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I. INTRODUCTION

Inspired by the achievements in multiple-input
multiple-output (MIMO) communication, the MIMO
concept was generalized into the radar field in [1], which
has then rapidly drawn considerable attention [2–6]. In
terms of the spacing between its antennas, MIMO radar is
categorized into two types [6], colocated MIMO radar
[4, 7, 8] and distributed MIMO radar [2, 9]. Colocated
MIMO radar can increase parameter identifiability of
radar targets [10, 11] and can adaptively suppress more
inactive point interferences [8, 12], compared with its
phased-array radar counterpart with the same number of
antennas. Distributed MIMO radar is actually a kind of
multistatic radar or multisite radar systems, which have
been intensively studied earlier in [13]. The relationship
between distributed MIMO radar and multisite radar
systems was analyzed in [5]. As shown in [6, 13],
multisite radar systems have many known advantages in
comparison with conventional monostatic radars, such as
expanded coverage, better detection performance, higher
target localization accuracy and better jamming
cancellation performance (see also [2, 13, 14]).

Distributed MIMO radar is also termed spatial
diversity MIMO radar [13] because it can exploit target
spatial scattering diversity to combat target radar cross
section (RCS) scintillation. Besides spatial scattering
diversity, radar targets also bear frequency scattering
diversity, i.e., a radar target may reflect different responses
when illuminated by signals of different carrier
frequencies. Target frequency scattering diversity can also
be used to combat target RCS fluctuation [15, 16]. In
spatial-frequency joint diversity radar (SFDR) [17] which
contains multiple widely separated radar sites all capable
of working at multiple frequencies, both spatial scattering
diversity and frequency scattering diversity of radar targets
can be exploited. Using the incoherent accumulating
detection (IAD) algorithm with uniform weights, it was
found that both spatial diversity radar [13] and frequency
diversity radar [15, 16, 18] can achieve a better detection
performance than a nondiversity one.

However, for distributed MIMO radar, it is often
difficult for the IAD with uniform weights to reach the
optimal detection performance because of two challenges.
The first is that radar sites in an SFDR may have different
channel signal-to-noise ratios (SNRs) for many reasons,
such as different distances from radar sites to a target. The
second is that complex envelopes of target returns in
diversity channels may be partially correlated [17]. In
order to realize the potentials of diversity radar in
detection performance, high-performance detection
algorithms should be designed.

For conventional monostatic radar, the
above-mentioned two challenges may be circumvented by
properly choosing radar parameters. In this case, the
classical Swerling model [19], which simply deems
complex envelopes of target returns either completely
correlated or independent, can be used with an acceptable
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detection performance loss. The Swerling model was
also used early in [13] and later in [2, 20, 21] to evaluate
the detection performance of distributed MIMO radar.
The Swerling model was actually proposed for
conventional radar and one should be careful when
generalizing it to distribution MIMO radar, especially
for some situations where target returns are partially
correlated.

In fact, it has been noticed that several kinds of
diversity radar may received partially correlated target
returns [17, 22]. In this case, it may be unreasonable to
deem target returns either completely correlated or
statistically independent. For partially correlated target
returns, correlation coefficient is widely used as a measure
of correlation of target returns. For instance, in both
conventional nondiversity radar [23] and emerging
distributed MIMO radar [24, 25], correlation coefficient is
used to describe the degree of correlation of target returns.
However, the correlation coefficient was derived for
certain simple situations in [23–25] and the resulting
correlation coefficients are powers of a seed correlation
coefficient. In some situations, both the seed correlation
coefficient and the powers may be difficult to determine.
In diversity radar with complicated structures, such
as the SFDR, this target model may no longer be
applicable.

For distributed MIMO radar, the correlation of target
returns depends on where the target is present [22, 25, 26].
No matter how far radar sites are spatially separated,
provided that the angles of view of radar sites to a target
are sufficiently close, partially correlated target returns
will be received [17, 22]. In order to study spatial diversity
and frequency diversity of radar targets in a uniform
framework, correlation coefficient of target returns is
formulated at the background of an SFDR system in [17].
The SFDR contains multiple kinds of diversity channel
pairs. Some diversity channel pairs are present in spatial
diversity radar and frequency diversity radar, while some
diversity channels are untouched before, such as the
diversity channel pair of which two diversity channels
have different transmitters, different receivers, and
different working frequencies. The diversity channel pairs
are categorized into four types. For all types of diversity
channel pairs in the SFDR, based on a round-shaped
scatterers center target model, it is proved that the
correlation coefficient of two target returns can be
expressed by a function of target size and the correlation
of two channels. The correlation of two channels is
measured by the equivalent frequency interval (EFI).
Different types of diversity channel pairs have different
expressions of the EFI [17]. This method directly
calculates correlation coefficients of target returns in
diversity channels and enables the design of novel
detection algorithms for diversity radars involving both
spatial diversity and frequency diversity.

In this paper, we first briefly introduce the method
proposed in [17] to estimate correlation coefficient of
target returns in the SFDR. In association with channel

SNRs, a target fluctuation covariance matrix (TFCM) is
defined. According to channel SNR distribution and
correlation of target returns, six typical situations
regarding channel SNR distribution and correlation of
target returns are considered, each bearing certain
distinct structures of the TFCM. Based on the
Neyman-Pearson criterion [27], several detection
algorithms are formulated with respect to the situations.
For instance, the general Gaussian signal detector (GGSD)
is formulated for the situation where the TFCM is an
arbitrary semidefinite positive Hermitian matrix; the SNR
weighting based detector (SWD) is formulated for the
situation where the TFCM can be considered as a diagonal
matrix.

In practice, the presumed TFCM structure may
mismatch the real one. Meanwhile, the unknown
parameters used to compute the TFCM may be estimated
in low accurancy. In this case, the resulting detection
algorithms may suffer from a detection performance loss.
Therefore, we derive theoretical detection probabilities of
concerned detection algorithms when the TFCM takes any
possible structure.

The detection performances of concerned detection
algorithms are analyzed via numerical results in several
different scenarios. We first study the impact of target
correlation coefficient and channel EFI on target detection
performances of concerned detection algorithms and the
diversity radar itself. Then we concern a situation where
target returns are statistically independent but channel
SNRs are different. Finally, a diversity radar system with
more diversity channels is considered, where target returns
are partially correlated and channel SNRs are
different.

Using the GGSD with exact knowledge of statistical
distribution of target returns, the optimal detection
performance of diversity radar is studied when target
returns are partially correlated and channel SNRs are
different. It is found that whether a diversity radar would
bear a higher detection performance than that of a
nondiversity one depends on both the total SNR of
diversity channels and the false alarm rate prescribed.
Given total SNR and false alarm rate, only an appropriate
degree of signal diversity can achieve the highest detection
probability. As special cases of the SFDR, most existing
spatial diversity radar and frequency diversity radar can
share the same results and conclusions presented in this
work.

The rest of this paper is organized as follows.
Section II introduces the SFDR concerned in [17] and the
method to estimate target correlation coefficients. In
Section III, we formulate target detection algorithms for
six typical radar situations, different in assumptions
imposed on the correlation of target returns and channel
SNR distribution. Via numerical results, Section IV
studies the detection performances of detection algorithms
and diversity radar itself when target returns are partially
correlated and channel SNRs are different. Section V
presents conclusions and discussion.
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Fig. 1. (a) Topology of SFDR system. (b) Diversity receiving channels in receiving end of radar site.

II. SFDR and TFCM

A. Deployment of the SFDR

The topology of the SFDR system concerned in [17] is
shown in Fig. 1(a), where Ai , i = 1, 2, · · · denote
spatially distributed radar sites, the squares stand for
spatial resolution cells, the square with a shadowed circle
inside represents the spatial resolution cell under test, and
the shadowed circle represents a possible radar target. For
simplicity, assume that working frequencies of the radar
sites are chosen from the same set. Each radar site has an
identity code to modulate its transmit waveforms. The
identity codes are orthogonal to each other [28], and the
orthogonality between the identity codes is maintained
even for different mutual delays, such that a receiver can
distinguish received signals caused by different
transmitters. A low degree of correlation between
waveforms can avoid mutual interference between signals
transmitted by different radar sites but of the same carrier
frequency. Ideal orthogonality even at different mutual
delays is nearly impossible for real waveforms and there
are many algorithms proposed to design waveforms for
MIMO radar [28, 29].

At the receiving end of each radar site, returns due to
different transmitters should be separated. For the SFDR
under consideration, there are various signal processing
schemes to separate returns due to different transmitters.
A typical one is given in Fig. 1(b), which is proposed in
[17]. In this signal processing scheme, received signals
would first pass a filter bank composed of filters working
at different frequencies to separate the returns of different
carrier frequencies. Subsequently, the output signals of
such a filter would then pass another filter bank composed
of filters whose weights are the identity codes, such that
the returns of the same frequency but from different
transmitters can be separated. At this stage, the identity
codes are actually used to distinguish target returns caused
by different transmitters. This process can be considered

as matched filtering or range compression. At the output
of this process, the returns due to different transmitters can
be finally separated.

Assume that transmit waveforms are narrowband and
their range resolutions are all greater than target size.
After range compression, a range cell is sufficient to
accommodate a target return. For the spatial resolution cell
under test, each active diversity channel can contribute an
observation or a sample, which would be transmitted to the
signal fusion center to make a global decision on whether
a target is present in the spatial resolution cell or not.

B. Target Detection Problem for Diversity Radar

Assume that at the fusion center, L observations from
L active diversity channels with respect to a spatial
resolution cell under test are available, denoted by
r ∈ CL×1. In the spatial resolution cell under test, a target
is either present or absent and thus the observations r
under both the hypotheses can be written as

{
r = n, H0 : Target is absent
r = s + n, H1 : Target is present

(1)

where s ∈ CL×1 is a vector of the returns from a target
possibly present in the spatial resolution cell under test,
and n ∈ CL×1 is the channel interference component.

Before introducing the method to estimates correlation
coefficients of target fluctuations in diversity channels, we
first state the necessity to estimate them in the radar target
detection problem. According to the Neyman-Pearson
criterion [30], the detection algorithm with the optimal
detection performance can be developed using the
following likelihood ratio test

� (r) = fr|H1 (r)

fr|H0 (r)

H1
>
<
H0

δ (2)
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where δ denotes a threshold, and fa (·) denotes the
probability distribution function (pdf) of a random
variant a.

It can be seen from the test (2) that the statistical
distribution of received signals under both the hypotheses
are indispensible to derive the optimal detection
algorithm. Generally speaking, target returns are
statistically independent of background interference
signals. So we have to obtain the statistical distribution of
s for obtaining fr|H1 (r).

In practice, targets falling into the scope of a radar may
be of various types. Different targets have different
scattering characteristics. Therefore, it is very difficult to
find a target model matching all possible targets. In the
radar field, one often uses a mathematically tractable
replacement of possible targets, based on which the
statistical distribution of s can be formulated.

The scatterers center target model is a widely used
replacement to approximate the scattering characteristic of
possible radar targets [2, 13, 26, 31]. According to this
target model, a radar target is composed of multiple
scattering centers with statistically independent scattering
intensities and then a target return is simply a sum of
responses of those scattering centers. For multisite radar
systems, this target model is used in [13] to derive the
so-called space-time correlation matrix of signal
fluctuations.

As a sum of many statistically independent elements,
the target return component is often considered as a
random variable following a zero-mean complex Gaussian
distribution. Under the narrowband assumption on
transmit waveforms, the target return component can be
considered to be in a spatial resolution cell. In order to
obtain the statistical distribution of s, the TFCM is
indispensible.

Radar detection algorithms are often designed under a
specific assumption on the structure of the TFCM. For
instance, for conventional nondiversity radar, target
returns are often assumed to be completely correlated and
then the elements of the TFCM have the same modulus;
while for frequency diversity radar, target returns are often
assumed to be statistically independent and then the
TFCM is reduced to a diagonal matrix with identical
diagonal elements.

For the SFDR at hand, it is difficult to make envelopes
of target returns from all active diversity channels
statistically independent [26]. Therefore, in the case of the
SFDR, the correlation of target returns is much more
complicated. Target returns may be neither completely
correlated nor independent and then the TFCM may
exhibit structures that are more complicated. In this case,
it may be inappropriate to impose a specific structure on
the TFCM and thus its elements should be estimated
separately.

C. Correlation Coefficient of Target Returns

Under the H1 hypothesis, the signal received in the ith
active diversity channel with respect to the resolution cell

under test can be rewritten as [17]

ri = si + ni, i = 1, . . . , L (3)

where ni denotes the channel interference component,

si =
√

Eiηi exp (−j2πfiDi/c) (4)

the target response component,
√

Eiηi denotes the
envelope of the target return, Ei denotes the variance or
mean power of the target response component, ηi denotes
the target scattering fluctuation term, fi denotes the
working frequency of the ith diversity channel, Di denotes
the distance from the transmitter to the target center and
then back to the receiver, and c denotes the speed of light.
The envelope of target return is modeled as a zero-mean
complex Guassian distributed variable, so Ei stands for its
variance and ηi is a normalized random variable following
the standard complex Gaussian distribution.

For diversity radar, independent target components are
preferable, because the optimal detection algorithm for
them has a simple structure and a low computation cost.
Independence criterion is a criterion to assess whether
ηi, i = 1, 2, . . . are statistically independent.
Independence criteria for distributed MIMO radar and
frequency diversity radar have been studied in the past [2,
13, 15, 16]. For instance, the spatial-temporal correlation
matrix of signal envelopes from an arbitrary 3D moving
target is derived in [13] for distributed radar. In addition,
simple approximate equations and inequalities are given in
[13] for regions of high and low correlation. For the SFDR
under consideration, a unified independence criterion for
any kind of diversity channel pairs is proposed in [17] as

fed/c ≥ ε/2 (5)

where d denotes target size, ε is a strictness factor
commonly set by ε = 1 [1, 2, 15, 16], and fe denotes the
EFI of a diversity channel pair defined in [17]. In [17], a
polar coordinate system was constructed with its origin
located at target center. For the diversity channel with
respect to the ith sample, the polar angle of its transmitter
is denoted by αi , and that of its receiver by βi . The EFI of
the diversity channel pair composed of the ith and the j th
diversity channel can be expressed by [17]

fe = 1

2
sqrt

{
2f 2

i [1 + cos (αi − βi)]

+ 2f 2
j

[
1 + cos

(
αj − βj

)]
− 2fifj

[
cos

(
αi − αj

)+ cos
(
αi − βj

)
+ cos

(
βi − αj

)+ cos
(
βi − βj

) ]}
(6)

where sqrt (·) denotes the square root.
For distributed MIMO radar, the noncoherent signal

processing scheme is less difficult to implement in a real
engineering application than the coherent processing
scheme. In order to make the noncoherent signal
processing scheme achieve a better detection performance,
target returns received by widely separated radar sites
should be statistically independent. For that purpose,

3140 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 50, NO. 4 OCTOBER 2014



relative working parameters of distributed MIMO radar are
often designed to meet a certain independence criterion.

However, an independence criterion cannot tell the
degree of correlation of partially correlated target returns.
As it is often difficult in practice to totally exclude
partially correlated target returns [17, 26], accurate
description of the correlation of target returns is critical for
distributed MIMO radar that may receive partially
correlated target returns. Based on the round-shaped
scatterers center target model, a unified expression of the
correlation coefficient was developed for all kinds of
diversity channel pairs present in the SFDR. Specifically,
the correlation coefficient of the envelopes of two target
returns from the ith and the j th diversity channel of the
SFDR can be expressed by [17]

ρ = E
(
ηiη

∗
j

) = jinc (2fed/c) (7)

where E (·) is the expectation operation,

jinc (x) =2J1 (πx) /πx (8)

is known as the “jinc” function in optical literature [32],
and J1 (·) is the Bessel function of the first kind of the first
order.

This result can be applied not only to the SFDR under
consideration but also to most radars involving spatial
diversity and frequency diversity, whose diversity channels
are all included in the SFDR as well (see [17] for details).

As a measurement of correlation coefficient, |ρ| ≤ 1.
Theoretically speaking, if |ρ| = 1, target fluctuations can
be considered to be completely correlated; if 0 < |ρ| < 1,
target fluctuations can be considered to be partially
correlated; if ρ = 0, target fluctuations can be considered
to be statistically independent. However, as shown in [17],
the correlation coefficient with respect to the
independence criterion is actually not zero but 0.1812
instead. Therefore, the independence criterion is just a
convention, not a strict value.

The effect of target movement on target fluctuation is
developed in [13] but is not considered in the derivation in
[17], for that the coordinate system used in [17] for
derivation is fixed on the target and thus the motion of
target is transferred to the motion of radar sites. In fact, the
fluctuation of target returns for a moving target is caused
by the spatial diversity of the target. Given a radar system
and its probing waveform, a stationary target in space
would theoretically always give the same response
whenever we probe it. Therefore, target temporal
fluctuation is essentially a kind of target spatial fluctuation.
With this fact in mind, one can analyze the impact of
target movement under this framework as well. This
problem will not be addressed further here for simplicity.

D. TFCM

From (7), correlation coefficient of target returns
depends on both target size represented by d and channel
correlation measured by fe. For each spatial resolution
cell, its spatial location can be estimated via time of arrival

and direction of arrival and then the channel correlation
measure fe can be calculated with great accuracy.

In estimation of correlation coefficients of target
returns, target size d is more difficult to determine than the
fe, because real targets often have different sizes and thus
may give responses with different correlation
characteristics. The choice of target size is discussed later
and we first assume that target size has been
predetermined according to a certain criterion.

Based on a given target size, the correlation
coefficients of target returns can be estimated according to
(7). For all active diversity channels in SFDR, the
correlation coefficients of target returns can comprise a
matrix denoted by �t = E

(
ηηH

)
, where

η = [η1, . . . , ηL]T, (·)H denotes the conjugate transpose
and (·)T denotes the transpose. It can be proved that �t is a
Hermitian matrix. Its diagonal elements are all ones, and
the others have absolute values less than or equal to one.
Taking the range phase term into consideration, we can
define a signal correlation coefficient matrix by

�s = diag (p) �tdiag
(
p∗) (9)

where

p = [
exp (−j2πf1D1/c) , . . . , exp (−j2πfLDL/c)

]T
is an L × 1 vector of the channel range phase terms,
diag (p) with a vector entry stands for a diagonal matrix
with the entry vector p as its diagonal elements, and (·)∗
denotes the conjugate. Based on the signal correlation
coefficient matrix �s, the signal covariance matrix can be
defined by

Cs = E
(
ssH
) = diag (E) diag (p) �tdiag

(
p∗) diag (E)

(10)
where E = [√E1, . . . ,

√
EL

]T
.

For coherent signal processing algorithms, the range
phase term p generally has a great impact on the target
detection performance. Only under the condition that the
range phase terms can be perfectly compensated in each
diversity channel, can coherent signal processing
algorithms reach their best detection performance.
Therefore, range phase compensation is an important
issue. In this work however, we are concerned more about
correlation of target returns and the distribution of channel
SNRs, because both of them have a great impact on the
optimal detection performance. Therefore, we simply
assume that the range phases of diversity channels are
exactly known and thus can be perfectly compensated.

Excluding the range phase term p, the covariance
matrix of target fluctuations (TFCM) can be defined by

Ct = diag (E) �tdiag (E) (11)

The relationship between Cs and Ct is

Cs = diag (E) �sdiag (E) = diag (p) Ctdiag
(
p∗) . (12)

The interference covariance matrix is denoted by
Cn = E

(
nnH

)
. It can be easily proved that Cn, �t, �s, Ct,

and Cs are all positive semidefinite matrices.
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The eigen decomposition of the TFCM Ct can be
written as

Ct = Qt�tQH
t (13)

where Qt takes the eigenvectors as its columns,
�t = diag (ht), and ht = [h1, . . . , hL]T is a vector of the
eigenvalues. Since Ct is positive semidefinite, without loss
of generality, we assume that the eigenvalues in ht are
sorted in a descending order such that h1 ≥ · · · ≥ hL ≥ 0.
From (12) and (13), Cs can be decomposed into

Cs = diag (p) Qt�tQH
t diag

(
p∗) (14)

where diag (p) Qt takes the eigenvectors of Cs as its
columns.

The method to estimate correlation coefficients of
target returns has been presented. In addition to estimates
of interference distribution and channel SNRs, the pdfs of
received signal under both of the hypotheses can be
obtained and then detection algorithms can be formulated
from the likelihood ratio test (2), as shown subsequently.

III. DETECTION ALGORITHMS
FOR DIVERSITY RADAR

In this section, we first formulate the detection
algorithm when TFCM is exactly known. Then how to
estimate the TFCM is discussed. In some situations, the
TFCM may take a special structure and according to the
structure of the TFCM, six typical situations are
considered, based on which corresponding detection
algorithms are formulated.

A. Detection Algorithm for General Cases

Assume that the background interferences in diversity
channels follow zero-mean complex Gaussian distribution
with covariance matrix Cn = E

(
nnH

)
. Under the H0

hypothesis, the covariance matrix of r under the H0

hypothesis can be written as

C0 = E
(
rrH |H0

) = E
(
nnH) = Cn. (15)

The pdf fr|H0 (r) can be expressed as follows

fr|H0 (r) = 1

πL |C0| exp
(−rHC−1

0 r
)

= 1

πL |Cn| exp
(−rHC−1

n r
)

(16)

where |·| with a square matrix entry denotes the
determinant of the entry matrix.

Under the assumption that target returns and channel
interferences are statistically independent of each other,
the covariance matrix of r under the H1 hypothesis,
denoted by C1, can be written as C1 = E

(
rrH |H1

)
= Cs + Cn. Therefore, the pdf fr|H1 (r) can be expressed
by

fr|H1 (r) = 1

πL |C1| exp
(−rHC−1

1 r
)

= 1

πL |Cs + Cn| exp
[−rH (Cs + Cn)−1 r

]
. (17)

Inserting pdfs (16) and (17) into (2) and after some
simple maniplations, we can obtain the following test
statistic [30]

T (r) = 2rH (C−1
0 − C−1

1

)
r = 2rH
Cr (18)

where


C = C−1
0 − C−1

1 = C−1
n − (Cs + Cn)−1 . (19)

Derived from the Neyman-Pearson criterion, the test
statistic (18) is optimal if all the involved parameters, i.e.,
Cn and Cs, are exactly known.

In practice, if background interference contains only
the channel thermal noise, the interference covariance
matrix Cn can be considered as an identity matrix after
normalization of received signals with respect to noise
levels of diversity channels. If clutter returns are present in
frequency diversity channels or jamming signals are
present in spatial diversity channels, the interferences with
respect to the same resolution cell may be mutually
correlated and then Cn may no longer be an identity
matrix. In this case, if we estimate Cn by using some
independent and identically distributed training samples,
the detection algorithm resulted from (18) does not bear
the constant false-alarm rate (CFAR) property with respect
to Cn. Therefore, we do not consider a detection algorithm
for this situation.

However, if training samples are sufficient to obtain an
ideal estimate of Cn, with a linear transform C−1/2

n r to
received signals r, the resulting interference covariance
matrix Cn becomes an identity matrix I. After this
transformation, the signal covariance matrix becomes
C−1/2

n CsC
−1/2
n , which can be proved to still be a positive

semidefinite Hertimian matrix as Cs. Therefore, without
loss of generality, we always assume in what follows that
Cn = I and still denote the signal covariance matrix by Cs.
In this case, we have{

E (r |H0 ) = 0

C0 = E
(
rrH |H0

) = Cn = I
(20)

and {
E (r |H1 ) = 0

C1 = E
(
rrH |H1

) = I + Cs
. (21)

For the target component si , we define the SNR for
such a random value with respect to the ith diversity
channel by

Ei = var (si)

var (ni)
. (22)

In the numerical experiment section, the concept of total
SNR (TSNR) will be used to measure the detection
performance of diversity radars, which is defined by

TSNR =
L∑

i=1

Ei =
L∑

i=1

var (si)

var (ni)
. (23)
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TABLE I
Six Typical Situations Regarding Channel SNR Distribution and Correlation of Target

Returns

Correlation of Target Returns

Channel SNR Distribution Completely Correlated Independent Partially Correlated

Uniform I II III
Nonuniform IV V VI

If the noise levels of all diversity channels are identical,
we have

TSNR =

L∑
i=1

var (si)

var (n)
. (24)

Therefore, given a TSNR, the total power of target
components in received signals can be considered as a
constant, hence the name TSNR. Using the TSNR, a fair
comparison of the detection performance between
diversity radars with SNR ratios can be guaranteed.

Under the assumption that the channel range phase
terms are known a priori, the parameters left unknown to
construct the TFCM are the correlation coefficient matrix
�t and the channel SNR vector E. In certain scenarios, the
TFCM may take some special structures and the structure
is mainly determined by �t and E. Based on possibilities
of �t and E, we categorize real situations into six different
scenarios, which are listed in Table I.

In Table I, “completely correlated” means that �t is an
all-one matrix; “independent” means that �t is an identity
matrix; “semicorrelated” means that �t may be any kind
of correlation coefficient matrix of envelopes of target
returns; “uniform” means that all the elements in E are the
same; “nonuniform” means that the elements in E may be
different.

It should be noted that four among six situations (i.e.,
I, II, IV, and V) have been considered before in [13] while
the two left (i.e., III and VI) have seldom been considered.

In these scenarios, there are some statistical
distribution parameters unknown and needing for
estimation. The accuracy of the estimation has a great
impact on the detection performance of the resulting
detection algorithms. Therefore, in the following, we first
discuss how to estimate them in engineering practice.

B. Estimation of TFCM

The TFCM is computed by �t and E, both needed for
estimation. As mentioned above, target size has a great
impact on the degrees of statistical correlation of target
returns. However, online estimation of signal correlation is
not suggested at the target detection stage, because at this
stage, we do not know whether a target is present in the
spatial resolution cell, not to mention its shape and size.
Furthermore, even if a target is present, the SNR may be
low and the sample size may be limited, making the
estimation possibly inaccurate. For the same reason, it is
not recommended to estimate E by online real data as well.

We first consider the estimation of �t. We recommend
to estimate the target size parameter offline instead of
online. According to formula (7), the target correlation
coefficient depends on two factors: one is the channel
correlation indicated by the EFI fe, and the other is the
target size indicated by d. From (6), the EFI may depend
on both radar working frequency (or frequencies) and the
spatial location of the presumed target. Given a
deployment of radars, one can accurately calculate an EFI
for any spatial resolution cell with great accuracy
according to (6). The spatial location of a spatial
resolution cell can be generally determined by time of
arrival and direction of arrival of received signals. A
spatial resolution cell generally occupies a certain area and
one can calculate the EFI with respect to its center. The
spatial points within a spatial resolution cell may give rise
to different EFIs, but if the size of the spatial resolution
cell is far smaller than the distance between radar sites and
the center of the spatial resolution cell, the EFIs of the
spatial points are often close to each other. Therefore,
spatial points in the same spatial resolution cell can be
considered to bear the same EFI.

The difficulty of the correlation coefficient estimation
lies in the way to select the target size. If target size can be
accurately estimated, the resulting detection algorithm
would be close to the optimal one; larger target-size
mismatch may result in a greater loss in detection
performance. Real targets may have any shape, size, and
attitude. A target size matching a group of targets may
mismatch others and thus it is very difficult to match all
possible targets perfectly.

Fortunately, targets of interest to a real radar system,
such as planes and missiles, often have a limited range of
size. Based on this knowledge, one can choose the most
common target size, the size of the most valuable targets,
the statistical average of the sizes of possible targets, or
values determined by other criteria. In accordance to
whatever criterion, one can determine a target size and we
denote it here by d̂, in expectation that the detection
performance loss is acceptable.

With the EFI calculated and target size estimated or
presumed, a target correlation coefficient matrix can be
estimated offline for any spatial resolution cell. For the
spatial resolution cell under test, the estimate of target
correlation coefficient matrix is denoted by �̂t and the
estimate of channel SNRs by Ê. With �̂t and Ê at hand, an
estimate of Ct can be obtained as

Ĉt = diag
(

Ê
)

�̂tdiag
(

Ê
)

. (25)
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Because �t is a positive semidefinite Hermitian
matrix, its estimate �̂t should be guaranteed to be positive
semidefinite Hermitian matrix as well. If �̂t obeys this
condition, Ĉt and Ĉs = diag (p) Ĉtdiag (p) obey as well.
The eigen decomposition of Ĉt can be expressed by

Ĉt = Q̂tdiag
(

ĥt

)
Q̂H

t (26)

where ĥ1, . . . , ĥL are eigvenvalues of Ĉt, and Q̂t is a
matrix of eigvenvectors. Without loss of generality, we
assume that ĥ1 ≥ ĥ2 ≥ · · · ≥ ĥL ≥ 0. The rank of Ĉt,
denoted by Nr, satisfies Nr ≤ L. The optimal detection
algorithm in (18) uses the real parameters of the statistical
distribution of received signals under two hypotheses. In
practice, those distribution parameters should be replaced
by estimated values or presumed ones. In the following,
under different presumptions on those unknown
parameters, we derive different target detection
algorithms.

C. GGSD

1) Test Statistic: In situation VI, all the parameters are
unknown and thus should be estimated. Substituting Ĉs for
Cs in (18), we have

T (r) = 2rH

[
I −

(
I + Ĉs

)−1
]

r = 2rHĈs

(
I + Ĉs

)−1
r

(27)
where

Ĉs = diag (p) Ĉtdiag
(
p∗) (28)

because p is known a priori by assumption. According to
(28), the test statistic (27) can also be reformulated to

T (r) = 2rHdiag (p) Ĉt

(
I+Ĉt

)−1
diag

(
p∗) r. (29)

We deem the operation diag (p∗) r as the phase alignment
and phase compensation operation for the diversity
channels. Using the eigen decomposition of Ĉt given by
(26), we can further obtain the following test statistic

T (r) = 2rHdiag (p) Q̂tdiag (ŵt) Q̂H
t diag

(
p∗) r (30)

where ŵt = [w1, . . . , wL]T, and ŵi = ĥi/
(
ĥi + 1

)
. In

(30), the operation Q̂H
t diag (p∗) r transforms the received

signals into statistically independent ones and the
independence is maintained for both hypotheses, as will
be proved later. The ŵi , i = 1, . . . , L, are the weights
applied onto those independent signals.

It can be seen from (30) that if Q̂t is rank-deficient,
some weights may be zeros. With Nr nonzero weights
available, the detection algorithm can be written in another
form as

T (r) = 2rHdiag (p) Q̂Nr diag
(
ŵNr

)
Q̂H

Nr
diag

(
p∗) r (31)

where ŵNr denotes a vector of the first Nr nonzero
elements of ŵt, and Q̂Nr denotes the eigenvectors
corresponding to the Nr nonzero eigenvalues. The column
vectors of Q̂Nr construct mutually independent signal

spaces with nonzero SNRs. In practice, the signal space
and their weights can be calculated offline while the test
statistic (31) needs to be calculated online.

2) False Alarm Rate: To derive the false alarm rate, we
first apply the following linear transform to the received
signals

y = Q̂H
t diag

(
p∗) r. (32)

Then we can rewrite (30) as

T (r) = 2yHdiag (ŵt) y. (33)

Under the null hypothesis, from (20), we have

cov (y |H0 ) = E
(
yyH |H0

)
= E

(
Q̂H

t diag
(
p∗) rrHdiag (p) Q̂t |H0

)
= I

(34)

where cov (·) denotes the covariance matrix of a vector of
random variables. Therefore, the elements of y are
independent and identically distributed random variables
following the standard complex Gaussian distribution. It is
well known that the modulus square of a zero-mean
complex Gaussian distributed variable follows the
exponential distribution. Therefore, the test statistic (33)
follows the weighted exponential distribution [33] with
weighting vector ŵt, denoted by Eŵt . Weighted
exponential distribution is actually a special case of
weighted Chi-square distribution [34].

The false alarm rate of the test statistic (30) can be
expressed by

pf = prob
(
Eŵt ≥ g

) = Q
(
g, Eŵt

)
(35)

where g denotes the decision threshold, prob (·) denotes
the probability operator, and Q

(
g, Eŵt

)
denotes the

cumulative distribution function (cdf) of the weighted
exponential distribution. Q

(
g, Eŵt

)
and the false alarm

rate can be calculated by using the method proposed in
[33]. However, the expression of Q

(
g, Eŵt

)
is

complicated and for simplicity we do not show it here.
Based on the cdf, the decision threshold g can be obtained
by a numerical searching procedure in practice.

3) Probability of Detection: Under the H1 hypothesis,
we apply another linear transform to the received signals
r, i.e.,

y = (�t + I)−1/2 QH
t diag

(
p∗) r. (36)

It can be easily proved that E (y |H1 ) = 0 and

cov (y |H1 )

= E
[
(�t + I)−1/2 QH

t diag
(
p∗) rrdiag (p) Qt (�t + I)−1/2]

= I. (37)

From (36), we have r = diag (p) Qt (�t + I)1/2 y and then
the test statistic (30) becomes

T (r) = 2yHGy (38)

where

G = (�t + I)−1/2 QH
t Q̂tdiag (ŵt) Q̂H

t Qt (�t + I)1/2 . (39)
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Since all the elements of ŵ are nonnegative, G is a
positive semidefinite Hermitian matrix and its eigen
decomposition can be written as G = Udiag (v) UH, where
U is the eigenvector matrix of G and v is the vector of its
eigenvalues. To derive the distribution of T (r) under the
H1 hypothesis, we apply the following linear transform to
y as

z = UHy. (40)

Then we have T (r) = 2zHdiag (v) z. From (37), the mean
and covariance matrix of z is E (z) = 0 and
cov (z) = UHE

(
zzH
)

U = I, respectively. Consequently,
the test statistic T (r |H1 ) follows the weighted
exponential distribution with weighting vector v, denoted
by Ev, and the probability of detection can be expressed by

pd = Q (g, Ev) . (41)

With inaccurate estimate of the real value of Ct, the
detection probability of the GGSD can be obtained using
expression (41).

If Ct is exactly known, i.e., Ĉt = Ct, then Q̂t = Qt,
diag (ŵt) = �t (�t + I)−1, G = �t, and v = ht. In this
case, the maximal detection probability of the GGSD can
be achieved as

pdmax = Q
(
g, Eht

)
. (42)

4) Discussion: With a matrix inversing operation in the
test statistic (29), it appears that the GGSD algorithm is
time consuming. However, Ct, the signal space and its
associated weights can be estimated offline instead of
online in practice. This makes the computational cost of
the test statistic (31) affordable for real application.

According to (11), the estimation of Ct depends on the
estimates of E and �t, and a total of L (L + 1) /2
unknown parameters are involved. In some scenarios
where some of those parameters can be considered to be
the same or to have certain special values, the algorithm
can be further simplified.

D. SWD

1) Test Statistic: In situation V, target returns in all the
diversity channels can be considered to be statistically
independent, such that the target correlation coefficient
matrix �t becomes an identity matrix. Consequently, we
have �s = Qt = I and Cs = �t = diag

(
E2
)
.

Furthermore,


C = I − (�t + I)−1 = I − [
diag

(
E2)+ I

]−1

= �t (�t + I)−1 = diag
[
E2/

(
E2 + 1

)]
. (43)

Then the test statistic (18) can be formulated to

T (r) = 2rH�r = 2rHdiag
[
E2/

(
E2 + 1

)]
r. (44)

Using the estimate of E, we can obtain the test of the
SNR weighting based detection (SWD) algorithm as

follows

T (r) = 2rHdiag
[
Ê2/

(
Ê2 + 1

)]
r = 2

L∑
i=1

Êi

Êi + 1
|ri |2

(45)
where |·| with a scalar entry denotes the absolute value of
the entry scalar.

From (45), the SWD applies different weights to the
received signals according to the SNRs of diversity
channels. It can be seen from (45) that if the channel SNRs
are all far greater than one, all the weights approximate to
one, regardless of the values of the channel SNRs; if all
the channel SNRs are far less than one, channel weights
are approximately equal to the channel SNRs.

It should be noted that a detection algorithm
concerning channel SNR difference was considered much
earlier in [13] and a detailed analysis regarding SNR
difference was also given therein. However, developed
under different criteria, these two tests have slightly
different weights. In test (45), the weights for the signals
from different channels depend only on the channel SNRs,
while in [13], more parameters are involved in the weights.

2) False Alarm Rate: Under the null hypothesis and
from (20), the test statistic (45) follows weighted
exponential distribution with weighting vector

Ê2/
(

Ê2 + 1
)

. Therefore, the false alarm rate can be

expressed as

pf = Q
(
g, EÊ2/(Ê2+1)

)
. (46)

3) Probability of Detection: Under the alternate
hypothesis, we still apply the linear transform (36) to r
and then obtain

T (r) = 2yHG y (47)

where

G = (�t + I)1/2 QH
t diag

[
Ê2/

(
Ê2 + 1

)]
Qt (�t + I)1/2 .

(48)
Just like G, G is a positive semidefinite Hermitian matrix
and can be decomposed as G = Udiag

(
v
)

UH, where U is
the eigenvector matrix and v is a vector of eigenvalues.
With the linear transform z = UHy, we have

T (r) = 2zHdiag
(
v
)

z. (49)

It can be proved that E
(
z
) = 0 and E

(
zzH
)= I.

Therefore, the test statistic in (49) follows weighted
exponential distribution with the weighting vector v.
Consequently, the detection probability of the SWD
algorithm can be written as

pd = Q
(
g, Ev

)
. (50)

The detection probability (50) applies for TFCMs with an
arbitrary permissible structure.

If the target returns are statistically independent as
presumed, then we have Qt = I, Ct = �t = diag

(
E2
)
, and

v = Ê2 (E2 + 1
)
/
(

Ê2 + 1
)

. (51)

LIU ET AL.: DETECTION PERFORMANCE OF SPATIAL-FREQUENCY DIVERSITY MIMO RADAR 3145



In this case, the detection probability of the SWD can be
written as

pd = Q
(
g, EÊ2(E2+1)/(Ê2+1)

)
. (52)

In addition, if the channel SNRs can be accurately
estimated such that Ê = E, the SWD reaches the
maximum probability of detection, i.e.,

pd = Q (g, EE2 ) . (53)

4) Discussion: From (31), the GGSD is composed
of a whitening filter bank, whose weighting matrix is
Q̂H

Nr
diag (p∗), followed by an SWD with weighting vector

ŵNr . If the envelopes of target returns are statistically
independent, �t will be an identity matrix and then the
whitening process in the GGSD can be omitted without
detection performance loss. In this case, the GGSD
becomes the SWD.

The SWD is optimal under two conditions. First, both
the target returns and the background interferences are
statistically independent; second, the SNRs of received
signals are accurately known. In order to use noncoherent
SWD without detection performance loss, working
parameters of diversity radar are often designed to obtain
statistically independent target fluctuations. For that
purpose, spatial diversity radar should separate distributed
radar sites sufficiently far, and frequency diversity radar
should separate working frequencies sufficiently far.

In scenarios where channel SNRs are approximately
the same, e.g., frequency diversity radar whose diversity
channels often have identical SNRs, the SWD can be
further simplified.

E. IAD

1) Test Statistic: In situation II, envelopes of target
returns are statistically independent and diversity channels
have the same SNR, i.e., �̂t = I and Ê1 = · · · = ÊL ≡ Ê.
In this case, the detection algorithm (44) can be simplified
to

T (r) = 2rHr (54)

which is well known as the test statistic of the IAD.
The IAD is a classical radar detection algorithm [13],

which has been widely considered in researches on
frequency diversity radar [15, 16] and spatial diversity
radar [2, 9]. Different from the GGSD and the SWD, the
IAD does not need to estimate any parameter of statistical
distribution of received signals, which can greatly
facilitate engineering application.

2) False Alarm Rate: Under the null hypothesis, from
(20), T (r) follows a Chi-square distribution with 2L

degrees of freedom, denoted by χ2
2L. Consequently, the

false alarm rate can be obtained by [13]

pf = Q
(
g, χ2

2L

)
. (55)

3) Probability of Detection: Under the H1 hypothesis,
we still apply the transform in (36) to the test statistic in

(54) and then obtain

T (r) = 2yH (�t + I) y. (56)

From (37), T (r) follows a weighted exponential
distribution with weighting vector ht + 1. Therefore, the
detection probability of the IAD can be written as

pd = Q
(
g, Eht+1

)
. (57)

The detection probability (57) applies for any TFCM
structure. Specially, if �t= I and Cs = EI, the weighted
exponential distribution becomes the Chi-square
distribution with 2L degrees of freedom and mean
2L (E + 1). In this case, the IAD can reach the best
detection probability, given by

pd = Q
(
g, (E + 1) χ2

2L

) = Q
(
g/ (E + 1) , χ2

2L

)
. (58)

4) Discussion: From (45), if the estimates of channel
SNRs are identical or all far greater than one, the SWD
would degenerate into the IAD. In other words, the IAD is
approximately optimal in these situations. The
performance of the IAD would degrade greatly only if
channel SNRs are both low and different. In this case
however, a low detection probability may not form a
continuous track of a target and thus makes little sense in
practice. Therefore, the IAD still draws wide attention in
research on distributed MIMO radar and frequency
diversity radar.

F. CAD

1) Test Statistic: In situation I, �t becomes a matrix of
ones and 
C = EL · ppH/ (1 + EL). In this case, we can
obtain the test statistic of the coherent accumulating
detector (CAD) from (18) as

T (r) = 2
∣∣pHr

∣∣2 . (59)

2) False Alarm Rate: As a weighted sum of zero-mean
complex Gaussian distributed variables, pHr follows
zero-mean complex Gaussian distribution as well.
Consequently, the test statistic (59) follows the Chi-square
distribution with two degrees of freedom, namely the
exponential distribution. It can be proved that

E [T (r)] = E
(

2
∣∣pHr

∣∣2) = 2L.

Therefore, the false alarm rate can be written as

pf = Q
(
g, Lχ2

2

) = exp (−g/2L) . (60)

3) Detection Probability: Under the H1 hypothesis,
pHr is still zero-mean complex Gaussian distributed and
then T (r) follows the exponential distribution. From (21),
we have

E (T (r) |H 1) = 2E
(
pHrrHp |H1

) = 2pH (Cs + I) p

= 21H (Ct + I) 1 = 2Fc + 2L (61)
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where Fc =
L∑

i=1

L∑
j=1

(Ct )ij . Therefore, the probability of

detection can be obtained by

pd = exp (−g/ (2Fc + 2L)) = p
L/(Fc+L)
f . (62)

From (62), as 0 < pf < 1, pd is an increasing function of
Fc.

In situation I, Fc = EL2 and then pd = p
1/(EL+1)
f . In

situation III, Fc = E
L∑

i=1

L∑
j=1

ρij and thus the detection

probability of the CAD increases monotonically with each
element of �t. In other words, any decorrelation of target
fluctuations would degrade the detection performance of
the CAD.

In situation IV, �t is a matrix of ones and then
Ct = EET. Given a TSNR of diversity channels, such as
L∑

i=1
Ei = EL, we have

Fc =
L∑

i=1

L∑
j=1

√
Ei

√
Ej =

⎛
⎝ L∑

j=1

√
Ei

⎞
⎠

2

≤L

L∑
i=1

Ei =EL2

(63)
where the equation holds if and only if E1 = E2

= · · · = EL. Therefore, given the TSNR of diversity
channels for situation IV, channel SNR difference would
always degrade the detection performance of the CAD.
The CAD is seldom used in diversity radar that tends to
receive mutually decorrelated target returns. However, a
coherent accumulation procedure may be used in each
radar receiver to improve channel SNR and suppress
interferences, such as jamming and clutter returns [35, 36].

G. Detection Algorithm for Situation IV

1) Test Statistic: In situation IV, target fluctuations are
completely correlated, while channel SNRs are different.
In this case, �t becomes a matrix of ones and Ct = EEH.
The test statistic (18) becomes

T (r) = 2
∣∣pHdiag (E) r

∣∣2 . (64)

Based on channel SNR estimates Ê, the test statistic turns
out to be

T (r) = 2
∣∣∣pHdiag

(
Ê
)

r
∣∣∣2 . (65)

This detection algorithm is optimal in the situations
where target fluctuations are completely correlated but
channel SNRs are different. It should be noted that this
situation is rarely present in a practice radar and thus
rarely considered before.

2) False Alarm Rate: As a weighted sum of zero-mean

complex Gaussian distributed variables, pHdiag
(

Ê
)

r
follows zero-mean complex Gaussian distribution and
then the test statistic (65) follows the exponential

distribution. Under the null hypothesis, we have

E

(∣∣∣pHdiag
(

Ê
)

r
∣∣∣2 |H0

)

= pHdiag
(

Ê
)

E
(
rrH |H0

)
diag

(
Ê
)

p = ÊHÊ. (66)

Therefore, the false alarm rate can be expressed by

pf = exp
(
−g/ÊHÊ

)
. (67)

3) Probability of Detection: Under the H1 hypothesis,
the expectation of the test statistic becomes

E

(∣∣∣pHdiag
(

Ê
)

r
∣∣∣2 |H1

)

= pHdiag
(

Ê
)

E
(
rrH |H1

)
diag

(
Ê
)

p = ÊH (Ct + I) Ê.

(68)

Therefore, the probability of detection can be written
as

pd = p
ÊHÊ

/[
ÊH(I+Ct)Ê

]
f . (69)

When Ê in (69) becomes αÊ, α 	= 0, the detection
probability remains the same. It means that the detection
probability depends only on the SNR ratio of diversity
channels but not on the TSNR. If Ct = EEH, then

pd = p
ÊHÊ

/[
ÊHÊ+(ÊHE)2

]
f . (70)

According to Cauchy’s inequity, we have(
ÊHE

)2
≤
(

ÊHÊ
) (

EHE
)
, where the equation holds if

and only if Ê = αE where α is an arbitrary constant.
Therefore, we can obtain

pd ≤ p
ÊHÊ

/[
ÊHÊ+(ÊHÊ)(EHE)

]
f = p

1
/
[1+(EHE)]

f (71)

which is also the highest detection probability of the test
statistic (70).

So far, five detection algorithms have been discussed
for five typical situations presented in Table I. The
detection algorithm for situation III is very similar to the
GGSD and thus is not discussed here. Though different in
signal processing method and detection performance,
these target detection algorithms can be incorporated into
the same signal processing framework, i.e., a whitening
process to transform input signals into statistically
independent channels and a following SWD to apply
different weights to signals in these channels. The
detection algorithms differ in the whitening weights and
the weights applied to the independent channels, which
are summarized in Table II.

In practice, both the whitening process and the
weighting process may induce a detection performance
loss. Therefore, correlation of target fluctuations and
channel SNRs should be accurately estimated in order to
achieve the optimal detection performance. An interesting
problem is how much detection performance loss the
concerned detection algorithms would have when the
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TABLE II
Whitening Weights and SNR Weights of Five Concerned

Detection Algorithms

Detection Algorithms Whitening Weight SNR Weight

GGSD Q̂t ŵt

SWD I Ê2/
(

Ê2 + 1
)

IAD I 1
CAD p e1

That for situation IV diag
(

Ê
)

p e1

Note: e1 is the first column of the identity matrix of the proper size.

estimation is inaccurate. If the estimation is accurate,
another interesting problem is what the optimal detection
performance will be for different degrees of target
correlation and different channel SNR ratios. In the
following section, we present numerical results for typical
situations to study these problems.

IV. DETECTION PERFORMANCE
OF DIVERSITY RADAR

There are various types of diversity radar, such as
spatial diversity radar, frequency diversity radar, and their
combination SFDR. However, from preceding analysis,
for spatial diversity channels, frequency diversity
channels, and spatial-frequency jointly diversity channels,
the correlation coefficient of target returns depends only
on target size and the EFI. Therefore, in this section, we
do not specify exact type of diversity radar pairs for
simplicity. We instead assign the EFIs of the diversity
channel, pairs or directly, the correlation coefficient of
target returns. The results can be straightforwardly applied
to spatial diversity radar, frequency diversity radar, and
their combination.

On the contrary of diversity radar, a nondiversity radar
system can observe only one aspect of a radar target per
observation, even if it may have multiple receiving
channels. A radar system with only one channel or
multiple channels receiving completely correlated target
returns would subsequently be deemed as nondiversity
radar.

The detection performance of a diversity radar system
depends on the degree of diversity of its received signals.
Given a bunch of received signals, the degree of diversity
relies on three factors, i.e., the number of signals, mutual
correlation of target components, and the SNRs of the

signals. For instance, completely correlated target returns
evidently have less degree of diversity than independent
ones. If the power of the target components concentrates
only in a diversity channel, the degree of diversity is
minimal. If the power of target components is uniformly
distributed into all diversity channels, the degree of
diversity would increase.

The impact of the number of signals on the detection
performance of diversity radar has been studied in [2, 13].
In this work, we focus on the left two factors, i.e.,
correlation of target returns and SNR of signals. The range
phase terms have a great impact on the detection
performance of coherent detection algorithms as well,
such as the GGSD and the CAD, but as we do in
theoretical analysis, they are assumed to be exactly known
a priori. We still assume that background noises in
diversity channels are statistically independent of each
other. The false alarm rate, decision gate, and detection
probability are all connected with the weighted
exponential distribution, whose cdf is directly calculated
by using the method proposed in [34]. The false alarm rate
would be set by 10−4 if not specified.

A. Influence of Correlation of Target Returns

Most of detection algorithms for diversity radar were
designed and evaluated under the assumption that target
components in diversity channels are statistically
independent [2]. In order to study the detection
performance of the detection algorithms for correlated
target returns, we consider a diversity radar system with
two diversity channels of the same SNR. If the target
components are correlated with correlation coefficients of
0, 0.6, 0.9, and 1, Figs. 2(a)–2(d) show the probabilities of
detection versus channel TSNR, respectively.

Assume that the GGSD has the exact knowledge of
correlation coefficients of target returns. Therefore, the
GGSD provides the highest detection probability.
Compared with the GGSD, the CAD can reach the
maximal detection probability when ρ = 1 from Fig. 2(d),
while the IAD algorithm can reach the maximal detection
probability when ρ = 0 from Fig. 2(a). For partially
correlated target returns, both the CAD and the IAD suffer
from detection performance loss. Specifically, for partially
correlated target returns, the IAD performs better than the
CAD at high TSNRs and worse at low TSNRs.

Fig. 2. Detection probability versus TSNR at target correlation coefficients of (a) 0, (b) 0.6, (c) 0.9, and (d) 1.
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Fig. 3. Detection probabilities versus correlation coefficient of target fluctuations for two diversity channels with TSNRs of (a) 6 dB, (b) 16 dB,
(c) 8.35 dB, and (d) 10 dB. Dashed line denotes independence criterion with ε = 1.

Given TSNR of two diversity channels, the degree of
correlation of target returns has a great impact on the
detection performance of detection algorithms. If the
TSNRs are 6 dB, 16 dB, 8.35 dB, and 10dB, the detection
probabilities versus the correlation coefficient of target
fluctuations are shown in Figs. 3(a)–3(d), respectively.

From Figs. 3(a)–3(d), the detection probability of the
CAD is always an increasing function of the correlation
coefficient, in agreement with previous theoretical
analysis, whereas the monotonicity of the detection
probabilities of both the IAD and the GGSD depends on
the TSNR available. If the TSNR is high, such as the
TSNR = 16 dB case, they decrease with the absolute
value of the correlation coefficient; if it is low, say 6 dB,
they may increase with the correlation coefficient,
although the detection performance loss of the IAD
increases in this case.

For the IAD, we find that at about 8.35 dB, the target
detection probability versus the target correlation
coefficient is approximately a constant 25.4%, as shown in
Fig. 3(c). It should be noted that the detection probability
of the IAD versus the correlation coefficient at this TSNR
still has slight fluctuation. No TSNR is found so far that
can make the optimal detection probability versus the
correlation coefficient approximately a constant. As the
correlation coefficient increases, the optimal detection
probability may first decrease and then increase, as shown
in Fig. 3(d). Fig. 3(d) also shows that the GGSD and the
IAD may reach their best detection performances at
different correlation levels of target returns. In
Figs. 3(a)–3(b), the IAD and the GGSD have the same
monotonicity, whereas in Fig. 3(d), they do not keep the
same monotonicity.

More experiments indicate that the optimal detection
probability, given by the GGSD, may reach a minima for
any correlation coefficient, but the highest optimal
detection probability would be present at either ρ = 0 or
ρ = ±1 but would not be present over 0 < |ρ| < 1.
Therefore, it means that at least for the case of two
diversity channels, one may expect either completely
correlated target returns or independent ones for better
optimal detection performance, if only we can control the
correlation of target returns.

In Figs. 3(a)–3(d), the dashed lines are drawn
according to the independence criterion with strictness

factor ε = 1 [see formula (5)]. The correlation coefficient
with respect to the independence criterion is 0.1812. From
Figs. 3(a)–3(d), at the point with respect to this strictness
factor, the IAD and the GGSD have higher detection
probabilities than the CAD for the TSNRs. Therefore, if
one just selects a detection algorithm from the CAD and
the IAD, the strictness factor may be relaxed to ε = 0.5,
for which ρ = 0.7217 and near this value the two
detectors have closer detection probabilities.

Correlation of target returns depends on two factors,
i.e., target size and channel EFI. Each point in space
corresponds to an EFI and its spatial distribution can be
determined for radar with specific settings [17]. Although
we cannot control which targets would be present in space
and their sizes, we can control the EFIs between diversity
channels to some extent. In order to study the impact of
the EFI on the detection performance of diversity radar,
we consider a diversity radar with two diversity channels.
Assume that the target in presence is 10 m in length.
Figs. 4(a) and 4(b) show the detection probabilities of the
CAD, the IAD, and the GGSD versus the EFI for TSNRs
of 6 dB and 16 dB, respectively.

It can be seen from Fig. 4 that the detection
probabilities of these algorithms often fluctuate as the EFI
increases. That is because the correlation coefficient is not
a monotonic function of the EFI [17]. Compared with the
optimal detection algorithm provided by GGSD with exact
knowledge of target size, the CAD would reach the
optimal detection performance for fe = 0 and the IAD has
nearly optimal detection performance for high EFIs.

It can be expected that the mismatch between
presumed target size and real target size may induce
detection performance loss. This fact can be found in
Fig. 4. The performance loss due to target size mismatch
is given by the GGSD using d = 20 m. It can be found that
the GGSD with a mismatched target size can still perform
close to the optimal performance (provided by the GGSD
using d = 10 m) when fe = 0 (the GGSD degenerates
into the CAD) and the EFI is high (the GGSD degenerates
into the IAD). In comparison with the optimal detection
performance, the GGSD using d = 20 m only suffers a
slight performance loss when target returns are partially
correlated. Therefore, although mismatch in target size is
inevitable in practice, the GGSD with slight target size
mismatch may provide an acceptable detection probability
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Fig. 4. Detection probability versus EFI of two diversity channels at
TSNRs of (a) 6 dB and (b) 16 dB.

over the whole EFI range. Detectors not concerning target
correlation and channel SNRs (e.g., the CAD and the
IAD) often suffer from a significant loss at either a zero
EFI or a great EFI.

The evidence that inaccurate assumption on target size
would degrade the detection performance of the GGSD
can also be found in other figures by examining detection
probabilities of the CAD and the IAD. That is because if
partially correlated target returns are received, the CAD
can be considered as the GGSD using an underestimated
target size, and the IAD as the GGSD using an
overestimated target size.

Radar detection is often carried out at a prescribed
CFAR and the false alarm rate has a great impact on the
detection performance. For two partially correlated target
returns with correlation coefficients of 0.6 and 0.9, the
receiver operating characteristic (ROC) curves of the IAD
and the GGSD are all given in Fig. 5 when TSNRs are
7 dB and 11 dB. Since the CAD is not so widely used in
diversity radar, its ROC curve is not given here to avoid
the curves being too crowded.

From Fig. 5, for the GGSD and the IAD fed by two
signals with certain TSNR, whether a lower degree of

Fig. 5. ROC curves of IAD and GGSD for partially correlated target
returns at TSNRs of 7 dB and 11 dB.

correlation of target returns can give a higher detection
performance depends a great deal on the false alarm rate
prescribed. At a high false alarm rate, a lower degree of
correlation of target returns will give a better detection
performance, and at a higher false alarm rate, a higher
degree of correlation of target returns will give a better
detection performance. Fig. 5 demonstrates that if the
TSNR is 11 dB, ρ = 0.6 and ρ = 0.9 would give the same
optimal detection probability at the false alarm rate of
about 10−4. For the IAD, the transition point of the false
alarm rate is much lower. Moreover, the transition point
varies with the TSNR available. In practice, commonly
used false alarm rates are often in an interval say [10−6,
10−3] over which certain correlation of target returns may
always precede another in detection performance.

To conclude, first, the correlation of target returns has
a great impact on the target detection performance of
diversity radar. Second, when target returns are partially
correlated, the GGSD with exact target size information
can improve the detection performance in contrast with
the IAD and the CAD. Third, whether a lower degree of
correlation of target returns benefits the optimal detection
performance depends on the TSNR available and the
prescribed false alarm rate.

B. Influence of Channel SNR Distribution

Multisite radar systems tend to receive target returns of
different SNRs for many reasons. Optimal likelihood ratio
test (LRT) and generalized LRT (GLRT) algorithms with
known different SNRs for distributed radars have been
synthesized in [13] for signals with mutually correlated
and uncorrelated fluctuations. Many detection algorithms
are based on the assumption that diversity channels have
the same SNR [2, 9, 13]. In what follows, using concerned
detection algorithms, we would study the detection
performance of diversity radar when channel SNRs are
different.
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Fig. 6. Detection probabilities of diversity radar versus TSNR. (a)
Different channel SNRs. (b) Closer view at TSNRs around 10.54 dB.

We still consider a diversity radar system with two
diversity channels, in which the target returns are perfectly
independent but have different SNRs. In this case, the
SWD using exact knowledge of channel SNRs would
achieve the optimal detection performance. When channel
SNR ratios of the two channels are 1:1, 1:0, 1:4, and 1:10,
the detection probabilities of the IAD and the SWD are
shown in Fig. 6(a). Fig. 6(b) is given to make a closer view
around TSNR = 10.5 dB. The SNR ratio 1:0 refers to the
case in which all target power falls in one channel and the
detection probability is evaluated only for the channel
with nonzero power of target returns.

From Fig. 6(a), with exact knowledge of channel
SNRs, the SWD provides the optimal detection
performance and thus has a better detection performance
than that of the IAD. In agreement with the theoretical
analysis in Section III-D.1, the detection performance of
the IAD approximates to the SWD when channel SNRs
are all high. The detection performance loss of the IAD is
present mainly in situations where channel SNRs are both
low and different.

From Fig. 6(a), returns with equal SNRs do not always
have a better detection performance. It depends on the
TSNR available. Fig. 6 demonstrates that at high TSNRs,

Fig. 7. ROC curves of IAD and SWD for different channel SNRs for
TSNRs of 7 dB and 11 dB.

the optimal detection performance would reach a peak
when target power is uniformly distributed into two
diversity channels, while at low TSNRs, the peak is
reached when target power concentrates on one channel.
For the case at hand, unequal channel SNRs have no
opportunity to make the optimal detection probability
reach the peak at any TSNR. This fact can be found from
Fig. 6(b). Therefore, SNR unbalance is harmful to the
optimal detection performance of diversity radar.

False alarm rate also has a great impact on the
detection performance. In order to study its impact,
consider two signals with TSNRs of 7 dB and 11 dB. The
ROC curves of the SWD and the IAD are shown in Fig. 7
when SNR ratios are 1:1, 4:1, and 30:1.

From Fig. 7, the detection probability of the SWD is
higher than that of the IAD and the difference in detection
probability increases with the channel SNR. Given a
TSNR, at high false alarm rates, uniform channel SNRs
would give rise to the highest optimal detection
probability, while at low false alarm rates, more
unbalanced channel SNRs would produce a better optimal
detection performance.

For the SWD, inaccurate estimation of channel SNRs
would result in a detection performance loss, but we do
not give a separate simulation result here, because the IAD
can be considered as the SWD erroneously presuming that
channel SNRs are identical.

To conclude, the SWD can improve the detection
performance of diversity radar if channel SNRs can be
estimated accurately. Even for different channel SNRs, the
IAD can approach the optimal detection performance
when both channel TSNR and false alarm rate are high.
Given TSNR and false alarm rate, the optimal detection
probability depends on the ratio of channel SNRs. For
high TSNRs and high false alarm rates, signals with
uniform SNRs would give a better detection performance,
whereas for low TSNRs and low false alarm rates, channel
SNRs that are more different would give a better detection
performance.
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C. Relationship between Target Correlation and
SNR Distribution

Target correlation and balanced channel SNR are two
different kinds of radar diversity. But from Figs. 5 and 7,
the ROC curves have a similar appearance. In fact, there is
a certain inherent relationship between the two kinds of
radar diversity. For correlated target returns, from (30), the
optimal detection algorithm given by (18) can be written as

T (r) = 2rHdiag (p) Qt
�t

�t + I
QH

t diag
(
p∗) r. (72)

From (72), by using the whitening matrix QH
t diag (p∗), the

optimal detection algorithm would first transform original
received signals into independent ones wherein both noise
components and target components are statistically
independent. An SWD is followed to weight the output
signals according to the SNRs of the independent
channels.

In the ideal situation, the target covariance matrix is
exactly known to the GGSD and then the GGSD can
transform correlated target returns into statistically
independent components. If target returns are partially
correlated, after the transformation, target returns
originally with the same SNR may give rise to
independent components with different SNRs. For
instance, if two target returns have correlation coefficient
0.6 and their SNRs are identical, the SNR of the
statistically independent components is 4:1. It can be
easily proved that for two diversity channels with identical
channel SNRs, a higher correlation coefficient of target
returns would result in independent components that are
more different in SNR. In other words, it is the SNR
distribution of the independent components that
determines the optimal detection performance of diversity
radar. The correlation of target returns changes the optimal
detection performance through changing SNRs of the
independent components.

From (72), four parameters corresponding to statistical
distribution of received signals should be accurately
estimated in order to reach the optimal detection
performance, i.e., channel range phase terms, interference
covariance matrix, correlation coefficients of target
returns, and SNRs of diversity channels. By assumption,
the range phase terms are known a priori and the
interference covariance matrix is an identity matrix. We
just focus on the correlation coefficients and the channel
SNRs. Inaccurate estimation of any parameter may induce
a detection performance loss.

D. Scenario of more Diversity Channels

So far we mainly study the case with two diversity
channels for simplicity. In this case, the difference of
detection performance between different detection
algorithms is insignificant and the advantage of diversity
radar in detection performance is not so obvious. Now
consider a diversity radar system with six active diversity
channels and the SNR ratio is 10:10:5:5:1:1. Meanwhile,

Fig. 8. Detection probabilities of four detection algorithms for six
diversity channels with different channel SNRs and partially correlated

target returns.

the correlation coefficient matrix of target returns is given
by

�t =

⎡
⎢⎢⎢⎢⎢⎣

1 0.9 0.8 0 0 0
0.9 1 0.7 0 0 0
0.8 0.7 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ (73)

The GGSD still has the exact knowledge of all
distribution parameters and hence gives the maximal
detection probability. The SWD has the SNR knowledge
but it by mistake assumes that target returns are
statistically independent. The detection probabilities of the
concerned detection algorithms are all shown in Fig. 8.

From Fig. 8, with six diversity channels available, the
improvement of the GGSD in detection probability is
more significant. The SWD suffers from a little detection
performance loss, because there are three target returns
partially correlated. Without considering both correlation
of target returns and SNR distribution of diversity
channels, the IAD suffers from a greater detection
performance loss. The CAD performs the worst, because
most signals are statistically independent from (73).

V. CONCLUSION AND DISCUSSION

We introduced the method to estimate the correlation
coefficient of target returns received by a complicated
SFDR in which target returns may be partially correlated
and different in SNR. It was pointed out that in diversity
radars, especially the SFDR, target returns in diversity
channels tend to be partially correlated and to have
different SNRs. Therefore, according to channel SNR
distribution and target correlation, six scenarios are
considered, for which several detection algorithms were
developed according to the Neyman-Pearson criterion,
such as the GGSD, the SWD, and the well-known IAD.
The detection performance of concerned detection
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algorithms is analyzed in theory and via numerical results
in scenarios when target returns are partially correlated
and have different SNRs. Meanwhile, the conditions on
which those detection algorithms can reach the peak
detection performance are studied. The GGSD can achieve
optimal detection performance of diversity radar even for
partially correlated target returns if target correlation and
channel SNRs can be accurately estimated. If target
returns are statistically independent but different in SNR,
the SWD can improve the detection performance in
comparison with the IAD. If target returns are statistically
independent, the IAD can still give acceptable detection
performance when channel SNRs are either identical or all
very high.

We also studied the optimal detection performance of
diversity radar by using the GGSD when target returns are
partially correlated and channel SNRs are different. It was
found that whether a diversity radar has a better detection
performance than a nondiversity one depends on the
TSNR available and the false alarm rate. If the TSNR and
false alarm rate are high, diversity radar would perform
better and vise versa. A low TSNR and low false alarm
rate may not produce a detection probability sufficient to
form a continuous target track and then in practice, we are
often interested in a high detection probability, for which
diversity radar takes an advantage in detection
performance. Therefore, diversity radar takes an
advantage over nondiversity radar in detection
performance.

Given TSNR and false alarm rate, the optimal
detection performance of diversity radar depends on the
degree of diversity of received signals. Two kinds of
diversity were considered, i.e., correlation of target returns
and channel SNR distribution. The relationship between
two kinds of diversity was studied and it was found that
the correlation of target returns affects optimal detection
performance of diversity radar by affecting SNRs of
independent components of received signals. The optimal
detection performance is actually determined by SNRs of
the independent components. Whether a channel SNR can
produce a better detection performance than another
channel SNR depends on the TSNR available and the false
alarm rate.

In engineering practice, the detection algorithm to
choose depends not only on the detection performance of
the detection algorithms, but also on the cost of
implementing them. One needs to make a tradeoff between
detection performance and system complexity. Although
the GGSD can reach the maximal detection probability, it
needs to estimate many statistical distribution parameters
of received signals and to use a complicated
whitening-weighting scheme. The SWD does not need the
whitening processing but still needs to estimate channel
SNRs. In some situations, the IAD can be applied as if the
detection performance loss is acceptable because it
requires the simplest signal processing scheme.

In practice, for a better detection performance and a
simple system structure, target returns that are statistically

independent and have the same SNR are still desirable. In
fact, one can partially control statistical correlation of
target returns by properly selecting parameters of a radar
system according to an independence criterion. In order to
make the channel SNRs close, one can properly deploy
distributed radar sites such that they have close distances
from the surveillance space of interest.

In order to make a signal fusion based detection, a
signal fusion center of a distributed MIMO radar should
also make spatial alignment and time alignment to
received signals with respect to the same spatial resolution
cell. Meanwhile, we can also make a coherent
accumulation in each diversity channel separately, which
can improve channel SNR and enable clutter rejection.
Signal fusion based detection places a high demand on the
communication link between radar sites and an interesting
work is how to decrease the communication burden at the
cost of an acceptable detection performance loss.
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