicles. A tank-like vehicle can rotate on a point,
whereas a car-like vehicle driven by front or rear wheels,
the focus of this paper, has nonholonomic constraints on its
movement [38]. As a result, we need to consider its turning
space as well as its shape.

In their research, Likhachev and Ferguson treated the vehicle
as a point, and generated two kinds of obstacle maps by
considering the inner and outer radii of the circle surrounding
the vehicle [19]. This method tends to be expensive because
we need to expand obstacles with the inner and outer radii.
Additionally, it does not consider the turning space and thus
cannot make a tight turn. Recently Dolgov et al. find a collision-
free path with a largest clearance based on the center of the
rear axle of the vehicle without considering the turning space
[20]. It then smooths a collision-free path, while checking the
turning space. This process is repeated until the computed path
is confirmed to be collision-free. This approach is rather time-
consuming due to the nature of iterative process.

On the other hand, our method represents a car-like vehicle as
a rectangle instead of a circle, and directly considers the turning
space, while expanding nodes and evaluating heuristics. As a
result, our approach can efficiently identify a collision-free path
considering the shape and turning space of the car-like vehicle.

III. OVERVIEW

In this paper, we focus on a path planner that generates
a collision-free path by considering the kinematics, shape,
and turning space of car-like vehicles. We then assume that
autonomous ground vehicles follow such paths by smoothing

TABLE I
LEGEND FOR BOXES AND TRIANGLES USED IN THE GRID MAP.

THE LINE USED IN A TRIANGLE INDICATES THE ORIENTATION OF

THE VEHICLE. SEE THE PDF FILE FOR THEIR COLOR DIFFERENCE

the paths for better driving conditions and using path-following
methods. Many approaches have been developed for path fol-
lowing of this sort [4], [12], [39]. A path-following controller is
responsible for tracking the generated path with minimal error.

We will show examples and images of paths in a grid
map representing obstacles. Throughout this paper, we use the
legend for such plots described in Table I, unless otherwise
indicated.

A. Notations

Our work utilizes the conventional A∗ algorithm. In this
subsection, we define terms used throughout this paper.

As in the common A∗ algorithm, a node be in one of the
following statuses: “unvisited,” “open,” or “closed” [14]. When
a node n is expanded to its child node n′, the distance between
them is associated with an arc cost. If the current node n is
arrived at through several expansions from the start node ns,
the sum of the arc costs of those expansions from the start
node ns to the current node n is defined as the path cost.
Further, a conservatively estimated cost from the current node
n to the goal node ng is called the cost-to-go heuristic. In
general, the heuristic used by conventional A∗ is the Euclidean
distance. The sum of the path cost and the heuristic for a node
is defined as the evaluation cost. When a heuristic is consistent,
it is unnecessary to reopen nodes that are “closed” [40]. The
consistency condition is defined as follows:

h(n) ≤ c(n, n′) + h(n′) (1)

where h(n) and h(n′) are the heuristics of the current node n
and its child node n′, respectively, and c(n, n′) is the arc cost
from node n to n′.

When the heuristic function satisfies the following three
conditions and there exists a path to the goal, the A∗ algorithm
is guaranteed to find the optimal path to goal [41]. These
conditions are called admissibility conditions and defined as
follows: 1) each node in a grid (or a graph) has a finite number
of successors, 2) all arc costs are positive, and 3) the heuristic
is conservative, i.e., for all nodes, the heuristic must never
overestimate the actual value.

2800 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 16, NO. 5, OCTOBER 2015

Fig. 2. This figure shows the overall flow of our method, with examples and the running sequence represented using numbers. We first run our KSA∗ algorithm
given the start and goal positions (F1). If it finds a path (F2), we return the path to the path-following control module in the autonomous vehicle. Otherwise (F3),
we then recursively attempt to find a path by identifying intermediate goals (F4) and nodes (F6).

B. Overview of Our Approach

To accommodate the kinematics of car-like vehicles and find
paths even for narrow passages, we propose our Kinematics-
and Shape-aware A∗ (KSA∗) algorithm. We define the state of
each node to represent information related to the kinematics
of the vehicle, including a position, an orientation, and a for-
ward/reverse direction. For the state of a search space in order to
construct trees for each node, however, we consider only an x-y
position among the available states for greater efficiency; other
state information, such as orientation and direction, is derived
from the position of the node relative to neighboring nodes.
Moreover, we only consider x-y positions to check whether
each node is duplicated in the search space. Fig. 2 shows
the flow of our recursive path-planning algorithm, which is
introduced in Sections IV-H and IV-I.

We propose using a kinematics-aware node expansion
method (Section IV-A) to construct a collision-free path that
the vehicle can follow at a minimum turning radius. Our
node expansion method is based on our orientation-driven arc
costs (Section IV-B) to provide a comfortable driving experi-
ence by regulating the steering action of the vehicle. These
methods are combined with our online kinematic heuristics
(Sections IV-C, IV-D and IV-E) that consider both obstacle-free
and obstacle-ridden environments to effectively reduce search
time. In order to generate more realistic collision-free paths, we
take into account the turning space of the vehicle as well as its
shape.

For complex environments with several obstacles or narrow
passages, our KSA∗ algorithm consisting of the aforementioned
components may not find a path. In this case, we recur-
sively find a path by identifying intermediate goals or nodes
using either our shape-aware A∗ or heuristic-driven search
(Sections IV-H and IV-I). We finally smooth the computed path
to provide a comfortable driving experience and better path-
following performance (Section IV-G), and pass this informa-
tion on to the path-following module.

Fig. 3. Kinematics-aware node expansion. (a) Shows straight-edge patterns
with nt1 = 2, which approximates the minimum turning radius. (b) Shows
node expansions with nt1 = 5.

IV. PROPOSED ALGORITHMS

In this section, we explain each component of our method.

A. Kinematics-Aware Node Expansion

It is critical to respect the kinematics of a car-like vehicle dur-
ing node expansions in order to compute paths that can be easily
taken by such vehicles. For this, we propose a kinematics-
aware node expansion method. Our expansion method allows
node expansion in three forward directions: straightforward,
and left/right forward turns. We also allow three reversing
directions corresponding to each forward expansion.

It is easy to expand nodes straight forward. To efficiently
handle left and right turning cases, we discretize a circle of
the minimum turning radius for the vehicle using grid edges.
In particular, we approximate the circle by a series of straight
lines consisting of nt1 straight edges (trajectory modules, e.g.,
nt1 = 2 and 5 in Fig. 3).

When the vehicle aims to turn left or right with its minimum
turning radius rmin, we allow an orientation change (e.g.,
following a diagonal edge from the horizontal edge) in the same

YOON et al.: PATH PLANNING USING REDUCED STATES FOR CAR-LIKE VEHICLES ON GRID MAPS 2801

Fig. 4. These figures show that we can turn left while satisfying the min-
imum turning radius and can then turn right, irrespective of the conditions
for orientation change (shown in the red circle). rmin = 4.5 m, nt1 = 3.
(b) rmin = 7.5 m, nt1 = 5.

Fig. 5. Our method supports different turning maneuvers. The red circles
represent the point of change in the direction of movement of the vehicle. The
child nodes in red circles are only included when determining the final path by
checking if there exist changes in the direction of movement in the final path to
goal but not when expanding nodes. However, interference against obstacles is
checked in the child nodes when expanding nodes. rmin is set to 4.5 m and nt1

to 3. (a) U-turn. (b) One-point turn. (c) Two-point turn.

direction (forward/reverse) as the vehicle only after expanding
nt1 nodes with the same orientation and the same direction. To
reverse the vehicle, we use a similar constraint. If the vehicle
turns left, it is always allowed to turn right irrespective of the
conditions for expanding nt1 straight edges (Fig. 4), since this
kind of turning always satisfies the minimum turning radius.
The vehicle is also permitted to turn left immediately after it
turns right.

Our simple kinematics-aware node expansion technique can
easily support U-turns, one-point turns, and two-point turns
(Fig. 5). When the goal is located inside the minimum turning
radius, a one-point turn requires less space than a U-turn and
is thus preferred. To check whether a one-point turn (in case
of reverse movement following forward movement) is possible,
interference against obstacles with regard to subsequent for-
ward movement is gauged by turning half of nt1 child nodes by
45◦ [the red circle in Fig. 5(b)]. For simply expanding nodes,
however, the gauged child nodes are only generated in a final
path when there are changes in the direction of movement in
the final path, although the nodes are checked for interference
against obstacles during node expansions. The circular arc
created by such a 45◦ turning pattern is geometrically sufficient
to accomplish such maneuvering. We compute a similar circular
arc for the reverse movement.

The kinematics-aware node expansion described above is
efficient, since we can perform numerous maneuvers based only
on six grid edges. However, when the grid resolution is in-

Fig. 6. Our consistent orientation-driven arc costs for two different directions
given the center node. INF indicates infinite values to prevent expansion in the
lateral directions. d is the Euclidean distance from a current node to a goal node.

sufficient, our discretized trajectory module, given a minimum
turning radius, can also realize a low resolution. In practice, we
can use one meter or less as the width of each cell, by virtue of
the efficiency of kinematics-aware node expansion.

B. Orientation-Driven Arc Cost

We propose orientation-driven arc costs that depend on the
orientation of the current node. This method is designed such
that it provides a comfortable driving experience by restraining
the steering actions of the vehicle. We also show how to make
our arc costs adhere to the consistency condition that is useful
for avoiding the reopening procedure in the A∗ algorithm.

We assign different values of arc costs to eight possible
expansion nodes, depending on the orientation of the current
node (Fig. 6). For movement straight forward where a child
node has the same orientation as the current node, we can assign
an arc cost equal to the diagonal grid width, say 1.4, which
approximates

√
2 (not 1.0 for the movement straight forward),

to the expansion between the current node and its expanded
child node. This cost is chosen mainly because this cost should
be valid when we have different orientations (see the right side
of Fig. 6). For a 45◦ left or right turn, the arc cost can have
a value greater than that for the straight forward movement,
i.e., 1.4 to restrain the steering action. Given the constraint, we
choose the value 2.0.

In order to show the consistency condition, let c(n, n′) and
c′(n, n′) be arc costs defined by the Euclidean distance and
our proposed method, respectively. By the aforementioned def-
inition, c(n, n′) ≤ c′(n, n′). Therefore, our proposed arc costs
satisfy the consistency condition because h(n) ≤ c(n, n′) +
h(n′) ≤ c′(n, n′) + h(n′) from (1). Since arc costs for expan-
sion in the same orientation are smaller than those for expansion
in different orientations, we can reduce unnecessary turns and
construct a smooth trajectory. To movement in lateral directions
from the current orientation we assign an infinite cost, thus
blocking expansion to nodes that makes such lateral changes.

Unlike for forward movement, we restrain reverse move-
ment when a vehicle is far from its goal. Specifically, the arc
cost associated with reverse movement is multiplied by d, the
Euclidean distance between the current node and the goal node.
As a result, expansions for reverse movements are reduced
because of higher arc costs. However, we cancel d when its
values becomes less than 1.5 times the length of the vehicle in
order to equitably treat reverse and forward movements close
to the goal. One can easily show that our orientation-driven arc
costs are consistent.

2802 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 16, NO. 5, OCTOBER 2015

Fig. 7. Conditions and types of trajectories for each situation in our obstacle-free kinematic heuristic.

C. Obstacle-Free Kinematic Heuristic

Euclidean distance as a heuristic does not do well to represent
a variety of situations, especially cases that depend on whether
the goal is attainable within the turning radius of the vehicle,
and ones where it is located in a direction lateral to that of the
vehicle. In order to overcome these problems, we propose an
obstacle-free kinematic heuristic, Hfree, designed to compute
the shortest path to goal without considering obstacles but
taking into account the kinematics of the vehicle. The heuristic
also supports efficient online computing.

To evaluate our obstacle-free kinematic heuristic, we com-
pute the length of the shortest path based on the Dubins model,
i.e., we calculate the optimal trajectory using a single line, and
the combination of a circular arc and one or two lines [42].
We then use the length of the trajectory for the obstacle-free
kinematic heuristic Hfree.

Let us first define a movement vector as the orientation
toward forward movement, or as its negative for the reverse
movement. Different trajectory types can be constructed by
considering the movement vector and whether the goal is within
the turning radius of the vehicle. Based on these configurations,
we generate five different cases and calculate trajectories in an
obstacle-free environment (Fig. 7).

We can use a straight line for the trajectory in the following
two cases: 1) when the movement vector of the current node

−→
hs

is identical to the vector from the current node to the goal node−→
hg , or 2) when the angle between the two vectors

−→
hs and

−→
hg is

45◦ or 135◦, and we can expand nodes with diagonal edges.
Otherwise, we check the following three cases to calculate a

trajectory based on a combination of a circular arc and a line
(or two lines): 3) the goal is located beyond the minimum turn-
ing radius of the vehicle in its current position, 4) it is located
on a trajectory with the minimum turning radius, or 5) it is
inside the minimum turning radius. These five conditions and
the corresponding computed paths are summarized in Fig. 7.

The latter three cases are determined by considering ge-
ometric relations, as shown in the condition at the bottom
of Fig. 7. Given the minimum turning radius rmin and the

distance h between the turning center and the goal, these three
cases are determined when rmin < h, rmin = h, and rmin > h,
respectively. The trajectory computed for the third and fourth
cases consists of a circular arc followed by a line, while two
lines are used for the fifth case.

To identify such conditions, we need to compute the center,
(xc, yc), of the circular trajectory (Fig. 7). When a node ex-
pands from its parent node, we have the following relationship
between the position (xs, ys) of the current node and the
position (xst, yst) where it begins to turn

(xst, yst) = (xs, ys) + (0.5nt1 − nt2)
−→
hs

where

nt2 =

{
nt, if nt1 > nt

nt1, otherwise.
(2)

Here, nt is the number of nodes that continuously have the same
orientation and direction (e.g., forward or reverse),

−→
hs is the unit

movement vector of the current node, and nt1 is the number of
straight edges of our trajectory module for the turning circle.
These geometric quantities are shown at the bottom condition
of Fig. 7. We can easily derive the above equation by examining
the location of the current node in the trajectory module while
respecting the definition of our trajectory module (Fig. 3),
and the orientation of the current node as tangential to the
circular arc.

We observe that the center (xc, yc) of the circular trajectory is
on a normal vector,−→v ′

n, heading inside the circle (and toward the
goal) computed at (xst, yst). Based on this observation, the cen-
ter (xc, yc) of the circular trajectory is then obtained as follows:

(xc, yc) = rmin
−→v ′

n+(xst, yst)

where

−→v n=±
[

0 −1
1 0

]−→
hs

−→v ′
n=argmin

−→v n

(‖rmin
−→v n+(xst, yst)−(xg, yg)‖) . (3)

Here, (xg, yg) is the position of the goal node.

YOON et al.: PATH PLANNING USING REDUCED STATES FOR CAR-LIKE VEHICLES ON GRID MAPS 2803

Fig. 8. This figure shows estimated centers of the circular trajectory.
(xst, yst) begins the turn in each group (T1, T1′, T2, and T3) and are repre-

sented by . The estimated center of each circular trajectory is placed on c1 for
T1 and T1′, c2 for T2, and c3 for T3. Lines shown in the figure represent rmin

computed in each group. rmin is set to 7.5 m , nt1 to 5, and the grid size to 1 m.

Fig. 8 shows the estimated center of the circular trajectory
from the current expanded node. The centers are well estimated
on the whole. In particular, the center of the trajectory is
correctly computed on the horizontal or the vertical turning
pattern, whereas it is less accurately computed for diagonal
edges. This is mainly because the approximation of the circular
trajectory based on our trajectory module is less accurate on
diagonal edges. Note that the estimation of the center is used
for the heuristic and not the calculation of the final path.

The fifth case represents a maneuver such as a one-point
turn at (qx, qy) [shown in Fig. 5(b)] for the situation where
the goal is located inside the turning radius. We can simplify
it by using two lines (the bottom trajectory in Fig. 7). This
simplified approach satisfies the admissibility criteria for the
heuristic, since the length of the lines is shorter than the
length of a path generated in a grid space. (qx, qy) is deter-
mined at a position where the current node can change its
orientation.

The cost estimated by our obstacle-free kinematic heuristic
is larger than or equal to that estimated by Euclidean distance
and is also admissible, which will be discussed in Section IV-E;
our obstacle-free kinematic heuristic makes nodes expanded
fewer. Let two nodes exist. We assume that the Euclidean
distance of the first node is larger than that of the second
while the path costs of them are same, whereas the obstacle-
free kinematic heuristic of the first is smaller than that of the
second. In this situation, the second node can be selected as a
parent if we use the Euclidean distance as a heuristic. However,
the first node can be selected as a parent using the obstacle-
free kinematic heuristic. It is desirable to select the node
having smaller obstacle-free kinematic heuristic as the parent
because the obstacle-free kinematic heuristic reflects the kine-
matics of the vehicle. As a result, it is more informative than
the heuristic that uses Euclidean distance [40]. Fig. 9 shows
the expanded nodes to find a path to goal using Euclidean
distance as well as our obstacle-free kinematic heuristic. As
expected, our heuristic identifies the path with fewer expanded
nodes.

Fig. 9. Our obstacle-free kinematic heuristic (b) is more informative than one
that uses Euclidean distance (a) (nt1 = 2). In this example, a one-point turn
is preferred to forward movement because space for forward movement is
insufficient. The child nodes in red circles are included when calculating the
final path, as shown in Fig. 5(b). (a) Euclidean. (b) Hfree.

D. Obstacle-Aware Kinematic Heuristic

Although the obstacle-free kinematic heuristic takes into
account the kinematics of the car-like vehicle, it does not reflect
obstacles in the environment and thus can fail to find a path
to goal [Fig. 10(a)]. In order to overcome this problem, we
propose an obstacle-aware kinematic heuristic, Hobs, obtained
by computing the obstacle distance used in the geometric
approach [43].
Hobs is simply computed by modulating the obstacle-free

kinematic heuristic Hfree with the inverse of the trajectory
length (or obstacle distance), mind, from the current node to a
position at which the vehicle collides with obstacles. We use the
inverse of the trajectory length because the vehicle must avoid
obstacles as it approaches them. To calculate the position of the
vehicle at collision, we use the trajectories computed to calcu-
late the obstacle-free kinematic heuristic (Fig. 7). Fig. 11 shows
an example of a trajectory and mind in the test environment.

Given the minimum distance mind between the colliding
points of potential obstacles, the obstacle-aware kinematic
heuristic Hobs is defined as follows:

Hobs =

⎧⎪⎨
⎪⎩

Hfree

mind
, if mind > 1

Hfree, if mind ≤ 1

0, no collisions.

(4)

The first equation of (4) can overestimate the distance to goal on
the grid map when mind is too small, i.e., less than 1. We there-
fore limit its estimation with Hfree when mind is less than one.

Fig. 10(a) and (b) shows expanded nodes for finding the
path to goal. Compared to Hfree, Hobs finds the path more
effectively, especially when it needs to be computed in the
presence of obstacles.

E. Admissibility of Our Heuristics

The proposed heuristics naturally satisfy the first and sec-
ond conditions (finite successors and positive costs) of the
three conditions of admissibility. We now discuss the conser-
vativeness of the proposed heuristics. The obstacle-free kine-
matic heuristic is based on the optimal path to goal while

2804 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 16, NO. 5, OCTOBER 2015

Fig. 10. (a) and (b) Show node expansion results combined only with the obstacle-free or obstacle-aware kinematic heuristic. (c) Shows the result combined with
both. By using both heuristics, we can effectively find a path to goal. To test our method, nt1 is set to 2, and the weight factor of the combined heuristic kh is set
to 1.5. (a) Hfree. (b) Hobs. (c) Hfree & Hobs.

Fig. 11. A circular trajectory used to calculate the colliding point (shown in
white circle) used in Hobs.

incorporating the kinematics of the car-like vehicle. It is admis-
sible because it guarantees an estimated distance smaller than
an actual distance to goal in the grid space. The obstacle-aware
kinematic heuristic is also admissible because it only reduces
the distance of the obstacle-free kinematic heuristic. Intuitively,
if a distance estimated by any heuristic is larger than an actual
distance, the evaluation cost (f = g + h) at goal is higher than
the cost of optimal path (g∗(ng)) because the estimated heuris-
tic at goal (h(ng)) is higher than an actual distance (h∗(ng)),
i.e., zero. As a result, if any heuristic is not admissible, the
found path is not optimal (see [40] for a formal proof).

The search procedures can be more efficient if they are
combined. In general, a simple method for satisfying the admis-
sibility of a heuristic is to compute a weighted sum of multiple
admissible heuristics. When the sum of weights is less than or
equal to 1, the combined heuristic is also admissible [44].

In the path finding problem, however, combining heuristics
with a sum of weights of less than 1 has been known to
be inefficient because the output of the combined heuristic is
significantly smaller than the actual distance. To increase the
search efficiency, we combine the two heuristics to form a new
combined heuristic, Hc

comb, with a weight factor as follows:

Hc
comb = kh(Hfree +Hobs) (5)

Fig. 12. Search patterns with different values of kh. The values in parentheses
indicate the number of expanded nodes. nt1 is set to 2. (a) kh = 0.5 (121).
(b) kh = 1.0 (120). (c) kh = 1.5 (63). (d) kh = 2.0 (63).

where kh is an amplification factor for the sum of the two
heuristics. Note that we use superscript c to indicate that we
compute a path tracking the current orientation. We will also
subsequently introduce a heuristic value Hr

comb, computed
using an orientation opposite the current orientation in order
to handle narrow passages.

When Hobs is 0, i.e., there are no obstacles along the com-
puted trajectory, we set kh to 1 to prevent the heuristic from
overestimating the distance to goal. Otherwise, we aggressively
set kh to be higher than 1 because it is more important in
our problem to find paths of reasonable quality in an efficient
manner than to find the optimal path. In practice, a range of
1.0 to 2.0, especially 1.5, for kh works well, and strikes a
good balance between efficient search and high-quality paths.

YOON et al.: PATH PLANNING USING REDUCED STATES FOR CAR-LIKE VEHICLES ON GRID MAPS 2805

Fig. 13. Search patterns with different values of nt1. kh is set to 1.5.
(a) nt1 = 2. (b) nt1 = 4.

Fig. 14. Procedure for checking interference against obstacles when the vehi-
cle moves straightforward or makes a turn. (a) Straightforward. (b) Turn.

Fig. 12 shows search patterns with varying kh in a simple
environment with obstacles. Moreover, Fig. 13 shows that
when kh is higher than 1, our combined heuristic tends to be
overestimated to a greater extent as we have a smaller value of
the minimum turning radius. Nonetheless, it is more effective
in environments containing complex obstacles, as shown in
Fig. 10(c). In Section V-A, we show that our proposed method
is more efficient than prior methods [19], [20].

F. Shape-Aware Collision Checking

We have thus far discussed techniques considering the kine-
matics of car-like vehicles. In this subsection, we present a
shape-aware collision checking technique that takes into ac-
count the shape of the vehicle. This method is based on our
previous work that employs a graphical method [45]. As in that
study, we approximate the shape of a vehicle as an oriented
rectangle (Fig. 14), since it tightly approximates the shape of
many types of vehicles. Unlike in our previous work, however,
this method checks collisions along trajectories followed by
or estimated by our kinematics-aware node expansion and
heuristics while considering the shape and turning space of
vehicles in order to reflect the kinematics of car-like vehicles.

We consider two cases, moving in a straight line or making
a turn, where the shape of the vehicle is taken in account while
following trajectories (Fig. 7). Checking interference against
obstacles along a line is easily checked on each node during
node expansion and on trajectories estimated by our heuristics,

Fig. 15. The space required to make a turn. Our method computes such space
while expanding nodes and evaluating heuristics.

Fig. 16. Collision checking by considering the shape and turning space of the
car-like vehicle. The solid line represents the trajectory for the vehicle while
dashed lines represent the space required for a vehicle to turn. (a) Forward.
(b) Reverse.

as shown in Fig. 14(a), by translating the box of the vehicle in
the direction of movement.

When a car-like vehicle makes a turn, i.e., follows a circular
arc, our approach considers the width and length of the vehicle,
assuming that each node is placed on the center of the rear axle
of the vehicle (Fig. 15). We then generate inner and outer circu-
lar arcs that cover the turning vehicle [46]. The turning radii of
each of these inner and outer circular arcs is set to rin and rout,
respectively, based on the center of the rear axle, as follows:

rin = rmin − 0.5aw

rout =
√
(rmin + 0.5aw)2 + a2f (6)

where aw and af are the width and the front overhang of the
vehicle, respectively. Once we construct these inner and outer
circular arcs, we check for interference against obstacles based
on them (Fig. 16) with a higher accuracy irrespective of the
resolution of the grids [47].

G. Path Smoothing

In our node expansion, we can smooth a path by computing
the turning center of circular arcs and placing the nodes for the
path on the circular arcs along their normal direction. Since
we compute the turning center of the vehicle from the center
of the nodes, these turning centers may be computed a little
differently, even from neighboring nodes, while making a turn
as shown in Fig. 8.

2806 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 16, NO. 5, OCTOBER 2015

Fig. 17. We only use a state of the search space that encodes a position for the
efficiency of search time. (a) shows an identified intermediate goal (shown in
the red box) and (pink colored) path segments computed by our shape-aware A∗

for a narrow passage (nt1 is set to 4). (b) shows a path found by the intermediate
goal (coordinates (17, 16)) and nodes (coordinates (6, 16) and (25, 17)).
(c) shows a smoothed path. Dashed circles represent the minimum turning
radius of the vehicle. Numbers shown near the paths represent maneuvering
sequence. (d) shows a path (shown in gray) tracked by our vehicle given a
perfect obstacle map. Our path planner takes 91 ms on an Intel i7 computer
to calculate the path.

To compute the turning center of the circular arcs, we access
each node in the path and use the same turning center when
making a consistent turn without any change of angle. We can
assume that nodes prior to and following one that changes
orientation make consistent turns. From the above process, in
Fig. 8, we set the center of the circular arc to c1 when nodes at
T1 begin to turn. Fig. 17(c) shows the circular arcs of turning
nodes and a smoothed path from an initial path [Fig. 17(b)]
during our node expansion method.

H. Intermediate Goals for Narrow Passages

Computing a collision-free path in environments with narrow
passages poses a significant challenge for path planners. Similar
problems arise when most prevalent A∗ algorithms are applied
to narrow passages for a car-like vehicle. This is mainly because
the vehicle needs to repeatedly make a forward/reverse move-
ment to find a path to goal. Fig. 17(a) shows an example where
it is difficult to find a path through a narrow passage owing to
the kinematics of the vehicle.

In this kind of complex environment, we may need to pass
the same region multiple times, i.e., have a node with the same
state (we now use only a state of the search space that encodes a
position for the efficiency of the search time) multiple times in
a found path. Having a node with same state multiple times in a
found path, unfortunately, is not allowed in the conventional A∗.

To allow this feature and effectively identify paths for narrow
passages, we propose a recursive path-finding approach in mul-
tiple steps by introducing intermediate goals while using the
reduced states of the search space. Finding intermediate paths
using intermediate goals is a divide-and-conquer strategy for
challenging environments. The divide-and-conquer algorithm
works by breaking down a problem into sub-problems. The
solutions to the sub-problems are combined to give a solution to
the original problem. One may think of an alternative approach
that uses higher-dimensional states of the search space, such as
ones encoding orientations as well as positions to allow mul-
tiple nodes at the same position as long as they have different
orientations. We attempted this alternative, but found that our
current approach, which uses a simple state of the search space
and recursive path-finding, is more efficient (Section V-A).

For our method, we first run our KSA∗ algorithm to find
a collision-free path. When we cannot find such a path, we
assume that the environment has a narrow passage. We perform
two procedures to pass through the narrow passage: 1) we
find an intermediate goal, nmid, near the narrow passage, and
2) then find a path by passing from the intermediate goal to the
final goal.

In order to find intermediate goals, we apply an A∗ algorithm,
called shape-aware A∗ algorithm, that considers only the shape
of the vehicle (Section IV-F). This shape-aware A∗ algorithm
does not consider the kinematics of the car-like vehicle because
we are interested mainly in checking whether the vehicle can
pass through the narrow passage. A visual flow of the different
components is shown in Fig. 2.

The path computed by the shape-aware A∗ algorithm is used
only to compute intermediate goals for our KSA∗ algorithm, not
as a path for the vehicle. We can then choose nodes along the
identified path as intermediate goals for our KSA∗ algorithm.
In particular, we choose the node from the identified path that
is closest to expanded nodes of the prior operation of our KSA∗

algorithm. We choose the node (on the path found by the shape-
aware A∗) closest to expanded nodes among other possible
candidates because there is a smaller probability that obstacles
are encountered in regions close to nodes expanded by the
KSA∗ algorithm.

Given the intermediate goal, we try to find a path to it by
re-executing our KSA∗ algorithm. If we can find a path to the
intermediate goal, we attempt to find a path from the inter-
mediate goal to the final goal by running the KSA∗ algorithm
again. Fig. 17(a) shows the identified intermediate goal in an
environment with a narrow passage.

I. Heuristic-Driven Search for Narrow Passage

We may not even find a path to an intermediate goal identified
by our shape-aware A∗ method. In this case, we attempt to find a
path to the intermediate goal by computing intermediate nodes.
Unlike in the A∗ framework, we sort and search nodes based on
heuristic values rather than evaluation costs similar to the best-
first search (heuristic-driven search). This method is known to
be very effective at expanding the most promising node to goal
[40], i.e., it is suitable when we find a collision-free path for
these difficult environments. Nonetheless, we could not prove

YOON et al.: PATH PLANNING USING REDUCED STATES FOR CAR-LIKE VEHICLES ON GRID MAPS 2807

Fig. 18. Our heuristic-driven search method checks a path passing a new
intermediate node nse by starting from a prior intermediate node nin or by
checking another such node nfi.

the completeness of our heuristic-driven search due to using
the most promising nodes from the searching layers as shown
in Fig. 18.

Thus far, we have computed Hc
comb(n) for a node using

the current orientation of node n. To increase a probability of
finding a path to goal, we check to see whether we can compute
a path to the node using the opposite orientation to the current
one. The heuristic value of the reverse orientation is denoted by
Hr

comb(n).
In our heuristic-driven search, each node is associated

with the minimum value Hm
comb(n) between Hc

comb(n) and
Hr

comb(n). Given two components Hfree(n) and Hobs(n) of
Hm

comb(n), if Hobs(n) is zero, it indicates a high probability
that a collision will not occur on a path to goal.

To use this information, we sort values of Hm
comb(n) for all

expanded nodes in ascending order into two cases, depend-
ing on whether the value of Hobs(n) is zero. We prioritize
the Hm

comb(n) for which the value of Hobs(n) is zero over
Hm

comb(n) for which the value of Hobs(n) is non-zero. We
call Hm

comb(n) sorted in this manner Hsort(n). Note that this
approach is different from that of A∗, since we search nodes
based only on heuristic values, not on evaluation costs. As a
result, our heuristic-driven search cannot guarantee path opti-
mality. Nonetheless, the environment that we are handling in
this context is complex, and we thus focus on computing a
collision-free path even though it is not optimal.

In this approach we choose a node with the minimum value
of Hsort(n) and treat it as an intermediate node, nin. Note that
we already have a path from the start node to nin, since the
node is chosen from expanded nodes from an earlier invocation
of our KSA∗ algorithm. We then re-run the KSA∗ algorithm to
find a path from the intermediate node nin to the intermediate
goal nig .

It is possible that we are still unable to find a path between the
intermediate node and the intermediate goal. Nonetheless, we
have more information by now. First, we have expanded node
information used to choose nin; second, we have information
about expanded nodes acquired to compute a path from nin. We
call nodes with the minimum value for each Hsort(n) from the
first and second pieces of information nfi and nse, respectively.
Of the nodes nfi and nse, we choose the one with the minimum
evaluation cost as the next intermediate node.

Intuitively, if we pick nfi, we change nfi to nin and search
another path from the start node (Fig. 18). If we otherwise pick
nse, we change nse to nin and continue to find a path starting

Fig. 19. Results of methods that compute intermediate nodes (shown in black
circles) using our proposed heuristic values (a) and evaluation cost (b) to the
intermediate goal (shown in the red box). The use of our heuristic values makes
it possible to find a path to an intermediate goal with fewer expanded nodes or
intermediate nodes than the method that uses evaluation cost.

from the prior intermediate node. We continue this process
until we no longer have nodes in Hsort(n). In other words, our
recursive method terminates when no candidate nodes exist. As
a result, our heuristic-driven search can efficiently reduce the
number of intermediate nodes by using promising nodes instead
of all nodes expanded from each intermediate node every time.

In order to show the benefits of our heuristic-driven search
algorithm, we compared the expansion results of a method
that uses our proposed heuristic values with one that considers
evaluations costs (Fig. 19) in an environment with a narrow
passage. As shown in the figure, our method finds a path to an
intermediate goal with fewer expanded nodes or intermediate
nodes. When evaluation cost is used as a heuristic, the method
finds intermediate nodes close to the start node according to the
common expansion pattern for any A∗ algorithm. Furthermore,
there are cases where the common A∗ algorithm fails to find
paths, whereas our recursive method succeeds in finding a path
(Fig. 25). These results prove the efficiency and robustness of
our method.

V. RESULTS

Thus far, we have shown the effectiveness of different com-
ponents of our proposed algorithm through examples. In this
section, we prove the efficiency of our two proposed online
heuristics and the recursive path-planning method, followed
by experimental results obtained by using an autonomous ve-
hicle. The simulations and experiments are conducted using
MATLAB, and our autonomous vehicle is equipped with con-
trollers and a path planner, which are integrated using LabVIEW
on an i7 computer with a 3.4 GHz CPU and 3 GB DRAM.

A. Simulation Results

We tested our method against a complex scenario involving
moving from a small region toward a goal in another tight
region (Fig. 20). Our proposed method can find paths for such
complex scenarios because of our recursive approach. Exiting a
constricted space to reach the goal by passing a narrow passage,
as shown in Fig. 20, is a difficult case because it requires for a
node to repeatedly be in the same state in the found path, due

2808 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 16, NO. 5, OCTOBER 2015

Fig. 20. (a) to (o) Show how our recursive method computes a path given a complex environment. (p) Shows the final path. Nodes in purple, in the red box,
and in the black circle represent a path found by our shape-aware A∗, intermediate goals, and intermediate nodes, respectively. Arrows indicate the direction of
movement.

to repetitive forward and reverse movements of the vehicle in
limited space.

In order to show the benefits of our proposed heuristics, we
tested two versions, both of which use only our kinematics-
aware node expansion. However, the first version uses previ-
ously proposed heuristics [19], [20] whereas the second one
uses our heuristics. We performed these comparisons in two
environments without and with obstacles (Fig. 21).

Table II shows the number of node expansions and the
computation time required to evaluate them. Our method per-
forms significantly better than the method that uses previously

proposed heuristics across two benchmarks. This is primar-
ily because our method is very efficient in computing our
heuristics. On the other hand, the previously proposed heuristic
functions, against which ours were compared, rely on expensive
dynamic programming techniques for computing a heuristic for
environments with obstacles. Our method also entails a smaller
number of node expansions for environment with obstacles than
the prior method. However, for a simple environment without
obstacles [Fig. 21(a)], the prior method has a smaller number
of expansions than ours. This is because the prior method uses
dynamic programming that directly considers node expansions

YOON et al.: PATH PLANNING USING REDUCED STATES FOR CAR-LIKE VEHICLES ON GRID MAPS 2809

Fig. 21. (a) and (b) show expanded nodes and paths obtained by applying the
maximum value of two heuristics proposed in [19], [20], and (c) and (d) are
obtained by applying our two heuristics. nt1 is set to 2.

TABLE II
THE NUMBER OF NODE EXPANSIONS AND AVERAGE COMPUTATION

TIMES FOR 10 TRIALS USING MATLAB IN ORDER

TO EVALUATE OUR HEURISTIC

TABLE III
AVERAGE COMPUTATION TIME FOR 10 TRIALS USING MATLAB IN

ORDER TO EVALUATE OUR RECURSIVE PATH-PLANNING METHOD.
P AND O REPRESENT A POSITION AND AN ORIENTATION, RESPECTIVELY

but does not consider the kinematics of the vehicle. As a
result, in an empty environment, such as our test environment,
dynamic programming can generate a path with a small number
of node expansions. Nonetheless, in practice, there can exist
many obstacles in a path, and the computation time for dynamic
programming in such cases can be very expensive, as shown in
this simulation.

Detailed state representations: One can represent states of
the search space for nodes by using position and orientation, not
only by using position as we did for our method. In this case,
one may think that we can naturally allow multiple nodes at the
same position as long as they have different orientations. As a

Fig. 22. This shows a found path and expanded nodes when we used states
encoding positions and orientations without our recursive method.

result, we can avoid using the proposed recursive path planning.
However, we found that this alternative is much slower than
our proposed method. In order to show the efficiency of our
recursive method in a simple representation of the state of
the search space encoding only positional information, we
compared the computation time of our proposed method with
an alternative method encoding both position and orientation
and not executing the recursive path-planning algorithm in
the environment shown in Fig. 17. The runtimes of these
methods are summarized in Table III. Fig. 22 shows a path
with expanded nodes when we differentiate states of the search
space by using position and orientation without executing the
recursive planning algorithm. Our method can efficiently find
feasible paths while expanding fewer nodes than the alternative
method, which encodes both position and orientation without
executing recursive planning.

B. Experimental Results

We performed experiments on a ground vehicle (Fig. 1).
The ground vehicle was equipped with a gasoline engine of
1591 cm3, a four-speed automatic transmission, a front-wheel
drive, and an anti-lock braking system (ABS). Its wheelbase
was 2.55 m long (total length: 4.105 m) and the average tire
angle for the two wheels was 26◦. Based on the Ackerman
steering condition, the minimum turning radius of the vehicle
is computed as follows [46]:

rmin =
wheelbase

tan(average tire angle)
. (7)

From (7), rmin is approximately 5.2 m.
For all experimental results, we set the size of the grid cell

in each dimension to 1 m. In this grid resolution, we set nt1

to 4 and the turning radius rmin to 6 m. In order to achieve a
more realistic turning radius for the test vehicle, we can use
a higher-resolution grid map, i.e., for rmin = 5.2 m, the ratio
between the minimum turning radius in a 1-m grid and that of
the real vehicle can be selected as the grid resolution (0.87 m
per grid). However, we finally set the resolution to 1 m because
it worked well in our experiments. Further, Dolgov et al.
obtained good results with a 1-m resolution in the DARPA
Urban Challenge [20].

2810 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 16, NO. 5, OCTOBER 2015

For autonomous driving, the vehicle is installed with laser
scanners, cameras, an inertial navigation system (INS), PCs,
and actuators (Fig. 1). The in-vehicle actuators considered
here included a motor-driven power steering wheel (MDPS),
a gas pedal, brakes, transmission controlled by a controller-
area network (CAN), a cruise control box, a rotary direct
current (DC) motor, and a linear DC motor. Note that the
laser scanners installed in the vehicle could detect obstacles
in front of it and in a small lateral range (±135◦ from the
longitudinal axis) of the vehicle. We chose its field of view
because it is sufficient to avoid obstacles placed in front of
the vehicle while driving. In the case of reverse parking, we
can sufficiently scan obstacles by moving forward and detect
them using rear ultrasonic sensors while making a parking.
Moreover, we acquired the position, steering angle, and speed
of the vehicle using a differential global positioning system
(DGPS) with a Pacific Crest Positioning Data Link Low-power
base (PDL LPB) and sensors installed by the car manufacturer
(Kia Motors Corp.).

We first tested how well our autonomous ground vehicle
could compute and track a collision-free path. We placed the
vehicle in an open space but used a perfect obstacle map
of a virtually created complex environment with a narrow
passage, as shown in Fig. 17(a). The path tracked by our
vehicle given the perfect obstacle map is shown in Fig. 17(d).
Our autonomous ground vehicle followed the computed path
consisting of combinations of forward and reverse movements.
The computation time taken by our path planner, installed
in the autonomous ground vehicle, for a virtual but complex
environment was 91 ms using an i7 computer.

Environment with narrow passage: We also tested our
method in a real environment with a narrow passage.
Fig. 23 shows that our vehicle passed the narrow passage by
making a tight turn. Note that such a tight turn was made by
taking into account the shape and turning space of the vehicle.
The driving in this environment required reversing because
obstacles were placed inside the minimum turning radius of the
vehicle. Fig. 24 shows still images of this scenario.

Recursive Path Planning: We have pointed out that by en-
coding more information regarding the state of the search space
of each node, we can find paths without using our recursive
path planning as mentioned above. To show the significant
benefits of our recursive path planning, we tested our method
in another constricted region (i.e., parking in a narrow region)
(Fig. 25). In this environment our recursive path planner found
feasible paths while only using a simple state of the search
space, i.e., encoding a position for each node. On the other
hand, we could not find a path even though we used states of
the search space encoding position, orientation, and direction of
the vehicle. In this alternative method, we found paths for three
sequences from 1 to 3, since the states of the nodes in these
sequences are different. However, the nodes in the sequence 4
have the same state as the nodes in the sequence 2 because the
reverse movement in those sequences occurs two times. This
result shows the efficiency and robustness of our method for
the planning problem of car-like vehicles. Fig. 26 shows still
images of this scenario.

Fig. 23. (a) Our method generated a trajectory by making a tight turn and pass-
ing through a narrow passage. The number beside each path indicates the time
(in seconds) when the vehicle passed a designated point on the path. (b) Steering
angle and speed of the vehicle over time. The computation time was 4 ms.

VI. CONCLUSION

In this paper, we proposed a holistic approach, the KSA∗

algorithm, to find a collision-free path to goal by taking into
account the kinematics, shape, and turning space of a car-
like vehicle. Our grid-based path planner used only a state of
the search space encoding a position, without orientation and
direction for the sake of efficiency. Specifically, we designed
a kinematics-aware node expansion algorithm with orientation-
driven arc costs for considering the kinematics of vehicles. We
then proposed two online kinematic heuristics with obstacle-
free and obstacle-aware approaches for efficient search within
our KSA∗ algorithm. For complex environments with many
obstacles and narrow passages, our method attempts to find a
path by recursively identifying intermediate goals and nodes.

To verify the benefits of our method, we tested each compo-
nent of our method using various simulations, and proved that
our planner can support complex maneuvering, such as two-
point turns in constricted space. Further, we tested our method
in environments with narrow passages and confirmed that it
satisfactorily handles such cases. Moreover, we compared our
heuristics with state-of-the-art heuristics to exhibit the superior
efficiency of our techniques. We also tested our path-planning
method with an autonomous vehicle that captures obstacle
maps in real time. Our results showed that the vehicle can
follow paths generated by our method, which can compute
paths even for environments with narrow passages.

YOON et al.: PATH PLANNING USING REDUCED STATES FOR CAR-LIKE VEHICLES ON GRID MAPS 2811

Fig. 24. An image sequence of passing through the narrow passage shown in Fig. 23. The vehicle made a reverse movement of up to 10 s, followed by a forward
movement with a left turn.

Fig. 25. These figures show that our recursive path planner with a state of search space encoding the position of each node can find feasible paths. It is difficult
to find a feasible path, even though we used states of search space encoding position, orientation, and direction of the vehicle within the A∗ algorithm without
running our recursive path planning. That is mainly because the sequence in 4 passes the nodes with the same state to ones of the sequence generated in 2. In
other words, the reverse movement in that sequence occurred two times. The computation time of the path planner installed on our autonomous vehicle was 9 ms.

Fig. 26. An image sequence showing an advantage of our recursive path-planning method in a tight region, whose observed grid map is shown in Fig. 25.

2812 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 16, NO. 5, OCTOBER 2015

Our research here open several interesting research avenues
for future work. In this paper, we have not taken into account the
speed of the vehicle. For situations such as a lane change during
high-speed driving, the speed of the vehicle should be taken into
account in computing the turning radius, which was assumed
to be constant in this paper. Fortunately, our trajectory module
can be dynamically re-computed according to the speed of the
vehicle. Nonetheless, it remains for us to improve our method to
operate robustly even in high-speed driving mode. In particular,
we would like to consider the dynamics of the vehicle to support
high-speed driving. We have shown here that our method is
efficient and robust, but have not proved its completeness. We
leave this pending for future work.

REFERENCES

[1] U. Özgüner, C. Stiller, and K. Redmill, “Systems for safety and au-
tonomous behavior in cars: The DARPA Grand Challenge experience,”
Proc. IEEE, vol. 95, no. 2, pp. 397–412, Feb. 2007.

[2] B. Siciliano, O. Khatib, and F. Groen, Eds., The DARPA Urban
Challenge: Autonomous Vehicles in City Traffic. Berlin, Germany:
Springer-Verlag, 2009.

[3] A. Fisher, Inside Google’s Guest to Popularize Self-Driving Cars.
New York, NY, USA: Popular Science, Sep. 2013.

[4] J. Wit, C. D. Crane, and D. Armstrong, “Autonomous ground vehicle path
tracking,” J. Robot. Syst., vol. 21, no. 8, pp. 439–449, Aug. 2004.

[5] G. Oriolo, G. Ulivi, and M. Vendittelli, “Real-time map building and nav-
igation for autonomous robots in unknown environments,” IEEE Trans.
Syst., Man, Cybern. B, Cybern., vol. 28, no. 3, pp. 316–333, Jun. 1998.

[6] R. C. Luo and C. C. Lai, “Multisensor fusion-based concurrent environ-
ment mapping and moving object detection for intelligent service robot-
ics,” IEEE Trans. Ind. Electron., vol. 61, no. 8, pp. 4043–4051, Nov. 2013.

[7] E.-H. Shin, “Accuracy improvement of low cost INS/GPS for land appli-
cations,” M.S. thesis, Dept. Geomatics Eng., Univ. Calgary, Calgary, AB,
Canada, 2001.

[8] C. R. Jung and C. R. Kelber, “A lane departure warning system using lat-
eral offset with uncalibrated camera,” in Proc. IEEE Conf. Intell. Transp.
Syst., Sep. 2005, pp. 348–353.

[9] S. S. Ge, X. Lai, and A. A. Mamun, “Boundary following and globally
convergent path planning using instant goals,” IEEE Trans. Syst., Man,
Cybern. B, Cybern., vol. 35, no. 2, pp. 240–254, Apr. 2005.

[10] H. Choset et al., Principles of Robot Motion: Theory, Algorithms, and
Implementation. Cambridge, MA, USA: MIT Press, 2005.

[11] J. Gerdes and J. Hedrick, “Vehicle speed and spacing control via coordi-
nated throttle and brake actuation,” Control Eng. Pract., vol. 5, no. 11,
pp. 1607–1614, Nov. 1997.

[12] G. Antonelli, S. Chiaverini, and G. Fusco, “A fuzzy-logic-based approach
for mobile robot path tracking,” IEEE Trans. Fuzzy Syst., vol. 15, no. 2,
pp. 211–221, Apr. 2007.

[13] S. M. LaValle, M. S. Branicky, and S. R. Lindemann, “On the relationship
between classical grid search and probabilistic roadmaps,” Int. J. Robot.
Res., vol. 23, no. 7/8, pp. 673–692, Aug. 2004.

[14] P. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Trans. Syst. Sci. Cybern.,
vol. 4, no. 2, pp. 100–107, Jul. 1968.

[15] P. E. Hart, N. J. Nilsson, and B. Raphael, “Correction to: A formal basis
for the heuristic determination of minimum cost paths,” SIGART Bull.,
vol. 37, pp. 28–29, Dec. 1972.

[16] D. Ferguson and A. Stentz, “Using interpolation to improve path planning:
The field D∗ Algorithm,” J. Field Robot., vol. 23, no. 2, pp. 79–101,
Feb. 2006.

[17] K. Daniel, A. Nash, S. Koenig, and A. Felner, “Theta∗ : Any-angle path
planning on grids,” J. Artif. Intell. Res., vol. 39, pp. 533–579, 2010.

[18] J. Ziegler and M. Werling, “Navigating car-like robots in unstructured
environments using an obstacle sensitive cost function,” in Proc. IEEE
Intell. Veh. Symp., Jun. 2008, pp. 787–791.

[19] M. Likhachev and D. Ferguson, “Planning long dynamically feasible
maneuvers for autonomous vehicles,” Int. J. Robot. Res., vol. 28, no. 8,
pp. 933–945, Aug. 2009.

[20] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Path planning for
autonomous vehicles in unknown semi-structured environments,” Int. J.
Robot. Res., vol. 29, no. 5, pp. 485–501, Apr. 2010.

[21] R. Geraerts and M. H. Overmars, “The corridor map method: A general
framework for real-time high-quality path planning,” Comput. Animation
Virtual Worlds, vol. 18, no. 2, pp. 107–119, May 2007.

[22] S. Koenig, M. Likhachev, and D. Furcy, “Lifelong planning A∗,” Artif.
Intell., vol. 155, no. 1/2, pp. 93–146, May 2004.

[23] S. Koenig and M. Likhachev, “Fast replanning for navigation in unknown
terrain,” IEEE Trans. Robot., vol. 21, no. 3, pp. 354–363, Jun. 2005.

[24] B. Graf, J. M. H. Wandosell, and C. Schaeffer, “Flexible path planning for
nonholonomic mobile robots,” in Proc. 4th Eur. Workshop Adv. Mobile
Robots, 2001, pp. 199–206.

[25] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configura-
tion spaces,” IEEE Trans. Robot. Autom., vol. 12, no. 4, pp. 566–580,
Aug. 1996.

[26] D. Hsu, J.-C. Latombe, and H. Kurniawati, “On the probabilistic foun-
dations of probabilistic roadmap planning,” Int. J. Robot. Res., vol. 25,
no. 7, pp. 627–643, Jul. 2006.

[27] S. M. LaValle and J. J. Kuffner, Jr., “Randomized kinodynamic planning,”
Int. J. Robot. Res., vol. 20, no. 5, pp. 378–400, May 2001.

[28] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Int. J. Robot. Res., vol. 30, no. 7, pp. 846–894,
Jun. 2011.

[29] J. L. Ny, E. Feron, and E. Frazzoli, “On the Dubins traveling salesman
problem,” IEEE Trans. Autom. Control, vol. 57, no. 1, pp. 265–270,
Jan. 2012.

[30] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller, “Any-
time motion planning using the RRT∗,” in Proc. IEEE ICRA, May 2011,
pp. 1478–1483.

[31] R. A. Knepper and A. Kelly, “High performance state lattice plan-
ning using heuristic look-up tables,” in Proc. IEEE/RSJ IROS, 2006,
pp. 3375–3380.

[32] L. E. Dubins, “On curves of minimal length with a constraint on average
curvature, and with prescribed initial and terminal positions and tangents,”
Amer. J. Math., vol. 79, no. 3, pp. 497–516, Jul. 1957.

[33] D. Hsu, T. Jiang, J. Reif, and Z. Sun, “The bridge test for sampling nar-
row passages with probabilistic roadmap planners,” in Proc. IEEE ICRA,
Sep. 2003, vol. 3, pp. 4420–4426.

[34] L. Zhang, Y. J. Kim, and D. Manocha, “A hybrid approach for complete
motion planning,” in Proc. IEEE/RSJ IROS, Oct. 2007, pp. 7–14.

[35] S. Dalibard and J.-P. Laumond, “Linear dimensionality reduction in ran-
dom motion planning,” Int. J. Robot. Res., vol. 30, no. 12, pp. 1461–1476,
Oct. 2011.

[36] J. Lee, O. Kwon, L. Zhang, and S.-E. Yoon, “A selective retraction-based
RRT planner for various environments,” IEEE Trans. Robot., vol. 30,
no. 4, pp. 1002–1011, Aug. 2014.

[37] N. I. Katevas, S. G. Tzafestas, and C. G. Pnevmatikatos, “The approx-
imate cell decomposition with local node refinement global path plan-
ning method: Path nodes refinement and curve parametric interpolation,”
J. Intell. Robot. Syst., vol. 22, no. 3/4, pp. 289–314, Apr. 1998.

[38] Y. Kanayama, Y. Kimura, F. Miyazaki, and T. Noguchi, “A stable tracking
control method for a non-holonomic mobile robot,” in Proc. IEEE/RSJ Int.
Workshop Intell. Robots Syst., Nov. 1991, vol. 3, pp. 1236–1241.

[39] A. P. Aguiar and J. P. Hespanha, “Trajectory-tracking and path-following
of underactuated autonomous vehicles with parametric modeling uncer-
tainty,” IEEE Trans. Autom. Control, vol. 52, no. 8, pp. 1362–1379,
Aug. 2007.

[40] J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem
Solving. Reading, MA, USA: Addison-Wesley, 1984.

[41] N. J. Nilsson, Artificial Intelligence: A New Synthesis. Burlington, MA,
USA: Morgan Kaufmann, 1998.

[42] F. Lamiraux and J.-P. Laumond, “Smooth motion planning for car-like
vehicles,” IEEE Trans. Robot. Autom., vol. 17, no. 4, pp. 498–502,
Aug. 2001.

[43] M. Vendittelli, J.-P. Laumond, and C. Nissoux, “Obstacle distance for car-
like robots,” IEEE Trans. Robot. Autom., vol. 15, no. 4, pp. 678–691,
Aug. 1999.

[44] L. Mandow and J. P. de la Cruz, “Multicriteria heuristic search,” Eur. J.
Oper. Res., vol. 150, no. 2, pp. 253–280, Oct. 2003.

[45] S. Yoon and D. H. Shim, “SLPA∗: Shape-aware lifelong planning A∗ for
differential wheeled vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 16,
no. 2, pp. 730–740, Apr. 2015.

[46] R. N. Jazar, Vehicle Dynamics: Theory and Applications. Berlin,
Germany: Springer-Verlag, 2008.

[47] D. Kim, J.-P. Heo, J. Huh, J. Kim, and S.-E. Yoon, “HPCCD: Hybrid
parallel continuous collision detection using CPUs and GPUs,”
Comput. Graph. Forum (Pacific Graphics), vol. 28, no. 7, pp. 1791–1800,
Oct. 2009.

YOON et al.: PATH PLANNING USING REDUCED STATES FOR CAR-LIKE VEHICLES ON GRID MAPS 2813

Sangyol Yoon received the B.S. degree in mechan-
ical engineering from Hongik University, Seoul,
Korea, in 1999, the M.S. degree in mechatronics
from Gwangju Institute of Science and Technology,
Gwangju, Korea, in 2001, and the Ph.D. degree from
Korea Advanced Institute of Science and Technol-
ogy, Daejeon, Korea, in 2014.

From 2003 to 2007, he was with Samsung Elec-
tronics Company Ltd., Suwon, Korea, where he was
engaged in the development of three-axis optical
pickup actuators for optical disk drives. From 2007

to 2009, he was with Hyundai Mobis, Yongin, Korea, where he was involved
in pre-crash and advanced external airbag systems development. Since 2014,
he has been with LG Electronics Inc., Incheon, Korea. His research interests
include vehicle motion planning and control, and active safety.

Sung-Eui Yoon (SM’13) received the B.S. and M.S.
degrees in computer science from Seoul National
University, Seoul, Korea, in 1999 and 2001, respec-
tively, and the Ph.D. degree in computer science
from the University of North Carolina at Chapel Hill,
NC, USA, in 2005. He is currently an Associate
Professor at Korea Advanced Institute of Science and
Technology, Daejeon, Korea. He was a Postdoctoral
Scholar at Lawrence Livermore National Labora-
tory. He co-wrote a monograph on real-time massive
model rendering and gave numerous tutorials on

proximity queries and large-scale rendering at various conferences, including
ACM SIGGRAPH and IEEE Visualization. His main research interests include
designing scalable graphics and geometric algorithms. Dr. Yoon is a member of
the ACM and Eurographics. He was a recipient of a Distinguished Paper Award
at Pacific Graphics, invitations to IEEE TVCG, an ACM Student Research
Competition Award, and other domestic research-related awards.

Unghui Lee received the B.S. degree in aerospace
engineering from Korea Aerospace University,
Goyang, Korea, in 2009 and the M.S. degree in
aerospace engineering from Korea Advanced Insti-
tute of Science and Technology (KAIST), Daejeon,
Korea, in 2011. He is currently working toward the
Ph.D. degree in aerospace engineering with KAIST.
His research interests include path planning and nav-
igation for autonomous systems.

David Hyunchul Shim received the B.S. and M.S.
degrees in mechanical design and production en-
gineering from Seoul National University, Seoul,
Korea, in 1991 and 1993, respectively, and the Ph.D.
degree in mechanical engineering from the Univer-
sity of California, Berkeley, CA, USA, in 2000.

From 1993 to 1994, he was with Hyundai Motor
Company, Seoul, as a Transmission Design Engineer.
From 2001 to 2005, he was with Maxtor Corpora-
tion, Milpitas, CA, as a Staff Engineer. From 2005
to 2007, he was with the University of California as

a Principal Engineer in charge of the Berkeley Aerobot Team. In 2007, he
joined the Department of Aerospace Engineering, Korea Advanced Institute
of Science and Technology (KAIST), Daejeon, Korea. He is currently an
Associate Professor at the Department of Aerospace Engineering, College
of Engineering, KAIST, and the Director of the Center of Field Robotics at
KAIST. His interests include control theory, unmanned aerial vehicles, self-
driving cars, and field robotics.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

