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This paper develops a novel approach for multitarget tracking,
called box-particle probability hypothesis density filter (box-PHD
filter). The approach is able to track multiple targets and estimates
the unknown number of targets. Furthermore, it is capable of
dealing with three sources of uncertainty: stochastic, set-theoretic,
and data association uncertainty. The box-PHD filter reduces the
number of particles significantly, which improves the runtime
considerably. The small number of box-particles makes this
approach attractive for distributed inference, especially when
particles have to be shared over networks. A box-particle is a
random sample that occupies a small and controllable rectangular
region of non-zero volume. Manipulation of boxes utilizes methods
from the field of interval analysis. The theoretical derivation of the
box-PHD filter is presented followed by a comparative analysis with
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a standard sequential Monte Carlo (SMC) version of the PHD filter.
To measure the performance objectively three measures are used:
inclusion, volume, and the optimum subpattern assignment (OSPA)
metric. Our studies suggest that the box-PHD filter reaches similar
accuracy results, like an SMC-PHD filter but with considerably less
computational costs. Furthermore, we can show that in the presence
of strongly biased measurement the box-PHD filter even
outperforms the classical SMC-PHD filter.

I. INTRODUCTION

Multitarget tracking is a common problem with many
applications. In most of these the expected target number
is not known a priori, so that it has to be estimated from
the measured data. In general, multitarget tracking
involves the joint estimation of states and the number of
targets from a sequence of observations in the presence of
detection uncertainty, association uncertainty, and clutter
[1]. Classical approaches such as the joint probabilistic
data association filter (JPDAF) [2] and multihypothesis
tracking (MHT) [3] need in general the knowledge of the
expected number of targets. The finite set statistics
(FISST) approach proposed by Mahler [4] is a systematic
treatment for multitarget tracking with an unknown and
variable number of objects. To reduce the complexity
Mahler proposed an approximation of the original Bayes
multitarget filter, the probability hypothesis density (PHD)
filter. One of the main advantages of the PHD filter is that
it avoids the data association problem and resolves the
measurement origin uncertainty in an elegant way. In
[5, 6] it was shown that the PHD filter outperforms the
classical approaches such as the Kalman filter, standard
particle filters, and the multiple hypothesis tracking
(MHT). Algorithms based on the JPDAF [7] tend to merge
tracking results produced by closely spaced objects. This
drawback cannot be observed when using the PHD filter.
Many implementations of the PHD filter have been
proposed, either using sequential Monte Carlo methods
(SMC) [8–10], or with Gaussian mixtures [11]. An
improved implementation of the SMC-PHD filter was
published in [12].

The traditional measurement noise expresses
uncertainty due to randomness, often referred to as
statistical uncertainty. In many practical applications,
however, the standard measurement model is not adequate.
Complex distributed surveillance systems, for example,
are often operating under unknown synchronization biases
and/or unknown system delays. The resulting
measurements are affected by bounded errors of typically
unknown distribution and biases, and can be expressed
rather by intervals than by point values. An interval
measurement expresses a type of uncertainty which is
referred to as the set-theoretic uncertainty [13, 14],
vagueness [15], or imprecision [16]. Some of the first
works about representing densities as a mixture of
box-particles can be traced back to the early 1970s; see
[17] for a review. The concept of box-particle filtering in
the context of tracking was introduced in [18]. In [19] it
was shown that box-particles could be seen as supports of
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uniform probability density functions (pdfs), leading to
Bayesian understanding of box-particle filters. In [20] a
single target box-particle Bernoulli filter with box
measurements is presented.

The main contribution of this work is a general
derivation of box-particle methods in the context of
multitarget tracking with an unknown number of targets,
clutter, and false alarms. We present here a box-particle
version of the multitarget PHD filter. In addition, a
comparison of the box-PHD filter with a standard
SMC-PHD filter is performed. The optimum subpattern
assignment (OSPA) metric [21] is used as performance
measure, together with the criteria for measuring the
inclusion of the true state and the volume of the posterior
pdf [20].

The remaining part of this article is structured as
follows. A brief introduction to finite set statistics (FISST)
is given in Section II. The necessary interval methodology
is explained in Section III. Section IV contains a general
description of the PHD filter with a basic SMC
implementation. The box-PHD filter is derived and
described in Section V. Section V-A describes the steps
needed to get from point particles to box-particles. A
numerical study is presented in Section VI. Conclusions
are drawn in Section VII.

II. FINITE SET STATISTICS

In a single-object system, the state and measurement at
time k are represented as two random vectors of possibly
different dimensions. These vectors evolve in time, but
maintain their initial dimension. However, this is not the
case in a multiobject system. Here the multiobject state
and multiobject measurement are two collections of
individual objects and measurements. The number of these
may change over time and lead to another dimension of
the multiobject state and multiobject measurement.
Furthermore, there exists no ordering for the elements of
the multiobject state and measurement. Using the theory
proposed in [22], the multiobject state and measurement
are naturally represented as finite subsets Xk and Zk

defined as follows.
Let N(k) be a random number of objects, which are

located at xk,1, . . . , xk,N(k) in the single-object state space
ES , e.g. Rd then,

Xk = {
xk,1, . . . , xk,N(k)

} ∈ F(ES) (1)

is the multiobject state, where F(ES) denotes the
collection of all finite subsets of the space ES . Analogous
to this, we define the multiobject measurement

Zk = {
zk,1, . . . , zk,M(k)

} ∈ F(EO), (2)

assuming that at the time step k we have M(k)
measurements zk,1, . . . , zk,M(k) in the single-object space
EO , which correspond to real targets and clutter. The sets
Xk and Zk are also called random finite sets. In analogy to
the expectation for a random vector, a first-order moment

of the posterior distribution for a random set is of interest
here, which is the so-called PHD. The integral value of the
PHD over a given region in state space leads to the
expected number of objects within this region. Denote
fk/k(xk) as the PHD associated with the multiobject
posterior p(Zk|Zk) at a time step k, with Zk denoting the
accumulated measurements from the time steps 1 to k. The
PHD filter consists of two steps: prediction and update [4].

The prediction can be realized through the following
equation1:

fk|k−1(xk)

= b(xk) +
∫

ps(xk−1)p(xk|xk−1)fk−1|k−1(xk−1)dxk−1,

(3)

where b(xk) denotes the intensity function of spontaneous
birth of new objects, xk−1. ps(xk−1) is the probability that
the object still exists at the time step k given its previous
state xk−1, and p(xk|xk−1) is the transition probability
density of the individual objects. The update equation can
be written as

fk|k(xk) ∼= F (Zk|xk)fk|k−1(xk), (4)

F (Zk|xk) = 1−pD(xk)

+
∑
z∈Zk

pD(xk)p(z|xk)

λc(z) + ∫
pD(xk)p(z|xk)fk|k−1(xk)dxk

,

(5)

where pD(xk) denotes the probability that an object in
state xk will be detected at time step k. Furthermore,
p(z|xk) is the measurement likelihood, c(z) the probability
distribution for every clutter point, and λ is the average
number of clutter points per scan.

III. INTERNAL ANALYSIS

This section gives a short introduction to the field of
interval analysis, which is used in this article. For more
information see [23]. The original idea of interval analysis
was to deal with intervals instead of real numbers for exact
computation in the presence of rounding errors. However,
this field has strongly increased its potential applications.
We use the main concepts to represent particles not as
delta-peaks but as boxes in the state space. An interval
[x] = [x, x̄] ∈ IR is a closed and connected subset of the
real numbers R, with x ∈ R representing its lower bound
and x̄ ∈ R its upper bound. In multiple dimensions d this
interval becomes a box [x] ∈ IR

d defined as a Cartesian
product of d intervals: [x] = [x1] × . . . × [xd ]. Here the
operator |[.]| denotes the volume of a box [x]. The function
mid([x]) returns the center of a box. Elementary arithmetic
operations, basic functions, and operations between sets
have been naturally extended to the interval analysis
context.

1Target spawning is not considered in this paper.
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For general functions the concept of inclusion
functions has been developed. An inclusion function [g]
for a given function g is defined such that the image of any
box [x] by [g] is a box [g]([x]) containing g([x]). An
inclusion function that leads to the smallest box area is
needed. Hence, the size of the box [g]([x]) should be
minimal but at the same time has to cover the whole image
of a box [x]. An important class in the context of tracking
is natural inclusion functions.

DEFINITION 1. Assume g : R
d → R, (x1, . . . , xd )

→ g(x1, . . . , xd ) is a function expressed as a finite
composition of the operators + , –, ∗, / and standard
mathematical functions (sin, cos, exp, . . .). A natural
inclusion function is obtained by replacing each real
variable and each operator or function by its interval
counterpart.

In general, natural inclusion functions are not minimal,
but many functions can be modified in order to satisfy the
conditions in the following theorem and then their natural
inclusion functions are minimal. Proofs and examples can
be found in [23].

DEFINITION 2. An inclusion function [g] for g is
convergent if, for any sequence of boxes [x](k),

lim
k→∞

|[x](k)| = 0 ⇒ lim
k→∞

[g]([x](k)) = 0, (6)

with |[x](k)| being the volume of the box [x](k).

THEOREM. If g involves only continuous operators and
continuous elementary functions then [g] is convergent. If,
furthermore, each of the variables x1, . . . , xd occurs at
most once in the formal expression of g, then [g] is
minimal.

The next important concept is contraction, which is
needed for the definition of likelihood functions and the
update step of the proposed filters. The contraction
operation actually represents an optimization procedure
that finds the smallest box which satisfies certain
constraints. One elegant way of performing this
optimization is by formulating it as a constraint
satisfaction problem (CSP). The CSP [23], often denoted
byH, can be written as

H : (g(x) = 0, x ∈ [x]) . (7)

A common interpretation of (7) is: find the box enclosure
of the set of vectors x belonging to a given prior domain
[x] satisfying a set of m contraints g = (g1, . . . ., gm)T ,
with gi a real valued function. The solution consists of all
x, that satisfy g(x) = 0 or written as a set:

S = {x ∈ [x] | g(x) = 0}. (8)

A contraction of H means replacing [x] by a smaller box
[x]

′
under the constraint S ⊆ [x]′ ⊆ [x]. There are several

methods to build a contractor for H, e.g. by the Gauss
elimination, Gauss-Seidel algorithm, and linear
programming. In this work, however, we use constraint
propagation (CP), sometimes referred as

forward-backward propagation, for its suitability in the
context of tracking problems. An example of a CP
algorithm is given in the Appendix.

IV. THE SMC-PHD FILTER

Inspired by the works of Vo et al. [10] and Ristic et al.
[12] on efficient SMC methods for the PHD filter, an
improved SMC-PHD filter [12] is briefly presented in this
paper to make it self-contained. The main improvement is
a measurement steered particle placement for target birth.
In addition, a target state and covariance matrix estimation
without the need of clustering is introduced. The state of
an individual object is represented by xk ∈ R

nx and each
measurement as zk ∈ R

nz . Assume that the transitional
density p(xk|xk−1) is known through an evolution model
fk , nonlinear in general, that is

xk = fk(xk−1) + wk, (9)

with wk a zero mean Gaussian white process noise.
The SMC-PHD filter consists of 6 steps, which are

summarized in what follows. Here the particle set
represents the target intensity fk|k(x) of the PHD filter,
which corresponds to the multitarget state. Given from the
previous time step we have the particle set:

{(xi , wi)}Nk

i=1, (10)

with xi ∈ R
nx , wi the corresponding weight and Nk

denoting the number of particles, estimated at time step
tk−1. Recall that the integral over this intensity (or sum, if
using particles) is the estimated expected number of
targets and it is not necessarily equal to one. The
implementation details using a particle PHD
representation are presented below.

1) Predict Target Intensity
The resampled particle set gained from the previous

step is denoted by {xi , wi}Nk

i=1. These particles represent
the intensity over the state space. Another interpretation is
that every particle represents a possible target state (called
microstates in the language of thermodynamics), so that
the prediction of the whole set can be modeled by
applying a transition model to every particle and adding
some noise to it. The weights remain unchanged at this
step. In practical implementations this has the same effect
as predicting the intensity distribution over the state space
with a closed formula.

In order to avoid sampling a high number Nk,new of
newborn particles, the authors in [12] propose to sample
newborn particles according to the measurement set
Zk−1 = {zk,1, . . . , zk, Mk−1} from the previous time step
tk−1. For each measurement zk−1,j , j = 1, . . . , Mk−1,

N
j

k,new = Nk,new/Mk−1 new particles x̃i are drawn from a
distribution βk(x|zk−1,j ). In [12], βk(.|zk−1,j ) is
constructed with the assumption that the state vector can
be separated into a directly measured component vector
and an unmeasured component vector. The measured
component of the newborn particles can be sampled by
inverting the measurement function while the unmeasured
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components are sampled uniformly (see [12] for more
details).

The weights of the newborn particles are set to

wi = vk

Nk,new

, i = Nk + 1, . . . , Nk + Nk,new, (11)

where νk , as in [12], is a prior expected number of target
births at time k. The predicted particle set contains the
newborn and persistent particles and is {x̃i , wi}Nk+Nk,new

i=1 .
2) Compute Correction Term
For all new measurements zj , with j = 1, . . . , mk

compute

λk|k−1(zj ) = λc(zj ) +
Nk+Nk,new∑

i=1

pk(zj | x̃i)p
D
k (x̃i)wi. (12)

3) Update
Given mk new measurements the update of the state

intensity is realized through a correction of the individual
particle weights. For every particle (xi , wi), with
i = 1, .., Nk + Nk,new set:

ŵi =
⎡
⎣(1 − pD

k (x̃i)) +
mk∑
j=1

pk(zj | x̃i)pD
k (x̃i)

λk|k−1(zj )

⎤
⎦ · wi.

(13)
4) Estimate Target States

To avoid a clustering step we use the methodology
presented in [24]. First, compute the following weights for
all new measurements zj , j = 1, . . . , mk and all persistent
particles, i.e., not the newborn particles x̃i , i = 1, . . . , Nk .

wj,i = pk(zj | x̃i)pD
k (x̃i)

λk|k−1(zj )
· wi. (14)

Then compute the following sum

Wj =
Nk∑
i=1

wj,i, (15)

which can be seen as a probability of existence for target
j , similarly to the multitarget multi-Bernoulli filter [25].
For further analysis, only those j for which Wj is above a
specified threshold τ are considered, i.e.,

J = {j |Wj > τ, j = 1, . . . , mk}. (16)

For all j ∈ J the estimated point states are then:

ŷj =
Nk∑
i=1

x̃i · wj,i . (17)

Note that only targets that have been detected at time step
tk can be reported as present. This follows the lack of
“memory” of a PHD filter. The full characteristics are
discussed in [26, 27]. In practice τ is usually set as
τ = 0.75.

5) Estimate Covariance Matrices
For each estimated state ŷj compute its covariance

matrix:

Pj =
Nk∑
i=1

wj,i

[
(x̃i − ŷ)(x̃i − ŷj )T

]
, (18)

The matrix Pj is not an error covariance matrix in the
sense of single-target Bayes filtering, but it characterizes
the particle distribution of state ŷj .

6) Resampling
Compute first the estimated expected number of targets

ηk =
Nk+Nk,new∑

i=1

ŵi . (19)

Let Nk+1 be the number of resampled particles, then any
standard resampling technique for particle filtering can be
used. Rescale the weights by ηk to get a new particle set
{xi , ηk/Nk+1}Nk+1

i=1 .

V. DERIVATION OF THE BOX-PARTICLE PHD FILTER

A. From Particle to Box

Recall that applying particle filters to the PHD filter
leads to a particle approximation of the intensity fk|k(x) by
a set of Nk weighted random samples {(xi , wi)}Nk

i=1. The
approximation can be written as

fk|k(x) ≈
Nk∑
i=1

wiδxi
(x), (20)

with δxi
(x) the Dirac delta function concentrated at xi . The

sum (20) converges to fk|k(x), with Nk → ∞ [28]. The
number of particles used is a key issue to the overall filter
performance. In general, the higher the number of
particles, the better the approximation and with it the
performance. However, a high number of particles leads
often to a computationally demanding scenario. In [18] the
authors presented a natural way to deal with the decrease
of Nk by using boxes instead of point particles and
combining particle filter techniques with interval analysis
methods. Moreover, in [19] the authors propose to
interpret box-particles as supports of uniform pdfs, so that
(20) changes to

fk|k(x) ≈
Nk∑
i=1

wiU[xi ](x), (21)

with U[xi ](x) denoting the uniform pdf over the box [xi].
Similarly to the scheme of the SMC-PHD filter the

box-PHD filter can be summarized in 7 steps that are
derived and presented in the following sections. Step 1
corresponds to the time update, steps 2–5 to the
measurement update, and steps 6 and 7 to the resampling.
A brief summary is also provided later in algorithm 1.

SCHIKORA ET AL.: BOX-PARTICLE PROBABILITY HYPOTHESIS DENSITY FILTERING 1663



B. Time Update Step

Assume that from the previous time step we have the
weighted box-particle set2, {([xi], wi)}Nk

i=1 approximating
the intensity (21), with [xi] ∈ IR

nx , wi the corresponding
weight, and Nk denoting the number of particles. The
box-particle filter approximation of the PHD prediction
equation (3) requires approximating two terms: the birth
intensity b(xk) and the persistent intensity.

1) Predict Target Intensity
As for the SMC-PHD filter, the approach in [12] is

used here to approximate the newborn particles. Denote
by Nk,new the number of newborn particles to be sampled.
For each measurement zk−1,j , j = 1, . . . , Mk−1, N

j

k,new

= Nk,new/Mk−1 new box-particles [x̃i] are drawn from a
distribution βk(x|zk−1,j ), that is,

b(x) ≈
Mk∑
j=1

βk(x|zk−1,j ) (22)

with

βk(x|zk−1,j ) ≈ 1

N
j

k,new

N
j

k,new∑
i=1

U[x̃i ](x). (23)

As described previously for the particle filter in
Section IV, βk(.|zk−1,j ) is constructed by separating the
state into a directly measured component and an
unmeasured component. The measured components of the
newborn box [x̃i] in (23) are chosen by inverting each
measurement box [zk−1,j ] while the unmeasured
components are chosen according to a prior support. The
weights of the newborn box-particles are set to

wi = vk

Nk,new

, i = Nk + 1, . . . , Nk + Nk,new, (24)

where vk , as in [12], is a prior expected number of target
births at time k.

Next, it remains to propagate the persistent
box-particles, and hence to approximate the integral in (3),∫

ps p(xk|xk−1)fk−1|k−1(xk−1)dxk−1 can be approximated.
Recall that the transitional density p(xk|xk−1) is known
through an evolution model fk (cf. (9)).

It is assumed furthermore that wk is a bounded noise3

in a box [wk]. According to [19] the following
approximations are made with uniform pdfs (similarly to
what is commonly used in the SMC-PHD time update step
with Dirac functions):∫

p(xk|xk−1)fk−1|k−1(xk−1)dxk−1

≈ wi

Nk∑
i=1

U[fk]([xi ])+[wk ](xk). (25)

2For simplicity of notation, we skip the time index k for the particle in
the rest of the paper when it is not needed.
3Without loss of generality, for simplicity noise wk is restricted to be
additive and bounded. In [19], the general case is considered with noise
wk approximated using a mixture of uniform pdfs.

Equation (25) means that the persistent box-particles are
propagated using a transition function’s inclusion function
[f]. Since the image of a box-particle fk([xi]) is not
necessarily a box, an inclusion function has to be used.

The new set of predicted box-particles is the union of
the newborn box-particles and the predicted persistent
particle, that we denote {[x̃i], wi}Nk+Nk,new

i=1 . The predicted
PHD has the expression:

fk|k−1(xk) ≈
Nk+Nk,new∑

i=1

wiU[x̃i ](xk). (26)

C. Generalized Likelihood

In the measurement update step, an important
challenge is how to implement the likelihood for the set of
box-particles representing the PHD. For the Mk new
measurements zk,j , in the context of this article, box
measurements [zk,j ] are associated to them to model the
noise. The sensor noise statistic is not modeled using a
density (that in practice is often unknown). Instead, the
only assumption that is made is that the sensor error range
is known (in practice this information is known a priori).
The likelihood terms p([z]|x), we are interested in, are
called generalized likelihood. In [29], the generalized
likelihood expression is derived and can be written

p([z] | x) = Pr{h(x) + v ∈ [z]}, (27)

with h denoting the measurement model and v the
stochastic noise associated to it (note that, without loss of
generality, here we consider an additive noise). If we
assume that the measurement model is deterministic and
we neglect the effect of v (the expression of the
generalized likelihood with the stochastic noise can be
found in [30]), p([z]|x) has the form:

p([z] | x) = Pr{h(x) ∈ [z]} = U[z](h(x)), (28)

Note that, in (28), for a more general problem, each
measurement can be characterized using a weighted
mixture of boxes (see [19]) to account for measurement
noises with known statistics (e.g. Gaussian noise). In that
case, the generalized likelihood can also be written as a
weighted mixture of uniform pdfs.

D. Measurement Update Step

Using the set of box-particles {[x̃i], wi}Nk+Nk,new

i=1
approximating the predicted intensity fk|k−1(xk) and using
the expression of the generalized likelihood (28), the
terms in the correction step (5) are to be calculated.

2) Compute Correction Term
First, the denominator terms in the right-hand side of

(5), denoted here λk|k−1([zj ]), have the form:

λk|k−1([zj ]) = λc([zj ]) +
∫

pDp([zj ]|xk)fk|k−1(xk)dxk.

(29)
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Here, pD is assumed constant. Using (26) and (28), the
term p([zj ]|xk)fk|k−1(xk) in (29) can be written as

p([zj ]|xk)fk|k−1(xk) ≈
∑Nk+Nk,new

i=1
wiU[zj ](h(xk))U[x̃i ](xk).

(30)

The term U[zj ](h(xk))U[x̃i ](xk) in (30) is also a constant
function with a support being the following set Si ⊂ ES ,
where

Si = {
x̃ ∈ [x̃i] | h(x̃i) ∈ [zj ]

}
. (31)

Equation (31) defines the solution set of a CSP and from
its expression we can deduce that predicted box-particles
[x̃i] have to be contracted with respect to the measurement
[zj ]. Let us define the function [hCP ]([x], [z]) that returns
the contracted version of [x] under the constraints given
by the measurement function h. In this paper, [hCP ] is
obtained via the CP algorithm (see 23). An example of this
contraction step is also given in the Appendix. Following
this notation:

U[zj ](h(xk))U[x̃i ](xk) ≈ |[x̂i,j ]|
|[x̃i]‖[zj ]|U[x̂i,j ](xk), (32)

where we denote [x̂i,j ] = [hCP]([x̃i], [zj ]).
Consequently, (30) can be further developed into

p([zj ]|xk)fk|k−1(xk) ≈
∑Nk+Nk,new

i=1
wi

|[x̂i,j ]|
|[x̃i]‖[zj ]|U[x̂i,j ](xk).

(33)

Note that this result (33) is always true for box-particle
filter implementations and can be interpreted as: the
likelihood calculation requires 1) contraction for the
box-particles, and 2) a likelihood value proportional to the
ratio between the volume of the newly contracted
box-particle and the original one.

Furthermore, using the expression (33), (29) can now
be written in the form

λk|k−1([zj ]) ≈ λc([zj ])

+pD

∑Nk+Nk,new

i=1
wi

∫ |[x̂i,j ]|
|[x̃i]‖[zj ]|U[x̂i,j ](xk)dxk

= λc([zj ]) + pD

∑Nk+Nk,new

i=1
wi

|[x̂i,j ]|
|[x̃i]‖[zj ]|

(34)

3) Update
By inserting the expression (30) inside the PHD

update equations (4) and (5) the updated intensity can be
approximated with box-particles according to

fk|k(xk) ≈ (1 − pD)
∑Nk+Nk,new

i=1
wiU[x̃i ](xk)

+
M(k)∑
j=1

∑Nk+Nk,new

i=1
wi

pDU[zj ](h(xk))U[x̃i ](xk)

λk|k−1([zj ])

≈ (1 − pD)
∑Nk+Nk,new

i=1
wiU[x̃i ](xk)

+pD

M(k)∑
j=1

∑Nk+Nk,new

i=1
wi

|[x̂i,j ]|
|[x̃i]‖[zj ]|λk|k−1([zj ])

U[x̂i,j ](xk).

(35)

Equation (35) means that, given Mk new measurements,
the update of the state intensity is realized through the
contraction step of the box-particles and (Nk + Nk,new).
(M(k) + 1) new box-particles approximate the updated
intensity. The box-particle weights are updated according
to two groups that reflect the two terms summed in (35):

ŵi = [(1 − pD)] · wi, (36)

ŵi =
⎡
⎣pD

M(k)∑
j=1

|[x̂i,j ]|
|[x̃i]‖[zj ]|λk|k−1([zj ])

⎤
⎦ · wi. (37)

To avoid this approximation with a potentially huge
quantity of box-particles, a strategy scoring each
measurement is introduced in step 6.

4) Estimate Target States
To avoid a clustering step we use the methodology in

[24] also presented in Section IV for the SMC-PHD
implementation. First, using (37) we compute the
following weights for all the new measurements
[zj ], j = 1, . . . , mk and all the persistent box-particles
[x̃i] or uniform pdfs U|x̃i |i = 1, . . . , Nk (the newborn
box-particles are not used in this calculation).

wj,i = pD |[x̂i,j ]|
|[x̃i]‖[zj ]|λk|k−1([zj ])

· wi. (38)

Then compute the following sum

Wj =
Nk∑
i=1

wj,i, (39)

which can be seen as a probability of existence for target
j , similarly to the multitarget multi-Bernoulli filter. For
further analysis only those j are considered for which Wj

is above a specified threshold τ , i.e.,

J = {j |Wj > τ, j = 1, . . . , mk}. (40)

For all j ∈ J the estimated point states are then:

ŷj = 1

Wj

Nk∑
i=1

mid([x̃i]) · wj,i . (41)

For all j ∈ J the estimated box states are then:

[ŷj ] = 1

Wj

Nk∑
i=1

[x̃i] · wj,i . (42)

In (41) and (42) we added, in contrast to [12], the
normalization term 1

Wj
to receive more accurate state

estimates when Wj is not practically one.
5) Estimate Covariance Matrices
Using the interpretation of box-particles as a mixture

of uniform pdfs, the covariance matrix for each state is
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computed as

Pj =
Nk∑
i=1

wj,i

Wj

[
(mid([x̃i]) − ŷj )(mid([x̃i])−ŷj )T + �Ui

]
,

(43)
with �Ui a diagonal matrix of the form

�Ui =

⎛
⎜⎜⎝

|([xi])1|2/12 0
. . .

0 |([xi])nx
|2/12

⎞
⎟⎟⎠ (44)

containing the standard derivations for the individual
uniform pdfs. In (43) we added, in contrast to [12], the
normalization term 1

Wj
to receive more accurate

covariance matrix estimates when Wj is not practically
one. The matrix Pj is not an error covariance matrix in the
sense of single-target Bayes filtering, but it characterizes
the particle distribution of state ŷj .

6) Contract Particles
It has been shown in (35) that each box-particle has to

be duplicated and contracted by each measurement. To
avoid this nondesirable number of contractions, we
propose to contract each box-particle [x̃i], i = 1, . . . ,

Nk + Nk,new with its corresponding measurement. The
corresponding measurement is defined through:

[zi] = arg max
wj,i

{[zj ], wj,i > 0}. (45)

If no [zi] is found, the box-particle [x̃i] is not contracted,
else [x̃i] is set to

[x̂i] = [hCP]([x̃i], [zi]). (46)

More formally, denote by S1 the set of box-particles
[x̃i], i = 1, . . . , Nk + Nk,new for which [zi] exists and
denote by S2 the remaining box-particles. The posterior
intensity fk|k(xk) given in (35) can be further approximated
into the following mixture of Nk + Nk,new pdfs:

fk|k(xk) ≈ (1 − pD)
∑

[x̃i ]∈S2
wiU[x̃i ](xk)

+pD

∑
[x̃i ]∈S1

wi

|[x̂i]|
|[x̃i]‖[zi]|λk|k−1([zi])

U[x̂i ](xk).

(47)

Equation (47) is an approximation of the more robust but
more computational demanding (35). In [30] a different
approach has been presented which is more similar to (35).

7) Resampling
Compute first the estimated expected number of targets

ηk =
Nk+Nk,new∑

i=1

ŵi . (48)

Let Nk+1 be the number of resampled particles. As
explained in [19], instead of replicating box-particles,
which have been selected more than once in the
resampling step, we divide them into smaller box-particles
as many times as they were selected. Several strategies of
subdivision can be used (e.g. according to the largest box

Fig. 1. Linear scenario used for performance evaluation. Six targets
move inertially. Individual starting points of each target correspond to
denoted target ID number. Targets 1 - 3 are present for all time steps.
Target 4 is present between time step 15 and 90. Targets 5 and 6 are

present between time step 30 and 75.

face). In this paper we randomly pick a dimension to be
divided for the selected box-particle. Next, rescale the
weights by ηk to get a new particle set {[xi], ηk/Nk+1}Nk+1

i=1 .
The box-PHD filter is summarized as algorithm 1.

VI. NUMERICAL STUDIES

This section gives numerical studies for the proposed
box-PHD filter algorithm. For comparison with traditional
particle filter techniques we use a point particle SMC-PHD
filter. As a performance measure the OSPA metric [21] is
used for performance measure, together with the criteria
for measuring the inclusion of the true state and the
volume of the posterior pdf. The later two were introduced
in [20, 30]. Both filters have been implemented in C + +
in a similar way. In addition the Boost Interval Arithmetic
Library [31] was used to handle interval datatypes.

A. Testing Scenario

We analyze the behavior of both filters in a demanding
linear scenario. Herein six inertial moved targets are
placed in an area A = [−500, 500] m × [−500, 500] m.
The unit is assumed to be meters. The state space is
S ⊂ R

4, where the first two components correspond to the
x and y coordinates and the third and fourth correspond to
their velocities. The measurement space consists of [x] and
[y] measurements, so Z ⊂ IR

2. New measurements occur
for the sake of simplicity every second. The measurement
noise is white Gaussian noise with a standard deviation
σx = σy = 15 m. The probability of detection is set equal
for all states to pD

k ([x]) = 0.95. Target placement and
direction of movement are visualized in Fig. 1. Targets
1 – 3 are present for all time steps. Target 4 is presented
between time step 15 and 90. Targets 5 and 6 are present
between time step 30 and 75. The whole scenario has a
length of 100 time steps (seconds). The number of clutter
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measurements is estimated following a Poisson
distribution with the mean value |A| · ρA.

Algorithm 1 The box-PHD filter

In: {([xi ], wi )}Nk
i=1, Zk, Zk−1

Out: {([xi ], wi )}Nk+1
i=1 , {[ŷj ], P̂j }

1) Predict target intensity
• For I = 1, . . . , Nk apply (50) to get x̃i .
• Sample Nk,new many new particles according to Zk−1

• Weights for new particles are wi (24)
2) Compute correction term

• λk|k−1([zj ]), according to (29)
3) Update target intensity

• For every particle ([x̃i ], wi ), with I = 1, . . . , Nk + Nk,new

set the new weight according to (35).
4) Compute target states

• Compute the set J (40)
• For all j ∈ J :

[ŷj ] = 1
Wj

∑Nk
i=1 wj,i [x̃i ] (42)

5) Compute covariance matrices
• For all j ∈ J compute Pj according to (43)

6) Contract boxes
• [x̂i ] = [hCP]([x̃i ], [z]) (46)

7) Resample
• Use a resampling strategy with subdivision of boxes to get

{([xi ], wi )}Nk+1
i=1

p(nc) = 1

nc!
(A · ρA)nc exp(−|A| · ρA), (49)

with |A| denoting the volume of an observed area and ρA a
parameter describing the clutter rate. For this scenario we
used ρA = 4 · 10−6. Clutter measurements are generated
by an independent and identically distributed (IID)
process.

To initialize the particle cloud at time step
tk = 0, N0 ∈ N

+ particles are distributed uniformly across
the state space S, e.g. N0 = 1000. The weights are set to
wj = 1/N0.

Assuming a constant velocity model in two dimensions
the prediction of the persistent particles can be modeled by

[x̃i] =

⎛
⎜⎜⎜⎝

1 0 
t 0

0 1 0 
t

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎠ [xi] + [ν], (50)

with 
t = tk − tk−1 and ν a 3σ interval of some white
process noise, defined by a covariance matrix

∑
. Hidden

in (50) are inclusion functions for the individual
dimension of the state space. A close look reveals that
every variable only appears once (for each dimension) and
that all operations are continuous, so these natural
inclusion functions are minimal and the propagated boxes
have minimal size. This fact holds for constant velocity
models with arbitrary dimensions.

B. Performance Measures

Let us define d (c)(x, y) := min(c, d(x, y)) as the
distance between x, y cut off at c > 0, and πl the set of

permutations on {1, 2, . . . , l} for any l ∈ N = {1, 2, . . .}.
For 1 ≤ p ≤ ∞, c > 0, and arbitrary finite subsets
X = {x1, . . . , xm} and Y = {y1, . . . , yn} of S, with
m, n ∈ N0, the OSPA metric [21] is defined as

d̄ (c)
p (X, Y)

:=
(

1

n

(
min
π∈�n

(
m∑

i=1

d (c)(xi , yπ (i))
p

)
+ cp(n − m)

)) 1
p

.

(51)

For the OSPA metric (51) we use directly the state
estimates if using the SMC-PHD filter. To apply the OSPA
metric to the box-PHD filter we use the point state
estimates ŷj gained in (41) of the proposed algorithm.
Alternatively, one can use the center points of the box
states mid([ŷj ]), which have the same values as ŷj .

The inclusion value ρ measures whether the state
vector is contained in the support of the posterior pdf, or in
the case of the PHD filter, the posterior intensity. Given
the ground truth for all targets y∗

l , with l an index over the
true number of targets, the inclusion for the SMC-PHD
filter can be computed by evaluating

ρSMC
l =

{
1 ∃j : (ŷj − ŷ∗

l ) P−1
j (ŷj − ŷ∗

l )T < κ

0 otherwise.
(52)

The condition in (52) checks if the ground truth is
contained in the error ellipse defined by covariance matrix
Pj . The term κ defines the size of the error ellipse, e.g. use
κ = 11.8 for a 3σ–ellipse in two dimensions [32]. The
inclusion for the box-PHD filter is much simpler to
compute: check if the ground truth y∗

l is contained in one
of the state boxes [ŷj ]. If this is true the inclusion value is
one, otherwise zero. Then ρl for the box-PHD filter is
given by

ρbox
l =

{
1 for y∗

l ∈ [ŷj ] and

0 otherwise.
(53)

The volume criteria measures the spread of the particle
distribution for a given state. To have a fair comparison
between both filters we compute the volume for the
SMC-PHD filter as

νSMC
j =

√
6 · √

Pj (1, 1) + 6 · √
Pj (2, 2). (54)

The volume in (54) is the square root of the widths of a
box containing the 3σ–ellipse of state j . Note that we only
consider here the position information, since the entries of
Pj have different units. For the box-PHD filter the volume
is computed as the square root of the widths of the box
states, giving

νbox
j =

√
|[ŷi](1)| + |[ŷi](2)|. (55)

C. Simulations

1) Accuracy Test: In the first simulation we
investigate the accuracy achieved with the box-PHD filter
in comparison with the SMC-PHD filter. To do so we use
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Fig. 2. Visualization of proposed box-PHD filter. Green solid lines are
true target trajectories. Blue solid boxes correspond to projection of
estimated box states into 2D. Box-particles are visualized as dashed

black boxes, while red dotted boxes are measurements.

Fig. 3. Mean OSPA values for 1000 Monte Carlo trials on linear
scenario for both filters.

the linear scenario described earlier. A visualization of the
box-PHD filter for the linear scenario can be seen in
Fig. 2. Fig. 3 shows the mean OSPA values achieved with
both filters on the given scenario. We can observe that the
OSPA values are in general very low. This means that the
SMC-PHD filter and the box-PHD filter behave very well
in this scenario. However, we can also observe that the
box-PHD filter has a little higher values than the
SMC-PHD filter. The authors of [20] already noticed that
point estimates gained from box-particles can have a slight
bias. Therefore they introduced two new measurement
criteria – inclusion and volume. The mean results for 1000
Monte Carlo trials and all targets are shown in Figs. 4 and
5, respectively. It can be easily seen that the inclusion and
volume values react to target appearance and target
disappearance. In general we can say that the box-PHD
filter has a higher volume then the SMC-PHD filter. This
can be seen as a drawback of the box-particle technique.
However, a closer look at the inclusion values reveals that
the higher volume leads to better values for the inclusion
criteria. So we can state that the SMC-PHD filter
converges quickly to the solution and therefore it can
happen sometimes that the true target state is not in the
support of any covariance matrix Pj . From an engineering

Fig. 4. Mean inclusion values for 1000 Monte Carlo trials and all
targets on linear scenario without biased measurements for both filters.

Fig. 5. Mean volume values for 1000 Monte Carlo trials and all targets
on linear scenario without biased measurements for both filters.

Fig. 6. Mean estimated number of states for 1000 Monte Carlo trials on
linear scenario.

point of view both filters reach similar results in this
scenario. This fact can also be seen in Fig. 6. Here, the
estimated mean number of states is depicted. The curves
of both filters are practically identical. Nevertheless, the
number of particles needed for the box-PHD filter is much
smaller in comparison with the SMC-PHD filter, which
yields a better runtime shown in Table I. The mean
speedup factor for the box-PHD filter is 10.9. The number
of particles used in this scenario were 1875 for the
SMC-PHD filter and only 63 for the box-PHD filter. Both
filters have been implemented in C + + . The box-PHD
filter uses in addition the Boost Interval Analysis Library.
Experiments were performed on an Intel Core 2 Duo
(2.53 GHz) PC with 4GB RAM. Additional performance
measures on the complexity of the approach have been
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TABLE I
Mean Runtimes for Processing One Time Step

Processing time (ms) Speedup

SMC-PHD filter 10.3428 1.0
Box-PHD filter 0.95167 10.9

Note: Values computed over 1000 Monte Carlo trials and for all time steps of the
linear scenario.

Fig. 7. Mean OSPA values for varying number of box-particles
over time.

Fig. 8. Mean inclusion values for 1000 Monte Carlo trials and all
targets on linear scenario with biased measurements for both filters.

published in [30]. Nevertheless, Fig. 7 shows mean OSPA
values for 1000 Monte Carlo trials in the above scenario,
where the number of box-particles used is varied. It can be
seen that as few as 10 box-particles are needed in order to
reach acceptable OSPA values. Worth mentioning is also
that the maximum accuracy is already achieved by 50
box-particles for this scenario.

2) Strong Bias: In the next simulation we investigate
the behavior of both filters when the sensor measurements
have a strong bias, i.e., the bias is bigger than the white
process noise of the sensor. The examples are similar to
those considered in [33] and in [30]. The linear scenario is
used again and we added to every measurement a bias of
30[m] for the x measurement and a bias of 10 for the y

measurement. The volume of both filters does not change,
which can be seen in Fig. 9. The inclusion criteria on the
other hand change dramatically for the SMC-PHD filter;
the value drops to values around 0.5[m], c.f. Fig. 8. This
means that approximately 50% of the time the true target
state is not within the posterior intensity of the filter. This

Fig. 9. Mean volume values for 1000 Monte Carlo trials and all targets
on linear scenario with biased measurements for both filters.

indicates filter divergence, which is considered a
catastrophic event in target tracking. The box-PHD filter,
on the other hand, reaches values similar to the first
simulation without bias. These results lead to the
conclusion that the box-PHD filter outperforms the point
SMC-PHD filter in scenarios with strongly biased
measurements.

VII. CONCLUSION

In this paper we presented a novel technique for
nonlinear multitarget tracking with a box-particle based
filter, called the box-PHD filter. The theoretical backbone
of this is the random finite set theory, which can be used to
derive the general intensity filter equations. For the
implementation, however, methods from interval analysis
are used additionally to get a box-particle representation
of the PHD filter. This representation allows a decrement
of the number of particles needed. In our simulations we
could reduce the number of particles by a factor of
approximately thirty and reduce the computation time by a
factor of approximately eleven. On the other hand, the
accuracy of the filter was not remarkably reduced.
Especially in the presence of strong bias we show that the
box-PHD filter can outperform the SMC-PHD filter with
point particles.

APPENDIX. CONTRACTION EXAMPLE

Assume the following scenario: a sensor measures
azimuth α and range r in a local sensor coordinate system.
The objective is to track a target in a global Cartesian
coordinate system with these measurements. A
measurement is then z = (α, r)T , while the state is
represented by x = (x, y)T . The point measurement
function is defined as

z = h(x) =

⎛
⎜⎜⎝

arctan

(
y − y0

x − x0

)
√

(x − x0)2 + (y − y0)2

⎞
⎟⎟⎠

Constraint 1

Constraint 2
,

(56)
where (x0, y0)T is the sensor position in a global
coordinate system. Equation (56) defines two constraints
that will be used to contract a state box [x]. Assuming box
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Fig. 10. Contraction example. Box [x] is contracted by measurement
box [z]. Result is green box [x′].

measurements [z] = [α] × [r] and box states
[x] = [x] × [y], a contractor [hCP ] ([x]|[z]) based on
constraint propagation [23] is given by the following
algorithm:

0) Input: [x] = [x] × [y], [z] = [α] × [r]
Output: [x] = [x] × [y]

1) for Constraint 1 do:

[x] := [x] ∩ [x0] + [y] − [y0]

[tan]([α])
(57)

[y] := [y] ∩ [y0] + ([x] − [x0])[tan]([α]) (58)

[α] := [α] ∩ [arctan]

(
[y] − [y0]

[x] − [x0]

)
(59)

2) for Constraint 2 do:

[x] := [x] ∩ [x0] +
√

[r]2 − ([y] − [y0])2 (60)

[y] := [y] ∩ [y0] +
√

[r]2 − ([x] − [x0])2 (61)

[r] := [r] ∩
√

([x] − [x0])2 − ([y] − [y0])2 (62)

3) if the boxes [x] and [z] are changed return to step 1.

The box [x0] × [y0] represents the sensor position as a
singleton. In practice we found it useful to stop this
iteration after a finite number of loops, e.g. three, without
any lack of performance. The quotient of the contracted
box volume and the original box volume is used to
calculate the likelihood. Fig. 10 visualizes the idea.
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